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ABSTRACT

This paper introduces SceneCraft, a Large Language Model (LLM) Agent convert-
ing text descriptions into Blender-executable Python scripts which render complex
scenes with up to a hundred 3D assets. This process requires complex spatial
planning and arrangement. We tackle these challenges through a combination of
advanced abstraction, strategic planning, and library learning. SceneCraft first
models a scene graph as a blueprint, detailing the spatial relationships among assets
in the scene. SceneCraft then writes Python scripts based on this graph, translating
relationships into numerical constraints for asset layout. Next, SceneCraft lever-
ages the perceptual strengths of vision-language foundation models like GPT-V to
analyze rendered images and iteratively refine the scene. On top of this process,
SceneCraft features a library learning mechanism that compiles common script
functions into a reusable library, facilitating continuous self-improvement without
expensive LLM parameter tuning. Our evaluation demonstrates that SceneCraft
surpasses existing LLM-based agents in rendering complex scenes, as shown by its
adherence to constraints and favorable human assessments. We also showcase the
broader application potential of SceneCraft by reconstructing detailed 3D scenes
from the Sintel movie and guiding a video generative model with generated scenes
as intermediary control signal.

Figure 1: Examples comparing SceneCraft’s output against BlenderGPT, an LLM-Agent baseline.

1 INTRODUCTION

Transforming natural language descriptions into 3D scenes is a key technology for industries like
architectural design, game development, virtual reality, and cinematic production. Recent 3D
generative models like DreamFusion (Poole et al., 2022) and Magic3D (Lin et al., 2023) have made
great progress in transforming text to a 3D neural representation of an object. However, these works
fall short of composing entire scenes with multiple assets due to dataset scale limitations and domain
specificity. In this work, we are inspired by how human artists typically adopt a holistic process for
designing 3D scenes, where they take an iterative, step-by-step approach that includes storyboarding,
3D modeling, texturing, rigging, layout, animation, and rendering, using professional software such
as Blender1. This iterative process grants the artists in studios a nuanced control over each asset’s
placement and movement — a level of control not yet achieved by existing models.

Our paper introduces SceneCraft, an LLM-powered agent that is designed to streamline this text-to-
3D scene conversion process, closely emulating the workflow of studio artists. SceneCraft transforms

1https://www.blender.org/
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Figure 2: SceneCraft is composed of a dual-loop self-improving pipeline: in the inner-loop, per
each scene, an LLM autonomously writes a script to interact with Blender, receives rendered image,
and keeps improving the script until getting good scenes; in the outer-loop, SceneCraft summarizes
common functions over a batch of written scripts to maintain a reusable design skill library.

textual descriptions into executable Blender code, rendering 3D scenes that are visually cohesive
and contextually accurate. This task goes beyond mere data processing, demanding a nuanced
understanding of spatial and semantic relationships, which remains a challenge even for today’s
LLMs. While earlier systems like WordsEye Coyne & Sproat (2001) and SceneSere (Chang et al.,
2017) have made progress towards using predefined templates and rules to extract spatial constraints
from linguistic queries, they depend on extensive human input, especially in new domains with
unique relationship patterns.

SceneCraft leverages LLMs to autonomously generate Python code, translating spatial relations
within scenes into precise numerical constraints. To achieve this, the core of SceneCraft is a dual-
loop optimization pipeline, illustrated in Figure 2. The inner-loop focuses on per-scene layout
optimization. Here, an LLM-based planner constructs a scene graph outlining the spatial constraints
for asset arrangement. SceneCraft then writes Python code to transform these relations into numerical
constraints. These constraints are fed to a specialized solver that determines the layout parameters of
each asset, including location, orientation and sizes. After rendering these scripts into images via
Blender, we utilize a multimodal LLM (GPT-V (OpenAI, 2023)) to assess the alignment between the
generated image and the textual description. If a misalignment is detected, the LLM identifies the
problematic semantic relations and corresponding constraints, subsequently refining the scripts. This
iterative process of refinement and feedback is crucial for enhancing the scene’s fidelity, ensuring
each rendition progressively aligns more closely with the original vision, which also matches more
the human artists’ designing process.

Following the inner-loop refinement of scene scripts, SceneCraft starts its outer loop to dynamically
expand its ’spatial skill’ library. Within this procedure, it reviews the incremental changes made to
the constraint scripts across inner-loop iterations for each scene, identifying and integrating common
code patterns, thereby streamlining the acquisition of new non-parametric skills for self-improvement.
For instance, if the text query describes a book placed on a desk, but the initial rendering shows desk
lamps floating mid-air, SceneCraft may learn to introduce a new ”grounded” constraint between book
and desk surfaces. By continuously updating its library through such outer-loop learning over batches,
SceneCraft acquires an expanding repertoire of spatial skills over time. SceneCraft is therefore able
to handle increasingly complex scenes and descriptions without external human expertise or LLM
parameter tuning.

To evaluate SceneCraft, we conduct comprehensive experiments on both synthetic and real-world
datasets. First, we create our own curated datasets with ground-truth spatial constraints to quantify
SceneCraft’s fidelity in translating text to constraint scripts. Second, we apply SceneCraft to the
Sintel movie dataset by finetuning a video generative model on the first half of the movie conditioned
on ground-truth scene images. For the second half, we generate scenes using SceneCraft and other
baselines as input to the video model. Across datasets, results demonstrate SceneCraft’s superior
sample efficiency and accuracy in rendering intricate 3D scenes from textual descriptions, enabled by
its dual-loop optimization. Quantitatively, SceneCraft achieves over 45.1% and 40.9% improvement
on generated scenes’ CLIP score, compared with another popular LLM agent baseline BlenderGPT,
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over both unseen synthetic queries and real-world movies like Sintel. SceneCraft also achieves
significantly better constraint passing score (88.9 against 5.6). Qualitatively, the scenes and videos
generated using SceneCraft more accurately encapsulate the narrative and artistic nuances described
in the text. It receives much higher human preference ratings on different perspective, and also
benefit a video generative model with very light fine-tuning. Together, our comprehensive evaluation
validates SceneCraft as an adaptable and efficient framework for translating imaginative text to 3D
reality while continuously improving itself.

This paper’s contributions are:

• An LLM Agent that transforms an input text query into a 3D scene by generating a Blender
script. The script is iteratively improved by a multimodal LLM that identifies unsatisfied
constraints and fixes them in a feedback loop.

• A spatial skill library learned given a set of synthetic input queries without requiring human
involvement and LLM fine-tuning, resulting in improved scene generation results.

• Experimental results show that comparing with BlenderGPT, another LLM-based agent
baseline, SceneCraft achieves 45.1% and 40.9% improvement on generated scenes’ CLIP
score, over both unseen synthetic queries and real-world movies like Sintel.

2 APPROACH

Our goal is to transform a text query q into a 3D scene s that is not only spatially coherent but
also contextually rich and aesthetically pleasing. This requires (a) identifying the correct spatial
and contextual relationships between assets, and (b) predicting a high fidelity and nice looking
arrangement that aligns with these relationships. SceneCraft performs this task by building on top
of a state-of-the-art multimodal LLM (i.e., GPT-4V (OpenAI, 2023)) and a professional rendering
software (Blender). We now describe the key components of our method.

2.1 ASSET RETRIEVAL AND SCENE DECOMPOSITION

A scene consists of a set of assets, where each asset ai is a 3D model. Given the input text query q,
the agent makes an LLM call to generate a list of asset names and description that shall be put in
the scene. Based on them, a set of 3D assets A are retrieved from a large repository of 3D objects
utilizing a CLIP-based retriever. The retrieval process first finds the top-10 assets based on the text
description of each asset. Then each retrieved asset is rendered as an image and the one with the
highest text-to-image score is selected.

Some scenes might contain up to a hundred assets, making the layout planning very difficult.
Therefore, SceneCraft agent decomposes the scene into a set of sub-scenes, each representing a part
of the entire scene. Breaking the problem into small pieces is a widely adopted strategy in natural
language question answering (Perez et al., 2020) and general reasoning (Zhou et al., 2023a). The
agent calls a LLM-empowered decomposer that breaks the input query into a sequence of sub-scenes
ŝk, each containing a title, a list of asset names Ak and a sub-scene description qk. An example of
decomposition is shown in Sec. B in Appendix. The scene descriptions are used to guide the scene
optimization in the later stages.

(q1,A1), . . . , (qK ,AK)← LLM-decomposer(q). (1)

2.2 SCENE GRAPH CONSTRUCTION

In order to put the 3D assets together to create a scene s, each asset ai requires its corresponding
layout matrix L(ai), encapsulating the position, scale and orientation of ai in the scene’s coordinate
frame. For instance, in a scene described as “a round table with a vase on it, placed near a window”,
the assets ai, aj and ak could represent the ‘table’, ‘vase’ and the ‘window’, respectively. Their
layout matrices L(ai), L(aj) and L(ak) shall position the vase, table and window in the scene such
that the vase is standing on the table and the table is located near the window.

The key challenge is to correctly put each asset in the right location and orientation by predicting the
layout matrix L(ai) for each asset. The naive approach is to directly predict all the layout matrices
directly given the scene description. However, this is a highly complex task even for the most
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Figure 3: The workflow of SceneCraft’s inner-loop improvement of each scene. 1) given query,
a LLM writes a list of assets descriptions, then use CLIP retriever to fetch assets; 2) then LLM
decomposes the full query into a sequence of sub-scene, each associated with a subset of assets and a
text description; 3) a LLM-Planner generate a relational graph linking assets to spatial relationship;
4) Based on the graph, LLM-Coder writes python codes to get a list of numerical constraints, which
can be executed to search optimal layout, and render into image using Blender; 5) LLM-Reviewer
with vision perception capability criticize the rendered image, and update the script accordingly. This
critic-and-revise procedure can be done multiple times to iteratively improve the script and scene.

advanced LLMs, due to the vast combinatorial space of the possible layouts and deep understanding
the intricate spatial relations between assets. This is why in SceneCraft we use a relational scene
graph as an intermediate layer of abstraction.

To model the spatial relations between assets, SceneCraft utilizes a set of spatial and contextual
relations, such as proximity, alignment, parallelism, etc. Each relation r applies to a specific set of
assets within the scene. Full list of relations that we consider can be found in Sec D in Appendix.

Using these relations, the scene s is abstracted into a relational bipartite graph G(s) = (A,R, E),
which contains two types of nodes: A represents the set of assets andR represents the set of relations
as nodes. E represents the edges connecting a relation node to a subset of assets E(r) in the scene
that satisfies this relation.2

Based on this definition, SceneCraft then uses a LLM-Planner to construct a scene graph connecting
assets to corresponding spatial relation nodes.

G(s) = (A,R, E)← LLM-Planner(qk,A) (2)

For example, when we create the outline of slum village, LLM-Planner predicts the following
edges:

• ⟨Alignment, list of houses⟩: all housess are aligned side by side to form a side-street;
• ⟨Parallelism, two list of houses⟩: Duplicate one side of street to form a pathway or road;
• ⟨Proximity, each lamp, each house⟩: lamps are located in front of each house.

The relations between the assets provide soft spatial constraints for the layout matrices L of the
assets. Thus, this intermediate graph serves as a high-level plan for subsequent code generation and
self-improvement, which significantly reduces the complexity of arranging the assets in the scene.

2.3 SCENE LAYOUT OPTIMIZATION IN A FEEDBACK LOOP

After we obtain the spatial constraints between the assets, we use a set of scoring functions (one per
relation) to optimize the scene layout. In Sec. 2.4 we describe how we learn the library of scoring
functions automatically. The scoring function Fr(·) for relation r captures whether the constraint
is satisfied via Fr

(
{L(ai) | ai ∈ E(r)

}
,argr). Fr takes as input a list of layout matrices L(ai)

2For each relation type, we can have multiple relation nodes linking to different subsets of assets, e.g., Align-1
relation node links table and vase, and Align-2 links vase and window.
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connected by r, as well as the function arguments argr such as the distance, directions, etc. Fr

returns a real number between 0 and 1 describing how much this relational constraint is satisfied.

An LLM-Coder then reuses these existing functions stored in skill library to synthesize an overall
Blender code script code, including loading the assets, doing grouping and generating all the
numerical constraints, etc. The LLM-Coder will also predict all the arguments argr for each
function Fr, such as the exact distance for Proximity relation, etc.

code,arg← LLM-Coder(G(s), qk) (3)

For each scene s abstracted by a relational scene graph G(s) finding an optimal layout could be
formalized as the following optimization problem:

L̂ ← argmax
L

∑
r∈R

Fr

({
L(ai) | ai ∈ E(r)

}
,argr

)
(4)

This enables SceneCraft to simultaneously balance multiple constraints, ensuring a comprehensive
and contextually accurate scene layout planning. After getting the optimal layout L̂, we can render
the scene with the Blender code script code to get image output. Examples of generated scrips and
rendered images can be found at Sec. C in Appendix.

Self-Improvement of Scene Script However, the agent often does not produce the correct layout
outright. This is because either (a) the predicted constraints do not reflect the requirements in the
input query or do not follow common-sense knowledge, which requires updating the scene graph
edges E and the Blender code code); or (b) the generated constraint functions do not correctly reflect
the semantic relationships and result in an incorrect layout (we need to update scoring functions Fr

and arguments argr).

We iteratively improve the initially generated scene layout in a visual feedback loop by taking
advantage of the perception capabilities of a multimodal LLM (GPT-V (OpenAI, 2023)). We render
the generated scene into an image, then feed the rendered image and the scene description directly to
the LLM+V-Reviewer, asking it which constraints are lacking or not correctly satisfied, asking it
to revise the script to reflect all the mistakes it finds. If LLM+V-Reviewer finds out that the error
is rooted in the constraint functions, it can either modify existing functions or add new sub-functions
to improve the layout planning for the current scene. This procedure repeats at every iteration of the
feedback loop. We denote that at the t-th iteration, the function for each relation is F t and the graph
edges are Et, and the predicted optimal layout is L̂t. This shares a similar intuition with recent works
that utilize foundational models to generate a reward signal (Baumli et al., 2023; Rocamonde et al.,
2023; Ma et al., 2023; Shinn et al., 2023). The feedback-loop optimization procedure can formally be
written as:

E(t+1),F (t+1),arg(t+1) ← LLM+V-Reviewer(img, qk)

subject to img← Blender-Render(A,Lt,codet)

Lt ← argmax
L

∑
r∈R

F t
r

({
L(ai) | ai ∈ Et(r)

}
,argt

r

)
(5)

2.4 LIBRARY LEARNING

In the preceding sections, we described the methodology behind SceneCraft’s generation of scenes,
which involves the formulation of relations and constraint scoring functions, followed by their iterative
optimization through a feedback loop. In this section, we go over the process by which we learn a
comprehensive spatial skill library of constraint functions, designed for re-application in the scene
generation process for new input queries.

The core of SceneCraft’s library learning originates from the aforementioned self-refinement pro-
cedure. When a specific constraint function is not sufficient to cover all cases of a relation, the
LLM+V-Reviewer is able to identify the pitfall of function implementation, and make correspond-
ing modification. As an example shown in Figure 4, the previous implementation of parallelism
relation only consider the assets’ location. Through feedback-loop optimization for scene improve-
ment, GPT-V identifies that it is necessary to consider the similarity over orientation. Therefore, the
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Figure 4: Example of function parallelism score update in outer-loop library learning phase.
The update adds constraint score forcing the orientation of the assets to be similar.

main goal of library learning procedure is to review these gradual changes of Fr, detect common
patterns in the addition or modification, and merge these changes into the library.

Specifically, we denote F̂r(q) = FT
r (q) as the updated functions for relation r learned after t = T

step inner-loop self-improvement over query q. SceneCraft reviews all these updates, try to find one
that represents the consensus of all, and merge it into the global skill library. This procedure shares
similar intuition as universal self-consistency (Chen et al., 2023). We thus learn the new function as:

Fr ← Library-Learner
({

F̂r(q) | q ∈ Q
})

(6)

This process is conducted over a batch of queries Q = {qi} to ensure the universality of the learned
skills. Note that: 1) this procedure could be regarded as a meta-learning update of the function
initialization to facilitate the feedback-loop optimization. 2) this procedure does not require any
ground-truth scenes, explicit reward function, or any human intervention. All the internal learning
signal is just the LLM+V-reviewer during the feedback-loop to maximize the alignment to textual
query. 3) For both optimization stages, updates are made to non-parametric knowledge represented
as Python code, avoiding the computational cost and inaccessibility issues associated with back-
propagation in large language models.

SceneCraft’s library learning process is also highly sample-efficient. By manually creating 20
examples with ground-truth constraints and running dual-stage optimization on them, SceneCraft
develops a robust skill library. This approach contrasts with traditional model fine-tuning, offering
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Algorithm 1: Dual-Loop Improvement Workflow
Data: L = {Fr}: Initialize SceneCraft’s library, Q = {q}: a dataset of queries. Ninner and

Nouter: number of iterations for scene refinement and library learning.
repeat // outer-loop

for q ∈ Q do
Decompose q into sub-scene descriptions and assets:
(q1,A1) . . . (qK ,AK)← LLM-decomposer(q)

for k = 1 to K do
Plan a scene graph G(s) for sub-scene qk: G(s)← LLM-Planner(qk,Ak)
Write code and arguments for scene sk: code, arg← LLM-Coder(G(s), qk)
for t = 1 to Ninner do // inner-loop

Constraint-based Search:
Lt ← argmax

L

∑
r∈R F t

r

({
L(ai) | ai ∈ Et(r)

}
,argt

r

)
Render: img← Blender(Lt,A,codet)
Critic & Revise: Et+1,F t+1,argt+1 ← LLM+V-Reviewer(img, qk)

end
end
Store function updates FT

r (q) for each relation r per question q into F̂r set.
end
for r ∈ R do

Update library L with updated functions:
Fr ← Library-Learner

({
F̂r(q) | q ∈ Q

})
end

until Nouter times;

efficiency and adaptability in learning for complex tasks like 3D scene generation. The pseudo-code
of the whole dual-loop learning is illustrated in Alg 1.

3 EXPERIMENTS

We evaluate our proposed SceneCraft first on our curated synthetic queries where the ground-truth
constraints are available. We then show how the generated 3D scenes can help video generation on
the Sintel movie as a case study.

3.1 EVALUATE SCENE SYNTHESIS WITH GIVEN CONSTRAINTS

SceneCraft is an agent for open-domain scene synthesis. Most of the existing 3D scene datasets
with ground-truth focus on a specific domain such as in-door scene (Song et al., 2023; Wei et al.,
2023) or road traffic (Savkin et al., 2023). To systematically study and evaluate our agent in this task,
we manually create 40 synthetic queries with ground-truth constraints. The way we generate these
queries is by first sampling a subset of relation constraints from the full list (shown in Appendix D).
Based on this, the human annotators evaluate whether the scene satisfies this relational constraint.
Assets are retrieved from Turbosquid3.

Evaluation Metric To verify whether a generated scene fulfills the textual requirement, we ask
human annotators to also write a scoring function to estimate how much the constraint is satisfied.
Such function is different from the one SceneCraft learns in its skill library, because the scoring
function only needs to work for this specific scene query. We show examples of the queries as well as
the implemented scoring function in Sec F in Appendix. The output of these scoring functions is less
than or equal to 1, and only reaches equality when all constraints are strictly satisfied.

For this synthetic dataset, as we don’t have the ground-truth scene layout, we adopt two metrics
for evaluating scene synthesis model’s performance. The first is the standard text-to-image CLIP

3https://www.turbosquid.com/
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Metric CLIP SIM Constraint Score

BlenderGPT 24.7 5.6
SceneCraft 69.8 88.9

(—-Ablation by removing one component after the other—-)
– Learned Library 48.3 64.5
– Inner-Loop 32.8 26.1
– Relation Graph 19.4 3.2

Table 1: Comparison of SceneCraft against
BlenderGPT and ablation baselines on synthetic
queries with annotated constraints.

Win Rate SceneCraft BlenderGPT

Text Fidelity 76.8% 12.7%
Composition 83.6% 11.4%
Aesthetics 74.5% 14.5%

Table 2: Qualitative Human comparison of
SceneCraft against BlenderGPT baseline.

similarity score (Radford et al., 2021), which measures how well the generated scene satisfies
the textual description; we also use the functions human annotators wrote as a more fine-grained
evaluation on how our generated scene satisfies all the semantic requirements hidden in the query.
We use 20 of the 40 queries for building the spatial skill library through dual-loop optimization,
during which the model only sees the query instead of ground-truth constraint score. Afterwards, we
evaluate the model performance on the remaining 20 queries.

Baselines Most of the existing 3D scene synthesis works only focus on a specific domain, e.g.,
indoor scenes. The only prior system that serves similar purpose to SceneCraft might be BlenderGPT4,
an LLM assistant that also takes text query as input and generates Blender code. The main difference
of BlenderGPT against SceneCraft is that it is designed to only handle the basic instruction of using
Blender, such as moving a asset or changing texture. To allow it to solve the text-to-scene synthesis
task, we modify their code to: 1) enable BlenderGPT to use GPT-V to receive the screenshot of
Blender as visual feedback; 2) asking itself to give the per-step instruction for generating the complex
scene. We also report results of our own system’s ablation. There are three major design choices
of SceneCraft: 1) Abstraction of scene as relational graph; 2) inner-loop optimization of the scene
with visual feedback; 3) outer-loop learning of skill library. These three components have some
dependencies: constraint function grounded by relational graph is the main interface to be updated by
inner-loop (BlenderGPT can be regarded as a baseline only with inner-loop update but without graph
grounding); while the inner-loop updates of function is the root for library learning. Therefore, we do
ablation study by removing one component after the other.

Experimental Results Results are shown in Table 1. We see that our method consistently improves
over all baselines in terms of both CLIP similarity as well as the constraint score. Notably, on the
constraint score, the BlenderGPT baseline only achieves 5.6 score. We show a few head-to-head
comparisons in Figure 1. As example, in the first query that asks three boxes stack one on top of
each other, BlenderGPT simply lists the three boxes in a line and does not follow the instruction of
stacking; on the second query that asks three trees in a row, BlenderGPT does organize the trees in
a line, but perpendicular with the road edge. These examples show that BlenderGPT without the
relational constraint is not able to conduct complex spatial planning.

In the meantime, the ablation studies by removing each component also shows that all components
are very crucial for Scenecraft. Among these components, inner-loop optimization provides the most
important leaps; removing it leads to 38.4 drop on constraint score, and it’s also the root for library
learning that keep the system self-improving without human annotation.

We also conduct a qualitative evaluation of SceneCraft’s output versus BlenderGPT baseline. We
randomly select 10 pairs generated by SceneCraft and BlenderGPT, and ask humans to judge which
one is better, in terms of three major dimensions: 1) text fidelity: how much the generated scene aligns
with the textual query; 2) composition & constraint agreement: we tell the raters the ground-truth
relations, and ask whether the generated scene follows all these constraints; 3) Aesthetics: we ask
which output has better overall visual quality. The order of our output against baseline is completely
random. Detailed question and interface is shown in Figure 11 in Appendix. Altogether we collect
22 responses. Results in Table 2 show that our method outperforms BlenderGPT in all the three
dimensions significantly. Specifically, consistent with our results on constraint score, SceneCraft
gains more improvement over the constraint agreement, making the scene logically correct.

4https://github.com/gd3kr/BlenderGPT
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Quantitative Metric Scene Comparison Video Comparison
Layout Matrix SIM Scene CLIP SIM CLIP-based RM FVD ↓

Text-to-Video (w.o. / finetune) / / 56.8 846
Text-to-Video (w / finetune) / / 64.2 531

Text-to-Scene-to-Video, finetune a videogen model on groundtruth scene, infer with scenes generated by:

BlenderGPT 27.5 41.8 69.1 574
SceneCraft (Dual-Loop) 69.3 82.7 46.2 317

Table 3: Comparison of SceneCraft with other ablated baselines on a Sintel movie. In this setting, we
assume to be given fixed assets for each scene, try to recover the scene, and guide a video generative
model which is fine-tuned on first half of the video. We compare with naiive text-to-video baselines
without scene guidance.

3.2 SCENE-GUIDED VIDEO GENERATION OVER SINTEL MOVIE

In addition to synthetic queries, we also show that SceneCraft’s layout planning capability generalizes
to real scenes , and has potential to control and benefit video generation. As open-domain videos
do not always have ground-truth scenes, we take the Sintel Movie, which is an animated fantasy
short film produced with Blender, where scripts and Blender scenes are open sourced5. We download
all these scenes, using the first half as the training set and the remaining half for testing. For this
task, we assume that the model is given the ground-truth assets for the scene, and only focuses on
layout planning to satisfy the textual description. After we recover the scene, we study how it can
benefit a video generation model to get higher-quality predictions. We thus fine-tune the VideoPoet
model (Kondratyuk et al., 2023), an autoregressive Transformer-based video generation framework,
on the training set with one ground-truth scene image frame as a conditional input. The image will
be converted into image tokens, and add as prefix after text prompt. We then take the fine-tuned
VideoPoet model, taking our model and BlenderGPT’s predicted scene, to generate a 2 second video.

We compare the output in terms of both the scene itself as well as how much it benefits the overall
video generation. For the scene, we use two metrics: the layout matrix’s similarity (first calculate
mutual similarity between assets, then calculate cosine similarity), and the rendered image’s CLIP
score. For the video, as we use both the standard Frechet Video Distance (FVD) distribution
score (Unterthiner et al., 2019), as well as CLIP-based Relative Matching (RM) score (Wu et al.,
2021). The results shown in Table 3 illustrate that our method consistently improves the BlenderGPT
output in terms of scene planning. In addition, the generated scene helps the video generation and
outperform the vanilla text-to-video baseline. From the examples of Figure 5 shown in Appendix,
we can see that the 3D scene grounding help the generated video follow more similar structure as
ground-truth ones. This shows the potential of SceneCraft in controlling video generation in wider
domain.

4 CONCLUSION

In this paper, we present SceneCraft, an LLM-powered autonomous agent for transforming input text
query to a 3D Scene by generating a Blender-executable Python script. Scenecraft builds on top of
multimodal LLMs for both planning and library learning in a dual-loop self-improving framework.
In the inner-loop, SceneCraft generates Blender-executable Python scripts to render an image of the
scene, and use a Self-critiquing loop to iteratively refine its output and learn from its performance.
The outer-loop dynamically expands a ’spatial skill’ library, facilitating continuous self-improvement
without the need for expensive LLM parameter tuning. In the future, we’d like to explore: 1) using
our framework for reconstructing the 3D scene corresponding to a given open-domain image or video;
2) utilizing the generated dataset to fine-tune a video generation conditioned on a 3D scene as control
signal.

5https://studio.blender.org/films/sintel/
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Supplementary Material for SCENECRAFT

Figure 5: Predicted 3D Scenes as well as the generated videos by SceneCraft against other baselines.

A RELATED WORKS

Text to 3D-Scene Synthesis One of the earliest forays into text-driven 3D scene synthesis is
WordsEye (Coyne & Sproat, 2001). This system, and its follow-up works (Seversky & Yin, 2006;
Chang et al., 2014; Ma et al., 2018), can generate 3D scenes from natural language. However, these
systems often require manual mapping between language and object placement, leading to somewhat
unnatural commands for scene description. Zitnick et al. (2013) learns to map visual features to
semantic phrases extracted from sentences, focusing on binary spatial or semantic relationships.
Chang et al. (2014) build upon and improve these early systems. The key advancement is the use
of spatial knowledge, derived from 3D scene data, to more accurately constrain scene generations.
This approach allows for a more realistic interpretation of unstated facts or common sense in scene
synthesis. In their subsequent work (Chang et al., 2015), they focused on lexical grounding of
textual terms to 3D model references, combining rule-based models with user annotations to select
appropriate objects. Their latest paper (Chang et al., 2017) further refines this approach, introducing
interactive text-based scene editing operations and an improved user interface. All these systems are
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most purely symbolic rule-based and require significant human efforts to maintain, and are, therefore,
hard to generalize to new domains and types of constraints.

There also exist a line of neural-based 3D scene generation that learns from data. Most works in this
direction focus on a specific domain, such as in-door scenes (Patil et al., 2023). For instance, Room-
Dreamer (Song et al., 2023) trains a diffusion model to simultaneously generate layout, geometry and
texture for in-door scenes; LEGO-Net (Wei et al., 2023) focus on the layout planning, and trains a
Transformer model to iteratively cleanup the messy room. Despite the impressive performance of
these work, they are restricted by the available 3D scene data. For most open-domain image and
videos, it is very hard to collect ground-truth 3D scenes, which is why most works in this domain
focus on in-door scenes. On the contrary, this paper focus on exploring whether we can take advantage
of the existing knowledge and reasoning capabilities of Large Language Models to directly do layout
planning without tuning its parameters, and we try to learn general spatial planning skills that can be
generalized from very small number of synthetic queries.

Multimodal LLM Agents Leverageing visual perception abilities of recent models like GPT-V,
multimodal LLM Agents (Liu et al., 2023) are capable of interacting with external visual environments,
such as web browsing (Deng et al., 2023; Zhou et al., 2023b; Hu et al., 2023; Zheng et al., 2024),
gaming (Wang et al., 2023), robotics (Brohan et al., 2023) and design (Lv et al., 2023; Yang et al.,
2024). The most related concurrent works is 3D-GPT (Sun et al., 2023), which interacts with
Infinigen (Raistrick et al., 2023), a high-level wrapper on top of Blender, to create high-quality
environmental scenes. The main difference of our work against 3D-GPT6 is: 1) Environment-wise,
we directly interact with Blender and a large-scale asset pool, which provide richer assets to construct
the scene, while Infinigen for now only supports limited number of assets and environment arguments;
2) methodology-wise, SceneCraft features a dual-loop self-improvement pipeline, which enables us
to learn new design skills to handle unseen tasks, which depart us to many existing Agent works that
heavily rely on manual prompt design.

B EXAMPLE OF DECOMPOSITION

As an example shown in Figure 3, given a query ”a girl hunter walking in a slum village with fantasy
creatures”, SceneCraft decomposes it into three different steps, among which the first step includes
the following information:

C EXAMPLES OF SCENECRAFT’S GENERATED SCRIPTS AND RENDERED
SCENES

Example of SceneCraft’s generated scripts and rendered scene on the synthetic datasets are in Figure 6
and Figure 7.

D LIST OF RELATIONSHIPS

SceneCraft encapsulates several types of relationships and constraints, including:

• Proximity: A constraint enforcing the closeness of two objects, e.g., a chair near a table.
• Direction: The angle of one object is targeting at the other.

6The code of this work hasn’t released, and we plan to compare after they open-source the code.
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Figure 6: Examples of generated code and scenes
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Figure 7: Examples of generated code and scenes
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• Alignment: Ensuring objects align along a common axis, e.g., paintings aligned vertically
on a wall.

• Symmetry: Mirroring objects along an axis, e.g., symmetrical placement of lamps on either
side of a bed.

• Overlap: One object partially covering another, creating depth, e.g., a rug under a coffee
table.

• Parallelism: Objects parallel to each other, suggesting direction, e.g., parallel rows of seats
in a theater.

• Perpendicularity: Objects intersecting at a right angle, e.g., a bookshelf perpendicular to a
desk.

• Hierarchy: Indicating a list of objects follow a certain order of size / volumns.
• Rotation: a list of objects rotate a cirtain point, e.g., rotating chairs around a meeting table.
• Repetition: Repeating patterns for rhythm or emphasis, e.g., a sequence of street lights.
• Scaling: Adjusting object sizes for depth or focus, e.g., smaller background trees to create

depth perception.

These relationships are vital for creating scenes that are not only visually appealing but also contextu-
ally coherent. Traditionally the functions F (·) for each constraint shall be written by human experts,
and SceneCraft’s major contribution is to autonomously learn and evolve the library of constraint
satisfaction functions F = {Fc(·)}c∈C , using a Large Language Model (LLM) Agent.

E SPATIAL SKILL LIBRARY

Below listed all the functions our framework generate. There exist some basic fundamental editing
functions like import object, add camera, scaling, repetition; some functions to get information
from the scene, such as calculate shortest distance between objects, calculate volumn, etc; as well
as functions that calculate constraint satisfying score for each relationship. All these functions are
autonomously written and modified by LLM Agent itself, without ground-truth label or explicit
human intervention:

F EXAMPLES OF ANNOTATED QUERIES

Examples of the annotated queries as well as the per-scene scoring functions are shown in Figure 8
and Figure 10.

G PROMPT USED AT EACH STAGE

The prompt used in SceneCraft is shown in Figure 10
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@dataclass
class Layout:

location: Tuple[float, float, float]
min: Tuple[float, float, float]
max: Tuple[float, float, float]
orientation: Tuple[float, float, float] # Euler angles (pitch, yaw, roll)

def scale_group(objects: List[bpy.types.Object], scale_factor: float) -> None:
"""
Scale a group of objects by a given factor.

Args:
objects (List[bpy.types.Object]): List of Blender objects to scale.
scale_factor (float): The scale factor to apply.

Example:
scale_group([object1, object2], 1.5)

"""
for obj in objects:

obj.scale = (obj.scale.x * scale_factor,
obj.scale.y * scale_factor,
obj.scale.z * scale_factor)

obj.matrix_world = obj.matrix_world * scale_factor

def find_highest_vertex_point(objs: List[bpy.types.Object]) -> Dict[str, float]:
"""
Find the highest vertex point among a list of objects.

Args:
objs (List[bpy.types.Object]): List of Blender objects to evaluate.

Returns:
Dict[str, float]: The lowest x, y, and z coordinates.

Example:
lowest_point = find_lowest_vertex_point([object1, object2])

"""
bpy.context.view_layer.update()
highest_points = {’x’: -float(’inf’), ’y’: -float(’inf’), ’z’: -float(’inf’)}

for obj in objs:
# Apply the object’s current transformation to its vertices
obj_matrix_world = obj.matrix_world

if obj.type == ’MESH’:
# Update mesh to the latest data
obj.data.update()
for vertex in obj.data.vertices:

world_vertex = obj_matrix_world @ vertex.co
highest_points[’x’] = max(highest_points[’x’], world_vertex.x)
highest_points[’y’] = max(highest_points[’y’], world_vertex.y)
highest_points[’z’] = max(highest_points[’z’], world_vertex.z)

return highest_points

def find_lowest_vertex_point(objs: List[bpy.types.Object]) -> Dict[str, float]:
"""
Find the lowest vertex point among a list of objects.

Args:
objs (List[bpy.types.Object]): List of Blender objects to evaluate.

Returns:
Dict[str, float]: The lowest x, y, and z coordinates.

Example:
lowest_point = find_lowest_vertex_point([object1, object2])

"""
bpy.context.view_layer.update()
lowest_points = {’x’: float(’inf’), ’y’: float(’inf’), ’z’: float(’inf’)}

for obj in objs:
# Apply the object’s current transformation to its vertices
obj_matrix_world = obj.matrix_world

if obj.type == ’MESH’:
# Update mesh to the latest data
obj.data.update()
for vertex in obj.data.vertices:

world_vertex = obj_matrix_world @ vertex.co
lowest_points[’x’] = min(lowest_points[’x’], world_vertex.x)
lowest_points[’y’] = min(lowest_points[’y’], world_vertex.y)
lowest_points[’z’] = min(lowest_points[’z’], world_vertex.z)

return lowest_points 18
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def rotate_objects_z_axis(objects: List[bpy.types.Object], angle_degrees: float) -> None:
"""
Rotate a group of objects around the Z-axis by a given angle.

Args:
objects (List[bpy.types.Object]): List of objects to rotate.
angle_degrees (float): The angle in degrees to rotate.

Example:
rotate_objects_z_axis([object1, object2], 45)

"""
bpy.context.view_layer.update()
angle_radians = math.radians(angle_degrees) # Convert angle to radians
rotation_matrix = mathutils.Matrix.Rotation(angle_radians, 4, ’Y’)
lowest_point = find_lowest_vertex_point(objects)
highest_points = find_highest_vertex_point(objects)
center_point = {’x’: (lowest_point[’x’] + highest_points[’x’]) / 2,

’y’: (lowest_point[’y’] + highest_points[’y’]) / 2,
’z’: 0}

for obj in objects:
if obj.type == ’MESH’:

obj.data.update()
obj.matrix_world = obj.matrix_world @ rotation_matrix

lowest_point = find_lowest_vertex_point(objects)
highest_points = find_highest_vertex_point(objects)
center_point[’x’] -= (lowest_point[’x’] + highest_points[’x’]) / 2
center_point[’y’] -= (lowest_point[’y’] + highest_points[’y’]) / 2
shift(objects, center_point)

def shift(objects: List[bpy.types.Object], shift_loc: Dict[str, float]) -> None:
"""
Shift a group of objects with shift_loc.

Args:
objects (List[bpy.types.Object]): List of objects to rotate.
shift_loc (float): The shift vector.

Example:
rotate_objects_z_axis([object1, object2], (5,3,1))

"""
for obj in objects:

# Shift object so the lowest point is at (0,0,0)
obj.location.x += shift_loc[’x’]
obj.location.y += shift_loc[’y’]
obj.location.z += shift_loc[’z’]

bpy.context.view_layer.update()

def calculate_shortest_distance(vertices1: Set[Tuple[float, float, float]], vertices2: Set[Tuple[float, float, float]]) -> float:
"""
Calculate the shortest distance between two sets of vertices.

Args:
vertices1 (Set[Tuple[float, float, float]]): First set of vertices.
vertices2 (Set[Tuple[float, float, float]]): Second set of vertices.

Returns:
float: Shortest distance over the Z-axis.

"""
min_distance = float(’inf’)
for v1_tuple in vertices1:

v1 = Vector(v1_tuple)
for v2_tuple in vertices2:

v2 = Vector(v2_tuple)
distance = (v1 - v2).length
min_distance = min(min_distance, distance)

return min_distance
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def rotate_objects_z_axis(objects: List[bpy.types.Object], angle_degrees: float) -> None:
"""
Rotate a group of objects around the Z-axis by a given angle.

Args:
objects (List[bpy.types.Object]): List of objects to rotate.
angle_degrees (float): The angle in degrees to rotate.

Example:
rotate_objects_z_axis([object1, object2], 45)

"""
bpy.context.view_layer.update()
angle_radians = math.radians(angle_degrees) # Convert angle to radians
rotation_matrix = mathutils.Matrix.Rotation(angle_radians, 4, ’Y’)
lowest_point = find_lowest_vertex_point(objects)
highest_points = find_highest_vertex_point(objects)
center_point = {’x’: (lowest_point[’x’] + highest_points[’x’]) / 2,

’y’: (lowest_point[’y’] + highest_points[’y’]) / 2,
’z’: 0}

for obj in objects:
if obj.type == ’MESH’:

obj.data.update()
obj.matrix_world = obj.matrix_world @ rotation_matrix

lowest_point = find_lowest_vertex_point(objects)
highest_points = find_highest_vertex_point(objects)
center_point[’x’] -= (lowest_point[’x’] + highest_points[’x’]) / 2
center_point[’y’] -= (lowest_point[’y’] + highest_points[’y’]) / 2
shift(objects, center_point)

def shift(objects: List[bpy.types.Object], shift_loc: Dict[str, float]) -> None:
"""
Shift a group of objects with shift_loc.

Args:
objects (List[bpy.types.Object]): List of objects to rotate.
shift_loc (float): The shift vector.

Example:
rotate_objects_z_axis([object1, object2], (5,3,1))

"""
for obj in objects:

# Shift object so the lowest point is at (0,0,0)
obj.location.x += shift_loc[’x’]
obj.location.y += shift_loc[’y’]
obj.location.z += shift_loc[’z’]

bpy.context.view_layer.update()

def calculate_shortest_distance(vertices1: Set[Tuple[float, float, float]], vertices2: Set[Tuple[float, float, float]]) -> float:
"""
Calculate the shortest distance between two sets of vertices.

Args:
vertices1 (Set[Tuple[float, float, float]]): First set of vertices.
vertices2 (Set[Tuple[float, float, float]]): Second set of vertices.

Returns:
float: Shortest distance over the Z-axis.

"""
min_distance = float(’inf’)
for v1_tuple in vertices1:

v1 = Vector(v1_tuple)
for v2_tuple in vertices2:

v2 = Vector(v2_tuple)
distance = (v1 - v2).length
min_distance = min(min_distance, distance)

return min_distance
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def check_vertex_overlap(vertices1: Set[Vector], vertices2: Set[Vector], threshold: float = 0.01) -> float:
"""
Check if there is any overlap between two sets of vertices within a threshold.

Args:
vertices1 (Set[Vector]): First set of vertices.
vertices2 (Set[Vector]): Second set of vertices.
threshold (float): Distance threshold to consider as an overlap.

Returns:
bool: True if there is an overlap, False otherwise.

"""
for v1_tuple in vertices1:

v1 = Vector(v1_tuple)
for v2_tuple in vertices2:

v2 = Vector(v2_tuple)
if (v1 - v2).length <= threshold:

return 1.0
return 0.0

def evaluate_constraints(assets, constraints):
"""Evaluate all constraints and return the overall score."""
total_score = 0
for constraint_func, involved_assets in constraints:

# Assuming each constraint function takes involved assets and returns a score
scores = constraint_func([assets[name] for name in involved_assets])
total_score += sum(scores) # Summing scores assuming each constraint can contribute multiple scores

return total_score

def adjust_positions(assets, adjustment_step=0.1):
"""Randomly adjust the positions of assets."""
for asset in assets.values():

# Randomly adjust position within a small range to explore the space
asset.location = (

asset.location[0] + random.uniform(-adjustment_step, adjustment_step),
asset.location[1] + random.uniform(-adjustment_step, adjustment_step),
asset.location[2] # Z position kept constant for simplicity

)

def constraint_solving(assets, constraints, max_iterations=100):
"""Find an optimal layout of assets to maximize the score defined by constraints."""
best_score = evaluate_constraints(assets, constraints)
best_layout = {name: asset.copy() for name, asset in assets.items()} # Assuming a copy method exists

for _ in range(max_iterations):
adjust_positions(assets)
current_score = evaluate_constraints(assets, constraints)

if current_score > best_score:
best_score = current_score
best_layout = {name: asset.copy() for name, asset in assets.items()}

else:
# Revert to best layout if no improvement
assets = {name: layout.copy() for name, layout in best_layout.items()}

return best_layout, best_score
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def normalize_vector(v: np.ndarray) -> np.ndarray:
"""Normalize a vector."""
norm = np.linalg.norm(v)
return v / norm if norm > 0 else np.zeros_like(v)

def orientation_similarity(orientation1: Tuple[float, float, float], orientation2: Tuple[float, float, float]) -> float:
"""Calculate the similarity between two orientations, represented as Euler angles."""
# Convert Euler angles to vectors for simplicity in comparison
vector1 = np.array(orientation1)
vector2 = np.array(orientation2)
# Calculate the cosine similarity between the two orientation vectors
cos_similarity = np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2))
return cos_similarity

def parallelism_score(assets: List[Layout]) -> float:
"""
Evaluates and returns a score indicating the degree of parallelism in a list of assets’ layouts, considering both position and orientation.

Args:
assets (List[Layout]): A list of asset layouts.

Returns:
float: A score between 0 and 1 indicating the parallelism of the assets.
"""
if len(assets) < 2:

return 1.0 # Single asset or no asset is arbitrarily considered perfectly parallel

# Positional parallelism
vectors = [calculate_vector(assets[i].location, assets[i+1].location) for i in range(len(assets)-1)]
normalized_vectors = [normalize_vector(v) for v in vectors]
dot_products_position = [np.dot(normalized_vectors[i], normalized_vectors[i+1]) for i in range(len(normalized_vectors)-1)]

# Rotational similarity
orientation_similarities = [orientation_similarity(assets[i].orientation, assets[i+1].orientation) for i in range(len(assets)-1)]

# Combine scores
position_score = np.mean([0.5 * (dot + 1) for dot in dot_products_position])
orientation_score = np.mean([(similarity + 1) / 2 for similarity in orientation_similarities])

# Average the position and orientation scores for the final score
final_score = (position_score + orientation_score) / 2

return final_score

def calculate_distance(location1: Tuple[float, float, float], location2: Tuple[float, float, float]) -> float:
"""Calculate the Euclidean distance between two points."""
return np.linalg.norm(np.array(location1) - np.array(location2))

def proximity_score(object1: Layout, object2: Layout, min_distance: float = 1.0, max_distance: float = 5.0) -> float:
"""
Calculates a proximity score indicating how close two objects are, with 1 being very close and 0 being far apart.

Args:
object1 (Layout): The first object’s layout.
object2 (Layout): The second object’s layout.
min_distance (float): The distance below which objects are considered to be at optimal closeness. Scores 1.
max_distance (float): The distance beyond which objects are considered too far apart. Scores 0.

Returns:
float: A score between 0 and 1 indicating the proximity of the two objects.
"""
distance = calculate_distance(object1.location, object2.location)

if distance <= min_distance:
return 1.0

elif distance >= max_distance:
return 0.0

else:
# Linearly interpolate the score based on the distance
return 1 - (distance - min_distance) / (max_distance - min_distance)
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def euler_to_forward_vector(orientation: Tuple[float, float, float]) -> np.ndarray:
"""Convert Euler angles to a forward direction vector."""
pitch, yaw, _ = orientation
# Assuming the angles are in radians
x = np.cos(yaw) * np.cos(pitch)
y = np.sin(yaw) * np.cos(pitch)
z = np.sin(pitch)
return np.array([x, y, z])

def calculate_vector(a: Tuple[float, float, float], b: Tuple[float, float, float]) -> np.ndarray:
"""Calculate the directional vector from point a to b."""
return np.array(b) - np.array(a)

def direction_score(object1: Layout, object2: Layout) -> float:
"""
Calculates a score indicating how directly object1 is targeting object2.

Args:
object1 (Layout): The first object’s layout, assumed to be the one doing the targeting.
object2 (Layout): The second object’s layout, assumed to be the target.

Returns:
float: A score between 0 and 1 indicating the directionality of object1 towards object2.
"""
forward_vector = euler_to_forward_vector(object1.orientation)
target_vector = calculate_vector(object1.location, object2.location)
# Normalize vectors to ensure the dot product calculation is based only on direction
forward_vector_normalized = normalize_vector(forward_vector)
target_vector_normalized = normalize_vector(target_vector)
# Calculate the cosine of the angle between the two vectors
cos_angle = np.dot(forward_vector_normalized, target_vector_normalized)
# Map the cosine range [-1, 1] to a score range [0, 1]
score = (cos_angle + 1) / 2
return score

def alignment_score(assets: List[Layout], axis: str) -> float:
"""
Calculates an alignment score for a list of assets along a specified axis.

Args:
assets (List[Layout]): A list of asset layouts to be evaluated for alignment.
axis (str): The axis along which to evaluate alignment (’x’, ’y’, or ’z’).

Returns:
float: A score between 0 and 1 indicating the degree of alignment along the specified axis.
"""
if not assets or axis not in [’x’, ’y’, ’z’]:

return 0.0 # Return a score of 0 for invalid input

# Axis index mapping to the location tuple
axis_index = {’x’: 0, ’y’: 1, ’z’: 2}[axis]

# Extract the relevant coordinate for each asset based on the chosen axis
coordinates = [asset.location[axis_index] for asset in assets]
# Calculate the variance of these coordinates
variance = np.var(coordinates)
# Inverse the variance to calculate the score, assuming a lower variance indicates better alignment
# Normalize the score to be between 0 and 1, considering a reasonable threshold for "perfect" alignment
threshold_variance = 1.0 # Define a threshold variance for "perfect" alignment
score = 1 / (1 + variance / threshold_variance)
# Clamp the score between 0 and 1
score = max(0, min(score, 1))
return score

def check_vertex_overlap(vertices1: Set[Vector], vertices2: Set[Vector], threshold: float = 0.01) -> float:
"""
Check if there is any overlap between two sets of vertices within a threshold.

Args:
vertices1 (Set[Vector]): First set of vertices.
vertices2 (Set[Vector]): Second set of vertices.
threshold (float): Distance threshold to consider as an overlap.

Returns:
bool: True if there is an overlap, False otherwise.

"""
for v1_tuple in vertices1:

v1 = Vector(v1_tuple)
for v2_tuple in vertices2:

v2 = Vector(v2_tuple)
if (v1 - v2).length <= threshold:

return 0.0
return 1.0 23
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def symmetry_score(assets: List[Layout], axis: str) -> float:
"""
Calculates a symmetry score for a list of assets along a specified axis.

Args:
assets (List[Layout]): A list of asset layouts to be evaluated for symmetry.
axis (str): The axis along which to evaluate symmetry (’x’, ’y’, or ’z’).

Returns:
float: A score between 0 and 1 indicating the degree of symmetry along the specified axis.
"""
if not assets or axis not in [’x’, ’y’, ’z’]:

return 0.0 # Return a score of 0 for invalid input

# Axis index mapping to the location tuple
axis_index = {’x’: 0, ’y’: 1, ’z’: 2}[axis]

# Find the median coordinate along the specified axis to define the symmetry axis
coordinates = [asset.location[axis_index] for asset in assets]
symmetry_axis = np.median(coordinates)

# Calculate the deviation from symmetry for each asset
deviations = []
for asset in assets:

# Find the mirrored coordinate across the symmetry axis
mirrored_coordinate = 2 * symmetry_axis - asset.location[axis_index]
# Find the closest asset to this mirrored coordinate
closest_distance = min(abs(mirrored_coordinate - other.location[axis_index]) for other in assets)
deviations.append(closest_distance)

# Calculate the average deviation from perfect symmetry
avg_deviation = np.mean(deviations)

# Convert the average deviation to a score, assuming smaller deviations indicate better symmetry
# The scoring formula can be adjusted based on the specific requirements for symmetry in the application
max_deviation = 10.0 # Define a maximum deviation for which the score would be 0
score = max(0, 1 - avg_deviation / max_deviation)

return score

def perpendicularity_score(object1: Layout, object2: Layout) -> float:
"""
Calculates a score indicating how perpendicular two objects are, based on their forward direction vectors.

Args:
object1 (Layout): The first object’s layout, including its orientation as Euler angles.
object2 (Layout): The second object’s layout, including its orientation as Euler angles.

Returns:
float: A score between 0 and 1 indicating the degree of perpendicularity.
"""
vector1 = euler_to_forward_vector(object1.orientation)
vector2 = euler_to_forward_vector(object2.orientation)
cos_angle = np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2))
score = 1 - np.abs(cos_angle)
return score

def calculate_volume(layout: Layout) -> float:
"""Calculate the volume of an object based on its layout dimensions."""
length = abs(layout.max[0] - layout.min[0])
width = abs(layout.max[1] - layout.min[1])
height = abs(layout.max[2] - layout.min[2])
return length * width * height
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def evaluate_hierarchy(assets: List[Layout], expected_order: List[str]) -> float:
"""
Evaluates how well a list of objects follows a specified hierarchical order based on size.

Args:
assets (List[Layout]): A list of asset layouts to be evaluated.
expected_order (List[str]): A list of identifiers (names) for the assets, specifying the expected order of sizes.

Returns:
float: A metric indicating how well the actual sizes of the objects match the expected hierarchical order.
"""
# Map identifiers to volumes
id_to_volume = {asset_id: calculate_volume(asset) for asset_id, asset in zip(expected_order, assets)}

# Calculate the actual order based on sizes
actual_order = sorted(id_to_volume.keys(), key=lambda x: id_to_volume[x], reverse=True)

# Evaluate the match between the expected and actual orders
correct_positions = sum(1 for actual, expected in zip(actual_order, expected_order) if actual == expected)
total_positions = len(expected_order)

# Calculate the match percentage as a measure of hierarchy adherence
match_percentage = correct_positions / total_positions

return match_percentage

def calculate_angle_from_center(center: Tuple[float, float, float], object_location: Tuple[float, float, float]) -> float:
"""Calculate the angle of an object relative to a central point."""
vector = np.array(object_location) - np.array(center)
angle = np.arctan2(vector[1], vector[0])
return angle

def rotation_uniformity_score(objects: List[Layout], center: Tuple[float, float, float]) -> float:
"""
Calculates how uniformly objects are distributed around a central point in terms of rotation.

Args:
objects (List[Layout]): A list of object layouts to be evaluated.
center (Tuple[float, float, float]): The central point around which objects are rotating.

Returns:
float: A score between 0 and 1 indicating the uniformity of object distribution around the center.
"""
angles = [calculate_angle_from_center(center, obj.location) for obj in objects]
angles = np.sort(np.mod(angles, 2*np.pi)) # Normalize angles to [0, 2\pi] and sort

# Calculate differences between consecutive angles, including wrap-around difference
angle_diffs = np.diff(np.append(angles, angles[0] + 2*np.pi))

# Evaluate uniformity as the variance of these differences
variance = np.var(angle_diffs)
uniformity_score = 1 / (1 + variance) # Inverse variance, higher score for lower variance

return uniformity_score

def put_ontop(obj_dict, moving_set_name, target_set_name, threshold, step):
"""
Adjust objects in moving_set_name until the shortest distance to target_set_name is below the threshold.

Args:
obj_dict (dict): Dictionary of object sets.
moving_set_name (str): The key for the set of objects to move.
target_set_name (str): The key for the set of objects to calculate distance to.
threshold (float): The distance threshold.
step (float): The step by which to move objects in the Z direction.

"""
while True:

vertices_set1 = get_all_vertices(obj_dict[moving_set_name])
vertices_set2 = get_all_vertices(obj_dict[target_set_name])
shortest_distance = calculate_shortest_distance(vertices_set1, vertices_set2)
print(shortest_distance)

if shortest_distance < threshold:
break

for obj in obj_dict[moving_set_name]:
obj.location.z -= max(step, shortest_distance)

bpy.context.view_layer.update()
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scene_1 = {
"description": "A book lying flat on a table, two chair on each side",
"assets": ["book", "table"],
"relationships": {

"relativity": {
"description": "The book should be on top of the table",
"involved_objects": ["book", "table"]

},
"alignment": {

"description": "The book should be aligned with the table in the x and y directions",
"involved_objects": ["book", "table"]

}
}

}

def score_1(locs):
# Extracting locations
x_book, y_book, z_book = locs[’book’][’x’], locs[’book’][’y’], locs[’book’][’z’]
x_table, y_table, z_table = locs[’table’][’x’], locs[’table’][’y’], locs[’table’][’z’]
# Relativity score (penalizing if book is below table surface)
relativity_score = max(0, z_table - z_book) # positive if book is below table
# Alignment score (difference in x and y positions, zero if perfectly aligned)
alignment_score_x = abs(x_book - x_table)
alignment_score_y = abs(y_book - y_table)
# Total score (sum of individual scores)

total_score = relativity_score + alignment_score_x + alignment_score_y
return 1 - total_score / 100.

scene_2 = {
"description": "A busy airport terminal with people, seating areas, and information displays",
"assets": ["person1", "person2", "seating_area", "information_display"],
"relationships": {

"grouping": {
"description": "People should be grouped near the seating areas",
"involved_objects": ["person1", "person2", "seating_area"]

},
"alignment": {

"description": "Information displays should be aligned above the seating areas",
"involved_objects": ["seating_area", "information_display"]

},
"proximity": {

"description": "People should be close to information displays for visibility",
"involved_objects": ["person1", "person2", "information_display"]

}
}

}
def score_2(locs):

def distance(a, b):
return math.sqrt((a[’x’] - b[’x’])**2 + (a[’y’] - b[’y’])**2 + (a[’z’] - b[’z’])**2)

# Grouping score (distance of people from seating areas)
grouping_score = sum(distance(locs[p], locs[’seating_area’]) for p in [’person1’, ’person2’])
# Alignment score (information display above seating areas)
alignment_score = abs(locs[’seating_area’][’y’] - locs[’information_display’][’y’])
# Proximity score (people close to information displays)
proximity_score = sum(distance(locs[p], locs[’information_display’]) for p in [’person1’, ’person2’])

# Total score
total_score = grouping_score + alignment_score + proximity_score
return 1 - total_score / 100.

Figure 8: Example of annotated queries and scoring function
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scene_3 = {
"description": "Three boxes of different sizes, stacked on top of each other",
"assets": ["box1", "box2", "box3"],
"relationships": {

"hierarchy": {
"description": "The boxes should be in descending order of size from bottom to top",
"involved_objects": ["box1", "box2", "box3"]

},
"layering": {

"description": "The boxes should be placed one above the other",
"involved_objects": ["box1", "box2", "box3"]

}
},

}

def score_3(locs):
# Extracting locations
z_box1, z_box2, z_box3 = locs[’box1’][’z’], locs[’box2’][’z’], locs[’box3’][’z’]
w_box1, w_box2, w_box3 = locs[’box1’][’w’], locs[’box2’][’w’], locs[’box3’][’w’]
# Hierarchy score (sizes)
hierarchy_score = 0
if not (w_box1 > w_box2 > w_box3):

hierarchy_score = abs(w_box1 - w_box2) + abs(w_box2 - w_box3)
# Layering score (z-axis positioning)
layering_score = 0
if not (z_box1 < z_box2 < z_box3):

layering_score = abs(z_box1 - z_box2) + abs(z_box2 - z_box3)
# Total score
total_score = hierarchy_score + layering_score
return 1 - total_score / 100

scene_4 = {
"description": "A new solar system with planets orbiting around a small star",
"assets": ["sun", "planet1", "planet2", "planet3"],
"relationships": {

"rotation": {
"description": "Planets should orbit around the sun",
"involved_objects": ["planet1", "planet2", "planet3", "sun"]

},
"scaling": {

"description": "Planets should vary in size",
"involved_objects": ["planet1", "planet2", "planet3"]

}
}

}

def score_4(locs):
import math
def distance(a, b):

return math.sqrt((a[’x’] - b[’x’])**2 + (a[’y’] - b[’y’])**2 + (a[’z’] - b[’z’])**2)

# Rotation score (distance from sun)
rotation_score = sum(distance(locs[p], locs[’sun’]) for p in [’planet1’, ’planet2’, ’planet3’])

# Scaling score (size of planets)
scaling_score = abs(locs[’planet1’][’size’] - locs[’planet2’][’size’]) + abs(locs[’planet2’][’size’] - locs[’planet3’][’size’])

# Total score
total_score = rotation_score + scaling_score
return 1 - total_score / 100

Figure 9: Example of annotated queries and scoring function
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query_find_assets = """I am writing several blender scripts to generate scenes for: %s.
Please think step by step and then give me the assets (each is a single unit, avoid a composite set that contains multiple objects) that shall appear in these scenes.
After explanation, structured in: Output: 1) x1: y1; 2) x2: y2; 3) ... Each with a general descriptive name (x) and a very detailed visual description (y)."""

query_height_assets = """I am writing several blender scripts to generate scenes for %s.
Below are the assets we’d like to use. Now we need to scale them to correct height, please generate a python dictionary called height_dict, where key is each asset’s name, and value is a number representing the height (measured in metre)
%s
Output the complete python dict via height_dict = {asset_name: height, ...}, also give detailed explanation as comment before the value in the dict.
"""

query_plan_assets = """I am writing several blender scripts to generate a scene for %s.

Below are the assets I’d like to use:
%s

Now I want a concrete plan to put them into the scene. Please think step by step, and give me a multi-step plan to put assets into the scene.
For each step, structure your output as:
layout_plan_i = {

"title": title_i,
"asset_list" :

[asset_name_1, asset_name_2],
"description": desc_i

}
where title_i is the high-level name for this step, and desc is detailed visual text description of what it shall look like after layout. asset_list is the non-empty list of assets to be added in this step.
Please think step by step, place assets from environmental ones to more details assets. Return me a list of python dictonaries layout_plan_1, layout_plan_2, ...
"""

prompt_graph = """
You are tasked with constructing a relational bipartite graph for a 3D scene based on the provided description and asset list. Your goal is to identify the spatial and contextual relationships between assets and represent these relationships in a structured format. Follow these steps:

1. Review the scene description and the list of assets.
2. Determine the spatial and contextual relationships needed to accurately represent the scene’s layout. Consider relationships like proximity, alignment, parallelism, etc.
3. Construct the relational bipartite graph ‘G(s) = (A, R, E)‘ where:

- ‘A‘ represents the set of assets.
- ‘R‘ represents the set of relations as nodes.
- ‘E‘ represents the edges connecting a relation node to a subset of assets ‘E(r)‘ in the scene that satisfies this relation.

4. For each identified relationship, create a relation node and link it to the appropriate assets through edges in the graph.

Output your findings in a structured format:
- List of relation nodes ‘R‘ with their types and descriptions.
- Edges ‘E‘ that link assets to their corresponding relation nodes.

This process will guide the arrangement of assets in the 3D scene, ensuring they are positioned, scaled, and oriented correctly according to the scene’s requirements and the relationships between objects.
"""

Figure 10: Example of prompts being used
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Figure 11: Questionnaire Interface, with three questions, about 1) Text Fidelity; 2) Composition; 3)
Aesthetics
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