
SBSC: Step-by-Step Coding for Improving
Mathematical Olympiad Performance

Kunal Singh∗ Ankan Biswas Sayandeep Bhowmick Pradeep Moturi
Fractal AI Research

Mumbai

Abstract

We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework
that enables Large Language Models (LLMs) to generate sequence of programs
for solving Olympiad level math problems. After each turn/step, by leveraging
the code execution outputs and programs of previous steps, the model generates
the next sub-task and the corresponding program to complete it. SBSC allows
more granular, flexible and precise approach to problem-solving compared to
existing methods. Extensive experiments highlight the effectiveness of SBSC in
tackling competition and Olympiad-level math problems. For Claude-3.5-Sonnet,
we observe SBSC (greedy decoding) surpasses existing state-of-the-art (SOTA)
program generation based reasoning strategies by absolute 10.7% on AMC12, 8%
on AIME and 12.6% on MathOdyssey. Given SBSC is multi-turn in nature, we also
benchmark SBSC’s greedy decoding against self-consistency decoding results of
existing SOTA math reasoning strategies and observe performance gain by absolute
6.2% on AMC, 6.7% on AIME and 7.4% on MathOdyssey. Scripts & Data is
uploaded at this link for reproducibility.

1 Introduction

Mathematics is considered as a critical benchmark to measure the reasoning abilities of the Large
Language Models (LLMs) [5, 8, 1, 23, 2, 21] due to the complex and creative nature of the subject.
The current generation of advanced LLMs, GPT-4o [1], Claude-3.5-Sonnet [2], Gemini-ultra [23] have
achieved high scores on elementary GSM8k [9] & high-school level MATH [14]. However, recent
math specific competition and Olympiad-level benchmarking on Math Odyssey [11], American
Invitational Mathematics Examination (AIME) & American Mathematics Competitions (AMC)
[4, 10, 23] questions show that they continue to struggle with advanced mathematical reasoning.

Related Work: In recent times, numerous developments in multiple research directions have taken
place to enhance the math ability of the LLMs. One of the major ones has been along the prompting
and thinking strategies such as Chain-of-Thought (COT) method [31, 15] that has shown to evoke
multi-step thinking in LLMs before arriving at the answer. These methods struggle with complex and
symbolic computations. For this, PAL [12] & POT [7] suggest making LLMs perform reasoning by
writing program and offloading the computations to code interpreter. Another line of research has
been around pre-training and supervised fine-tuning (SFT). Multiple studies [24, 34, 10, 3, 16, 22, 25]
have shown pre-training LLMs on maths tokens results in increased mathematical knowledge and
reasoning abilities. Recent approaches [36, 13, 37, 28, 24, 27, 19, 4, 33, 26] have tried creating
synthetic reasoning paths/trajectories using a teacher model like GPT4 [1] for SFT. Also, some
studies [29, 35, 32, 6, 17] provide an alternative to manual annotations for process supervision [18].

∗Corresponding author: Kunal Singh (kunal.singh@fractal.ai)

38th Conference on Neural Information Processing Systems (NeurIPS 2024) MATH-AI.

https://anonymous.4open.science/r/Step-By-Step-Coding-7437

Motivation: COT prompting helps LLMs to solve a problem using a step-by-step thought process.
PAL & POT introduced problem-solving via program generation where the answer is generated by
executing the generated program. ToRA [13] & Mathcoder [28] introduced tool-integrated math
problem solving format. There, model outputs natural language reasoning followed by program
generation to solve the problem in a single turn/block and incorporates code-interpreter output for
either summarizing the program output to get the final answer and terminate; or re-attempt the
problem in the subsequent turn using the same format. For brevity, let’s call ToRA’s defined way of
tool-integrated reasoning (TIR) strategy as TIR-ToRA.

Fundamentally, both PAL & TIR-ToRA generate a single program block to solve the problem.
Additionally, TIR-ToRA framework allows the model to re-attempt the program generation in case
of execution error. These approaches show improved performance over COT on elementary & high
school level math problems. However, solving olympiad level math requires coming up with complex
and creative solutions. Often, it is not feasible to solve a complex problem entirely using a single
program block and as a result, these strategies fail to systematically address each detailed step of
the problem-solving process. It tends to overlook specified constraints, edge cases or necessary
simplifications, which are often encountered in Olympiad-level problems.

Our Contribution: Olympiad level math problem-solving can be viewed as solving/exploring an
intermediate sub-task in depth; and discovering + solving the next critical sub-task dynamically basis
the accumulated knowledge of previous sub-tasks explorations. To this end, we propose Step-by-Step
Coding paradigm (SBSC) which is a multi-turn math reasoning framework that leverages existing
programming [20] and in-context learning skills [5] of the current generation of LLMs, particularly
Claude-3.5-Sonnet [2] & GPT-4o [21]. It uses program generation as the reasoning strategy to solve
an intermediate sub-task unlike PAL & TIR-ToRA. In each turn, it leverages code-interpreter results
and knowledge of previous sub-tasks solutions to define and programmatically solve the next sub-task.
We investigate the performance of SBSC on last 11 years of AIME & AMC-12 questions. We also
benchmark on Olympiad-subset of MathOdyssey dataset. We compare our method with existing
reasoning strategies: COT, PAL, TIR-ToRA. We conduct ablations to understand the benefits of
our approach such as sensitivity to exemplars, topic-wise analysis and measuring improvement in
program refinement/debugging ability over TIR-ToRA due to the granular nature of SBSC process.

2 Method

SBSC is a multi-turn, program-generation based math reasoning framework where at each turn:
the model generates an intermediate sub-task and corresponding program to solve that sub-task by
leveraging the outputs of the previous turns. At the end of each turn, code interpreter is used to
execute the program block to generate the solution for the intermediate sub-task. The intermediate
sub-task depends on the results of the previous turns and the question. The code snippet for the ith

sub-task directly incorporates the execution results of the previous code snippets by directly defining
them as variables and symbols. This way SBSC makes LLMs generate sequence of targeted programs
over multiple turns to solve complex math problems.

Our inference procedure is inspired by ToRA [13]. Solution chain is initialized with the Prompt p
containing method instructions followed by exemplars and the current question q. At each step, LLM
G first outputs a subtask si. If si generation ends with stop-word "###END OF CODE", we extract
the final answer. Else, it continues to generate program code ci ending with stop-word ““‘output”.
We then pass ci to code interpreter and obtain the execution message or output oi ← E(ci). The
solution chain is updated by concatenating it with si,ci,oi and loop continues till we get "###END
OF CODE". ⊕ denoting concatenation, the sequential process can be generalised as:

si ⊕ ci ∼ G(· | p⊕ q ⊕ (s1 ⊕ c1 ⊕ o1)⊕ (s2 ⊕ c2 ⊕ o2)⊕(si−1 ⊕ ci−1 ⊕ oi−1)) (1)

Step-wise sequential approach of SBSC ensures that every part of the problem is addressed with exact
precision, reducing the risk of errors that might arise from false assumptions or skipped steps. Having
separate programs for each part of the solution also allows it to make necessary simplifications that
would make the future subparts, and hence the whole problem, easier to solve allowing for a more
granular and precise approach to problem-solving compared to existing methods. In case the code
execution at any step results in an erroneous output, SBSC is better able to rectify that particular step.
Fig 1a shows a visual sample SBSC response for an AIME question and Fig 1b shows TIR-ToRA

2

response for the same question. More detailed discussion on comparison is at Appendix A.1. In depth
understanding of SBSC via multiple examples and comparisons at Appendix A.4.

(a) Example multi-turn SBSC response for an AIME problem. Pink boxes denote the sub-task si at the i-th step,
blue boxes denote the program ci to solve si and >>> denote the corresponding execution output oi. The red
curly brackets indicate reusing outputs from earlier steps.

(b) Example TIR-ToRA response for the same problem, which is not solved correctly. In first turn, it tries to
solves the problem at once using a rational and program. It encounters error and in second turn, tries to fix the
entire approach and solve again but the solution is incorrect.

Figure 1: Comparison of SBSC and TIR-ToRA frameworks.

3 Experiment

Benchmark datasets We create our datasets using problems of last 11 years from popular math
competitions AMC and AIME. We obtain questions and answers (Q&A) in LATEX format from the
AoPS Wiki website. We remove problems which are dependent on accompanying images and process
the Q&A to have integer answers using GPT-4o if needed, leaving us with 330 AIME problems
and 475 AMC-12 problems. We also use MathOdyssey [11], a popular benchmark for LLM math

3

https://artofproblemsolving.com/wiki/index.php/

reasoning, consisting of problems of varying difficulties. We include the 148 problems belonging to
Olympiad-level competitions and perform similar filtering and processing. For more details on how
we processed the dataset, please refer to Appendix A.2.

Models & Configurations We use gpt-4o-2024-05-13 and Claude-3.5-Sonnet as base
LLMs for our experiments. For all datasets and all reasoning frameworks, we use 4-shot setting.
Maximum number of turns (n) for both TIR-ToRA and SBSC is set to 15. For greedy decoding
inference, we use temperature=0 and max_tokens=1024 and also, we run 3 times and
report average. Given SBSC is multi-turn in nature (on average 6-7 turns per problem , Table 2
in Appendix A.3) , we also benchmark SBSC’s greedy decoding results against self-consistency
(SC) [30] decoding results (majority@7) of COT, PAL & TIR-ToRA. For SC decoding, we use
temperature=0.7 and top_p=0.9. Note: we experimentally observe that for n > 4, there is
no improvement in accuracy for TIR-ToRA so we set n=4 for TIR-ToRA during SC decoding. All
ablations were conducted using Claude-3.5-Sonnet unless otherwise specified.

Prompting/Few-shot Exemplars For both AIME and AMC, we select 90 questions each, drawn
from problems of years other than those included in the evaluation datasets. These questions were
prompted with COT, PAL, TIR-ToRA and SBSC to generate corresponding solutions in accurate
format. For each dataset, we create a subset of 10 problems correctly solved by every method and
finally select a combination of 4 exemplars among them. For MathOdyssey, we use AIME exemplars
as both are of similar difficulty level. We provide the 4 chosen exemplars and system-prompts, used
in the main experiments, for different methods in Appendix (A.5, A.6, A.8, A.9) & repository here.

4 Results

Main Results

Method AMC AIME MathOdyssey
greedy maj@7 greedy maj@7 greedy maj@7

Claude-3.5-Sonnet
COT 31.16 35.79 9.09 10.91 11.89 16.89
PAL 35.79 36.42 27.48 28.79 27.23 31.01
TIR-ToRA 38.59 43.16 24.64 26.67 27.23 32.43
SBSC (Ours) 49.33↑10.7 −↑6.2 35.45↑8 -↑6.7 39.86↑12.6 -↑7.4

GPT-4o
COT 35.94 37.47 10.39 12.12 13.51 17.57
PAL 36.48 38.11 24.63 26.97 15.74 20.27
TIR-ToRA 37.33 40.42 22.42 25.45 19.59 23.64
SBSC (Ours) 44.55↑7.2 -↑4.1 30.7↑6.1 -↑3.7 26.55↑7 -↑2.9

Table 1: Benchmarking SBSC against different math reasoning methods across 3 datasets:We report
the average accuracy over 3 runs. Best result in each setting is highlighted in bold & second best is
underlined. Absolute improvement in performance by SBSC over the previous best method in each
setting is indicated in subscript.

As shown in Table 1, on AMC dataset, SBSC shows an absolute improvement over TIR-ToRA
by roughly 11% using Claude-3.5-Sonnet and 7% using GPT-4o. SBSC greedy decoding results
outperforms SC decoding results of TIR-TORA by absolute 6% and 4%, for Claude-3.5-Sonnet
and GPT-4o respectively. We see similar absolute improvements in accuracy on our AIME dataset
too. SBSC outperforms its nearest competitor (PAL) by 8% and 6% with greedy settings and SC
settings by 6.7% and 3.7% for Claude-3.5-Sonnet and GPT-4o respectively. For MathOdyssey, SBSC
improves by as much as 12.6% and 7% over TIR-ToRA while showing improvement of 7.4% and 3%
over its SC variant, for Claude-3.5-Sonnet & GPT-4o respectively. Standard deviation values at A.10.

5 Ablations

Sensitivity to Exemplars: We study the effect of number/choice of examples in prompting on
SBSC’s performance. As shown in Figure 2, we observe a notable increase in performance when

4

https://anonymous.4open.science/r/Step-By-Step-Coding-7437

Figure 2: Effect of Number of Exemplars Figure 3: Sensitivity to choice of Exemplars

increasing the examples from 2 to 4, which then starts to saturate as we further increase the number of
examples to 6 and 8. This justifies our decision of using a 4-shot setting. To understand if the choice
of exemplars affect the accuracy or not, we conduct a sensitivity analysis. We randomly sample 4
exemplars out of the already created pool of 10 exemplars three times to create 3 variations of 4-shot
prompts: v1, v2, and v3. In Figure 3, we can see that the performance remains stable irrespective of
the exemplars used, across a subset of AIME (2022-2024) and AMC (2021-2023) problems.

Figure 4: Topic breakdown analysis Figure 5: Comparison of Debugging Abilities

Topic-wise Analysis: We use GPT-4o-mini [21] to classify problems from AIME and AMC, while
MathOdyssey already had topic labels. As can be seen in Figure 4, our method outperforms TIR-ToRA
in all the individual topics and across all 3 datasets, thereby proving beneficial for all topics.

Code Debugging Ability: We present the superior ability of our method to resolve an error related
to code execution. If at any step of the trajectory chain, the program returns an execution error, we
consider that to be an error step. In Figure 5, we see that SBSC is able to recover from even multiple
wrong steps and reach the correct final answer quite easily when compared to TIR-ToRA whose
performance drops steeply on increasing error steps. This can be attributed to the fact that SBSC,
being precise and granular, tackles only a specific part of the problem and finds it easier to correct its
mistakes compared to TIR-ToRA which tries to correct the program at the problem level.

6 Conclusion

SBSC is a math reasoning framework that solves a problem by generating a sequence of sub-tasks and
corresponding program blocks. Each sub-task and its corresponding program solution is generated
leveraging the execution outputs and solutions of all the previous sub-tasks. We show performance
improvements of SBSC over TIR-ToRA, PAL & COT on challenging math problems. Limitations:
We only focus on text-based questions. We also just evaluate on integer-answer type questions.

References
[1] O. J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,

S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. ing Bao, M. Bavarian,
J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bogdonoff, O. Boiko, M. Boyd, A.-L.
Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann, B. Carey,
C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen,

5

B. Chess, C. Cho, C. Chu, H. W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry,
N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou,
D. Farhi, L. Fedus, N. Felix, S. P. Fishman, J. Forte, I. abella Fulford, L. Gao, E. Georges, C. Gibson,
V. Goel, T. Gogineni, G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross,
S. S. Gu, Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey,
W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang,
R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, L. Kaiser, A. Kamali, I. Kanitscheider,
N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim, Y. Kim, H. Kirchner, J. R. Kiros, M. Knight,
D. Kokotajlo, L. Kondraciuk, A. Kondrich, A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo, M. Lampe,
I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. teusz Litwin, T. Lopez,
R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning, T. Markov, Y. Markovski, B. Martin, K. Mayer,
A. Mayne, B. McGrew, S. M. McKinney, C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta,
J. Menick, L. Metz, A. Mishchenko, P. Mishkin, V. Monaco, E. Morikawa, D. P. Mossing, T. Mu, M. Murati,
O. Murk, D. M’ely, A. Nair, R. Nakano, R. Nayak, A. Neelakantan, R. Ngo, H. Noh, O. Long, C. O’Keefe,
J. W. Pachocki, A. Paino, J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Passos,
M. Pavlov, A. Peng, A. Perelman, F. de Avila Belbute Peres, M. Petrov, H. P. de Oliveira Pinto, M. Pokorny,
M. Pokrass, V. H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. W. Rae,
A. Ramesh, C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. D. Saltarelli,
T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam, K. Sheppard,
T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin, K. Slama, I. Sohl,
B. D. Sokolowsky, Y. Song, N. Staudacher, F. P. Such, N. Summers, I. Sutskever, J. Tang, N. A. Tezak,
M. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley, J. Tworek, J. F. C. Uribe,
A. Vallone, A. Vijayvergiya, C. Voss, C. L. Wainwright, J. J. Wang, A. Wang, B. Wang, J. Ward, J. Wei,
C. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter, S. Wolrich,
H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu, Q. ing Yuan, W. Zaremba,
R. Zellers, C. Zhang, M. Zhang, S. Zhao, T. Zheng, J. Zhuang, W. Zhuk, and B. Zoph. Gpt-4 technical
report. 2023. URL https://api.semanticscholar.org/CorpusID:257532815.

[2] Anthropic. Introducing claude 3.5, 2023. URL https://www-cdn.anthropic.com/
fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.
pdf.

[3] Z. Azerbayev, H. Schoelkopf, K. Paster, M. D. Santos, S. M. McAleer, A. Q. Jiang, J. Deng, S. Biderman,
and S. Welleck. Llemma: An open language model for mathematics. ArXiv, abs/2310.10631, 2023. URL
https://api.semanticscholar.org/CorpusID:264172303.

[4] E. Beeching, S. C. Huang, A. Jiang, J. Li, B. Lipkin, Z. Qina, K. Rasul, Z. Shen, R. Soletskyi, and
L. Tunstall. Numinamath 7b tir. https://huggingface.co/AI-MO/NuminaMath-7B-TIR,
2024.

[5] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. teusz Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. ArXiv,
abs/2005.14165, 2020. URL https://api.semanticscholar.org/CorpusID:218971783.

[6] G. Chen, M. Liao, C. Li, and K. Fan. Alphamath almost zero: process supervision without process. ArXiv,
abs/2405.03553, 2024. URL https://api.semanticscholar.org/CorpusID:269605484.

[7] W. Chen, X. Ma, X. Wang, and W. W. Cohen. Program of thoughts prompting: Disentangling computation
from reasoning for numerical reasoning tasks. Trans. Mach. Learn. Res., 2023, 2022. URL https:
//api.semanticscholar.org/CorpusID:253801709.

[8] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. M. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari,
P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. García, V. Misra, K. Robinson,
L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal,
M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Díaz, O. Firat, M. Catasta, J. Wei, K. S. Meier-Hellstern, D. Eck, J. Dean,
S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways. ArXiv, abs/2204.02311, 2022.
URL https://api.semanticscholar.org/CorpusID:247951931.

[9] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. ArXiv,
abs/2110.14168, 2021. URL https://api.semanticscholar.org/CorpusID:239998651.

6

https://api.semanticscholar.org/CorpusID:257532815
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://api.semanticscholar.org/CorpusID:264172303
https://huggingface.co/AI-MO/NuminaMath-7B-TIR
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:269605484
https://api.semanticscholar.org/CorpusID:253801709
https://api.semanticscholar.org/CorpusID:253801709
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:239998651

[10] DeepSeek-AI, Q. Zhu, D. Guo, Z. Shao, D. Yang, P. Wang, R. Xu, Y. Wu, Y. Li, H. Gao, S. Ma,
W. Zeng, X. Bi, Z. Gu, H. Xu, D. Dai, K. Dong, L. Zhang, Y. Piao, Z. Gou, Z. Xie, Z. Hao, B.-L.
Wang, J.-M. Song, D. Chen, X. Xie, K. Guan, Y. mei You, A. Liu, Q. Du, W. Gao, X. Lu, Q. Chen,
Y. Wang, C. Deng, J. Li, C. Zhao, C. Ruan, F. Luo, and W. Liang. Deepseek-coder-v2: Breaking
the barrier of closed-source models in code intelligence. ArXiv, abs/2406.11931, 2024. URL https:
//api.semanticscholar.org/CorpusID:270562723.

[11] M. Fang, X. Wan, F. Lu, F. Xing, and K. Zou. Mathodyssey: Benchmarking mathematical problem-
solving skills in large language models using odyssey math data. ArXiv, abs/2406.18321, 2024. URL
https://api.semanticscholar.org/CorpusID:270737739.

[12] L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig. Pal: Program-aided
language models. ArXiv, abs/2211.10435, 2022. URL https://api.semanticscholar.org/
CorpusID:253708270.

[13] Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, M. Huang, N. Duan, and W. Chen. Tora: A tool-integrated
reasoning agent for mathematical problem solving. ArXiv, abs/2309.17452, 2023. URL https://api.
semanticscholar.org/CorpusID:263310365.

[14] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. X. Song, and J. Steinhardt.
Measuring mathematical problem solving with the math dataset. ArXiv, abs/2103.03874, 2021. URL
https://api.semanticscholar.org/CorpusID:232134851.

[15] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot rea-
soners. ArXiv, abs/2205.11916, 2022. URL https://api.semanticscholar.org/CorpusID:
249017743.

[16] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. V. Ramasesh, A. Slone,
C. Anil, I. Schlag, T. Gutman-Solo, Y. Wu, B. Neyshabur, G. Gur-Ari, and V. Misra. Solving quan-
titative reasoning problems with language models. ArXiv, abs/2206.14858, 2022. URL https:
//api.semanticscholar.org/CorpusID:250144408.

[17] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever,
and K. Cobbe. Let’s verify step by step. ArXiv, abs/2305.20050, 2023. URL https://api.
semanticscholar.org/CorpusID:258987659.

[18] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever, and
K. Cobbe. Let’s verify step by step, 2023. URL https://arxiv.org/abs/2305.20050.

[19] A. Mitra, H. Khanpour, C. Rosset, and A. Awadallah. Orca-math: Unlocking the potential of slms in
grade school math. ArXiv, abs/2402.14830, 2024. URL https://api.semanticscholar.org/
CorpusID:267897618.

[20] A. G. W.-D. L. F. Y. T. Z. S. W. A. S.-L. K. S. I. S. Naman Jain, King Han. Livecodebench: Holistic and
contamination free evaluation of large language models for code. arXiv preprint, 2024.

[21] OpenAI. "hello gpt-4o.", June, 2024. URL https://openai.com/index/hello-gpt-4o/.

[22] K. Paster, M. D. Santos, Z. Azerbayev, and J. Ba. Openwebmath: An open dataset of high-quality
mathematical web text. ArXiv, abs/2310.06786, 2023. URL https://api.semanticscholar.
org/CorpusID:263829563.

[23] M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. P. Lillicrap, J.-B. Alayrac, R. Soricut, A. Lazaridou,
O. Firat, J. Schrittwieser, I. Antonoglou, R. Anil, S. Borgeaud, A. M. Dai, K. Millican, E. Dyer, M. Glaese,
T. Sottiaux, B. Lee, F. Viola, M. Reynolds, Y. Xu, J. Molloy, J. Chen, M. Isard, P. Barham, T. Hennigan,
R. McIlroy, M. Johnson, J. Schalkwyk, E. Collins, E. Rutherford, E. Moreira, K. W. Ayoub, M. Goel,
C. Meyer, G. Thornton, Z. Yang, H. Michalewski, Z. Abbas, N. Schucher, A. Anand, R. Ives, J. Keeling,
K. Lenc, S. Haykal, S. Shakeri, P. Shyam, A. Chowdhery, R. Ring, S. Spencer, E. Sezener, L. Vilnis,
O. Chang, N. Morioka, G. Tucker, C. Zheng, O. Woodman, N. Attaluri, T. Kociský, E. Eltyshev, X. Chen,
T. Chung, V. Selo, S. Brahma, P. Georgiev, A. Slone, Z. Zhu, J. Lottes, S. Qiao, B. Caine, S. Riedel,
A. Tomala, M. Chadwick, J. C. Love, P. Choy, S. Mittal, N. Houlsby, Y. Tang, M. Lamm, L. Bai, Q. Zhang,
L. He, Y. Cheng, P. Humphreys, Y. Li, S. Brin, A. Cassirer, Y.-Q. Miao, L. Zilka, T. Tobin, K. Xu,
L. Proleev, D. Sohn, A. Magni, L. A. Hendricks, I. Gao, S. Ontan’on, O. Bunyan, N. Byrd, A. Sharma,
B. Zhang, M. Pinto, R. Sinha, H. Mehta, D. Jia, S. Caelles, A. Webson, A. Morris, B. Roelofs, Y. Ding,
R. Strudel, X. Xiong, M. Ritter, M. Dehghani, R. Chaabouni, A. Karmarkar, G. Lai, F. Mentzer, B. Xu,
Y. Li, Y. Zhang, T. L. Paine, A. Goldin, B. Neyshabur, K. Baumli, A. Levskaya, M. Laskin, W. Jia,
J. W. Rae, K. Xiao, A. He, S. Giordano, L. Yagati, J.-B. Lespiau, P. Natsev, S. Ganapathy, F. Liu,
D. Martins, N. Chen, Y. Xu, M. Barnes, R. May, A. Vezer, J. Oh, K. Franko, S. Bridgers, R. Zhao,

7

https://api.semanticscholar.org/CorpusID:270562723
https://api.semanticscholar.org/CorpusID:270562723
https://api.semanticscholar.org/CorpusID:270737739
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:263310365
https://api.semanticscholar.org/CorpusID:263310365
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:250144408
https://api.semanticscholar.org/CorpusID:250144408
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:258987659
https://arxiv.org/abs/2305.20050
https://api.semanticscholar.org/CorpusID:267897618
https://api.semanticscholar.org/CorpusID:267897618
https://openai.com/index/hello-gpt-4o/
https://api.semanticscholar.org/CorpusID:263829563
https://api.semanticscholar.org/CorpusID:263829563

B. Wu, B. Mustafa, S. Sechrist, E. Parisotto, T. S. Pillai, C. Larkin, C. Gu, C. Sorokin, M. Krikun,
A. Guseynov, J. Landon, R. Datta, A. Pritzel, P. Thacker, F. Yang, K. Hui, A. Hauth, C.-K. Yeh, D. Barker,
J. Mao-Jones, S. Austin, H. Sheahan, P. Schuh, J. Svensson, R. Jain, V. V. Ramasesh, A. Briukhov,
D.-W. Chung, T. von Glehn, C. Butterfield, P. Jhakra, M. Wiethoff, J. Frye, J. Grimstad, B. Changpinyo,
C. L. Lan, A. Bortsova, Y. Wu, P. Voigtlaender, T. N. Sainath, C. Smith, W. Hawkins, K. Cao, J. Besley,
S. Srinivasan, M. Omernick, C. Gaffney, G. de Castro Surita, R. Burnell, B. Damoc, J. Ahn, A. Brock,
M. Pajarskas, A. Petrushkina, S. Noury, L. Blanco, K. Swersky, A. Ahuja, T. Avrahami, V. Misra,
R. de Liedekerke, M. Iinuma, A. Polozov, S. York, G. van den Driessche, P. Michel, J. Chiu, R. Blevins,
Z. Gleicher, A. Recasens, A. Rrustemi, E. Gribovskaya, A. Roy, W. Gworek, S. M. R. Arnold, L. Lee,
J. Lee-Thorp, M. Maggioni, E. Piqueras, K. Badola, S. Vikram, L. Gonzalez, A. Baddepudi, E. Senter,
J. Devlin, J. Qin, M. Azzam, M. Trebacz, M. Polacek, K. Krishnakumar, S. yiin Chang, M. Tung,
I. Penchev, R. Joshi, K. Olszewska, C. Muir, M. Wirth, A. J. Hartman, J. Newlan, S. Kashem, V. Bolina,
E. Dabir, J. R. van Amersfoort, Z. Ahmed, J. Cobon-Kerr, A. B. Kamath, A. M. Hrafnkelsson, L. Hou,
I. Mackinnon, A. Frechette, E. Noland, X. Si, E. Taropa, D. Li, P. Crone, A. Gulati, S. Cevey, J. Adler,
A. Ma, D. Silver, S. Tokumine, R. Powell, S. Lee, M. B. Chang, S. Hassan, D. Mincu, A. Yang, N. Levine,
J. Brennan, M. Wang, S. Hodkinson, J. Zhao, J. Lipschultz, A. Pope, M. B. Chang, C. Li, L. E. Shafey,
M. Paganini, S. Douglas, B. Bohnet, F. Pardo, S. Odoom, M. Rosca, C. N. dos Santos, K. Soparkar,
A. Guez, T. Hudson, S. Hansen, C. Asawaroengchai, R. Addanki, T. Yu, W. Stokowiec, M. Khan, J. Gilmer,
J. Lee, C. G. Bostock, K. Rong, J. Caton, P. Pejman, F. Pavetic, G. Brown, V. Sharma, M. Luvci’c,
R. Samuel, J. Djolonga, A. Mandhane, L. L. Sjosund, E. Buchatskaya, E. White, N. Clay, J. Jiang,
H. Lim, R. Hemsley, J. Labanowski, N. D. Cao, D. Steiner, S. H. Hashemi, J. Austin, A. Gergely,
T. Blyth, J. Stanton, K. Shivakumar, A. Siddhant, A. Andreassen, C. L. Araya, N. Sethi, R. Shivanna,
S. Hand, A. Bapna, A. Khodaei, A. Miech, G. Tanzer, A. Swing, S. Thakoor, Z. Pan, Z. Nado, S. Winkler,
D. Yu, M. Saleh, L. Maggiore, I. Barr, M. Giang, T. Kagohara, I. Danihelka, A. Marathe, V. Feinberg,
M. Elhawaty, N. Ghelani, D. Horgan, H. Miller, L. Walker, R. Tanburn, M. Tariq, D. Shrivastava, F. Xia,
C.-C. Chiu, Z. C. Ashwood, K. Baatarsukh, S. Samangooei, F. Alcober, A. Stjerngren, P. Komarek,
K. Tsihlas, A. Boral, R. Comanescu, J. Chen, R. Liu, D. Bloxwich, C. Chen, Y. Sun, F. Feng, M. Mauger,
X. Dotiwalla, V. Hellendoorn, M. Sharman, I. Zheng, K. Haridasan, G. Barth-Maron, C. Swanson,
D. Rogozi’nska, A. Andreev, P. K. Rubenstein, R. Sang, D. Hurt, G. Elsayed, R. shen Wang, D. Lacey,
A. Ili’c, Y. Zhao, W. Han, L. Aroyo, C. Iwuanyanwu, V. Nikolaev, B. Lakshminarayanan, S. Jazayeri, R. L.
Kaufman, M. Varadarajan, C. Tekur, D. Fritz, M. Khalman, D. Reitter, K. Dasgupta, S. Sarcar, T. Ornduff,
J. Snaider, F. Huot, J. Jia, R. Kemp, N. Trdin, A. Vijayakumar, L. Kim, C. Angermueller, L. Lao, T. Liu,
H. Zhang, D. Engel, S. Greene, A. White, J. Austin, L. Taylor, S. Ashraf, D. Liu, M. Georgaki, I. Cai,
Y. Kulizhskaya, S. Goenka, B. Saeta, K. Vodrahalli, C. Frank, D. de Cesare, B. Robenek, H. Richardson,
M. Alnahlawi, C. Yew, P. Ponnapalli, M. Tagliasacchi, A. Korchemniy, Y. Kim, D. Li, B. Rosgen, K. Levin,
J. Wiesner, P. Banzal, P. Srinivasan, H. Yu, cCauglar Unlu, D. Reid, Z. Tung, D. F. Finchelstein, R. Kumar,
A. Elisseeff, J. Huang, M. Zhang, R. Zhu, R. Aguilar, M. Gim’enez, J. Xia, O. Dousse, W. Gierke,
S. H. Yeganeh, D. Yates, K. Jalan, L. Li, E. Latorre-Chimoto, D. D. Nguyen, K. Durden, P. Kallakuri,
Y. Liu, M. Johnson, T. Tsai, A. Talbert, J. Liu, A. Neitz, C. Elkind, M. Selvi, M. Jasarevic, L. B. Soares,
A. Cui, P. Wang, A. W. Wang, X. Ye, K. Kallarackal, L. Loher, H. Lam, J. Broder, D. N. Holtmann-
Rice, N. Martin, B. Ramadhana, D. Toyama, M. Shukla, S. Basu, A. Mohan, N. Fernando, N. Fiedel,
K. Paterson, H. Li, A. Garg, J. Park, D. Choi, D. Wu, S. Singh, Z. Zhang, A. Globerson, L. Yu, J. Carpenter,
F. de Chaumont Quitry, C. Radebaugh, C.-C. Lin, A. Tudor, P. Shroff, D. Garmon, D. Du, N. Vats,
H. Lu, S. Iqbal, A. Yakubovich, N. Tripuraneni, J. Manyika, H. Qureshi, N. Hua, C. Ngani, M. A. Raad,
H. Forbes, A. Bulanova, J. Stanway, M. Sundararajan, V. Ungureanu, C. Bishop, Y. Li, B. Venkatraman,
B. Li, C. Thornton, S. Scellato, N. Gupta, Y. Wang, I. Tenney, X. Wu, A. Shenoy, G. Carvajal, D. G.
Wright, B. Bariach, Z. Xiao, P. Hawkins, S. Dalmia, C. Farabet, P. Valenzuela, Q. Yuan, C. A. Welty,
A. Agarwal, M. Chen, W. Kim, B. Hulse, N. Dukkipati, A. Paszke, A. Bolt, E. Davoodi, K. Choo, J. Beattie,
J. Prendki, H. Vashisht, R. Santamaria-Fernandez, L. C. Cobo, J. Wilkiewicz, D. Madras, A. Elqursh,
G. Uy, K. Ramirez, M. Harvey, T. Liechty, H. Zen, J. Seibert, C. H. Hu, A. Y. Khorlin, M. Le, A. Aharoni,
M. Li, L. Wang, S. Kumar, A. Lince, N. Casagrande, J. Hoover, D. E. Badawy, D. Soergel, D. Vnukov,
M. Miecnikowski, J. ima, A. Koop, P. Kumar, T. Sellam, D. Vlasic, S. Daruki, N. Shabat, J. Zhang,
G. Su, K. Krishna, J. Zhang, J. Liu, Y. Sun, E. Palmer, A. Ghaffarkhah, X. Xiong, V. Cotruta, M. Fink,
L. Dixon, A. Sreevatsa, A. Goedeckemeyer, A. Dimitriev, M. Jafari, R. Crocker, N. Fitzgerald, A. Kumar,
S. Ghemawat, I. Philips, F. Liu, Y. Liang, R. Sterneck, A. Repina, M. Wu, L. Knight, M. Georgiev,
H. Lee, H. Askham, A. Chakladar, A. Louis, C. Crous, H. Cate, D. Petrova, M. Quinn, D. Owusu-Afriyie,
A. Singhal, N. Wei, S. Kim, D. Vincent, M. Nasr, C. A. Choquette-Choo, R. Tojo, S. Lu, D. de Las Casas,
Y. Cheng, T. Bolukbasi, K. Lee, S. Fatehi, R. Ananthanarayanan, M. Patel, C. E. Kaed, J. Li, J. Sygnowski,
S. R. Belle, Z. Chen, J. Konzelmann, S. Poder, R. Garg, V. Koverkathu, A. Brown, C. Dyer, R. Liu, A. Nova,
J. Xu, J. Bai, S. Petrov, D. Hassabis, K. Kavukcuoglu, J. Dean, O. Vinyals, and A. Chronopoulou. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. ArXiv, abs/2403.05530,
2024. URL https://api.semanticscholar.org/CorpusID:268297180.

[24] Z. Shao, P. Wang, Q. Zhu, R. Xu, J.-M. Song, M. Zhang, Y. K. Li, Y. Wu, and D. Guo. Deepseekmath:
Pushing the limits of mathematical reasoning in open language models. ArXiv, abs/2402.03300, 2024.

8

https://api.semanticscholar.org/CorpusID:268297180

URL https://api.semanticscholar.org/CorpusID:267412607.

[25] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. S. Hartshorn, E. Saravia, A. Poulton, V. Kerkez,
and R. Stojnic. Galactica: A large language model for science. ArXiv, abs/2211.09085, 2022. URL
https://api.semanticscholar.org/CorpusID:253553203.

[26] Y. Tong, X. Zhang, R. Wang, R. M. Wu, and J. He. Dart-math: Difficulty-aware rejection tuning for mathe-
matical problem-solving. ArXiv, abs/2407.13690, 2024. URL https://api.semanticscholar.
org/CorpusID:271270574.

[27] S. Toshniwal, I. Moshkov, S. Narenthiran, D. Gitman, F. Jia, and I. Gitman. Openmathinstruct-
1: A 1.8 million math instruction tuning dataset. ArXiv, abs/2402.10176, 2024. URL https:
//api.semanticscholar.org/CorpusID:267681752.

[28] K. Wang, H. Ren, A. Zhou, Z. Lu, S. Luo, W. Shi, R. Zhang, L. Song, M. Zhan, and H. Li. Mathcoder:
Seamless code integration in llms for enhanced mathematical reasoning. ArXiv, abs/2310.03731, 2023.
URL https://api.semanticscholar.org/CorpusID:263671510.

[29] P. Wang, L. Li, Z. Shao, R. Xu, D. Dai, Y. Li, D. Chen, Y.Wu, and Z. Sui. Math-shepherd: Verify and
reinforce llms step-by-step without human annotations. ArXiv, abs/2312.08935, 2023. URL https:
//api.semanticscholar.org/CorpusID:266209760.

[30] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. H. hsin Chi, and D. Zhou. Self-consistency improves
chain of thought reasoning in language models. ArXiv, abs/2203.11171, 2022. URL https://api.
semanticscholar.org/CorpusID:247595263.

[31] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. hsin Chi, F. Xia, Q. Le, and D. Zhou. Chain of
thought prompting elicits reasoning in large language models. ArXiv, abs/2201.11903, 2022. URL
https://api.semanticscholar.org/CorpusID:246411621.

[32] Z. Xi, W. Chen, B. Hong, S. Jin, R. Zheng, W. He, Y. Ding, S. Liu, X. Guo, J. Wang, H. Guo, W. Shen,
X. Fan, Y. Zhou, S. Dou, X. Wang, X. Zhang, P. Sun, T. Gui, Q. Zhang, and X. Huang. Training large
language models for reasoning through reverse curriculum reinforcement learning. ArXiv, abs/2402.05808,
2024. URL https://api.semanticscholar.org/CorpusID:267547500.

[33] S. Yin, W. You, Z. Ji, G. Zhong, and J. Bai. Mumath-code: Combining tool-use large language models
with multi-perspective data augmentation for mathematical reasoning. ArXiv, abs/2405.07551, 2024. URL
https://api.semanticscholar.org/CorpusID:269756851.

[34] H. Ying, S. Zhang, L. Li, Z. Zhou, Y. Shao, Z. Fei, Y. Ma, J. Hong, K. Liu, Z. Wang, Y. Wang, Z. Wu,
S. Li, F. Zhou, H. Liu, S. Zhang, W. Zhang, H. Yan, X. Qiu, J. Wang, K. Chen, and D. Lin. Internlm-math:
Open math large language models toward verifiable reasoning. ArXiv, abs/2402.06332, 2024. URL
https://api.semanticscholar.org/CorpusID:267617098.

[35] F. Yu, A. Gao, and B. Wang. Ovm, outcome-supervised value models for planning in mathematical
reasoning. In NAACL-HLT, 2023. URL https://api.semanticscholar.org/CorpusID:
265221057.

[36] L. L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu. Metamath:
Bootstrap your own mathematical questions for large language models. ArXiv, abs/2309.12284, 2023.
URL https://api.semanticscholar.org/CorpusID:262084051.

[37] X. Yue, X. Qu, G. Zhang, Y. Fu, W. Huang, H. Sun, Y. Su, and W. Chen. Mammoth: Building math
generalist models through hybrid instruction tuning. ArXiv, abs/2309.05653, 2023. URL https:
//api.semanticscholar.org/CorpusID:261696697.

[38] H. S. Zheng, S. Mishra, X. Chen, H.-T. Cheng, E. H. Chi, Q. V. Le, and D. Zhou. Take a step back:
Evoking reasoning via abstraction in large language models, 2024. URL https://arxiv.org/abs/
2310.06117.

[39] D. Zhou, N. Scharli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet, Q. Le, and
E. H. hsin Chi. Least-to-most prompting enables complex reasoning in large language models. ArXiv,
abs/2205.10625, 2022. URL https://api.semanticscholar.org/CorpusID:248986239.

A Appendix / supplemental material

Optionally include supplemental material (complete proofs, additional experiments and plots) in
appendix. All such materials SHOULD be included in the main submission.

9

https://api.semanticscholar.org/CorpusID:267412607
https://api.semanticscholar.org/CorpusID:253553203
https://api.semanticscholar.org/CorpusID:271270574
https://api.semanticscholar.org/CorpusID:271270574
https://api.semanticscholar.org/CorpusID:267681752
https://api.semanticscholar.org/CorpusID:267681752
https://api.semanticscholar.org/CorpusID:263671510
https://api.semanticscholar.org/CorpusID:266209760
https://api.semanticscholar.org/CorpusID:266209760
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:267547500
https://api.semanticscholar.org/CorpusID:269756851
https://api.semanticscholar.org/CorpusID:267617098
https://api.semanticscholar.org/CorpusID:265221057
https://api.semanticscholar.org/CorpusID:265221057
https://api.semanticscholar.org/CorpusID:262084051
https://api.semanticscholar.org/CorpusID:261696697
https://api.semanticscholar.org/CorpusID:261696697
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2310.06117
https://api.semanticscholar.org/CorpusID:248986239

A.1 Framework Explanation

We present example responses from both SBSC and TIR-ToRA for a problem from AIME in figures
1a and 1b respectively. As can be seen, in case of TIR-ToRA, the initial program generated by the
model runs into an execution error. At the next turn, it attempts to rectify the error and comes up with
a new approach and the corresponding program. This time, the code executes correctly but the final
answer is wrong.

On the other hand, we see that SBSC is progressing step-by-step, tackling individual sub-tasks
with separate programs and utilising outputs of previous steps. In the third step, it runs into a code
execution error but succeeds in rectifying it using a different approach in the very next turn. Further,
we observe SBSC checking the validity of the generated solutions in the fourth step before proceeding
with the final step and ultimately reaches the correct answer.

This example also helps to illustrate how our approach is different from Least-to-Most (L2M)
prompting [39] where the first stage involves pre-decomposing the question into two or more sub-
questions in one go and then finding solutions for these pre-defined sub-questions whereas SBSC
identifies sub-tasks on the fly, based on preceding steps’ results and the final goal of the problem. It
also doesnt use tool-integration. Major advantage of SBSC is the granular program/sub-task level
thinking/refinement ability which previous works lack.

A.2 Dataset Processing

All AIME problems have a unique integer answer ranging from 0 to 999, while AMC-12 problems
are of Multiple Choice Question(MCQ) format. Following Numina AIMO, we remove all the answer
choices from each AMC-12 question and modify the question, wherever necessary, to ensure an
integer answer. For this, we prompt GPT-4o to append an additional line at the end of each problem
as suitable. Following is an example for demonstration:

Original Question: An urn contains one red ball and one blue ball. A box of extra red and blue balls
lies nearby. George performs the following operation four times: he draws a ball from the urn at
random and then takes a ball of the same color from the box and returns those two matching balls
to the urn. After the four iterations the urn contains six balls. What is the probability that the urn
contains three balls of each color?
Answer: 1

5

Modified Question: An urn contains one red ball and one blue ball. A box of extra red and blue
balls lies nearby. George performs the following operation four times: he draws a ball from the urn at
random and then takes a ball of the same color from the box and returns those two matching balls
to the urn. After the four iterations the urn contains six balls. What is the probability that the urn
contains three balls of each color? If the answer is represented as a fraction m

n in its simplest terms,
what is the value of m+n?
Integer Answer: 6

A.3 Number of Steps in SBSC

In Table 2, we present the number of turns taken per question by SBSC across the different datasets.

A.4 Understanding SBSC in Detail

In this section, we demonstrate some scenarios where SBSC has been successful while TIR-ToRA
has failed, with the help of some example questions and investigating the responses obtained from
the two models.

Let’s consider the question in Example 1, involving a geometric progression of numbers written in
logarithmic form, which TIR-ToRA gets wrong.The method uses a binary search technique, which
is not very precise when dealing with exact values required for mathematical problems, especially
when fractions are involved.The solution uses a function to check whether the logarithms form a
geometric progression which introduces additional complexity and potential inaccuracies because it
involves comparing ratios that may not be exactly equal due to floating-point arithmetic.Also, this
single-turn method tends to overlook specified constraints or necessary simplifications, which are
often encountered in Olympiad level problems and instead makes false assumptions.

10

Number of turns or steps AMC AIME MathOdyssey
2 21 12 8
3 57 19 17
4 101 47 19
5 79 51 21
6 63 43 28
7 41 43 14
8 42 31 10
9 12 18 8

others 59 66 23
Average turns or steps/Problem 6.0 6.9 6.4

Table 2: Table showing number of turns/steps used by SBSC

The question in Example 2 is an example scenario where TIR-ToRA fails because it makes an
incorrect assumption. It misinterprets the Lipschitz condition and incorrectly makes a simpler
assumption that the difference f(800)− f(400) is equal to the maximum possible difference, which
is 200. While the magnitude of the difference is bounded by 200, it does not mean that the actual
difference will always be 200. Iterative solutions, as are often the only way out in single program
based solutions, can sometimes lead to infinite loops, especially in cases where the stopping condition
is not clearly defined or understood by the LLM.
As can be seen in Example 3, the single code is unable to take advantage of the factorization of 2020,
which is key to solving the problem efficiently and instead iterates over a very large range of potential
values for m, leading to inefficiency. The upper bound 2020 is extremely large and the sheer number
of iterations causes a timeout.
Example 4 presents a scenario where TIR-ToRA makes up an assumption about the problem and
writes the code for terminating a loop accordingly, which leads to a timeout error, as the incorrect
assumption leads to an infinite loop. It lacks intermediate checks that would provide insights into
whether the sequence terms are of the form t

t+1 , which is crucial for solving the problem and would
have enabled it to chalk out the termination conditions suitably.

On the other hand, our Step-By-Step Coding method enforces a decomposition of the problem into
smaller sub-task. Each sub-task is tackled independently by the LLM, which generates code to solve
it and then uses the resulting output to suitably proceed to the next sub-task and this process continues
till the final answer is reached. Such an approach ensures that every part of the problem is addressed
with exact precision, reducing the risk of errors that might arise from skipped steps. Dividing the
problem into multiple sub-tasks also allows it to make necessary simplifications that would make the
future sub-tasks, and hence the entire problem, easier to solve.
Going back to the problem in Example 1, SBSC starts by defining the logarithms and setting up the
equations based on the geometric progression condition. It then simplifies the equations to reduce
them to a more manageable form, eliminating unnecessary complexity and allowing straightforward
solving. Throughout the problem, it uses precise mathematical formulations of the problem, ensuring
the solution is accurate. Since this method isn’t trying to solve the entire problem at one go, it doesn’t
need to make any assumptions to simplify the problem statement.
For the question in Example 2, it correctly interprets the problem, keeps applying the given Lipschitz
condition as it solves each sub-task and finds the correct maximum possible value of f(f(800))−
f(f(400)). By systematically checking for constraints and edge cases at each stage, our method
guarantees that solutions are not only accurate but also valid under all possible conditions. This is
particularly crucial for problems with intricate conditions or multiple solution paths. Additionally,
our process explicitly defines loop conditions to ensure that termination criteria are clear, allowing
for correction if issues like infinite loops arise.
For the problem in Example 3, the first sub-task correctly identified by SBSC is to factorize the large
number 2020 into smaller powers, paving the path towards an efficient solution. In the subsequent
steps, it takes care of constraints like ensuring that m and n are integers and avoids over-counting by
properly iterating over valid powers, giving us the correct answer.
Likewise, in Example 4, we see that our method generates each term of the sequence one at a time,
allowing for intermediate checks to confirm whether each term is of the desired form t

t+1 . Thus,
it accurately identifies the terms that meet the required condition and ensures that only the correct

11

indices are considered. This avoids the infinite loop risk and ensures the correctness of each step
before moving on. We also notice that the model runs into an error at the first sub-task itself but based
on the corresponding code output, it is able to take an alternate approach and successfully solves the
sub-task, moving onto later ones. This example also highlights our superior code debugging ability,
as discussed earlier.

Example Question 1: There is a unique positive real number x such that the three numbers log8 2x,
log4 x , andlog2 x , in that order, form a geometric progression with positive common ratio. The
number x can be written as m

n , where m and n are relatively prime positive integers. Find m + n

Incorrect solution by TIR-ToRA

Let’s approach this problem step-by-step:1

1. Define a function to check if three numbers form a geometric progression.2

2. Use binary search to find x that satisfies the condition.3

3. Convert x to a fraction and return the sum of its numerator and denominator.4

import math5

from fractions import Fraction6

def solution():7

Function to check if three numbers form8

#a geometric progression9

def is_geometric_progression(a, b, c):10

ratio1 = b / a11

ratio2 = c / b12

return math.isclose(ratio1, ratio2) and ratio1 > 113

Binary search to find x14

left, right = 1, 100015

while right - left > 1e-10:16

x = (left + right) / 217

log8_2x = math.log(2*x, 8)18

log4_x = math.log(x, 4)19

log2_x = math.log(x, 2)20

if is_geometric_progression(log8_2x, log4_x, log2_x):21

break22

elif (log4_x / log8_2x) > (log2_x / log4_x):23

left = x24

else:25

right = x26

Convert x to a fraction27

frac = Fraction(x).limit_denominator()28

return frac.numerator + frac.denominator29

result = solution()30

print(f"\\boxed{{{result}}}")31

32

>>> output:33

\boxed{2}34

The answer is 235

Correct solution by SBSC:

Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the symbols and set up the equations

36

37

from sympy import symbols, log, Eq, solve38

Define symbols39

x, r = symbols('x r')40

Define the three logarithms41

log1 = log(2*x, 8)42

log2 = log(x, 4)43

12

log3 = log(x, 2)44

Set up equations for geometric progression45

eq1 = Eq(log2 / log1, r)46

eq2 = Eq(log3 / log2, r)47

print("Equation 1:", eq1)48

print("Equation 2:", eq2)49

50

>>> output51

Equation 1: Eq(log(8)*log(x)/(log(4)*log(2*x)), r)52

Equation 2: Eq(log(4)/log(2), r)53

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 2: Simplify the equations

54

55

from sympy import symbols, log, Eq, solve, simplify56

Define symbols57

x, r = symbols('x r')58

Define the three logarithms59

log1 = log(2*x, 8)60

log2 = log(x, 4)61

log3 = log(x, 2)62

Set up equations for geometric progression63

eq1 = Eq(log2 / log1, r)64

eq2 = Eq(log3 / log2, r)65

Simplify equations66

eq1_simplified = simplify(eq1)67

eq2_simplified = simplify(eq2)68

print("Simplified Equation 1:", eq1_simplified)69

print("Simplified Equation 2:", eq2_simplified)70

71

>>> output:72

Simplified Equation 1: Eq(r, 3*log(x)/(2*log(x) + 2*log(2)))73

Simplified Equation 2: Eq(r, 2)74

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 3: Solve the equations

75

76

from sympy import symbols, log, Eq, solve, simplify77

Define symbols78

x, r = symbols('x r')79

Define the simplified equations80

eq1 = Eq(r, 3*log(x)/(2*log(x) + 2*log(2)))81

eq2 = Eq(r, 2)82

Solve the system of equations83

solution = solve((eq1, eq2), (x, r))84

print("Solution:", solution)85

86

>>> output87

Solution: [(1/16, 2)]88

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 4: Extract the value of x and convert to a fraction

89

90

from sympy import symbols,log,Eq, solve, simplify, Rational91

Define symbols92

x, r = symbols('x r')93

Define the solution from the previous step94

solution = [(Rational(1, 16), 2)]95

Extract the value of x96

x_value = solution[0][0]97

print("x =", x_value)98

Convert x to a fraction99

m = x_value.numerator100

n = x_value.denominator101

print("x as a fraction: {}/{}".format(m, n))102

13

103

>>> output104

x = 1/16105

x as a fraction: 1/16106

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 5: Calculate m + n

107

108

from sympy import symbols,log,Eq, solve, simplify, Rational109

Define symbols110

x, r = symbols('x r')111

Define the solution from the previous step112

solution = [(Rational(1, 16), 2)]113

Extract the value of x114

x_value = solution[0][0]115

Convert x to a fraction116

m = x_value.numerator117

n = x_value.denominator118

Calculate m + n119

result = m + n120

print("m =", m)121

print("n =", n)122

print("m + n =", result)123

124

>>> output:125

m = 1126

n = 16127

m + n = 17128

END OF CODE129

The final answer is 17130

Example Question 2: Consider functions f that satisfy |f(x) − f(y)| ≤ 0.5|x − y| for all real
numbers x and y. Of all such functions that also satisfy the equation f(300) = f(900), what is the
greatest possible value of f(f(800)− f(f(400)))?

Incorrect solution by TIR-ToRA:

To solve this problem, we need to consider the properties of the given function and find the
maximum possible difference between f(f(800)) and f(f(400)). Let’s solve it using python:

131

132

def solution():133

#Given: |f(x) - f(y)| <= 0.5|x - y| for all real x and y134

#Also, f(300) = f(900)135

#Maximum difference between f(800) and f(400)136

max_diff_800_400 = 0.5 * (800 - 400) # 200137

#Maximum value of f(800) - f(400)138

max_f800_f400 = max_diff_800_400 # 200139

#Maximum difference between f(f(800)) and f(f(400))140

max_final_diff = 0.5 * max_f800_f400 # 100141

return max_final_diff142

result = solution()143

print(f"\\boxed{{{result}}}")144

145

>>> output:146

\boxed{100}147

The answer is 100148

14

Correct solution by SBSC:

Let’s approach this problem step by step using SymPy-based Python code where appropriate.
Step 1: Understand the given condition The condition |f(x) - f(y)| 1/2|x - y| implies that f is a
Lipschitz continuous function with Lipschitz constant 1/2. This means f doesn’t change too
rapidly.

149

150

151

152

Step 2: Analyze the equation f(300)=f(900).This equation tells us that f takes the same value at
x=300 and x=900. Let’s call this value k.

153

154

from sympy import symbols, Abs155

k = symbols('k')156

print(f"f(300) = f(900) = {k}")157

158

>>> output:159

f(300) = f(900) = k160

Let’s continue solving this problem step by step.
Step 3: Apply the Lipschitz condition to f(800) and f(400) We can use the Lipschitz condition
to find bounds for f(800) and f(400) in terms of k.

161

162

163

from sympy import symbols, Abs, Min, Max164

k = symbols('k')165

For f(800)166

f_800_min = k - Abs(800 - 900)/2167

f_800_max = k + Abs(800 - 900)/2168

For f(400)169

f_400_min = k - Abs(400 - 300)/2170

f_400_max = k + Abs(400 - 300)/2171

print(f"f(800) is between {f_800_min} and {f_800_max}")172

print(f"f(400) is between {f_400_min} and {f_400_max}")173

174

>>> output:175

f(800) is between k - 50 and k + 50176

f(400) is between k - 50 and k + 50177

Let’s continue solving this problem step by step.
Step 4: Analyze f(f(800)) and f(f(400)) Now we need to apply the Lipschitz condition again
to f(f(800)) and f(f(400)).

178

179

180

from sympy import symbols, Abs, Min, Max181

k = symbols('k')182

For f(f(800))183

ff_800_min = k - Abs(k + 50 - k)/2184

ff_800_max = k + Abs(k - 50 - k)/2185

For f(f(400))186

ff_400_min = k - Abs(k + 50 - k)/2187

ff_400_max = k + Abs(k - 50 - k)/2188

print(f"f(f(800)) is between {ff_800_min} and {ff_800_max}")189

print(f"f(f(400)) is between {ff_400_min} and {ff_400_max}")190

191

>>> output192

f(f(800)) is between k - 25 and k + 25193

f(f(400)) is between k - 25 and k + 25194

Let’s continue solving this problem step by step.
Step 5: Calculate the maximum possible difference Now we need to find the maximum possible
value of f(f(800))− f(f(400)).

195

196

197

from sympy import symbols, Abs, Min, Max198

k = symbols('k')199

Maximum possible difference200

max_diff = (k + 25) - (k - 25)201

print(f"The maximum possible difference f(f(800))-f(f(400))202

is {max_diff}")203

204

15

>>> output:205

The maximum possible difference f(f(800)) - f(f(400)) is 50206

END OF CODE207

The final answer is 50208

Example Question 3: Find the number of ordered pairs of positive integers (m,n) such that
m2n = 2020

Incorrect solution by TIR-ToRA:

Let’s approach this problem step-by-step:209

1. Iterate through possible values of m up to the square root of 202̂0210

2. For each m, check if m2 divides 2020 evenly211

3. Return the total count of valid pairs212

import math213

def solution():214

count = 0215

target = 20**20216

for m in range(1, int(math.sqrt(target)) + 1):217

if target % (m**2) == 0:218

n = target // (m**2)219

count += 1220

return count221

result = solution()222

print(f"The number of ordered pairs (m,n) is:223

f"\\boxed{{{result}}}"")224

225

>>> output:226

TimeoutError: [Errno 110] Connection timed out227

Looks like we got a timeout error, let’s try a different approach that should not result in any
error:

228

229

import math230

def solution():231

count = 0232

target = 20**20233

for m in range(1, int(math.sqrt(target)) + 1):234

if target % (m**2) == 0:235

n = target // (m**2)236

count += 1237

return count238

result = solution()239

print(f"The number of ordered pairs (m,n) is:240

f"\\boxed{{{result}}}"")241

242

>>> output:243

TimeoutError: [Errno 110] Connection timed out244

...
This loop continues without ultimately getting an answer.

245

246

Correct solution by SBSC:

Let’s approach this problem step by step using SymPy-based Python code.
Step 1: Define the equation and initialize variables

247

248

from sympy import symbols,Eq,solve, divisors, prime_factors249

m, n = symbols('m n', positive=True, integer=True)250

16

equation = Eq(m**2 * n, 20**20)251

print("Equation:", equation)252

253

>>> output:254

ImportError: cannot import name 'prime_factors' from 'sympy'255

I apologize for the error. It seems the ‘prime factors‘ function is not available in the version of
SymPy you’re using. Let’s modify our approach and use the ‘factorint‘ function instead, which
is more commonly available. Here’s the corrected code:
Step 1: Define the equation and initialize variables

256

257

258

259

from sympy import symbols, Eq, solve, divisors, factorint260

m, n = symbols('m n', positive=True, integer=True)261

equation = Eq(m**2 * n, 20**20)262

print("Equation:", equation)263

264

>>> output265

Equation: Eq(m**2*n, 104857600000000000000000000)266

Let’s continue solving this problem step by step.
Step 2: Factor 2020 and analyze its structure

267

268

from sympy import symbols, Eq, solve, divisors, factorint269

m, n = symbols('m n', positive=True, integer=True)270

equation = Eq(m**2 * n, 20**20)271

Factor 20^20272

factorization = factorint(20**20)273

print("Factorization of 20^20:", factorization)274

Analyze the structure275

power_of_2 = factorization[2]276

power_of_5 = factorization[5]277

print("Power of 2:", power_of_2)278

print("Power of 5:", power_of_5)279

280

>>> output281

Factorization of 20^20: {2: 40, 5: 20}282

Power of 2: 40283

Power of 5: 20284

Let’s continue solving this problem step by step.
Step 3: Determine possible values for m and n

285

286

from sympy import symbols, Eq, solve, divisors, factorint287

m, n = symbols('m n', positive=True, integer=True)288

equation = Eq(m**2 * n, 20**20)289

Factor 20^20290

factorization = factorint(20**20)291

power_of_2 = factorization[2]292

power_of_5 = factorization[5]293

Initialize counter for valid pairs294

valid_pairs = 0295

Iterate through possible values of m296

for m_power_of_2 in range(0, power_of_2 + 1, 2):297

for m_power_of_5 in range(0, power_of_5 + 1):298

Calculate m299

m_value = 2**m_power_of_2 * 5**m_power_of_5300

Calculate corresponding n301

n_power_of_2 = power_of_2 - 2*m_power_of_2302

n_power_of_5 = power_of_5 - m_power_of_5303

Check if n is a positive integer304

if n_power_of_2 >= 0 and n_power_of_5 >= 0:305

valid_pairs += 1306

print("Number of valid (m,n) pairs:", valid_pairs)307

308

>>> output309

17

Number of valid (m,n) pairs: 231310

END OF CODE311

The final answer is 231312

Example Question 4: Consider the sequence (ak)_k ≥ 1of positive rational numbers defined
by a1 = 2020

2021 and for k ≥ 1 , if ak = m
n for relatively prime positive integers m and n , then

ak+1 = m+18
n+19 . Determine the sum of all positive integers j such that the rational number aj can be

written in the form t
t+1 for some positive integer t

Incorrect solution by TIR-ToRA:

Let’s proceed step-by-step:313

1. Generate the sequence of fractions starting from a1 = 2020
2021 .314

2. For each term, check if it is in the form t
t+1 for some integer t. If so, add its index to a

running sum.
315

316

3. Generate the next term using the given formula.317

4. Continue this process until we cycle back to the initial fraction. The sum of indices
where the fraction is in the form t

t+1 is our final answer.
318

319

from fractions import Fraction320

def next_term(a):321

return Fraction(a.numerator + 18, a.denominator + 19)322

def is_of_form_t_over_t_plus_1(frac):323

return frac.denominator == frac.numerator + 1324

def solution():325

a = Fraction(2020, 2021)326

j_sum = 0327

j = 1328

while True:329

if is_of_form_t_over_t_plus_1(a):330

j_sum += j331

a = next_term(a)332

j += 1333

Check if we've reached the initial fraction again334

if a == Fraction(2020, 2021):335

break336

return j_sum337

result = solution()338

print(f"\\boxed{{{result}}}")339

Similar to the earlier example, this code results in a TimeOut error and then the loop keeps repeating.

Correct solution by SBSC:

Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the sequence and initial value

340

341

from sympy import Rational, gcd342

def next_term(a):343

m, n = a.numerator, a.denominator344

return Rational(m + 18, n + 19)345

a = [Rational(2020, 2021)]346

print(f"a[1] = {a[0]}")347

348

>>> output349

a[1] = 2020/2021350

18

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 2: Generate the sequence until we find a term of the form t/(t+1)

351

352

from sympy import Rational, gcd353

def next_term(a):354

m, n = a.numerator, a.denominator355

return Rational(m + 18, n + 19)356

a = [Rational(2020, 2021)]357

j = 1358

result = []359

while True:360

if a[-1].denominator == a[-1].numerator + 1:361

result.append(j)362

print(f"Found a[{j}] = {a[-1]} of the form t/(t+1)")363

j += 1364

a.append(next_term(a[-1]))365

if j > 100: # Limit to prevent infinite loop366

break367

print(f"Indices found: {result}")368

369

>>> output370

Found a[1] = 2020/2021 of the form t/(t+1)371

Found a[2] = 1019/1020 of the form t/(t+1)372

Found a[8] = 161/162 of the form t/(t+1)373

Found a[18] = 31/32 of the form t/(t+1)374

Found a[30] = 19/20 of the form t/(t+1)375

Indices found: [1, 2, 8, 18, 30]376

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 3: Calculate the sum of the indicesfrom sympy import Rational, gcd

377

378

def next_term(a):379

m, n = a.numerator, a.denominator380

return Rational(m + 18, n + 19)381

a = [Rational(2020, 2021)]382

j = 1383

result = []384

while True:385

if a[-1].denominator == a[-1].numerator + 1:386

result.append(j)387

j += 1388

a.append(next_term(a[-1]))389

if j > 100: # Limit to prevent infinite loop390

break391

sum_of_indices = sum(result)392

print(f"Indices found: {result}")393

print(f"Sum of indices: {sum_of_indices}")394

395

>>> output396

Indices found: [1, 2, 8, 18, 30]397

Sum of indices: 59398

END OF CODE399

The final answer is 59400

A.5 PAL Exemplars

In this section, we provide the prompts for Program-Aided Language models (PAL) method. We
initially used the default prompt as mentioned in the original PAL paper, but the results were poor.
We noticed that the response often contained textual reasoning before or after the program, which
isn’t the desired format for PAL. Hence, we modify the instructions to confine the responses only to
include Python program and subsequently, also notice improved accuracy.

19

For AIME
Let’s use python program to solve math problems.
DO NOT USE ANY TEXTUAL REASONING.
Your response must start with: “‘python
Your response must end with: print(result)

Here are some examples you may refer to.

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution:

def solution():
jumps = [(7, 2), (2, 7), (-5, -10), (-10, -5)]
Set to keep track of all reachable points, starting from the origin
(0, 0).
reachable = set([(0, 0)])
Queue to process points, starting with the origin (0, 0).
queue = [(0, 0)]
Breadth-first search (BFS) to explore reachable points.
while queue:

Pop the first point from the queue.
x, y = queue.pop(0)
Iterate over all possible jumps.
for dx, dy in jumps:

Calculate new coordinates after the jump.
nx, ny = x + dx, y + dy
Check if the Manhattan distance is within 100 and the point

hasn't been visited.
if abs(nx) + abs(ny) <= 100 and (nx, ny) not in reachable:

Add the new point to the reachable set.
reachable.add((nx, ny))
Add the new point to the queue to explore further.
queue.append((nx, ny))

return len(reachable) % 1000
result = solution()
print(result)

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution:

from sympy import symbols, Eq, solve, Rational
def solution():

x = symbols('x')
Set up the equation
eq = Eq(Rational(1,2)/x + 30/(10*x) + 8/(5*x), Rational(17,4))
Solve the equation
solution = solve(eq)[0]
Calculate bicycling time in hours
bike_time = 30 / (10 * solution)
Convert to minutes
bike_time_minutes = int(bike_time * 60)
return bike_time_minutes

result = solution()
print result

20

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution:
def solution():

count = 0 # Initialize a counter to track how many numbers have been
found
n = 1 # Start checking numbers from 1 upwards
while count < 1000: # Continue the loop until we find the 1000th
number

Check if the binary representation of the number 'n' has
exactly 8 '1's

if bin(n).count('1') == 8:
count += 1 # Increment the counter when a number with 8 '1's

is found
If this is the 1000th such number, return the remainder of

n divided by 1000
if count == 1000:

return n % 1000
n += 1 # Move to the next number

result = solution()
print(result)

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution:
def solution():

Initialize known values
a1 = 27
b1 = 99
Calculate the common ratio
We know that a15 = b11, so:
a1 * r^14 = b1 * r^10
27 * r^14 = 99 * r^10
27 * r^4 = 99
r^4 = 99/27 = 11/3
r = (11/3) ** (1/4)
Calculate a9
a9 = a1 * (r ** 8)
return round(a9)

result = solution()
print(result)

For AMC:
Let’s use python program to solve math problems.
DO NOT USE ANY TEXTUAL REASONING.
Your response must start with: “‘python
Your response must end with: print(result)

Here are some examples you may refer to.

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution:
def solution():

Find position of 3rd red light
n_3rd = 3
complete_cycles_3rd = (n_3rd - 1) // 2
remaining_lights_3rd = (n_3rd - 1) % 2

21

pos_3rd = complete_cycles_3rd * 5 * 6 + remaining_lights_3rd * 6
Find position of 21st red light
n_21st = 21
complete_cycles_21st = (n_21st - 1) // 2
remaining_lights_21st = (n_21st - 1) % 2
pos_21st = complete_cycles_21st * 5 * 6 + remaining_lights_21st * 6
Calculate the distance in inches
distance_inches = pos_21st - pos_3rd
Convert to feet
distance_feet = distance_inches / 12
return distance_feet

result = solution()
print(result)

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution:

from sympy import symbols, Eq, solve
def solution():

Define the symbols for the variables
b, r, g, c = symbols('b r g c')
Define the equations based on the problem statement
eq1 = Eq(r, 2*b) # Equation 1: r = 2b
eq2 = Eq(g, 3*c) # Equation 2: g = 3c
eq3 = Eq(c, 4*r) # Equation 3: c = 4r
eq4 = Eq(b + r + g + c, 280) # Equation 4: b + r + g + c = 280
Solve the system of equations
sol = solve((eq1, eq2, eq3, eq4))
return sol[c]

result = solution()
print(result)

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution:

def solution():
Total percentage of all birds
total = 100
Percentages of each bird type
geese = 30
swans = 25
herons = 10
ducks = 35
Calculate percentage of birds that are not swans
not_swans = total - swans
Calculate percentage of geese among birds that are not swans
geese_among_not_swans = (geese / not_swans) * 100
Round to nearest whole number
return round(geese_among_not_swans)

result = solution()
print(result)

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution:

22

def solution():
Number of twins and triplets
twins = 9 * 2
triplets = 6 * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
Handshakes between twins and triplets
twin_triplet_handshakes = (twins * triplets) // 2
Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +
twin_triplet_handshakes
return total_handshakes

result = solution()
print(result)

A.6 TIR-ToRA Exemplars

For AIME
Integrate step-by-step reasoning and Python code to solve math problems using the following
guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any
arguments.
- Present the final result in LaTeX using a ‘ ‘ without any units.
- Utilize the ‘pi‘ symbol and ‘Rational“ from Sympy for π and fractions, and simplify all fractions
and square roots without converting them to decimal values.

Once you get the code output, just display the output answer within ‘ ‘ and terminate.

Here are some examples you may refer to:

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution:
Let’s approach this problem step-by-step:

1. We need to find all points (x, y) that the frog can reach within the given constraint |x| + |y|
100.

2. We’ll use a breadth-first search (BFS) algorithm to explore all possible points.
3. We’ll keep track of visited points to avoid revisiting them.
4. We’ll count the number of unique points visited.

Here’s the Python code to solve this:

from collections import deque
def count_reachable_points():

Possible jumps
jumps = [(7, 2), (2, 7), (-5, -10), (-10, -5)]
Set to store visited points
visited = set([(0, 0)])
Queue for BFS
queue = deque([(0, 0)])
while queue:

x, y = queue.popleft()
for dx, dy in jumps:

new_x, new_y = x + dx, y + dy
Check if the new point is within the constraint and not

visited

23

if abs(new_x) + abs(new_y) <= 100 and (new_x, new_y) not in
visited:

visited.add((new_x, new_y))
queue.append((new_x, new_y))

Count of reachable points is the size of visited set
M = len(visited)
Return the remainder when M is divided by 1000
return M % 1000

result = count_reachable_points()
print(f"\\boxed{{{result}}}")

>>> output
\boxed{373}

The answer is 373

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution:
Let’s approach this problem step-by-step:

1. Let’s define variables:
- Let x be Tom’s swimming speed in miles per hour
- Then 5x is his running speed in miles per hour
- And 10x is his bicycling speed in miles per hour

2. We can set up equations based on the given information:
- Swimming time: 0.5 / x hours
- Bicycling time: 30 / (10x) hours
- Running time: 8 / (5x) hours

3. The total time is 4.25 hours, so we can set up an equation:
0.5/x + 30/(10x) + 8/(5x) = 4.25

4. Let’s solve this equation and find the bicycling time.

Here’s the Python code to solve this:

from sympy import symbols, Eq, solve, Rational
def solve_triathlon():

x = symbols('x')
Set up the equation
eq = Eq(Rational(1,2)/x + 30/(10*x) + 8/(5*x), Rational(17,4))
Solve the equation
solution = solve(eq)[0]
Calculate bicycling time in hours
bike_time = 30 / (10 * solution)
Convert to minutes
bike_time_minutes = int(bike_time * 60)
return f"\\boxed{{{bike_time_minutes}}}"

print(solve_triathlon())

>>> output:
\boxed{150}

The answer is 150

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution:
Let’s approach this step-by-step:

24

1. We need to generate the sequence S of numbers with exactly 8 ones in their binary represen-
tation.

2. We’ll find the 1000th number in this sequence.

3. Finally, we’ll calculate the remainder when this number is divided by 1000.

Here’s the Python code to solve this:

def count_ones(n):
return bin(n).count('1')

def solution():
count = 0
n = 1
while count < 1000:

if count_ones(n) == 8:
count += 1
if count == 1000:

return n % 1000
n += 1

result = solution()
print(result)

>>> output:
\boxed{32}

The answer is 32

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution:
Let’s approach this step-by-step:

1. Let’s denote the common ratio as r.

2. We can express a and b in terms of their first terms and r.

3. We can then equate these expressions to find r.

4. Once we have r, we can calculate a.

Here’s the Python code to solve this:

from sympy import symbols, Eq, solve, Rational
def find_a9():

r = symbols('r')
a = a * r
b = b * r
a = b
eq = Eq(27 * r**14, 99 * r**10)
Solve for r
solution = solve(eq)
We expect only one positive real solution
r_value = [sol for sol in solution if sol.is_real and sol > 0][0]
Calculate a
a9 = 27 * r_value**8
return a9

result = find_a9()
print(f"\\boxed{{{result}}}")

>>> output
\boxed{363}

The answer is 363

For AMC

25

Integrate step-by-step reasoning and Python code to solve math problems using the following
guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any
arguments. - Present the final result in LaTeX using a ‘ ‘ without any units. - Utilize the ‘pi‘ symbol
and ‘Rational“ from Sympy for π and fractions, and simplify all fractions and square roots without
converting them to decimal values.

Once you get the code output, just display the output answer within ‘ ‘ and terminate. Here are some
examples you may refer to:

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution:
Let’s approach this step-by-step:

1. First, we need to understand the pattern of lights:
- Every 5 lights (2 red + 3 green) complete one cycle of the pattern.
- Each cycle is 30 inches long (5 lights * 6 inches).

2. We need to find how many complete cycles are between the 3rd and 21st red lights:
- 3rd red light is at the end of the 2nd cycle (as each cycle has 2 red lights).
- 21st red light is at the end of the 11th cycle (as 21 ÷ 2 = 10.5, rounded up to 11).
- So there are 9 complete cycles between them (11 - 2 = 9).

3. Calculate the distance:
- 9 cycles * 30 inches per cycle = 270 inches
- Convert 270 inches to feet: 270 ÷ 12 = 22.5 feet

Here’s the Python code to solve this:

from sympy import Rational
def calculate_distance():

lights_per_cycle = 5
inches_per_light = 6
inches_per_cycle = lights_per_cycle * inches_per_light
start_cycle = 2 # 3rd red light is at the end of 2nd cycle
end_cycle = 11 # 21st red light is at the end of 11th cycle
cycles_between = end_cycle - start_cycle
total_inches = cycles_between * inches_per_cycle
total_feet = Rational(total_inches, 12)
return f"\\boxed{{{total_feet}}}"

print(calculate_distance())

>>> output:
\boxed{45/2}

The answer is 45/2

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution:
Let’s approach this problem step-by-step:

1. Let’s define variables for each fruit:
b = number of blueberries
r = number of raspberries
g = number of grapes
c = number of cherries

26

2. We can set up equations based on the given information:
r = 2b (twice as many raspberries as blueberries)
g = 3c (three times as many grapes as cherries)
c = 4r (four times as many cherries as raspberries)

3. We also know that the total number of fruits is 280:
b + r + g + c = 280

4. Now, let’s write a Python function to solve this system of equations:

from sympy import symbols, Eq, solve
def solve_fruit_salad():

b, r, g, c = symbols('b r g c')
eq1 = Eq(r, 2*b)
eq2 = Eq(g, 3*c)
eq3 = Eq(c, 4*r)
eq4 = Eq(b + r + g + c, 280)
solution = solve((eq1, eq2, eq3, eq4))
return f"\\boxed{{{solution[c]}}}"

print(solve_fruit_salad())

>>> output:
\boxed{64}

The answer is 64

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution:
Let’s approach this step-by-step:

1. First, we need to calculate the percentage of birds that were not swans.

2. Then, we’ll calculate what percentage of this non-swan group were geese.

Here’s the Python code to solve this:

from sympy import Rational
def calculate_geese_percentage():

Total percentage of birds
total = 100
Percentage of swans
swans = 25
Percentage of non-swans
non_swans = total - swans
Percentage of geese among all birds
geese = 30
Calculate the percentage of geese among non-swans
geese_among_non_swans = Rational(geese, non_swans) * 100
Simplify the fraction
result = geese_among_non_swans.simplify()
return f"\\boxed{{{result}}}"

print(calculate_geese_percentage())

>>> output
\boxed{40}

The answer is 40

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

27

Example Solution:
Let’s approach this problem step-by-step:

1. Calculate the number of handshakes between twins

2. Calculate the number of handshakes between triplets

3. Calculate the number of handshakes between twins and triplets

4. Sum up all handshakes

Here’s the Python code to solve this:

from sympy import Rational
def calculate_handshakes():

Number of twins and triplets
twins = 9 * 2
triplets = 6 * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2 # Each twin shakes
hands with all but 1 other twin
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2 # Each triplet
shakes hands with all but 2 other triplets
Handshakes between twins and triplets
twin_triplet_handshakes = twins * triplets * Rational(1, 2) # Each
twin shakes hands with half the triplets
Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +
twin_triplet_handshakes
return f"\\boxed{{{int(total_handshakes)}}}"

print(calculate_handshakes())

>>> output
\boxed{441}

The answer is 441

A.7 SBSC System-Prompt Tuning

For few-shot learning, apart from relevant exemplars, the LLM also benefits from a general instruction
at the beginning [38, 13, 28] that provides a guideline or context about how the model should approach
the task, particularly those requiring logical reasoning, multi-step operations, etc. This can be specially
useful when the task requires a more nuanced understanding and when the instructions need to be
followed rigorously, as is the case with SBSC.

The following has been used for our method:
You are given a math problem and you need to think of a stepwise approach/process to be followed to
solve the problem. Use sympy-based python code to codify each of these steps in sequential manner.
You must end each of your code snippet with a print statement followed by output in the next line.
Use the results from the output of the code snippets of each step and continue to the next step
until you finish the final step and solve the problem completely. 1
In each new code block, you must define the variables and symbols again based on the previous
code snippets or their outputs as suitable. 2
Use sympy in appropriate way, as and when required.
Once you complete the last step, write this line: ### END OF CODE
Then just print the final numeric answer (without any units) like this: The final answer is boxed{}.
If the executed code snippet returns an error, use it to correct the current step’s code snippet.
DO NOT restart solving from Step 1. 3

In Table 3, we compare the importance of the highlighted lines 1,2 and 3 above by trying out different
combinations with/without them. We find that the complete instruction seems to be the best and
proceed to use it for all experiments.

28

Full 3 only 2+3 1+3
AMC 3 Yrs 48 43 49 46
AIME 3 Yrs 29 24 28 25

Table 3: Comparison of GPT-4o scores across different variations of prompt instructions.

A.8 SBSC Prompt for AMC

You are given a math problem and you need to think of a stepwise approach/process to be followed to
solve the problem. Use sympy-based python code to codify each of these steps in sequential manner.
You must end each of your code snippet with a print statement followed by output in the next line.
Use the results from the output of the code snippets of each step and continue to the next step until
you finish the final step and solve the problem completely.
In each new code block, you must define the variables and symbols again based on the previous code
snippets or their outputs as suitable.
Use sympy in appropriate way, as and when required.
Once you complete the last step, write this line: ### END OF CODE
Then just print the final numeric answer (without any units) like this: The final answer is boxed{}.
If the executed code snippet returns an error, use it to correct the current step’s code snippet. DO
NOT restart solving from Step 1.

Here are a few examples for your reference.

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the pattern and calculate the number of lights in one complete pattern

from sympy import symbols, Rational
Define the number of red and green lights in one pattern
red_lights_per_pattern = 2
green_lights_per_pattern = 3
Calculate total lights in one pattern
lights_per_pattern = red_lights_per_pattern + green_lights_per_pattern
print(f"Number of lights in one complete pattern: {lights_per_pattern}")

>>> output:
Number of lights in one complete pattern: 5

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Calculate the number of complete patterns between the 3rd and 21st red lights

from sympy import symbols, Rational
Define the number of red lights we're considering
start_red_light = 3
end_red_light = 21
Calculate the number of red lights between the 3rd and 21st (inclusive)
red_lights_between = end_red_light - start_red_light + 1
Calculate the number of complete patterns
complete_patterns = (red_lights_between - 1) // 2
print(f"Number of complete patterns between the 3rd and 21st red lights:

{complete_patterns}")

>>> output:
Number of complete patterns between the 3rd and 21st red lights: 9

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate the total number of lights between the 3rd and 21st red lights

29

from sympy import symbols, Rational
Define the number of red and green lights in one pattern
red_lights_per_pattern = 2
green_lights_per_pattern = 3
lights_per_pattern = red_lights_per_pattern + green_lights_per_pattern
Number of complete patterns
complete_patterns = 9
Calculate total lights
total_lights = complete_patterns * lights_per_pattern + 1 # +1 for the

21st red light
print(f"Total number of lights between the 3rd and 21st red lights (

inclusive): {total_lights}")

>>> output:
Total number of lights between the 3rd and 21st red lights (inclusive):

46

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate the total distance in inches

from sympy import symbols, Rational
Total number of lights
total_lights = 46
Distance between lights in inches
distance_between_lights = 6
Calculate total distance in inches
total_distance_inches = (total_lights - 1) * distance_between_lights
print(f"Total distance in inches: {total_distance_inches}")

>>> output:
Total distance in inches: 270

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Convert the distance from inches to feet

from sympy import symbols, Rational
Total distance in inches
total_distance_inches = 270
Convert inches to feet
inches_per_foot = 12
total_distance_feet = Rational(total_distance_inches, inches_per_foot)
print(f"Total distance in feet: {total_distance_feet}")

>>> output:
Total distance in feet: 45/2

END OF CODE

The final answer is
45

2

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the variables and set up the equations

from sympy import symbols, Eq, solve
Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
Set up equations based on the given information
eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries

30

eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
print("Equations:")
print(eq1)
print(eq2)
print(eq3)
print(eq4)

>>> output:
Equations:
Eq(b + c + g + r, 280)
Eq(r, 2*b)
Eq(g, 3*c)
Eq(c, 4*r)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Solve the system of equations

from sympy import symbols, Eq, solve
Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
Set up equations based on the given information
eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
Solve the system of equations
solution = solve((eq1, eq2, eq3, eq4))
print("Solution:")
print(solution)

>>> output:
Solution:
{b: 8, c: 64, g: 192, r: 16}

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Extract the number of cherries from the solution

from sympy import symbols, Eq, solve
Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
Set up equations based on the given information
eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
Solve the system of equations
solution = solve((eq1, eq2, eq3, eq4))
Extract the number of cherries
cherries = solution[c]
print(f"The number of cherries in the fruit salad is: {cherries}")

>>> output:
The number of cherries in the fruit salad is: 64

END OF CODE The final answer is 64

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the percentages of each type of bird

from sympy import symbols, Rational
geese = Rational(30, 100)

31

swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
print(f"Percentage of geese: {geese}")
print(f"Percentage of swans: {swans}")
print(f"Percentage of herons: {herons}")
print(f"Percentage of ducks: {ducks}")

>>> output:
Percentage of geese: 3/10
Percentage of swans: 1/4
Percentage of herons: 1/10
Percentage of ducks: 7/20

Let’s continue with the next steps to solve this problem. Step 2: Calculate the percentage of birds
that are not swans

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
print(f"Percentage of birds that are not swans: {not_swans}")

>>> output:
Percentage of birds that are not swans: 3/4

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate the percentage of geese among the birds that are not swans

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
geese_among_not_swans = geese / not_swans
print(f"Percentage of geese among birds that are not swans: {

geese_among_not_swans}")

>>> output:
Percentage of geese among birds that are not swans: 2/5

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Convert the fraction to a percentage

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
geese_among_not_swans = geese / not_swans
percentage = geese_among_not_swans * 100
print(f"Percentage of geese among birds that are not swans: {percentage}%

")

>>> output:
Percentage of geese among birds that are not swans: 40%

END OF CODE

The final answer is 40

32

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the given information

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
print(f"Number of twins: {twins}")
print(f"Number of triplets: {triplets}")

>>> output:
Number of twins: 18
Number of triplets: 18

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Calculate handshakes between twins

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2 # Each twin shakes hands

with all twins except self and sibling
print(f"Handshakes between twins: {twin_handshakes}")

>>> output
Handshakes between twins: 144

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate handshakes between triplets

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2 # Each triplet

shakes hands with all triplets except self and two siblings
print(f"Handshakes between triplets: {triplet_handshakes}")

>>> output
Handshakes between triplets: 135

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate handshakes between twins and triplets

from sympy import symbols, Rational

33

Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
Handshakes between twins and triplets
twin_triplet_handshakes = twins * (triplets // 2) # Each twin shakes

hands with half the triplets
print(f"Handshakes between twins and triplets: {twin_triplet_handshakes}"

)

>>> output:
Handshakes between twins and triplets: 162

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate the total number of handshakes

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
Handshakes between twins and triplets
twin_triplet_handshakes = twins * (triplets // 2)
Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +

twin_triplet_handshakes
print(f"Total number of handshakes: {total_handshakes}")

>>> output
Total number of handshakes: 441

END OF CODE

The final answer is 441

A.9 SBSC Prompt for AIME

You are given a math problem and you need to think of a stepwise approach/process to be followed to
solve the problem. Use sympy-based python code to codify each of these steps in sequential manner.
You must end each of your code snippet with a print statement followed by output in the next line.
Use the results from the output of the code snippets of each step and continue to the next step until
you finish the final step and solve the problem completely.
In each new code block, you must define the variables and symbols again based on the previous code
snippets or their outputs as suitable.
Use sympy in appropriate way, as and when required.
Once you complete the last step, write this line: ### END OF CODE
Then just print the final numeric answer (without any units) like this: The final answer is boxed{}.
If the executed code snippet returns an error, use it to correct the current step’s code snippet. DO
NOT restart solving from Step 1.

Here are a few examples for your reference.

34

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution: Let’s approach this problem step by step using SymPy-based Python code.

Step 1: Import necessary libraries and define the jump rules

from sympy import symbols, Abs
import numpy as np
Define the possible jumps from any position (x, y)
def jumps(x, y):

return [
(x + 7, y + 2), # Jump by (7, 2)
(x + 2, y + 7), # Jump by (2, 7)
(x - 5, y - 10), # Jump by (-5, -10)
(x - 10, y - 5) # Jump by (-10, -5)

]
print("Jump rules defined.")

>>> output
Jump rules defined.

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Implement a breadth-first search to find all reachable points

from sympy import symbols, Abs
import numpy as np
from collections import deque
Reuse the jumps function to define possible moves
def jumps(x, y):

return [
(x + 7, y + 2),
(x + 2, y + 7),
(x - 5, y - 10),
(x - 10, y - 5)

]
Define the breadth-first search (BFS) function
def bfs():

queue = deque([(0, 0)]) # Start BFS from the point (0, 0)
visited = set([(0, 0)]) # Keep track of visited points to avoid
reprocessing
Process each point in the queue
while queue:

x, y = queue.popleft()
for nx, ny in jumps(x, y): # Try all possible jumps from the

current point
if (nx, ny) not in visited and abs(nx) + abs(ny) <= 100:

visited.add((nx, ny)) # Mark the new point as visited
queue.append((nx, ny)) # Add the new point to the queue

to explore further
return len(visited) y

M = bfs()
print(f"Number of reachable points (M): {M}")

>>> output:
Number of reachable points (M): 1373

Let’s continue with the final step to solve this problem. Step 3: Calculate the remainder when M is
divided by 1000

from sympy import symbols, Abs
import numpy as np
M = 1373 # M_value from previous step

35

Find the remainder when M is divided by 1000
remainder = M % 1000
print(f"Remainder when M is divided by 1000: {remainder}")

>>> output
Remainder when M is divided by 1000: 373

END OF CODE

The final answer is 373

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the variables and set up the basic equations

from sympy import symbols, Eq, solve
Define variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Set up equations based on the given information
eq1 = Eq(r, 5*s) # Tom runs 5 times as fast as he swims
eq2 = Eq(b, 2*r) # Tom bicycles twice as fast as he runs
print("Equation 1:", eq1)
print("Equation 2:", eq2)

>>> output
Equation 1: Eq(r, 5*s)
Equation 2: Eq(b, 2*r)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Set up the equation for the total time

from sympy import symbols, Eq, solve
Reuse earlier code
s, b, r = symbols('s b r')
eq1 = Eq(r, 5*s)
eq2 = Eq(b, 2*r)
Total time equation (in hours)
total_time = 0.5/s + 30/b + 8/r #The AIME Triathlon consists of a half-

mile swim, a 30-mile bicycle ride, and an eight-mile run.
eq3 = Eq(total_time, 4.25) # Total time is 4.25 hours
print("Total time equation:", eq3)

>>> output:
Total time equation: Eq(0.5/s + 8/r + 30/b, 4.25)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Substitute the relationships between speeds into the total time equation

from sympy import symbols, Eq, solve, simplify
Resue earlier code
s, b, r = symbols('s b r')
eq1 = Eq(r, 5*s)
eq2 = Eq(b, 2*r)
total_time = 0.5/s + 30/b + 8/r
eq3 = Eq(total_time, 4.25) # Total time is 4.25 hours
Substitute r and b in terms of s to simplify the equation
eq3_substituted = eq3.subs([(r, 5*s), (b, 10*s)])
eq3_simplified = simplify(eq3_substituted)
print("Simplified equation:", eq3_simplified)

36

>>> output:
Simplified equation: Eq(5.1/s, 4.25)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Solve for the swim speed (s)

from sympy import symbols, Eq, solve, simplify
Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Simplified equation from previous step
eq3_simplified = Eq(5.1/s, 4.25)
Solve for s
s_solution = solve(eq3_simplified, s)
print("Swim speed (s):", s_solution[0])

>>> output
Swim speed (s): 1.20000000000000

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate the bike speed (b)

from sympy import symbols, Eq, solve, simplify
Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Swim speed from previous step
s_value = 1.20000000000000
Calculate bike speed
b_value = 10 * s_value # b = 2r = 2(5s) = 10s
print("Bike speed (b):", b_value)

>>> output
Bike speed (b): 12.0

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 6: Calculate the time spent bicycling

from sympy import symbols, Eq, solve, simplify
Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Bike speed from previous step
b_value = 12.0
Calculate time spent bicycling
bike_distance = 30 # miles
bike_time = bike_distance / b_value # hours
Convert to minutes
bike_time_minutes = bike_time * 60
print("Time spent bicycling (in minutes):", bike_time_minutes)

>>> output
Time spent bicycling (in minutes): 150.0

END OF CODE

The final answer is 150

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Import necessary libraries and define a function to count ones in binary representation

from sympy import symbols, binomial
import math
Function to count the number of '1's in the binary representation of a

number

37

def count_ones(n):
return bin(n).count('1') # Convert n to binary and count occurrences
of '1'

print("Function to count ones in binary representation defined.")

>>> output:
Function to count ones in binary representation defined.

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Find the smallest number in the sequence S

from sympy import symbols, binomial
import math
Reuse the function to count the number of '1's in binary
def count_ones(n):

return bin(n).count('1')
The smallest number in the sequence S is represented by 8 consecutive

'1's in binary
smallest_number = int('1' * 8, 2) # Convert '11111111' (binary) to

decimal
print(f"The smallest number in sequence S is: {smallest_number}")

>>> output
The smallest number in sequence S is: 255

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Find the largest number in the sequence S

from sympy import symbols, binomial
import math
Reuse the function to count the number of '1's in binary
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
The largest number in sequence S is represented by 8 consecutive '1's

followed by 24 '0's
largest_number = int('1' * 8 + '0' * 24, 2) # Convert

'11111111000000000000000000000000' to decimal
print(f"The largest number in sequence S is: {largest_number}")

>>> output
The largest number in sequence S is: 4278190080

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate the total number of elements in sequence S

from sympy import symbols, binomial
import math
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
largest_number = int('1' * 8 + '0' * 24, 2)
Calculate the total number of elements in sequence S using binomial(32,

8)
This represents the number of ways to choose 8 positions out of 32 bits

to set to '1'
total_elements = binomial(32, 8)
print(f"The total number of elements in sequence S is: {total_elements}")

>>> output
The total number of elements in sequence S is: 10518300

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Find the 1000th number in sequence S

38

from sympy import symbols, binomial
import math
#Reuse all earlier code
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
largest_number = int('1' * 8 + '0' * 24, 2)
total_elements = binomial(32, 8)
Find the 1000th number in the sequence
count = 0 # Initialize a counter for the sequence
N = smallest_number # Start from the smallest number in S
Iterate through numbers and check for 8 '1's in the binary

representation
while count < 1000:

if count_ones(N) == 8: # If the current number has exactly 8 '1's
count += 1 # Increment the count

if count == 1000: # Stop if we've found the 1000th number
break

N += 1 # Move to the next number
print(f"The 1000th number (N) in sequence S is: {N}")

>>> output
The 1000th number (N) in sequence S is: 7032

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 6: Calculate the remainder when N is divided by 1000

from sympy import symbols, binomial
import math
def count_ones(n):

return bin(n).count('1')
N = 7032 # From the previous step
Calculate the remainder when N is divided by 1000
remainder = N % 1000
print(f"The remainder when N is divided by 1000 is: {remainder}")

>>> output
The remainder when N is divided by 1000 is: 32

END OF CODE

The final answer is 32

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the variables and set up the initial conditions

from sympy import symbols, Eq, solve
Define symbols
r = symbols('r') # common ratio
a1, b1 = 27, 99 # first terms of sequences a and b
print(f"a1 = {a1}, b1 = {b1}")
print("Common ratio is represented by r")

>>> output
a1 = 27, b1 = 99
Common ratio is represented by r

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Set up the equation for a15 = b11

from sympy import symbols, Eq, solve
Redefine symbols
r = symbols('r')

39

a1, b1 = 27, 99
Set up the equation a15 = b11
eq = Eq(a1 * r**14, b1 * r**10)
print("Equation: a15 = b11")
print(f"Symbolically: {eq}")

>>> output
Equation: a15 = b11
Symbolically: Eq(27*r**14, 99*r**10)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Solve the equation for r

from sympy import symbols, Eq, solve
Redefine symbols
r = symbols('r')
a1, b1 = 27, 99
Set up the equation a15 = b11
eq = Eq(a1 * r**14, b1 * r**10)
Solve for r
solution = solve(eq, r)
print("Solutions for r:")
print(solution)

>>> output
Solutions for r:
[0, -11**(1/4)*3**(3/4)/3, 11**(1/4)*3**(3/4)/3]

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Identify the correct value for r

from sympy import symbols, Eq, solve, N
Reuse earlier code
r = symbols('r')
a1, b1 = 27, 99
eq = Eq(a1 * r**14, b1 * r**10)
solution = solve(eq, r)
The correct value for r is the positive real solution
r_value = max(sol for sol in solution if sol.is_real)
print(f"The common ratio r is: {N(r_value, 6)}")

>>> output
The common ratio r is: 1.38378

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate a9

from sympy import symbols, Eq, solve, N
Reuse earlier code
r = symbols('r')
a1, b1 = 27, 99
eq = Eq(a1 * r**14, b1 * r**10)
solution = solve(eq, r)
r_value = max(sol for sol in solution if sol.is_real)
Calculate a9
a9 = a1 * r_value**8
print(f"a9 = {N(a9, 10)}")

>>> output
a9 = 363.0000000

END OF CODE

The final answer is 363

40

A.10 Results with Standard Deviations

Method AMC AIME MathOdyssey
greedy maj@7 greedy maj@7 greedy maj@7

Claude-3.5-Sonnet
COT 31.16 (±1.0) 35.79 9.09 (±1.0) 10.91 11.89 (±0.6) 16.89
PAL 35.79 (±1.0) 36.42 27.48 (±0.6) 28.79 27.23 (±0.6) 31.01
TIR-ToRA 38.59 (±0.6) 43.16 24.64 (±3.2) 26.67 27.23 (±0.6) 32.43
SBSC (Ours) 49.33 (±3.1)↑10.7 −↑6.2 35.45 (±1.7)↑8 -↑6.7 39.86 (±1.0)↑12.6 -↑7.4

GPT-4o
COT 35.94 (±0.6) 37.47 10.39 (±2.1) 12.12 13.51 (±1.0) 17.57
PAL 36.48 (±0.6) 38.11 24.63 (±0.6) 26.97 15.74 (±0.6) 20.27
TIR-ToRA 37.33 (±2.5) 40.42 22.42 (±1.7) 25.45 19.59 (±2.6) 23.64
SBSC (Ours) 44.55 (±0.6)↑7.2 -↑4.1 30.7 (±1.1)↑6.1 -↑3.7 26.55 (±1.1)↑7 -↑2.9

Table 4: Benchmarking SBSC against different math reasoning methods across three datasets.
We report average accuracy over 3 runs with standard deviation within parentheses. Best result in each
setting is highlighted in bold and second best is underlined. Absolute improvement in performance
by SBSC over the previous best method in each setting is indicated in subscript.

41

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide detailed experiment results and ablations supporting the claims
made in abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

42

Justification: We only focus on text-based questions. We also just evaluate on integer-answer
type questions. We dont explore questions with images. We dont explore proof based
questions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We did not make any theoretical claims. We produced experimental results
supporting the algorithm presented.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

43

Justification: We describe all details of our method and benchmark dataset creation. We also
provide benchmark datasets in anonymous github. We also provide complete prompt for
all the methods in Appendix. We also mention the closed source LLM names and settings
needed. We also provide prompts as well.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the exemplars (in appendix) and benchmark datasets scripts (in a
anonymous github repository) required to reproduce our results. We have also outlined all
the settings and model name for making the api call in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

44

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do not train any model. We specify all details on configuration of model
while inference. We clearly explain the creation of benchmark datasets and examples used
for few-shot approach. We clearly outline the experiment details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We ran all the experiments multiple times and report average. In fact, we also
benchmark against 7 runs of other SOTA methods against. We also do ablations to measure
sensitivity. We also report standard deviation values

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

45

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mainly make api calls which we have mentioned. so hence outline the
requirement of internet access.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper follows the ethics mentioned.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper focus on math solving abilities of AI. It wont help in misinformation

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

46

https://neurips.cc/public/EthicsGuidelines

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets we created are scraped from reputed sites and consists mainly of
math problems for students.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the related works and follow the licences.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets are mainly benchmark datasets provided in the anonymous
github repository are of standard dataset format.

Guidelines:

47

paperswithcode.com/datasets

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

48

	Introduction
	Method
	Experiment
	Results
	Ablations
	Conclusion
	Appendix / supplemental material
	Framework Explanation
	Dataset Processing
	Number of Steps in SBSC
	Understanding SBSC in Detail
	PAL Exemplars
	TIR-ToRA Exemplars
	SBSC System-Prompt Tuning
	SBSC Prompt for AMC
	SBSC Prompt for AIME
	Results with Standard Deviations

