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Figure 1. TaoAvatar generates photorealistic, topology-consistent 3D full-body avatars from multi-view sequences. It provides high-quality,
real-time rendering with low storage requirements, compatible across various mobile and AR devices like the Apple Vision Pro.

Abstract

Realistic 3D full-body talking avatars hold great poten-
tial in AR, with applications ranging from e-commerce
live streaming to holographic communication. Despite ad-
vances in 3D Gaussian Splatting (3DGS) for lifelike avatar
creation, existing methods struggle with fine-grained con-
trol of facial expressions and body movements in full-body
talking tasks. Additionally, they often lack sufficient de-
tails and cannot run in real-time on mobile devices. We
present TaoAvatar, a high-fidelity, lightweight, 3DGS-based
full-body talking avatar driven by various signals. Our
approach starts by creating a personalized clothed human
parametric template that binds Gaussians to represent ap-
pearances. We then pre-train a StyleUnet-based network
to handle complex pose-dependent non-rigid deformation,
which can capture high-frequency appearance details but is
too resource-intensive for mobile devices. To overcome this,
we ”bake” the non-rigid deformations into a lightweight
MLP-based network using a distillation technique and de-
velop blend shapes to compensate for details. Extensive
experiments show that TaoAvatar achieves state-of-the-art
rendering quality while running in real-time across various
devices, maintaining 90 FPS on high-definition stereo de-
vices such as the Apple Vision Pro.

*Equal contribution. ‡Project Leader and †Corresponding author.
Project: https://PixelAI-Team.github.io/TaoAvatar

1. Introduction

Creating lifelike 3D human avatars is a dynamic and rapidly
advancing research area in computer vision and graph-
ics, essential for applications in AR/VR, 3D entertainment,
and virtual communication. Despite decades of research,
achieving realistic and immersive avatars on mobile de-
vices—particularly AR—remains challenging due to com-
putational limitations. Current industry solutions, such as
MetaHuman, often rely on high-precision scans and exten-
sive manual effort by artists for 3D modeling, rigging, and
motion capture.

In recent years, academic researchers have adopted para-
metric models [37, 43] for human representation, which
are constructed from massive body scans and can cap-
ture a performer’s shape, expression, and pose from im-
ages or videos. These methods [4–6, 27] extend the naked
model [37, 43] by adding offsets to represent tailored cloth-
ing, but are still struggling with complex geometries and
high-frequency details, such as loose skirts and fine hair,
due to limitations of topology and texture resolution. With
the rise of neural radiance fields (NeRF) [40], many re-
searchers tend to define implicit neural human represen-
tations in canonical space, animated by backward linear
blend skinning [44, 65] of these parametric models [37, 43].
While these methods can handle arbitrary topology and
deliver higher rendering quality, they are highly time-
consuming due to the large amount of sampling required
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during volume rendering. Although many efforts [9, 24]
have significantly improved rendering efficiency by intro-
ducing iNGP [42], the animated results still fail to escape
the Uncanny Valley effect when driven. Recently, 3D Gaus-
sian Splatting (3DGS) [29], an explicit and efficient point-
based representation, has gained tremendous attention from
researchers for its ability to deliver both high-quality ren-
dering and real-time performance. Compared to implicit
representations [40, 54], the explicit point-based represen-
tation is more compatible with being integrated with the
mesh-based parametric models [37, 43], which can be di-
rectly driven by forward linear blend skinning. Many recent
methods [20, 34, 46, 48], combining 3DGS and the para-
metric models [37, 43], have made significant strides toward
realizing lifelike 3D human avatars. However, achieving
real-time rendering on mobile devices remains challenging,
especially for AR glasses, which require high resolution,
stereo rendering, and seamless interaction.

We introduce TaoAvatar, a high-fidelity, lightweight,
3DGS-based full-body talking avatar designed for running
in real-time on Augmented Reality (AR) devices. Unlike
previous approaches [8, 10, 34], which develop implicit pa-
rameterized models from scratch, we construct a personal-
ized, clothed parameterized template that preserves the fa-
cial expressions and gesture controls inherent to the native
SMPLX [43]. At the same time, we bind the Gaussians to
the triangles as texture to create a hybrid avatar representa-
tion. Inspired by [34], we pre-train a large StyleUnet-based
teacher network to learn pose-dependent dynamic deforma-
tion maps of Gaussians in 2D space by front and back or-
thogonal projection. Although the teacher network is pow-
erful enough to capture high-frequency appearance details
in various poses, its large number of parameters makes it
difficult to run in real-time on AR devices. To achieve
high-performance rendering, we bake the dynamic defor-
mation of Gaussians into the non-rigid deformation field of
the mesh using a distillation technique, employing a com-
pact MLP-based student network. Meanwhile, we propose
two lightweight, learnable blend shapes to compensate for
the non-rigid deformation of the Gaussians. After fine-
tuning, our student model achieves high-performance ren-
dering without compromising quality.

To evaluate our approach, we propose a multi-view
dataset named TalkBody4D, focusing on prevalent full-
body talking scenarios encountered in daily life, which
includes rich facial expressions and gestures with syn-
chronous audios different from existing full-body motion
datasets [11, 22, 69]. Experimental results demonstrate that
our method effectively captures high-frequency appearance
details of human avatars while maintaining a lightweight
architecture capable of rendering stereo images at 2K res-
olution on common mobile and AR devices, including the
Apple Vision Pro. The resulting full-body avatar is highly

expressive, enabling users to animate it with facial expres-
sions, hand gestures, and body poses, thereby highlighting
the potential applications of our method. Our contributions
can be summarized as follows:
• We introduce TaoAvatar, a novel teacher-student frame-

work which yields topologically consistent, well-aligned
geometry, further creating a high-fidelity, lightweight,
3DGS-based drivable full-body talking avatar.

• We propose two innovative strategies including non-rigid
deformation baking and two lightweight blend shapes
compensations to ensure high-quality rendering and ef-
ficient performance on mobile and AR devices, achiev-
ing 2K resolution rendering at 90 FPS on high-definition
stereo devices like the Apple Vision Pro.

• We contribute TalkBody4D, a multi-view dataset to be
released, designed for full-body talking scenarios, fea-
turing diverse facial expressions and gestures with syn-
chronous audios. Extensive experiments demonstrate that
our approach outperforms other state-of-the-art methods
in both quality and performance.

2. Related work
3D Avatar Representation. Traditional computer graph-
ics techniques [12, 19, 50, 51] use 3D scanning or multi-
view stereo (MVS) to create full-body meshes, which are
then combined with a 3D skeleton to produce driveable tem-
plates. However, this approach is both expensive and inef-
ficient. As parametric body models, SMPL [37] and SM-
PLX [43] are widely used for their versatility but lack de-
tail in simulating loose clothing. Some works [4, 5, 27]
have attempted to add clothing offsets to SMPLX, effec-
tively handling tight clothing but struggling with loose gar-
ments. Due to the limited expressiveness of traditional
meshes, researchers have combined SMPL with advanced
rendering techniques. Some methods [7, 15, 23, 36, 57]
use NeRF [40] to implicitly express human bodies, map-
ping points from the observation space backward to canoni-
cal space. Although high-quality, volume rendering is slow
and poses challenges for real-time applications. In contrast,
3DGS [29] uses 3D Gaussian distributions for scenes, of-
fering real-time rendering [38, 58], fast training, and the
ability to handle complex materials such as hair and translu-
cency. Some methods [34, 46, 48, 56, 63] combining SM-
PLX [43] and 3DGS [29], like GaussianAvatar [20], use ex-
plicit GS point clouds and forward skinning to efficiently
simulate the deformations, offering good rendering qual-
ity and speed. This representation presents potential solu-
tions for achieving both real-time performance and compu-
tational efficiency.
Dynamic Nonrigid Deformation Modeling. Various
methods have been developed to simulate non-rigid human
deformation realistically. The MLP-based methods [21, 30,
33, 41], like 3DGS-Avatar [46], are noted for lightweight



flexibility but struggle with handling novel poses. Physical
simulation methods [59, 68] produce physics-based anima-
tions but require unified topology, and complex modeling,
and are computationally expensive, which negatively im-
pacts real-time performance. Additionally, some methods
[17, 18] use GNNs to learn non-rigid deformations in a data-
driven manner. These methods are faster than traditional
cloth simulations. Recently, dynamic texture methods are
emerging, these methods [26, 32, 36] model complex details
in the 2D texture space, while AnimatableGS [34] and Me-
shAvatar [10] enhance modeling with front and back pro-
jection strategies which avoid texture unwarping.
3D Drivable Talking Avatars. Research on drivable dig-
ital humans is rapidly advancing for various applications.
In 3D Talking Heads, methods [13, 45, 47, 60, 61, 66]
excel in capturing and driving facial expressions, enhanc-
ing the realism of virtual characters. For drivable bodies,
these methods [8, 20, 34, 56, 70] achieve precise restora-
tion of body movements by learning pose-dependent de-
formation fields. Furthermore, some methods [49, 59] not
only support detailed body modeling and animation but also
enable head expressions and lip-syncing. Despite enhanc-
ing realism, running these methods in real-time on mobile
or AR devices is challenging due to their high computa-
tional demands, exceeding current edge platform capabili-
ties. Optimizing computational efficiency without compro-
mising high-quality output is a key research focus.

3. Method
Leveraging multi-view RGB videos of a performer along-
side corresponding SMPLX registrations for each frame, we
aim to develop a high-fidelity, lightweight full-body talk-
ing avatar capable of high-resolution and high-performance
rendering on mobile devices. To achieve this, we first cre-
ate a hybrid clothed parametric representation by integrat-
ing 3D Gaussian Splatting (3DGS) [29] and SMPLX [43],
which is more expressive for simulating loose clothing and
hair, while maintaining high-quality rendering (Sec. 3.1).
Next, we propose a teacher-student framework to recon-
struct high-frequency, pose-dependent dynamic details as
illustrated in Fig. 2. By leveraging non-rigid deformation
baking and incorporating two lightweight blend shape com-
pensations, our method achieves a tradeoff between high
quality and high performance (Sec. 3.2).

3.1. Hybrid Clothed Parametric Representations
The Clothed Extension of SMPLX. To extend SMPLX to
complete clothed human geometry with clothes, hair, etc.,
we choose a frame close to T-pose as a reference, which pro-
vides more visible details and less sticky geometry. First,
we utilize NeuS2 [54] to reconstruct the geometry of this
reference frame and parse out non-body components (e.g.,
clothes) from it using [53]. However, the body’s skeleton

cannot directly drive these components. We estimate the
shape and pose of the SMPLX [37] in the current frame
and use robust skinning transfer [3] to propagate the body’s
skinning weights to these non-body components. Finally,
we apply inverse skinning to transform these components
back to the standard T-pose, resulting in a comprehensive
personalized parametric model, referred to as SMPLX++.
Binding Gaussians on Mesh as Texture. After ob-
taining the complete geometric model, we bind 3D Gaus-
sians to the mesh’s triangles as textures, enabling them to
move synchronously with the mesh. Inspired by these hy-
brid representations [45, 48], we define the attributes of the
Gaussians in a local coordinate system relative to the trian-
gles. Specifically, for each triangle, we randomly initialize
k Gaussians, each of which maintains the local attributes
{f, (u, v), γ, r, s, o, sh}, where f is the index of the par-
ent triangle, (u, v) is the barycentric coordinates, γ repre-
sents the translation along the triangle’s normal direction, r
and s denote rotation and scaling in the local space, o indi-
cates opacity, and sh consists of spherical harmonic coeffi-
cients. Additionally, we define the normal of each Gaussian
as ng = [1, 0, 0] within the local space, ensuring consis-
tency with the mesh’s normal for subsequent transforma-
tions. To deform each Gaussian from the local to the world
space, we construct a transformation based on its parent tri-
angle Ff (v1,v2,v3), where v1, v2, v3 are the vertices of
the triangle Ff in the world space:

p = u · v1 + v · v2 + (1− u− v) · v3,

R = [n,q,n× q],q =
(v2 + v3) /2− v1

∥(v2 + v3) /2− v1∥
,

e = (∥v1 − v2∥+ ∥v2 − v3∥+ ∥v1 − v3∥) /3,

(1)

where n = (v1−v2)×(v3−v1)
∥v1−v2∥·∥v3−v1∥ is the normal of the triangle,

p denotes the surface point on the parent triangle, and e
denotes the average edge length.

uw = p+ γRn, rw = Rr, sw = e · s, (2)

here, uw, rw, sw represent the position, rotation, and scal-
ing in the world spaces after transformation, respectively.
Furthermore, cw = SH

(
sh,R−1d

)
denotes the color

along the view direction d in the world space.

3.2. Dynamic Mesh-based Gaussian Reconstruction
Learning Dynamic Non-Rigid Gaussian Deformation
Maps. Although SMPLX++ can be directly driven by the
skeleton, linear blend skinning is insufficient for performing
dynamic non-rigid deformation such as clothing folds and
swaying motions. Like dynamic Gaussian avatars [26, 34],
we utilize a large StyleUnet [52] as the teacher network to
capture complex pose-dependent dynamic non-rigid defor-
mation of Gaussians in 2D texture space. Following [34],
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Figure 2. Illustration of our Method. Our pipeline begins by reconstructing (a) a cloth-extended SMPLX mesh with aligned Gaussian
textures. To address complex dynamic non-rigid deformations, (b) we employ a teacher StyleUnet to learn pose-dependent non-rigid maps,
which are then baked into a lightweight student MLP to infer non-rigid deformations of our template mesh. For high-fidelity rendering, (c)
we introduce learnable Gaussian blend shapes to enhance appearance details.

we rasterize the T-pose mesh, which is colored using posed
coordinates and segmentation colors, to obtain the front and
back position maps {Pf ,Pb}. These position maps are then
fed into the StyleUnet network along with view directions
to generate the non-rigid deformation maps {∆Uf ,∆Ub}
and other residual Gaussian attribute maps. We add these
residuals to the Gaussian’s local attributes and transform
them into the world space according to Eq. (2). To train
the StyleUnet-based teacher network T , we adopt the losses
including L1, D-SSIM [29], and perceptual loss [64]. Ad-
ditionally, we introduce a normal loss Lnor. Consequently,
the total reconstruction loss Lrec is defined as:

Lrec = L1+λssimLssim+λlpipsLlpips+λnorLnor, (3)

where λ∗ is the loss weights. The normal loss is defined
as Lnor = ∥Nt −Ng∥, where Nt is the rendered normal
image by the teacher network, and the ground truth normal
image Ng can be obtained from the method [54].
Baking Non-Rigid Gaussian Deformation into Mesh De-
formation. Although the StyleUnet-based network T can
achieve good results, it struggles to run in real-time on mo-
bile devices due to its large number of parameters, espe-
cially for AR devices, which require high resolution, stereo
rendering, and high performance. Inspired by knowledge
distillation, we bake the Gaussian non-rigid deformation of
the teacher network into the mesh non-rigid deformation

field, which is a compact MLP-based student network S.

∆v̄i = S (v̄i, θ, zt) , (4)

where v̄i is the i-th vertex coordinate in the canonical space,
θ is the pose parameter, and zt is a learnable embedding
for each frame to compensate for inaccurate pose estima-
tion. To train the student network S with the capability
of pose-dependent non-rigid deformation, we directly su-
pervise its output using the Gaussian non-rigid deforma-
tion maps {∆Uf ,∆Ub} of the teacher network T . Specifi-
cally, we render the mesh non-rigid deformations {∆vi}Ni=1

to front and back deformation maps {∆Vf ,∆Vb} in the
canonical space, and then calculate the differences:

Lnon = ∥∆Vf −∆Uf∥+ ∥∆Vb −∆Ub∥ . (5)

Furthermore, to mitigate the intersection between clothing
and the body, we introduce a semantic loss Lsem. For each
vertex, we assign a semantic label ei = ci + sin (τ v̄i) that
integrates the candidate coordinates v̄i and the artificial seg-
mentation color ci, and τ is a scale factor. The semantic
label for each Gaussian can be obtained by interpolating the
semantic label of the three vertices of its parent triangle.
Subsequently, we render the Gaussian semantic map Et and
the mesh semantic map Es in the world space separately and
compute the semantic loss Lsem:

Lsem = ∥Es − Et∥ . (6)



In addition, we refine the local attributes by computing
the reconstruction loss Lrec, which takes the rendered im-
age of the teacher network as ground truth. The total loss
Lbak during baking is:

Lbak = Lrec + λnonLnon + λsemLsem. (7)

Compensating Gaussian Deformation with Lightweight
Blend Shapes. Inspired by pose corrective blend shapes
in SMPL [37], we build learnable blend shapes for po-
sition and color for each Gaussian. The position blend
shapes, U ∈ R3×n, primarily compensate for Gaussian
positional adjustments (e.g., hair fluttering, clothing folds)
across different poses. Meanwhile, the color blend shapes,
C ∈ R3×n, address appearance changes, such as shadow
variations caused by self-obscuration. To obtain the corre-
sponding driving coefficients, we employ a mapping net-
work H for the head using the expression parameters ϵ as
input and a mapping network B for the body which inputs
the body pose parameters θ, to get the coefficients zh ∈ Rnh

for the head and zb ∈ Rnb for the body, respectively, en-
abling independent and fine-grained control over head and
body deformations. The compensation of position and color
for each Gaussian can be expressed as:

δu = BS (zh ⊕ zb;U) ,

δc = BS (zh ⊕ zb;C) ,
(8)

where ⊕ is a concatenation operation, resulting in the size
n = nh + nb. The function BS(·, ·) represents the blend
shapes operation mentioned in SMPL [37]. We add these
residuals to local attributes:

uw = p+R (γn+ δu) ,

cw = SH
(
R−1d

)
+ δc.

(9)

For the fine-tuning stage on training data, we freeze the non-
rigid deformation field network S, optimize the two map-
ping networks H and B, and two blend shapes U and C.
The loss during fine-tuning is the same as that pre-training
the teacher network.

After baking mesh non-rigid deformation and applying
Gaussian non-rigid compensation, the performance of our
student model is significantly enhanced compared to the
teacher model, while still maintaining high quality.

4. Experiments
4.1. Experimental Settings
Datasets. To evaluate the performance on the full-body
talking task, we introduce a new dataset, TalkBody4D, de-
signed for common full-body talking scenarios in everyday
life, primarily characterized by rich mouth movements and
diverse gestures with synchronous audios. The dataset com-
prises 4 distinct identities, each wearing 2 different outfits.

Each talking sequence consists of rough 6k frames with 4K
image resolution, 60 views with 48 full-body, and 12 face-
region views. To evaluate performance on complex motions
and expressions, we select 4 sequences (04, 05, 06, 08) from
the ActorHQ [22] dataset, supplement with 2 dancing and
2 exaggerated expression sequences. The resolution of our
training and testing images is 1500 × 2000 for all exper-
iments. SMPLX registrations for these sequences can be
obtained by first initializing SMPLX parameters using ex-
isting tools [1, 2, 45], followed by fine-tuning the poses with
a photometric loss to improve geometry alignment.
Implementation Details. The clothed parametric template
has roughly 22k vertices and 45k faces in total, which con-
tains additional 23k faces for clothes, hair, and shoes, com-
pared to the naive SMPLX. We randomly initialize about
220k Gaussians in total to bind with the template as texture,
for each triangle containing roughly 4 to 6, and optimize
these Gaussians for 10k iterations using the multi-view im-
ages of the reference frame. We pre-train our StyleUnet-
based[34] teacher network for 600k iterations, and set the
loss weights λssim = 0.2, λlpips = 0.01, λnor = 0.02 and
batch size is 1 during the training process. Then we bake
the teacher network into a small 5-layer MLP-based student
network, which set λnon = 0.1, λsem = 1.0 and optimize
30k iterations. Finally, we finetune the mapping networks
and blend shapes for Gaussian non-rigid compensation on
training data 100k iterations at the batch size of 4. The size
of two blend shapes for position and color is n = 28, in
which nh = 8 for the head and nb = 20 for the body.

4.2. Comparison

We conduct an extensive comparison between our method
and recent state-of-the-art full-body avatar methods include
GaussianAvatar [20], 3DGS-Avatar [46], MeshAvatar [10],
and AnimatableGS [34]. All of these methods learn pose-
dependent non-rigid deformations in the canonical space
and then utilize the skeleton-based rigid transformations of
SMPL [37] or SMPLX [43] into observation space to model
the dynamic human. We uniformly use SMPLX [43] across
all these methods to ensure a fair comparison.
Comparison on Full-body Talking. We conduct exper-
iments on typical full-body talking scenarios encountered
in daily life, which include a variety of mouth movements
and gestures. We provide the quantitative comparison on
full-body talking as shown in Tab. 1. We also show the
qualitative comparison in Fig. 3, and our method can gen-
erate more realistic and detailed results, especially in the
face region. 3DGS-Avatar [46] directly learns two MLP-
based networks to handle the pose-dependent non-rigid de-
formation of Gaussians but produces very blurry results due
to the low-frequency bias of MLPs. GaussianAvatar [20]
uses a 2D CNN network by encoding the position map in
SMPLX’s UV space to generate the non-rigid deformation
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Figure 3. Qualitative comparisons on full-body talking tasks. Our method outperforms state-of-the-art methods by producing clearer
clothing dynamics and enhanced facial details.

maps of Gaussians. However, it is restricted by the mini-
clothed topology of SMPLX, struggling to handle loose
skirts. MeshAvatar [10] chooses mesh as a human represen-
tation, which is insufficient to express the geometry of de-
tails, such as hair, and glasses. AnimatableGS [34] can gen-
erate high-quality dynamic appearance and complex non-
rigid deformation. However, it is restricted by the implicit
template of learning from scratch, which makes it difficult
to handle fine-grained expressions, like blinking and flash-
ing teeth as shown in the face region in Fig. 3. Therefore
we adopt the SMPLX++ model as the template whose face
and hands retain the native SMPLX prior. However, due
to the amount parameters of the teacher StyleUnet [52], it
achieves poor performance and is hard to run on a mobile

device in real time. Through baking non-rigid deformation,
we can achieve 150+ FPS at the resolution of 1500× 2000
on Nvidia RTX4090 using only a small MLP-based mesh
non-rigid deformation network and two lightweight learn-
able blend shapes as shown in Tab. 1.

Comparison on Complex Motion and Expression. Be-
sides full-body talking scenes, our method is also capable of
reconstructing complex motions as well as exaggerated ex-
pressions as shown in Fig. 4. We provide quantitative com-
parisons in Tab. 2, our student network achieves competi-
tive results compared to the teacher network, outperforming
other methods. Especially for exaggerated expressions, our
method significantly outperforms others in reconstructing
the face region as shown in Tab. 2. Moreover, our method



Novel View Novel Gestures and Expression Speed

Model PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FPS

GaussianAvatar[20] 26.58 (23.57) .9313 (.8159) .10577 (.25242) 25.99 (23.15) .9232 (.8092) .12265 (.26207) 54
3DGS-Avatar[46] 28.91 (23.95) .9411 (.8303) .07984 (.20450) 26.46 (23.32) .9157 (.8184) .11804 (.21632) 55
MeshAvatar[10] 28.53 (24.55) .9360 (.8083) .09470 (.25572) 27.08 (23.58) .9229 (.7965) .10783 (.24947) 22

AnimatableGS[34] 32.50 (26.42) .9599 (.8587) .06695 (.19535) 28.05 (23.68) .9328 (.8142) .09191 (.22673) 16
Ours (Teacher) 33.45 (27.01) .9649 (.8741) .04986 (.15613) 28.28 (24.28) .9336 (.8291) .07385 (.18176) 16
Ours (Student) 33.81 (27.80) .9689 (.8975) .06437 (.14218) 28.38 (24.99) .9389 (.8525) .08874 (.13364) 156

Table 1. Quantitative comparisons on full-body talking task. The results inside the parentheses are evaluated for the face area, and the
inference speed is evaluated on Nvidia RTX4090 when rendering images at a resolution of 1500 × 2000.

Figure 4. Results in challenging scenarios. Our method can obtain high-quality reconstruction even for challenging pose and expressions.

Model PSNR↑ SSIM↑ LPIPS↓
GaussianAvatar[20] 25.94 (24.33) .9294 (.8251) .10478 (.24179)
3DGS-Avatar[46] 30.04 (25.08) .9403 (.8458) .08471 (.18044)
MeshAvatar[10] 28.51 (24.94) .9334 (.8100) .08846 (.23517)

AnimatableGS[34] 31.81 (26.79) .9493 (.8608) .07586 (.19521)
Ours (Teacher) 32.80 (27.40) .9533 (.8768) .05581 (.14996)
Ours (Student) 32.72 (27.35) .9579 (.8836) .07326 (.13914)

Table 2. Quantitative comparisons about complex motions and
expressions reconstruction. The results inside the parentheses
are evaluated for face regions with exaggerated expressions.

can obtain high-quality normals as shown in Fig. 4, which
can be used for image-based relighting.
Comparison on Novel Expression and Novel Gesture.
Benefiting from our parametric human model SMPLX++,
our full-body avatars can be expression-driven and gesture-
driven. We provide quantitative comparisons of self-driven
on full-body talking scenes as shown in Tab. 1. As shown
in Fig. 5, we provide visualizations of different characters
driven by the same skeleton. In addition, our model can ac-
cept expression parameter inputs generated from audio by
UniTalker [14] as shown in Fig. 5. More demos are pro-

vided in the supplementary materials.

4.3. Ablation Study

In this subsection, we discuss the key contributions of our
method. Additional quantitative results and experiments are
available in the supplementary materials.
The Impact of Template. The choice of template has a
crucial impact on our approach. If we directly use SMPLX
as our geometric template, as shown in Tab. 3 (w SMPLX),
leading to poor results with numerous artifacts, especially
for loose skirts as seen in Fig. 6. After extending the geom-
etry of SMPLX to a complete template with clothes, hair,
and shoes, this quality is significantly improved as shown
in Tab. 3 (w/o Mesh Non.), which allows our method to re-
construct more challenging clothes.
The Impact of Non-rigid Deformation. Despite having a
complete geometry, the rigid transformations of the skele-
ton are not able to properly represent non-rigid transforma-
tions such as skirt swinging and hair flying. We concur-
rently introduce mesh non-rigid deformation and Gaussian
non-rigid deformation in our method. The geometry with-



Figure 5. Novel pose and expression animation. TaoAvatar can
be driven by the same skeleton and expression parameters vividly.

out mesh non-rigid deformation is unable to attach to the
surface of the character as shown in Fig. 6 (w/o Mesh Non.).
The Gaussian non-rigid compensation also plays a crucial
role in quantitative metrics. Without the blend shapes for
Gaussian non-rigid compensation, the results are prone to
produce artifices due to imprecise geometry and variable
appearance as shown in Fig. 6 (w/o Gau Non.).
The Impact of Baking Teacher. Compared to directly
training a small MLP-based network to handle non-rigid de-
formations as shown in Tab. 3 (w/o Teacher), our proposed
multi-stage training strategy is more efficient. With direct
supervision of the non-rigid deformation of the teacher net-
work, it is easier for the student network to decouple the
geometry deformation and appearance variations.

5. Application

TaoAvatar offers a lightweight, comprehensive representa-
tion for 3D talking body scenarios, easily deployable on
various mobile devices using existing tools [25] as demon-
strated in Fig. 1. It seamlessly integrates with AI models to
enable real-time dialogue interactions. we deployed a 3D
digital human agent on the Apple Vision Pro, which inter-
acts with users through an ASR-LLM-TTS pipeline [16, 31,

Fullw/o Mesh Non.SMPLX w/o Gau Non. GT [NeuS2 Mesh]

Figure 6. Ablation Study. Red and Green boxes show artifacts and
their improved counterparts.

Model PSNR↑ SSIM↑ LPIPS↓ P2S↓ Chamfer↓
w SMPLX 28.47 .9476 .07899 .7690 .9995

w/o Mesh Non. 32.10 .9734 .03814 .4877 .5007
w/o Gau Non. 31.16 .9686 .03932 .2968 .3068
w/o Teacher 32.67 .9751 .03769 .5236 .5359

Full 33.29 .9772 .03464 .2953 .3052

Table 3. Ablation Study. We use the mesh reconstructed by
NeuS2 [54] as a pseudo-truth for geometry evaluation.

39, 62]. Facial expressions and gestures are dynamically
controlled by an Audio2BS model [14], allowing the agent
to respond naturally with synchronized speech, expressions,
and movements. A live demonstration is available in our
supplementary materials.

6. Discussion
Conclusion. In this work, we present TaoAvatar, a
lightweight, lifelike full-body talking avatar solution. We
demonstrate how the teacher-student framework captures
high-definition facial and body details while ensuring real-
time performance on AR devices. TaoAvatar can be driven
by diverse signals, including facial expressions, hand ges-
tures, and body poses. Through both quantitative and qual-
itative evaluations, we showcase the advantages of our ap-
proach. Additionally, we validate its practical potential with
a real-world application on the Apple Vision Pro.
Limitations and Future Works. TaoAvatar encounters
challenges in modeling flexible clothing deformation under
exaggerated body poses, which are out-of-distribution of
training data. A possible solution is to integrate GNN simu-
lators [17, 18] handling larger hemlines, which are compat-
ible with our approach.
Potential Social Impact. TaoAvatar can synthesize life-
like talking digital humans within an augmented reality en-
vironment, generating fabricated 3D content or 2D videos.
Therefore, responsible use of this technology is essential.
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