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ABSTRACT

Deep learning models are vulnerable to leak private information about the train-
ing data. Differential privacy (DP) is increasingly implemented in deep learning
to preserve the data privacy through different ways, one of which is imposing DP
to the gradients in training models, called DP gradients. Unfortunately, adding DP
to gradients has negative impacts on either robustness or fairness, and even both of
deep learning models, resulting in unexpected performance of their data manage-
ment tasks. In this paper, we undertake deep exploration of the disparate impact
of DP gradients and their mitigating. Specifically, through empirical analysis we
disclose that gradient variance renders clear disparate impact on different groups,
and provide the theoretical proof on the relations between gradient variance and
model fairness. Then we develop a Fair Differential Privacy Gradient (FDPG)
framework to alleviate the disparate impact of DP gradients while protecting the
data privacy. To implement the novel framework, we create a fairness-aware sam-
pling mechanism to restore balance among groups, and design the adaptive noise
injection strategy to maintain model utility. Our experimental evaluations demon-
strate the effectiveness of FDPG on multiple mainstream classification tasks in
both single and multiple protected group attributes.

1 INTRODUCTION

Deep learning has gained significant attention for its remarkable advancements in abundant appli-
cations (He et al., 2016; Garcia et al., 2025). The success of deep learning models depends on a
substantial amount of high-quality data. However, these data often contain sensitive personal infor-
mation, which can be leaked by the model parameters (Fredrikson et al., 2015; Liu et al., 2022).
For example, the Google Prediction API and Amazon Machine Learning have the potential to leak
membership information from purchase records (Ye et al., 2022). Hence, training or (and) publish-
ing private models is a prospective approach to defend data privacy leakages.

Differential Privacy (DP) (Dwork et al., 2006) is a provable and quantifiable method for privacy
protection, and has been increasingly employed to prevent leakage of private training data in deep
learning (Bu et al., 2024; Wagner, 2025; Zhao et al., 2025b). Currently, imposing DP in deep
learning primarily involves the output parameter, objective function, and gradient (Jayaraman &
Evans, 2019; Chen et al., 2023), in which the first one is on the publishing model stage, and the
latter two during the training model stage. Imposing DP to gradients, namely DP gradients, is a
more popular way to apply DP in deep learning (Wu et al., 2019; Chen et al., 2023).

Unfortunately, DP gradients can introduce or exacerbate bias of deep learning models, where accu-
racy drops much more for the disadvantaged classes or groups (known as disparate impact), under-
mining the fairness of the decision-making process and reiterating possible discrimination (Bag-
dasaryan et al., 2019; Farrand et al., 2020; Zhao et al., 2025a)). Thus, integrating both privacy and
fairness in DP gradients is necessary and expected to deploy trustworthy deep learning models.

In these regards, we aim to seek answers to the following questions:

Is there impact of gradient variance on the fairness of models with DP gradients? What is the
relationship between gradient variance and the model fairness? How can we develop a framework
to mitigate unfairness while maintaining model utility in DP gradients?

To sum up, we address the posed questions through the following contributions:
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• We provide the experimental disclosures regarding obvious relations between gradient vari-
ance and fairness in DP gradients, and present theoretical proof that gradient variance can
be utilized to reduce disparate impact, thus enhancing model fairness.

• We propose a novel Fair Differential Privacy Gradient (FDPG) framework for private and
debaised model training so as to mitigate the disparate impact while maintaining model
utility.

• To implement the framework, we design a fairness-aware sampling mechanism by
reweighting group samples in a privacy-preserving way and develop an adaptive noise in-
jection strategy to control the influence of noise.

• Our extensive experiments encompass both single and multiple protected group attributes,
showing that FDPG can effectively mitigate disparate impact with satisfactory performance
across diverse datasets in private model training.

2 RELATED WORK

DP Gradients: Differential privacy (DP) gives rigorous privacy guarantees about what can be in-
ferred from the output of an algorithm (Jagielski et al., 2019). Existing DP gradient methods can
be divided into two categories (Yang et al., 2022; Xiao et al., 2023) based on how to bound the
sensitivity. The first is to clip the gradients with a constant threshold before injecting noise, i.e.,
differentially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016), which is the first
to introduce gradient clipping to ensure bounded sensitivity on gradients, then add noise to the
clipped gradients. Subsequent works (Andrew et al., 2021; Papernot et al., 2021; Fu et al., 2024;
Sha et al., 2024; Zhang et al., 2025; Wei et al., 2025) mainly focus on further improving the privacy-
utility tradeoff in DP-SGD. The second is to normalize the gradients before noise injection, i.e.,
AUTO-S (Bu et al., 2024), which performs gradient normalization to retain information about the
relative size of the gradients and get rid of the dependence of tuning on the clipping threshold (Liu
et al., 2023), eventually achieving state-of-the-art performance (Bu et al., 2024). Unfortunately,
these methods introduce disparate impact, thereby reducing fairness when applied to private model
training (Bagdasaryan et al., 2019; Farrand et al., 2020).

DP Gradients and Fairness: Fairness is treating individuals or groups without any prejudice based
on their inherent or acquired characteristics (Mehrabi et al., 2021). Achieving fairness in deep learn-
ing models is well-studied (Cao et al., 2024), recent works focus on both fairness and privacy in deep
learning (Fioretto et al., 2022; Tran et al., 2021; Chang & Shokri, 2021; Lyu et al., 2022; Zhao et al.,
2025a; Demelius, 2025). However, Chang & Shokri (2021) empirically found that imposing fairness
constraints on private models could lead to higher loss for certain groups. Hence regular fairness-
aware strategies cannot be directly applied to private models. To achieve the goal that the cost of
adding privacy to a non-private model must be fairly distributed between groups, i.e., to alleviate
the disparate impact, existing works (Xu et al., 2021; Tran et al., 2021; Esipova et al., 2023; Zhao
et al., 2025a; Kim et al., 2025) attribute it to factors such as clipping errors, gradient norms, and
gradient misalignment, and propose adaptive clipping or alignment-based methods for mitigation.
However, they did not consider the multiple protected group attributes, and their solutions are tai-
lored for models trained with DP-SGD without considering the DP Gradient methods using gradient
normalization, such as AUTO-S. Although directly applying existing mitigation method (Kulynych
et al., 2022) on models trained with AUTO-S can reduce unfairness to some extent, it will cause
serious performance degradation. Hence, it is necessary to effectively mitigate the disparate impact
while maintaining model utility in DP gradients.

3 PRELIMINARY

This section introduces some related concept of DP. Let ∥ ·∥ denote the ℓ2 norm of a vector and ⟨·, ·⟩
denote the inner product of two vectors. We consider f(x) as the loss of model x. The gradient of
f(x) is represented by ∇f(x). Given a dataset D with n samples, Dk denotes a subset of D with
the set of samples with protected group attribute S = k, where k refers to a protected group, and
there are K groups in D. C is clipping threshold, σ is noise multiplier, qk ∈ (0, 1] represents the
group probabilities with

∑
k∈S qk = 1.
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DP (Dwork et al., 2006) is a strong privacy notion used to ensure that the output data of the algorithm
does not significantly change when a sample is changed.

Definition 1 (Differential Privacy (Dwork et al., 2006)) A randomized mechanismM : D → R
with domain D and range R is (ϵ, δ)-DP if for all pairs of datasets D and D′ that differ by the
addition or removal of one sample (neighboring datasets), and for any subset of outputs O ∈ R,
Pr(M(D) ∈ O) ≤ exp(ϵ) · Pr(M(D′) ∈ O) + δ, where ϵ is the privacy budget, δ is a broken
probability that the property does not hold. Smaller values of ϵ and δ indicate stronger privacy
guarantee.

By adding random noise, we can achieve differential privacy for a function f : D → R. The
sensitivity of f determines how much noise is needed and is defined as follows.

Definition 2 (Sensitivity (Dwork et al., 2006)) Given function f : D → R, with a differentially
private mechanism is via additive noise calibrated to f ’s sensitivity Sf , which is defined as Sf =
maxD,D′ ∥f(D)− f(D′)∥, where D and D′ are neighbor datasets.

Existing DP gradient methods can be divided into two categories according to the way of bound-
ing the sensitivity of the gradients. One way to bound the sensitivity of the gradients is gradient
clipping, which is adopted by DP-SGD (Abadi et al., 2016), we describe gradient clipping as ḡi =
Clip(gi;C) = gi × min

(
1, C

∥gi∥

)
, where gi = ∇fξi(x) is the gradient of i-th random sample ξ.

An alternative is to force a bounded sensitivity through gradient normalization, which is applied by
Auto-S (Bu et al., 2024), gradient normalization is described as ḡi = Normalize(gi; γ) =

gi
∥gi∥+γ ,

where regularization term γ ∈ (0, 1].

Gradient variance is a measure of the difference between the average gradient of the entire dataset
and the stochastic gradient during model training (Wang & He, 2021). Like most works (Gorbunov
et al., 2020; Koloskova et al., 2023; Sadiev et al., 2023), it is assumed that gradient variance is
bounded. The bounded variance is defined as follows.

Definition 3 (Bounded Variance (Koloskova et al., 2023)) For a randomly selected sample ξ from
dataset D and all x ∈ Rd, the gradient variance is bounded by τ2, i.e.,

Eξ∈D

[
∥∇fξ(x)−∇f(x)∥2

]
≤ τ2. (1)

4 DISPARATE IMPACT OF DP GRADIENTS

In this section, we explore the correlation between fairness and gradient variance in DP gradients,
including two representative DP gradient methods DP-SGD (with gradient clipping) (Abadi et al.,
2016) and AUTO-S (with gradient normalization) (Bu et al., 2024). Disparate impact is measured
in private model training by the disparity in performance degradation of different groups. The ex-
perimental setup of this empirical analysis can be found in Section 6.

4.1 EMPIRICAL ANALYSIS OF DISPARATE IMPACT

The disparate impact of DP Gradients. Fig. 1 illustrates the accuracy on CelebA dataset at models
trained with DP-SGD and AUTO-S. We can observe a notable decrease in the accuracy of male
in DP-SGD and AUTO-S compared to stochastic gradient descent (SGD), while the accuracy for
female remains high, indicating that DP gradients result in disparate impact for groups. Especially in
DP-SGD, the disparate impact becomes more severe with smaller C. Furthermore, the average loss
for different groups in Adult, Dutch, MNIST and CelebA are presented in Fig. 2. The results reveal
that models with DP gradients perform significantly better for the advantaged group (Female in
Adult, Male in Dutch, class 2 in MNIST and Female in Celeb A) than for the disadvantaged groups,
where disadvantaged groups experience a more pronounced increase in loss than their advantaged
counterparts compared with SGD. DP gradients intensify the discrepancy in loss among different
groups, deteriorating the fairness compared with SGD.

3
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Figure 1: Accuracy of each group in the CelebA
dataset. The privacy budget is ϵ = 2.5 and ϵ = 8
respectively.

The Correlation between Fairness and Gra-
dient Variance. In order to characterize the
effect of DP gradients across different groups,
we introduce the concept of gradient vari-
ance, which represents the dispersion of gra-
dients (Wang & He, 2021). Fig. 2 depicts the
results of average loss, and gradient variance
for each group (i.e., the mean gradient variance
across all samples in the group) across multi-
ple models and entire datasets. Detailed exper-
imental settings are provided in App. C.3. It is
evident that there is a positive correlation be-
tween group loss and gradient variance, i.e., the
model consistently demonstrates higher loss on
a group with a larger gradient variance. In addition, model with DP gradients does not result in
excessive increase of loss in groups with smaller gradient variance. For instance, DP-SGD has a
more significant increase in loss and a larger gradient variance on class 8 than class 2 compared with
SGD in MNIST.
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Figure 2: Measurements on model’s loss and gradient variance per group.

In summary, disadvantaged groups generally exhibit larger gradient variance compared to those of
advantaged groups. Thus, models with DP gradients suffer more severe performance degradation
on disadvantaged groups. Next we provide the theoretical proof on above empirical observations of
relations between fairness and gradient variance.

4.2 THEORETICAL ANALYSIS OF DISPARATE IMPACT IN DP-SGD

DP-SGD consists of gradient clipping and noise injection before averaging the gradients over
the batch in iteration t (Xiao et al., 2023), i.e. the algorithm can be defined as xt+1 = xt −
η
(

1
b

∑
i∈Bt

gi ×min
(
1, C

∥gi∥

)
+ zt

)
, where zt ∼ N

(
0, σ2C2I

)
is the Gaussian noise, b is batch

size, η is learning rate, Bt denotes the set of samples used in the t-th iteration.

According to (Xu et al., 2021), the loss discrepancy caused by DP-SGD can be measured by the
error between the original and the DP gradients. We denote the gradient before clipping over the
group k (k ∈ S) as Gk = 1

bk

∑bk

i=1 gi
k, where gki represents the gradient of a random sample from

group k with sample size bk. The gradient after clipping as Ḡk = 1
bk

∑bk

i=1 g
k
i , and the gradient after

clipping and noise as G̃k = 1
bk
(
∑bk

i=1 g
k
ı + zt), then we have the error due to DP-SGD by applying

the Minkowski inequality (Kuczma, 2009):

E|G̃k −Gk| ≤ E|G̃k − Ḡk|+ E|Ḡk −Gk| ≤ 1

bk
C2σ2 +

1

bk

bk∑
i

max(0, ∥gki ∥ − C)

=
1

bk
C2σ2 +

1

bk

mk∑
i

(∥gki ∥ − C),

(2)

4
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where mk is the number of samples that get clipped in group k. Eq. 2 consists of two terms: noise
error 1

bk
C2σ2 and clipping error 1

bk

∑mk

i (∥gki ∥ − C). For noise error, if C is small, the noise error
will be close to zero. For clipping error, it could lead to discrimination for each group, which means
that given the clipping threshold C, the clipping error in the group with large gradient norms is
larger than the one in the group with small gradient norms. Hence, gradient clipping has disparate
impact on the gradient for each group, which in turn affects the model accuracy. Inspired by the
convergence result of DP-SGD from (Koloskova et al., 2023), we can explain this observation
through Theorem 1 which verifies that gradient variance directly influences the upper bound of the
gradient norm.

Theorem 1 (Convergence Guarantee (Koloskova et al., 2023)) If f is (L0, L1)-smooth (but not
necessarily convex) and we run DP-SGD for T iterations with step size η ≤ 1/[9(L0 +CL1)], then

the gradient norm is upper bounded byO
(

Lη
C σ2+

√
Lησ+min

(
τ2, τ4

C2

)
+ηL τ2

b + F0

ηT +
F 2

0

η2T 2C2

)
,

where L = L0+maxt ∥∇f(xt)∥L1 and F0 = f(x0)−f∗, f∗ = f(x∗), and x∗ = arg minxf(x).

Remark 1 This theorem implies that, set aside the Gaussian noise with variance σ, provided the
step size is small enough, DP-SGD suffers from a deviation term min

(
τ2, τ4

C2

)
, this term is con-

trolled by gradient variance and clipping threshold, which means that by reducing the gradient
variance and clipping threshold, this term can be decreased, further helping to produce smaller
gradients and move towards the optimum, and eventually reducing the clipping error illustrated in
Eq. 2.

According to Theorem 1, we can infer that a group with a larger gradient variance corresponds to a
larger τ , which in turn implies larger gradient norms, ultimately leading to a larger clipping error.
This is in harmony with the discoveries in Section 4.1. Hence, we can reduce the gradient variance
of disadvantaged groups to balance the utility loss of each group.

4.3 THEORETICAL ANALYSIS OF DISPARATE IMPACT IN AUTO-S

Different from DP-SGD, AUTO-S is updated within mini-batch as follows (Yang et al., 2022):

xt+1 = xt − η

(
1

b

∑
i∈Bt

gi
||gi||+ γ

+ zt

)
, (3)

where zt ∼ N
(
0, σ2I

)
. From Eq. 2, we note that noise has no impact on fairness. Hence we only

consider the normalization error here. We leverage Gk and Ḡk to denote the gradient of group k
before and after normalization respectively. Calculating the error due to normalization, we have:

E|Ḡk −Gk| = 1

bk

bk∑
i

| gki
∥gki ∥+ γ

− gki | =
1

bk

bk∑
i

| (1− γ)∥gki ∥ − ∥gki ∥2

∥gki ∥+ γ
| (4)

For simplicity, we denote F (a) as F (a) =
∣∣∣ (1−γ)a−a2

a+γ

∣∣∣, where a = ∥gki ∥, let F (a) = 0, then we

have: F (a) =
∣∣∣ (1−γ)a−a2

a+γ

∣∣∣ = ∣∣∣ (1−γ−a)a
a+γ

∣∣∣ = 0. Hence, a = 0 or a = 1 − γ. We observe that F (a)

has an upper bound when a ≤ 1− γ (see Appendix D.1 for the visualization). Taking the derivative
of F (a) and let it be zero, we have: ∇F (a) = |γ−(a+γ)2

(a+γ)2 | = 0. Then γ − (a + γ)2 = 0, we have
a =
√
γ − γ, finally the upper bound is F (

√
γ − γ) = 1− 2

√
γ + γ.

Note that the normalization error is also related to the gradient norm from Eq. 4. As shown in Fig. 5,
the analysis of normalization error needs to be divided into two cases:

1. When ∥gki ∥ ≤ 1 − γ, the normalization error has an upper bound 1 + γ − 2
√
γ, which is

only determined by the constant γ;

2. When ∥gki ∥ > 1− γ, the normalization error intensified with the gradient norm ∥gki ∥.

5
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In the first case, normalization error has no impact on fairness. However, the second case implies
that the normalization error in the group with large gradient norms is larger than the one with small
gradient norms. Hence, we present Theorem 2 to validate that the gradient variance also has a
direct impact on the upper bound of the gradient norm in AUTO-S. The proof of Theorem 2 is in
Appendix A.2.

Theorem 2 Under bounded variance assumption, if f is (L0, L1)-smooth, for T iterations of Eq. 3
with step size η, then the gradient norm is upper bounded by O

(
τ + F0

ηT

)
.

Remark 2 According to Eq. 1, the gradient variance is bounded by τ2, and the final result demon-
strates that AUTO-S introduces a persistent deviation (determined by gradient variance) to the opti-
mization process that cannot be eliminated by increasing the number of iterations, which means we
can reduce the gradient norm by decreasing the gradient variance.

Similar to the case of DP-SGD, we can reduce the disparate impact by balancing the gradient vari-
ance for each group in AUTO-S.

5 MITIGATING THE DISPARATE IMPACT

Sensitive data

Gradients

Adaptive noise injection strategy

Fairness-aware sampling
mechanism

𝜉~𝑝 𝜉

…

Update 𝑝 𝜉  

Train model

𝑵(𝟎, 𝝈𝟐𝑪𝟐𝑰)

𝑞𝑘

෥𝒈𝟏, ෥𝒈𝟐… , ෥𝒈𝒃

Update 𝒢𝑘 Update 𝑛𝑜𝑖𝑠𝑒
Sampling

Figure 3: Overview of our Fair Differential Pri-
vacy Gradient (FDPG) framework.

To mitigate the disparate impact in DP gradi-
ents, we propose Fair Differential Privacy Gra-
dient (FDPG) framework (Fig. 3), which con-
sists of a fairness-aware sampling mechanism
and an adaptive noise injection strategy. We de-
scribe FDPG in Algorithm 1 (in the APP. B),
where the fairness-aware sampling mechanism
is designed to mitigate disparate impact by bal-
ancing the gradient variance among groups.
On the other hand, the adaptive noise injec-
tion strategy can maintain model utility by con-
trolling the injected noise. For simplicity, we
only adopt the clipping method to describe our
framework, but all the following analysis can be generalized to the normalization operation with
C = 1.

5.1 FAIRNESS-AWARE SAMPLING MECHANISM

Existing common data sampling methods are not designed to improve model fairness, hence we
create a novel Fairness-aware Sampling mechanism to replace the original uniform sampling scheme
to reduce disparate impact. We focus on balancing the gradient variance of each group. The intuition
is to raise the gradient contribution of the disadvantaged groups in batch selection. The mechanism
has two steps. We first need to incorporate fairness into the sampling probability for batch selection,
then protect the intermediate statistics that contain sensitive information with DP.

Considerations on the fairness. From our theoretical analysis, bias is reflected in the relationship
with gradient variance. Hence, an ideal operation is to reweight the samples in each group with
gradient variance. The sampling probability for group k can be defined as:

qk =
V ark∑K
i=1V ari

, (5)

where V ark is the gradient variance for group k. Note that Eq. 5 involves computing the gradi-
ent variance during each training batch, which is a computationally expensive process. Based on
the previously established relationship (Theorem 1 and Theorem 2), we can use the gradient norm
instead of the gradient variance to compute group probabilities (i.e., the sampling probabilities for
different groups) while reducing computational cost, we make two meaningful adjustments on Eq. 5.
Firstly, we sample data from different groups with probability proportional to the average norm of

gradients that get clipped/normalized, we have Gk = Ĝk

mk
=

∑
i∈Dk∩∥gi∥>C ∥gi∥
|{i:∥gk

i ∥>C}|
, where Dk denotes
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the samples from group k, Ĝk is the sum of clipped/normalized gradient norm for group k, and
mk is the number of samples that get clipped/normalized in group k. Secondly, in order to avoid
redundant computation of per-sample gradients, we leverage the gradients from previous epoch to
instruct training for the next epoch. The probability for group k can be defined as qk = Gk∑K

i=1 Gk
.

Protections on the statistical information. To obtain group probabilities for fairness-aware sam-
pling in a differentially private way, we need to release two additional values derived from pro-
tected information in each epoch: Ĝk and mk. Hence, we inject Gaussian noise into these two
statistics to ensure DP. For Ĝk, since the sensitivity of actual gradients is hard or even impossible
to estimate, we utilize a auxiliary bound β to scale down the original per-sample gradient norm
to preserve the magnitude information of gradients, we then perturb Ĝk with Gaussian noise as
(
∑

min(∥gi∥β , 1) +N(0, σ2
2I)) · β, where i ∈ Dk ∩ ∥gi∥ > C, σ2 represents the variance of Gaus-

sian noise, and min(·) makes sure gradient norm has sensitivity of 1. For mk, as it has sensitivity
of 1, we can directly obtain the private mk, i.e., m̃k = |{i :

∥∥gki ∥∥ > C}| +N(0, σ2
2I). In practice,

we use σ2 ≈ 10σ1 which produces a negligible additional cost in the overall privacy budget.

5.2 ADAPTIVE NOISE INJECTION STRATEGY

The noise added is N(0, σ2C2I), where the noise multiplier σ is controlled by privacy parameters ϵ,
δ, and the sampling probability (Mironov et al., 2019; Wei et al., 2022). If the sampling probability
is not limited, then it may become too large, and lead to too much noise, which in turn affects the
model utility. We defend this obstacle by an adaptive noise injection strategy.

Specifically, we maintain a list of group probabilities, and update each group with its noisy av-
erage clipped/normalized gradient norm G̃k in each epoch by exponentiated gradient ascent as
q′k ← q′k exp(ηq · G̃k), where step size ηq can adaptively adjust the group probabilities, so them
would not be too large to affect model utility. In addition, we re-normalize the group probabilities
to make this process more stable: qk ← q′k/

∑K
i=1 q

′
i.

A relatively small group probability qk can produce a small σ, eventually resulting in less injected
noise, thus improving privacy-fairness trade-off. Adaptive noise could affect the original privacy
guarantee, hence we conduct privacy analysis to ensure Algorithm 1 can satisfy the RDP guarantee
in Section 5.3.

5.3 PRIVACY ANALYSIS OF FDPG

This section establishes the privacy guarantee of FDPG. The sampling probability of FDPG is adap-
tive which affects the injected noise, hence we first give the upper bound of the sampling probability,
and then derive the total privacy loss. Theorem 3 gives the proof of RDP in the training phase, then
we use Lemma 1 to convert it to (ϵ, δ)−DP . The proof can be found in Appendix A.3.

Theorem 3 (Privacy Loss of FDPG) For any 0 ≤ δ ≤ 1, integer α > 1, consider FDPG with
sampling probability p ≤ p∗ and noise multiplier σ, the privacy loss of FDPG satisfes:

(ϵ, δ) = (RFDPG +
log(1/δ) + (α− 1) log(1− 1/α)− log(α)

α− 1
, δ), (6)

where RFDPG = 1
α−1 ln

(∑α
m=0

(
α
m

)
(1− p∗)

α−m
(p∗)

m
exp

(
(m2−m)

2σ2

))
.

6 EXPERIMENT

In this section, we conduct experiments to demonstrate the performance of FDPG over five datasets
and popular machine learning models. We compare FDPG with four differentially private base-
lines, namely DP-SGD (Abadi et al., 2016), DPSUR (Fu et al., 2024), AUTO-S (Bu et al., 2024),
Disk (Zhang et al., 2025), and three state-of-the-art differentially private and fair baselines, DPSGD-
F (Xu et al., 2021), DP-IS-SGD (Kulynych et al., 2022) and DPSGD-Global-Adapt (Esipova et al.,
2023). The experiment is conducted over two tabular datasets, including Adult and Dutch (van der
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Laan, 2000), and two image datasets: MNIST (LeCun & Cortes, 2010) and CelebA (Liu et al.,
2015), and a text dataset the Blog Authorship Corpus (Blog) (Schler et al., 2006).

We use the overall classification accuracy to measure the model utility and group classification
accuracy to demonstrate the worse group performance like plenty fairness works. Moreover, to
measure private model fairness, we include privacy cost gap as in (Bagdasaryan et al., 2019; Xu
et al., 2021; Esipova et al., 2023). Fairness of a private model can be measured in terms of the
disparate impact by the cost of adding privacy to a non-private model on the protected groups.
Privacy cost for group a represents the reduction in accuracy of group a between the private model
and its non-private counterpart, that is πa = acc(θ∗;Da)−Eθ̃[acc(θ̃;Da)]. For any group a, b ∈ S,
the privacy cost gap is π = max |πa − πb|. Smaller π means less disparate impact, so the goal
of a fair private model is to minimize the privacy cost gap. The best and second-best results are
highlighted in bold and underline. We report the results of 5 independent trials. For all experiments,
full details are provided in App. C.

Table 1: Accuracy and Fairness Metric for Tabular Datasets. For Adult and Dutch, the privacy
budget is ϵ = 3.4 and ϵ = 2.3 respectively.

Method
Adult Dutch

Accuracy Fairness Accuracy Fairness
Male Female Total ↑ π ↓ Male Female Total ↑ π ↓

NON-DP 80.78±0.6 92.29±0.3 86.54±0.4 - 86.93±0.1 79.95±0.4 83.45±0.2 -
DP-SGD 70.32±0.8 88.61±0.2 79.47±0.5 6.78±0.8 86.54±0.2 76.08±0.6 81.22±0.3 3.48±0.7
DPSUR 69.07±0.8 88.47±0.2 78.64±0.6 7.89±0.6 85.12±0.3 73.90±0.8 79.53±0.5 4.24±0.8

DPSGD-F 79.19±0.7 90.23±0.4 84.73±0.5 0.46±0.2 87.01±0.2 76.88±0.6 81.88±0.3 3.15±0.6
DP-IS-SGD 69.84±0.8 88.56±0.3 79.21±0.5 7.21±0.4 87.02±0.2 73.82±0.6 80.44±0.4 6.22±0.6

DPSGD-G.-A. 76.89±1.0 89.14±0.3 83.02±0.7 0.73±0.6 86.50±0.2 78.78±0.2 82.61±0.2 0.74±0.3
DiSK 69.67±0.7 88.39±0.3 79.02±0.5 7.21±0.3 86.43±0.1 76.03±0.5 81.12±0.2 3.42±0.6
FDPG 78.28±0.6 89.72±0.4 84.01±0.5 0.07±0.5 86.64±0.1 78.79±0.2 82.73±0.2 0.87±0.5

Table 2: Accuracy and Fairness Metric for Image Datasets. For MNIST, the privacy budget is
ϵ = 5.9 and ϵ = 3 respectively. For CelebA, the privacy budget is ϵ = 2.5 and ϵ = 8 respectively.

Method
MNIST CelebA

Accuracy Fairness Accuracy Fairness
class2 class8 Total ↑ π ↓ Male Female Total ↑ π ↓

NON-DP 97.79±0.4 83.86±2.5 96.82±0.3 - 95.86±0.1 99.09±0.0 97.84±0.1 -
DP-SGD 89.01±0.1 25.27±2.2 85.28±0.3 49.81±3.1 87.63±0.2 97.51±0.1 93.70±0.2 6.66±0.2
DPSUR 87.87±0.3 0.45±0.5 81.30±0.3 73.49±2.4 87.22±0.4 97.50±0.2 93.54±0.0 7.05±0.5

DPSGD-F 89.26±0.2 59.05±1.6 89.15±0.2 16.28±2.3 93.68±0.3 98.40±0.1 96.58±0.1 1.50±0.5
DP-IS-SGD 86.18±0.6 87.04±0.3 90.38±0.2 14.79±2.6 81.54±2.7 80.44±1.2 81.12±2.0 4.32±2.3

DPSGD-G.-A. 88.73±0.2 35.78±2.3 86.21±0.3 39.02±3.2 93.76±0.1 98.82±0.0 96.87±0.0 1.83±0.2
DiSK 89.01±0.1 25.30±2.3 85.29±0.4 49.78±2.3 87.58±0.1 97.73±0.3 93.67±0.3 8.60±0.2
FDPG 89.67±0.4 73.90±1.0 89.73±0.2 1.84±2.7 94.32±0.2 98.87±0.0 97.12±0.1 1.32±0.2

NON-DP 99.03±0.1 86.71±2.0 97.70±0.2 - 96.30±0.2 99.28±0.1 98.13±0.1 -
AUTO-S 98.54±0.2 56.71±5.2 94.22±0.5 29.52±4.7 93.73±0.2 98.83±0.0 96.86±0.1 2.12±0.4

DP-IS-SGD 78.79±3.3 72.40±6.6 81.35±1.0 5.92±9.4 93.81±0.3 98.86±0.0 96.91±0.1 2.07±0.4
FDPG 97.82±0.3 77.35±5.5 95.82±0.6 8.16±6.0 94.39±0.1 98.87±0.1 97.10±0.1 1.60±0.1

6.1 MAIN RESULTS

6.1.1 SINGLE PROTECTED GROUP ATTRIBUTE SETTING

Tabular Datasets Table 1 shows the model accuracy and fairness metric on tabular datasets. We
observe that DP-SGD and DPSUR both have a negative impact on the disadvantaged group (male
in Adult and female in Dutch) on tabular datasets compared with non-private SGD (NON-DP).
Both Adult and Dutch are balanced small scale datasets, hence DPSGD-F, DPSGD-G.-A and our
method achieve comparable results on both fairness and utility performance, and DP-IS-SGD fail to
effectively achieve fairness in this case. However, FDPG achieves optimal or suboptimal results on
both datasets, whereas DPSGD-F and DPSGD-G.-A. only achieve optimal or suboptimal results on
one of them.

Image Datasets Table 2 shows the accuracy and fairness results on image datasets. We ob-
served that state-of-the-art DP gradient methods DPSUR and AUTO-S both have disparate im-
pact on image datasets. On CelebA dataset, our framework FDPG outperforms other base-
lines in terms of both accuracy and fairness. On MNIST dataset, FDPG obtains the best
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Figure 4: Gradient variance for class 2 and class 8
in MNIST.

fairness result with slightly lower accuracy
(89.73%) than DP-IS-SGD (90.38%) while
DP-IS-SGD has a much worse fairness result
(14.79) than FDPG (1.84) in gradient clipping
setting. In gradient normalization setting, DP-
IS-SGD achieves optimal fairness performance.
However, this comes at the expense of a sig-
nificant reduction in accuracy, while FDPG has
the best accuracy-fairness trade-off. To further
understand the improvement of our framework
in terms of fairness, we show the gradient vari-
ance of different groups in Fig. 4 (cf. Figs. 8 in
App. D.5 for CelebA). FDPG can help reduce the gradient variance of the disadvantaged groups
(class 8 and Male), leading to a smaller gradient variance gap among groups.

6.1.2 MULTIPLE PROTECTED GROUP ATTRIBUTES SETTING

We conducted multiple protected group attributes experiments on CelebA and Blog datasets, the
results are shown in Table 3. In CelebA, DPSUR performs poorly in terms of accuracy and fairness,
because DPSUR requires more iterations to select updates that are beneficial to model performance,
poor results may be obtained given relatively small number of epochs. We can also observe DP-IS-
SGD achieves much worse fairness in terms of privacy cost gap π. Although DP-IS-SGD enforces
accuracy parity, it significantly upweights minority groups while downweights other groups, where
accuracy of minority groups will surpass their non-private counterparts while the majority groups
suffer from great performance degradation (more than 10%). Different from accuracy parity, alle-
viating disparate impact of DP is to restore the performance of each group in DP models close to
their non-private level like other fairness-aware baselines do. In both CelebA and Blog datasets,
our framework FDPG achieves state-of-the-art accuracy and fairness trade-off. Despite DPSUR
has the best accuracy among baselines in Blog, it requires update selection at each iteration, which
makes it computationally expensive. In FDPG, accuracy is improved while the accuracy of other
fairness-aware baselines is reduced compared with DP-SGD and AUTO-S.

Table 3: Accuracy and Fairness Metric for Text Dataset trained on DistilBERT model under ϵ =
5, δ = 1e− 5. The best and second-best results are highlighted in bold and underline.

Method
CelebA Blog

Accuracy Fairness Accuracy Fairness
group1 group2 group3 group4 Total ↑ π ↓ group1 group2 group3 group4 Total ↑ π ↓

NON-DP 99.25±0.2 95.34±0.9 77.32±3.9 19.78±4.2 93.90±0.1 - 73.88±1.1 63.52±1.4 73.59±1.3 66.46±1.3 70.51±0.4 -
DP-SGD 99.00±0.4 98.43±0.4 30.93±5.3 11.33±2.4 89.48±0.3 49.48±8.7 73.06±0.6 56.34±0.9 73.09±0.8 59.58±1.9 67.57±0.3 7.46±3.0
DPSUR 99.94±0.1 99.94±0.1 2.11±3.5 1.11±1.9 86.89±0.3 79.80±7.7 73.49±0.4 56.13±0.6 73.03±0.8 56.89±1.7 67.62±0.2 10.17±2.6

DPSGD-F 96.78±2.0 92.82±3.0 78.10±7.0 35.33±13.6 91.97±1.3 21.87±16.5 72.03±0.6 56.41±1.2 72.35±1.1 58.14±1.6 66.85±0.3 7.56±4.0
DP-IS-SGD 85.86±0.9 87.13±0.7 91.89±0.6 81.89±3.0 87.28±0.6 75.51±5.6 62.87±0.7 64.68±0.6 71.47±1.5 71.05±1.5 64.26±0.4 15.60±2.4

DPSGD-G.-A. 98.70±0.4 95.86±0.8 67.94±4.9 19.44±3.9 92.78±0.1 10.63±4.7 67.80±1.0 54.39±2.5 69.01±1.6 56.69±1.7 63.45±0.2 6.24±2.2
FDPG 98.60±0.4 95.95±0.6 71.39±3.2 22.67±4.2 93.24±0.1 9.31±1.6 71.76±0.5 59.14±0.8 72.53±0.8 60.35±1.5 67.59±0.3 5.50±2.4

NON-DP 99.49±0.2 96.39±0.5 79.79±1.8 28.33±2.8 94.89±0.1 - 73.88±1.1 63.52±1.4 73.59±1.3 66.46±1.3 70.51±0.4 -
AUTO-S 99.11±0.3 96.70±0.6 73.04±3.7 23.11±4.9 94.01±0.1 7.78±2.7 73.63±0.4 55.11±0.4 73.06±0.6 57.62±0.6 67.46±0.2 9.75±1.8

DP-IS-SGD 85.43±2.9 85.90±2.1 94.07±1.3 86.67±3.6 86.74±1.9 72.40±8.9 63.17±0.7 64.71±0.8 71.44±1.1 70.34±1.2 64.42±0.2 14.58±2.5
FDPG 98.47±0.4 95.98±0.5 75.40±2.9 26.94±2.9 93.75±0.4 5.86±2.6 72.98±0.3 57.25±0.6 72.53±0.3 59.26±0.2 67.74±0.1 6.87±1.8

7 CONCLUSION

In this paper, we explored the relationship between gradient variance and fairness in private model
training with DP gradients. Firstly, we conducted plentiful experiments to investigate the impact of
gradient variance on model fairness in DP gradients where groups with larger gradient variance suf-
fer from more performance degradation than others. Subsequently, we further verify the relationship
through theoretical proofs. Next, we proposed a framework called FDPG to mitigate the disparate
impact while maintaining model utility, which consists of a fairness-aware sampling mechanism
and an adaptive noise injection strategy. Finally, experimental results on both single and multiple
protected group attributes settings confirmed the effectiveness of FDPG.
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A THEORETICAL RESULTS

A.1 RÉNYI DIFFERENTIAL PRIVACY

To ensure that the privacy budget is not exceeded throughout model training, we use Rényi differen-
tial privacy (RDP) (Mironov, 2017) for a better track of the privacy loss, which is a relaxed version
of DP. Compared to (ϵ, δ)-DP, RDP provides an operationally more convenient, quantitatively more
accurate way to track the cumulative privacy loss from a composition of multiple mechanisms. RDP
is defined based on Rényi divergence as follows.

Definition 4 (Rényi divergence (van Erven & Harremoës, 2014)) Given two probability distri-
butions P , Q, x ∈ D, the Rényi divergence of a finite order α > 1 is defined as

Dα(P∥Q) ≜
1

α− 1
ln

∫
X
q(x)

(
p(x)

q(x)

)α

dx,

where p(x), and q(x) denotes the density of P or Q at x respectively.

Definition 5 (Rényi Differential Privacy (Mironov, 2017)) A randomized mechanismM : D →
R with domain D and range R satisfies (α,R)−RDP if

Dα (M(D)∥M (D′)) ≤ R,

for any neighbor datasets D,D′. R is the privacy budget for RDP.

The following Lemma defines the standard form for converting (α,R)−RDP to (ϵ, δ)−DP .

Lemma 1 (Conversion from RDP to DP (Mironov et al., 2019)) if a randomized mechanism
M : D → R satisfies (α,R)−RDP , then it satisfies (ϵ, δ)−DP for any 0 ≤ δ ≤ 1, and

ϵ = R+
log(1/δ) + (α− 1) log(1− 1/α)− log(α)

α− 1
. (7)

In model training with RDP, a fundamental building block is the sampled Gaussian mechanism
(SGM), which operates by sampling a subset uniformly from a given dataset, applies a function f
on the sample set, and injects Gaussian noise according to sensitivity Sf .
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Definition 6 (Sampled Gaussian Mechanism (Mironov et al., 2019)) Given a function f map-
ping subsets of D to R, with sensitivity Sf , SGM with sampling probability 0 < p ≤ 1 and additive
Gaussian noise N(0, S2

fσ
2Id) is

SGp,σ(D) ≜f({ξ : ξ ∈ D is sampled with probability p}) +N
(
0, S2

fσ
2Id
)
.

A.2 PROOF OF THEOREM 2

We analyze the relationship between gradient variance and gradient norm for AUTO-S through con-
vergence analysis. Following the standard assumptions in the SGD literature (Koloskova et al., 2023;
Zhang et al., 2020), our analysis is built upon bounded variance (Definition 1) and the following as-
sumption:

Assumption 1 ((L0, L1)-Smoothness) For all x, y ∈ Rd, and there exist constants L0 > 0 and
L1 ≥ 0, function f satisfies (L0, L1)-smoothness, if

∥∇f(x)−∇f(y)∥ ≤ (L0 + ∥∇f(x)∥L1)∥x− y∥. (8)

From Assumption 1, we can obtain the following lemma.

Lemma 2 If f(x) is (L0, L1)-smooth, for ∀x,y ∈ Rd, ∥x− y∥ ≤ 1
L1

, then it also holds that

f(y)− f(x) ≤ ⟨∇f(xt),y − x⟩+ (L0 + ∥∇f(x)∥L1)

2
∥x− y∥2 .

From Lemma 1, we have
f(xt+1)− f(xt)

≤ −η ⟨∇f(xt),g(xt) + zt⟩

+
η2(L0 + ∥∇f(xt)∥L1)

2
∥g(xt) + zt∥2 .

(9)

Here, g(xt) = 1
b

∑
ξi∈Bt

∇fξi (xt)

∥∇fξi (xt)∥+γ
is the average of normalized per-sample gradients, where

batch size b = nq by uniform sampling with sampling probability q. Now taking the expectation on
both sides of Eq. 9, and obtain

E
[
f(xt+1)− f(xt)

]
≤ −ηE

[
⟨∇f(xt),g(xt) + zt⟩

]
+ E

[η2(L0 + ∥∇f(xt)∥L1)

2
∥g(xt) + zt∥2

]
.

(10)

Note that the DP noise is of zero mean, i.e., E[zt] = 0, and

E[∥g(xt) + zt∥2] = E[∥g(xt)∥2] + E[∥zt∥2],
then

E[∥g(xt)∥2]

=
1

(nq)2
E[∥

∑
i

1ivi∥2]

≤ 1

(nq)2

∑
i̸=j

E[1i · 1j ]∥vi∥∥vj∥+
1

(nq)2

n∑
i=1

E[1i · 1i]∥vi∥2

<
n(n− 1)q2 + nq

(nq)2
< 2,

(11)

where vi =
∇fξi (xt)

∥∇fξi (xt)∥+γ , for i = 1, 2, ..., n, and ∥vi∥ < 1, set Pr(1i = 1) = q to indicate whether
the i-th sample is selected. Therefore,

η2(L0 + ∥∇f(xt)∥L1)

2
E[∥g(xt)∥2 + ∥zt∥2]

≤ η2(L0 + ∥∇f(xt)∥L1)

2
(2 + σ2).

(12)
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Now, we analyze the first term in Eq. 10. For the case that ∥∇f(xt)∥ ≥ 6τ , we have that

E
[
g(xt)

]
= E

[ ∇fξ(xt)

∥∇fξ(xt)∥+ γ

]
,

let αξ = 1
∥∇fξ(xt)∥+γ , then

E
[
⟨∇f(xt),g(xt)⟩

]
= E

[
αξ ⟨∇f(xt),∇fξ(xt)⟩

]
.

Define δ = 1{∥∇fξ(x)−∇f(x)∥ > 3τ}, and take the conditional expectation as follows:

E [αξ ⟨∇f(xt),∇fξ(xt)⟩]
≤ p(δ = 0)E [αξ ⟨∇f(xt),∇fξ(xt)⟩ |δ = 0]

+ p(δ = 1)E [αξ ⟨∇f(xt),∇fξ(xt)⟩ |δ = 1] .

(13)

We bound the first term of Eq. 13 and obtain:
αξ ⟨∇f(xt),∇fξ(xt)⟩
= αξ ⟨∇f(xt),∇fξ(xt)−∇f(xt) +∇f(xt)⟩
≥ αξ ∥∇f(xt)∥2 − 3αξ ∥∇f(xt)∥ τ

≥ αξ

2
∥∇f(xt)∥2 ,

then we need to bound αξ. Note that τ < ∥∇f(xt)∥ /6 and ∥∇fξ(xt) − ∇f(xt)∥ ≤ 3τ , so
∥∇fξ(xt)∥ ≤ 2 ∥∇f(xt)∥, then

αξ =
1

∥∇fξ(xt)∥+ γ
≥ 1

2∥∇f(xt)∥+ γ
.

If γ ≤ 6τ ≤ ∥∇f(xt)∥, then 1
2∥∇f(xt)∥+γ ≥

1
3∥∇f(xt)∥ , so

αξ ≥
1

3∥∇f(xt)∥
.

Now bounding the second term
E [αξ ⟨∇f(xt),∇fξ(xt)⟩ |δ = 1]

≥ −∥∇f(x)∥E [∥αξ∇fξ(x)∥ |δ = 1]

≥ −∥∇f(x)∥ .
It remains to bound p(δ = 1). Using Markov inequality, we have that

p(δ = 1) = p(∥∇fξ(x)−∇f(x)∥2 > 9τ2) ≤ 1/9.

So, p(δ = 0) = 1− p(δ = 1) ≥ 8/9. To sum up, we obtain that

−E
[
⟨∇f(xt),g(xt)⟩

]
≤ −8

9

αξ

2
∥∇f(xt)∥2 +

1

9
∥∇f(xt)∥

≤ − 5

27
∥∇f(xt)∥.

(14)

Now the second term in Eq. 10 is bounded in the same way as αξ, we have

η2(L0 + ∥f(xt)∥L1)

2
(2 + σ2)

≤ η2(L0 + γL1)(2 + σ2)

2γ
∥f(xt)∥.

(15)

Plugging Eq. 14 and Eq. 15 into Eq. 10, and obtain

E [f(xt+1)− f(xt)] ≤ −
5η

27
∥∇f(xt)∥

+
η2(L0 + γL1)(2 + σ2)

2γ
∥f(xt)∥,

and with η ≤ 4γ
27(L0+γL1)(2+σ2) , we obtain:

E [f(xt)− f(xt+1)] ≤ −
η

9
∥∇f(xt)∥. (16)
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Final convergence. If for all t iterations the gradient norm is large (∥∇f(xt)∥ ≥ 6τ ) and thus
Eq. 16 holds for all the iterations. Averaging over 1 ≤ t ≤ T + 1, we have

1

T + 1

T∑
t=0

∥∇f(xt)∥ ≤ O
(
f(x0)− f∗

ηT

)
,

If for at least one iteration it happens that ∥∇f(xt)∥ ≤ 6τ , then it simply holds that
min

t∈[1,T ]
E ∥∇f(xt)∥ ≤ O (τ) .

combining these two cases, we have

min
t∈[1,T ]

E ∥∇f(xt)∥ ≤ E[
1

T + 1

T∑
t=0

∥∇f(xt)∥]

≤ O
(
τ +

F0

ηT

) , (17)

where F0 = f(x0)− f∗.

The proof is completed.

A.3 PROOF OF THEOREM 3

For simplicity, we only adopt the clipping method but all the following analysis can be generalized
to the normalization operation without fundamental difference. First, the estimated mean clipped
gradient using the sampled batch B is

g̃ =
1

b

(∑
i∈B

gi +N
(
0, σ2C2I

))
, (18)

where gi is the gradient after clipping. g̃ follows a mixture Gaussian distribution:

f(D) =
1

b

∑
B

p(B)N

(∑
i∈B

gi, σ
2C2I

)
, (19)

where p(B) stands for the probability of sampling batch from dataset D, i.e.,

p(B) =

B∏
xi

pi

D\B∏
xj

(1− pj).

Next, consider a neighbor dataset D′ = D ∪ {z}. The sets of gradients of D and D′ are {gi}Ni and
{gi}Ni ∪ {gz}, respectively. Given D′ is the training set, the distribution of g̃ is

f(D′) =
1

b

∑
B

p(B)

(
(1− pz)N

(∑
i∈B

gi, σ
2C2I

)
+

pzN
(∑

i∈B

gi + gz, σ
2C2I

))
.

We proceed to bound the following Rényi divergence:

Dα

(
f(D′) ∥ f(D)

)
≤ Dα

(
b · f(D′) ∥ b · f(D)

)
≤ sup

B
Dα

(
(1− pz)N

(∑
i∈B

gi, σ
2C2I

)

+ pzN

(∑
i∈B

gi + gz, σ
2C2I

)∥∥∥∥N
(∑

i∈B

gi, σ
2C2I

))

≤ sup
∥gz∥≤C

Dα

(
(1− pz)N (0, σ2C2I)

+ pzN
(
gz, σ

2C2I
) ∥∥∥N (0, σ2C2I

) )
.
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where first inequality follows from the data processing inequality for Rényi divergence, the second
inequality follows from the joint quasi-convex property of Rényi divergence (van Erven & Har-
remoës, 2014), and the last inequality follows from the translation and rotation invariance for Rényi
divergence (Mironov, 2017). Since Rényi divergence is additive, for any gradient gz and its corre-
sponding pz , we have

Dα

(
(1− pz)N (0, σ2C2I) + pzN

(
gz, σ

2C2I
)
∥ N

(
0, σ2C2I

))
= Dα

(
(1− pz)N

(
0, σ2C2

)
+ pzN

(
∥gz∥, σ2C2

)
∥ N

(
0, σ2C2

))
=

1

α− 1
ln

(
α∑

m=0

(
α

m

)
(1− pz)

α−mpmz exp

(
(m2 −m)∥gz∥2

σ2C2

))
.

With ∥gz∥ ≤ C, for DP-SGD, pz = 1
n . However, for FDPG, pz is not fixed, we let pz ≤ p∗,

p∗ is easy to obtain by making it the maximum sampling probability of n samples, i.e., p∗ =
max(p1, ..., pn), we have

sup
∥gz∥≤C

1

α− 1
ln

(
α∑

m=0

(
α

m

)
(1− pz)

α−mpmz exp

(
(m2 −m)∥gz∥2

σ2C2

))

≤ 1

α− 1
ln

(
α∑

m=0

(
α

m

)
(1− p∗)α−m(p∗)m exp

(
(m2 −m)

σ2

))
≜ RFDPG.

Finally, we use Lemma 1 to convert it to (ϵ, δ)−DP . The proof is completed.

B ALGORITHM

Algorithm 1 summarizes the main steps of the proposed method.

Algorithm 1 FDPG
Input: Dataset D with n samples, loss function f(x), batch size b, epochs E, learning rate η,
clipping threshold C, step size ηq , auxiliary bound β, noise multipliers σ1, σ2

Output: xT , privacy cost (ϵ, δ)
1: Initialize all group probabilities with 1.
2: for epoch e ∈ [1, E] do
3: for iteration t ∈ [1, T ] do
4: Sample batch Bt with probability p (ξ) = bp (ξ)
5: for each sample ξi ∈ Bt do
6: Compute per-sample gradient gi = ∇fξi(xt)
7: gi = Clip/Normalize(gi)
8: end for
9: g̃ = 1

b

(∑
i∈Bt

gi +N
(
σ2
1C

2I
))

10: xt+1 = xt − ηtg̃
11: end for
12: for each group k ∈ [K] do
13: q

′

k = qtk · exp(ηq · G̃k)
14: qt+1

k = q
′

k/
∑

k∈[K] q
′

k

15: end for
16: Assign new group probabilities to n samples to get the sampling probability distribution p(ξ)
17: end for
18: return xT and (ϵ, δ)
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C EXPERIMENTAL DETAILS

C.1 BASELINES

The details of the baselines in our experiments are as follows:

• DP-SGD (Abadi et al., 2016): It is a standard method for private model training with
gradient clipping and Gaussian noise.

• DPSUR (Fu et al., 2024): It is a state-of-the-art DP gradient method, which selects updates
that lead to convergence and applies those updates to model.

• AUTO-S (Bu et al., 2024): Utilizing gradient normalization to improve model performance
and convergence without the need to tune clipping threshold.

• DPSGD-F (Xu et al., 2021): It adaptively adjusts the clipping threshold for each group to
compensate for the different utility loss on groups due to clipping.

• DP-IS-SGD (Kulynych et al., 2022): Specifically designed to improve the accuracy of the
worse-performing groups while retaining DP guarantees.

• DPSGD-Global-Adapt (DPSGD-G.-A.) (Esipova et al., 2023): It aims to mitigate the dis-
parate impact by scaling gradients by introducing a strict upper bound Z and adaptively
updating Z to upper-bound the max gradient norm in a batch.

When compared to DP-SGD and DPSUR, we implement gradient clipping for all methods. When
compared to AUTO-S, among the fair baselines, DP-IS-SGD can be implemented in AUTO-S frame-
work by replace gradient clipping with gradient normalization. However, DPSGD-F and DPSGD-
G.-A. ensure fairness by modifying the clipping procedure which can not be replaced by gradient
normalization. Hence, to demostrate the fairness effect of FDPG in gradient normalization setting,
we compare FDPG with DP-IS-SGD.

C.2 DATASETS AND MODELS

The details of the datasets and models are as follows:

Adult consists of 48,842 samples. As is typical in the fairness literature, we use “sex” as the
protected group attribute. The classification label is “income” (whether or not income exceeds
$50, 000). Prior to sampling, the Adult dataset is unbalanced with respect to sex with 30,527 males
and 14,695 females. We sample a balanced dataset as in (Xu et al., 2021; Esipova et al., 2023) with
14,000 females and 14,000 males on average.

Dutch is preprocessed as (Esipova et al., 2023), for a total of 60,420 samples. We consider “sex” as
the protected group attribute. The processed dataset is balanced with respect to “sex” with 30,147
male samples and 30,273 female samples.

MNIST contains 60,000 training samples and 10,000 testing samples of handwritten digits, divided
into 10 classes with 7,000 grayscale images per category. We choose class 8 as an artificially under-
represented group to compare with the typical class 2 as in fairness-aware literature (Xu et al., 2021;
Esipova et al., 2023).

CelebA consists of 202,599 face images of various celebrities, along with binary attributes describ-
ing each image. We use the binary attribute “Eyeglasses” for the target, the attribute “Male” is
our protected group (118,165 females and 84,434 males) in single protected attribute setting. For
multiple protected attributes, we use (Male, Blonde) as (Kulynych et al., 2022).

Blog contains weblogs written on 19 different topics, collected from the Internet before August 2004
with a total of 681,288 posts and over 140 million words. We binarize age, distinguishing between
young (≤ 35) and older (> 35) authors, and take (gender, age) as protected group attributes, resulting
in four different group combinations. We chose two topics of roughly equal size (Technology and
Arts), reducing the topic classification task to a binary classification task.

As in (Esipova et al., 2023), we apply the same convolutional neural network (CNN) architecture
to two image datasets, i.e., MNIST and CelebA, logistic regression model for Adult, and MLP with
two hidden layers of 256 units for Dutch. When compared to AUTO-S, we adopt the same 4-layer
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CNN architecture for MNIST and ResNet9 for CelebA as in (Bu et al., 2024). Additionally, we used
a pretrained DistilBERT model (66M) for the Blog dataset.

C.3 PARAMETER SETTINGS

We follow the settings of previous works (Esipova et al., 2023; Bu et al., 2024; Hansen et al., 2024).
For comparison with DP-SGD, we set learning rate η = 0.01, noise multiplier σ = 1, clipping thresh-
old C = 0.5 for Adult, η = 0.8, σ = 1, C = 0.1 for Dutch, and η = 0.01, σ = 0.8, C = 1 for MNIST.
In CelebA, η = 0.1 for fairness-aware baselines, σ = 0.8, C = 1. With this, training 20 epochs for
tabular datasets, 60 epochs for MNIST and 30 epochs for CelebA with fixed δ = 10−6, which gives
ϵ = 3.4 for Adult, ϵ = 2.3 for Dutch, ϵ = 5.9 for MNIST, and ϵ = 2.5 for CelebA. These privacy
budget are the same as (Esipova et al., 2023). For comparison with AUTO-S, we adopt the same
hyperparameters from (Bu et al., 2024), where ϵ = 3 for MNIST and ϵ = 8 for CelebA. For Blog
dataset, We use Adam optimizer, and set η = 0.0005, σ = 0.8, C = 1.2 and 20 epochs, 16 batch
size for comparison with DP-SGD while C = 1 for comparison with AUTO-S. In addition, DPSUR
selects update during training. To make DPSUR obtain the same privacy as other baselines, we set
the noise multiplier σ = 0.86 for Adult, σ = 0.88 for dutch, σ = 0.7 for MNIST, σ = 0.74 for CelebA,
and σ = 0.49 for Blog in DPSUR. All experiments are implemented on a single RTX3090 (24 GB)
NVIDIA GPU with Pytorch framework.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 NORMALIZATION ERROR UNDER DIFFERENT γ VALUES

F (a) is visualized in Fig. 5, it is clear that when a ≤ 1− γ, F (a) has an upper bound.
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Figure 5: Visualization of normalization error at different γ.

D.2 COMPUTATIONAL TIME

In Fig. 6, we visualize the training time required by FDPG and baselines on large scale datasets.
FDPG only incurs a negligible overhead compared to DP-SGD and AUTO-S, and is scalable as
other private and fair baselines in terms of runtime. In contrast, DPSUR is on average two times as
expensive compared to DP-SGD for selecting updates at each iteration.

D.3 ACCURACY-FAIRNESS TRADE-OFF UNDER DIFFERENT PRIVACY LEVEL

We explore the effect of private and fair methods across different privacy budget ϵ, we choose ϵ ∈
{1, 3, 5, 7, 9, 10}. We use CelebA dataset with group = Male and Blog dataset with group = (gender,
age). All other hyperparameters remain unchanged and all methods share the same seeds. The
results can be found in Fig. 7.

Observations indicate that FDPG outperforms other baselines in fairness and utility performance on
Blog dataset. On CelebA dataset, FDPG outperforms in fairness on strong privacy level. Although
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Figure 6: Training time. Training time (in hours) across CelebA and Blog datasets.

DPSGD-F shows better fairness on relatively higher privacy budgets, its sensitivity to privacy budget
suggests reduced robustness. Both our method and DPSGD-G.-A. show comparable utility, but our
approach outperforms in terms of fairness and more robust to different privacy budget. DP-IS-SGD
demonstrates high sensitivity to privacy budget on both datasets. In general, our method achieves an
optimal balance between fairness and accuracy.
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(a) Blog dataset.
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(b) CelebA dataset.

Figure 7: Accuracy, privacy and fairness trade-offs for different datasets.
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D.4 HANDLING NEW GROUP FAIRNESS NOTIONS

We consider the Scalability of FDPG to address additional fairness notions. This characteristic
arises from the flexibility of the fairness-aware sampling mechanism. We consider standard fairness
metrics including Demographic Parity (Feldman et al., 2015), Equal Opportunity (Hardt et al., 2016),
and Equalized Odds (Hardt et al., 2016).

Table 4 verifies the fairness metrics obtained by FDPG and the baselines DP-SGD, AUTO-S and
NON-DP method. The smaller fairness metrics the lower the fairness violations. Remarkably, the
fairness violations reported by FDPG are often significantly lower than those reported by DP-SGD,
AUTO-S and NON-DP.

Table 4: Comparison with other fairness notions on Adult dataset.
Method Demographic Parity Equal Opportunity Equalized Odds

NON-DP 0.1944 0.2079 0.2924
DP-SGD 0.1343 0.2292 0.2748
AUTO-S 0.1059 0.1948 0.2250
FDPG 0.0530 0.0949 0.1083

D.5 GRADIENT VARIANCE OF EACH GROUP IN IMAGE DATASETS

Fig. 8 shows the gradient variance of different groups on the CelebA dataset. The results indicate
that FDPG reduces the gradient variance of disadvantaged groups (e.g., Male), thereby decreasing
the gradient variance gap among groups and improving fairness.
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Figure 8: Gradient variance for Female and Male in CelebA.
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