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Abstract

Open-vocabulary scene understanding endeavors to lo-
calize and recognize unseen categories beyond the an-
notated label space. The recent breakthrough of 2D
open-vocabulary perception is largely driven by Internet-
scale paired image-text data with rich vocabulary concepts.
However, this success cannot be directly transferred to 3D
scenarios due to the inaccessibility of large-scale 3D-text
pairs. To this end, we propose to distill knowledge en-
coded in pre-trained vision-language (VL) foundation mod-
els through captioning multi-view images from 3D, which
allows explicitly associating 3D and semantic-rich cap-
tions. Further, to foster coarse-to-fine visual-semantic rep-
resentation learning from captions, we design hierarchi-
cal 3D-caption pairs, leveraging geometric constraints be-
tween 3D scenes and multi-view images. Finally, by em-
ploying contrastive learning, the model learns language-
aware embeddings that connect 3D and text for open-
vocabulary tasks. Our method not only remarkably out-
performs baseline methods by 25.8% ∼ 44.7% hIoU and
14.5% ∼ 50.4% hAP50 in open-vocabulary semantic and
instance segmentation, but also shows robust transferabil-
ity on challenging zero-shot domain transfer tasks. See the
project website at https://dingry.github.io/projects/PLA.

1. Introduction
3D scene understanding is a fundamental perception

component in real-world applications such as robot manipu-
lation, virtual reality and human-machine interaction. Deep
learning has attained remarkable success in this area [13, 38,
28]. However, deep models trained on a human-annotated
dataset are only capable of understanding semantic cate-
gories in that dataset, i.e. closet-set prediction. As a result,
they fail to recognize unseen categories in the open world
(see Fig. 1). This largely restricts their applicability in real-
world scenarios with unbounded categories. Besides, heavy
annotation costs on 3D datasets (e.g. 22.3 minutes for one
scene with 20 classes [7]) further make it infeasible to rely
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Figure 1. An example of 3D open-vocabulary scene understand-
ing with ‘bookshelf’ as unseen class for ScanNet [7]. The close-set
model mistakes ‘bookshelf’ as ‘cabinet’ or simply misses ‘book-
shelf’ in (a) and (c). Our open-vocabulary model correctly local-
izes and recognizes ‘bookshelf’ in (b) and (d).

on human labor to cover all real-world categories.
This motivates us to study open-vocabulary 3D scene un-

derstanding, which equips a model with the ability to local-
ize and recognize open-set classes beyond the label space of
an annotated dataset (see Fig. 1). Recently, vision-language
(VL) foundation models [33, 22, 47] trained on billions of
web-crawled image data with semantic-rich captions [36]
are capable of learning adequate vision-language embed-
dings to connect text and image, which are further leveraged
to solve many 2D open-vocabulary tasks including object
detection [15, 35], semantic segmentation [43, 26, 51], vi-
sual question answering [31] and etc. Albeit significantly
advancing open-vocabulary image understanding tasks, this
pre-training paradigm is not directly viable in the 3D do-
main due to the absence of large-scale 3D-text pairs.

To this end, some initial works [50, 20] have attempted
to project 3D data into 2D modality (i.e., RGB images and
depth maps) such that pre-trained VL foundation models
can be leveraged to process the 2D data and achieve object-
level open-vocabulary recognition. Nevertheless, this line
of methods suffers from several major issues, making it
suboptimal to handle scene-level understanding tasks (e.g.,
instance segmentation). First, multiple RGB images and
depth maps are required to represent a 3D sample, which
incurs heavy computation and memory costs during both
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training and inference. Second, the projection from 3D to
2D induces information loss and prohibits learning from
rich 3D data directly, leading to poor performance. Our
preliminary study shows that the state-of-the-art 2D open-
vocabulary semantic segmentation method MaskCLIP [51]
only attains 17.8% mIoU when applied to analyze projected
2D RGB images from 3D ScanNet dataset.

Thus, considering the success of VL foundation mod-
els for a variety of vision-language tasks [15, 35, 43, 26, 51,
50, 20], we ask: is it possible to elicit knowledge encoded in
powerful VL foundation models to build an explicit associa-
tion between 3D and language for open-vocabulary under-
standing? To this end, our core idea is to exploit pre-trained
VL foundation models [1, 39] to caption easily-obtained im-
age data aligned with 3D data (i.e. the point set in the corre-
sponding frustum to produce the image). Note that these
images can be acquired through neural rendering [9, 46]
or from the 3D data collection pipeline [7]. By doing so,
we can distill semantic-rich textual descriptions to the 3D
domain, which allows explicit association between 3D and
vocabulary-rich text for zero-shot 3D scene understanding.

Given 3D-language association, the next question is en-
abling a 3D network to learn language-aware embeddings
from (pseudo) captions. The key challenge stems from intri-
cate object compositions in 3D scene-level data (see Fig. 3),
making it difficult to connect objects with corresponding
words in the caption. This differs from object-centric image
data containing a single centered object [33]. Fortunately,
the captioned multi-view images from a 3D scene are re-
lated by 3D geometry, which can be leveraged to build hi-
erarchical point-caption pairs, including scene-, view- and
entity-level captions. These multi-level point-caption pairs
offer coarse-to-fine supervision signals, facilitating learning
adequate visual-semantic representations from rich vocabu-
lary by contrastive learning. Without task-specific design,
our Point-Language Association paradigm, namely PLA, is
generic for various open-vocabulary 3D scene understand-
ing tasks, such as semantic and instance segmentation.

Experimental results for ScanNet [7] and S3IDS [2]
datasets show the effectiveness of our method in in-domain
open-vocabulary tasks with only category shifts, i.e. train-
ing and evaluation are conducted on the same dataset, sur-
passing baselines by 25.8% ∼ 44.7% hIoU on semantic seg-
mentation and 14.5% ∼ 50.4% hAP50 on instance segmen-
tation. Besides, our model, trained on a dataset (i.e. Scan-
Net), can generalize to another dataset (i.e. S3IDS) with
both data distribution and category shifts, manifesting its
transferability. Finally, our model can benefit from more ad-
vanced foundation models that provide higher-quality cap-
tion supervision, showing its scalability and extensibility.

2. Related Work
3D scene understanding focuses on understanding the se-
mantic meaning of objects and surrounding environment

from point clouds. In this work, we focus on two fundamen-
tal scene understanding tasks: semantic and instance seg-
mentation. 3D semantic segmentation aims to obtain point-
wise semantic predictions for point clouds. Representative
works develop point-based solutions [32, 19] with elab-
orately designed point convolution operations [37, 42] or
transformers [24] or voxel-based [13, 6] methods with 3D
sparse convolutions [14] to produce point-wise segmenta-
tion results. 3D instance segmentation further targets distin-
guishing different object instances based on semantic seg-
mentation. Existing approaches either adopt a top-down so-
lution [45, 44] via predicting 3D bounding box followed by
mask refinement, or a bottom-up [23, 38] approach through
grouping points. However, existing methods cannot recog-
nize open-set novel categories, which we aim to address.

Zero-shot and open-vocabulary understanding aims to
recognize novel classes that are not annotated in training
data. Early approaches mainly follow zero-shot settings that
can be coarsely grouped into discriminative methods [40, 3]
and generative methods [4, 16]. 3DGenZ [27] extends [4]
to the 3D scenario for zero-shot semantic segmentation.
Going beyond zero-shot learning, the more general open-
vocabulary setting assumes a large vocabulary corpus is ac-
cessible during training [49]. Existing 2D open-vocabulary
learning works either exploit massive annotated image-text
pairs to provide weak supervision for expanding vocabu-
lary size [49, 53] or leverage pre-trained VL models from
large-scale image-caption pairs, such as CLIP [33], to ad-
dress open-vocabulary recognition where knowledge distil-
lation [35, 15, 48] and prompt learning [12, 11] are studied.

In comparison, 3D open-vocabulary learning is still in
its infancy with only a few explorations focusing on ob-
ject classification [50, 20]. They attempt to project object-
level 3D point clouds to multi-view 2D images and depth
maps to adopt the pre-trained VL model to generate open-
vocabulary predictions, which, however, suffer from heavy
computation and poor performance if applied to 3D scene
understanding tasks. In this work, we propose a language-
driven 3D open-vocabulary framework that directly asso-
ciates 3D with text descriptions leveraging multi-view im-
ages and VL foundation models. It can be generally applied
to various scene understanding tasks and is efficient with
only the 3D network employed in training and inference.

3. Method
3.1. Preliminary

3D open-vocabulary scene understanding aims to local-
ize and recognize unseen categories without corresponding
human annotation as supervision. Formally, annotations on
semantic and instance levels Y = {ysem,yins} are divided
into base CB and novel CN categories. In the training stage,
the 3D model can access all point clouds P = {p} but only
annotations for base classes YB , unaware of both annota-
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Figure 2. Our language-driven 3D scene understanding paradigm. Different from the close-set network, the learnable semantic head is
replaced by category embeddings encoded by a text encoder from category names. Binary head is to rectify semantic scores with base
and novel probability as conditions. Instance head is tailored to instance segmentation. Most importantly, to endow the model with rich
semantic space to improve open-vocabulary capability, we supervise point embeddings with caption embeddings based on point-language
association (see Fig. 3 for details). Best viewed in color.

tions YN and category names concerning novel classes CN .
However, during inference, the 3D model needs to localize
objects and classify points belonging to both base and novel
CB ∪ CN categories.

As for a typical scene understanding network, it consists
of a 3D encoder F3D, a dense semantic classification head
Fsem and an instance localization head Floc (see Suppl. for
details). Its inference pipeline can be demonstrated below,

fp = F3D(p), s = σ ◦ Fsem(f
p), z = Floc(f

p, s), (1)

where p is the input point cloud, fp is point-wise visual
feature, s is semantic score, z is the instance proposal out-
put and σ is the softmax function. With these network pre-
dictions, we can then calculate semantic classification loss
Lsem with semantic label ysem, and localization loss Lloc
with instance label yins similar to [23, 38] as Eq (2). Notice
that ysem and yins only relate to base categories CB .

Lsem = Loss(s,ysem), Lloc = Loss(z,yins). (2)

3.2. Open-Vocabulary Setups
Though we can train a scene understanding model with

loss functions in Eq. (2), it is actually a close-set model with
a close-set classifier Fsem, incapable of recognizing unseen
categories. In this regard, we introduce the text-embedded
semantic classifier to obtain an open-vocabulary model and
propose a binary calibration module to correct the bias to-
ward base categories for open-vocabulary inference.

3.2.1 Text-Embedded Semantic Classifier
First, as shown in Fig. 2, to make the model become an
open-vocabulary learner, we replace its learnable semantic
classifier Fsem with category embeddings f l and a learnable
vision-language adapter Fθ to match the dimension between
3D features fp and f l as follows,

fv = Fθ(f
p), s = σ(f l · fv), (3)

where fv is the projected features with the VL adapter Fθ,
f l = [f l1, f

l
2, · · · , f lk] is a series of category embeddings ob-

tained by encoding category names C with a frozen text en-
coder Ftext such as BERT [10] or CLIP [33] (see Fig. 2).

The prediction is made by calculating the cosine similar-
ity among projected point features fv and categories f l and
then selecting the most similar category. Notice that f l only
contains embeddings belonging to base categories CB dur-
ing training, but embeddings related to both base and novel
classes CB∪CN are used during open-vocabulary inference.
With category embeddings f l as a classifier, the model can
support open-vocabulary inference with any desired cate-
gories. The above design generally follows LSeg [26] and
is named LSeg-3D as a baseline.

3.2.2 Semantic Calibration with Binary Head

Although the model has already possessed open-vocabulary
capability, we empirically find that it can hardly make any
correct predictions on novel classes but mistakes them for
base classes. As the model is only trained to recognize base
categories, it inevitably produces over-confident predictions
on base classes regardless of their correctness, also known
as the calibration problem [17]. To this end, we propose
a binary calibration module to rectify semantic scores with
the probability of a point belonging to base or novel classes.

Specifically, as shown in Fig. 2, the binary head Fb is em-
ployed to distinguish annotated (i.e. base) and unannotated
(i.e. novel) points. During training, Fb is optimized with:

sb = Fb(f
p), Lbi = BCELoss(sb,yb), (4)

where BCELoss(·, ·) is the binary cross-entropy loss, yb is
the binary label and sb is the predicted binary score indicat-
ing the probability that a point belongs to novel categories.
In the inference stage, we then exploit the binary probability
sb to correct the over-confident semantic score s as follows,

s = sB · (1− sb) + sN · sb, (5)
where sB is the semantic score computed solely on base
classes with novel class scores set to zero. Similarly, sN is
computed only for novel classes, setting base class scores to
zero. We empirically show that the probability calibration
largely improves the performance of both base and novel
categories (see Sec. 5), demonstrating that our design effec-
tively corrects over-confident semantic predictions.
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Figure 3. Image-bridged point-language association. We present hierarchical scene-level, view-level and entity-level point-language
association manners to assign partial point set with caption supervision through multi-view RGB images and VL foundation models.

3.3. Image-Bridged Point-Language Association
With the text-embedded classifier and the binary se-

mantic calibration module, we obtain a deep model with
open-vocabulary capability. Nevertheless, its performance
on novel categories is very close to random guesses as
shown in Table 5. Recent success of open-vocabulary
works [26, 35, 15] in 2D vision community shows the ef-
fectiveness of introducing language supervision to guide vi-
sion backbones. Language supervision can not only enable
the vision backbone to access abundant semantic concepts
with a large vocabulary size but also assist in mapping vi-
sion and language features into a common space to facilitate
multi-modality downstream tasks. However, Internet-scale
paired point-text data are not as readily available as image-
text pairs on social media, which largely hinders the devel-
opment of language-driven 3D understanding.

To address this challenge, we propose PLA, an image-
bridged point-language association module to provide lan-
guage supervision for 3D scene perception without human
annotation (see Fig. 2 & Fig. 3). Our core idea is to use
multi-view images of a 3D scene as a bridge to access
knowledge encoded in VL foundation models. As shown
in Fig. 3, a text description is first generated by a powerful
image-captioning model taking images of 3D scenes as in-
put, and then associated with a set of points in the 3D scene
using the projection matrix between images and 3D scenes.
We elaborate on our captioning procedure as well as the de-
signed hierarchical point-caption association as follows.

3.3.1 Caption Multi-View Images
As image captioning is a fundamental task in VL research
area [18], various foundation models [39, 1, 29] trained with
massive samples are readily available for solving this task.
Specifically, taking the jth image of the ith scene vij as in-
put, the pre-trained image-captioning model G can generate
its corresponding language description tvij as follows,

tvij = G(vij). (6)

Surprisingly, though G has not been specifically trained on
the 3D scene understanding dataset, the entities in gener-
ated captions already cover the whole semantic label space
of the popular 3D scene understanding dataset ScanNet [7].

In addition, the caption t provides fairly accurate and com-
prehensive descriptions for room types, semantic categories
with color and texture attributes, and even spatial relations
(see language supervision {tv} examples in Fig. 3 and more
examples in Suppl.).

3.3.2 Associate Point Cloud with Language

Given the image-caption pairs, the next step is to connect a
point set p̂ to language t with images v as bridge as follows:

Explore ⟨p̂, t⟩ with ⟨p̂,v⟩ and ⟨v, t⟩. (7)
Here, we propose three association fashions on point sets
with different spatial scales.

Scene-Level Point-Caption Association. The simplest and
coarsest association manner is to link language supervision
to all points in a given 3D point cloud scene p̂s = p. As
illustrated in Fig. 3, we take all 2D image captions tvij of a
given scene pj to obtain a scene-level caption tsj via a text
summarizer [25] Gsum as follows:

tsj = Gsum({tv1j , tv2j , · · · tvnjj}), (8)

where nj is the number of images of scene pj . By forcing
each scene p to learn from the corresponding scene descrip-
tions ts, abundant vocabulary and visual-semantic relation-
ships are introduced to improve the language understanding
capability of a 3D network. Despite the simplicity of scene-
level caption, we empirically find that it can lift the model’s
open-vocabulary capability by a large margin (see Sec. 5).

View-Level Point-Caption Association. Albeit effective,
scene-level caption only provides a single caption for all
points in a scene, which overlooks the relation of language
to local 3D point clouds, rendering it sub-optimal for scene
understanding tasks. In this regard, we further propose a
view-level point-caption association that leverages the ge-
ometrical relationship between image and points to assign
each image caption tv with a point set inside the 3D view
frustum p̂v of the given image v (see blue box in Fig. 3).
Specifically, to obtain the view-level point set p̂v, we first
back-project the RGB image v to 3D space using the depth
information d to get its corresponding point set p̈:[

p̈ 1
]
= T−1

[
v d

]
, (9)



where [·|·] denotes block matrix, T ∈ R3×4 is the projec-
tion matrix comprising of camera intrinsic matrix and rigid
transformations obtained by sensor configurations or ma-
ture SLAM approaches [8]. As back-projected points p̈ and
points in 3D scene p may be only partially overlapped, we
then compute their overlapped regions to get the view-level
point set p̂v as follows,

p̂v = V −1(R(V (p̈), V (p))), (10)
where V and V −1 are the voxelization and reverse-
voxelization processes, and R denotes the radius-based
nearest-neighbor search [52]. Such a view-based associa-
tion enables the model to learn with region-level language
description, which largely strengthens the model’s recogni-
tion and localization ability on unseen categories.

Entity-Level Point-Caption Association. Although view-
level caption can already associate each image-caption tv

with a concrete partial point set in a 3D scene, such an as-
sociation still constructs on a large 3D area (i.e. around 25K
points) with multiple semantic objects/categories as shown
in Fig. 3. This is not friendly for the 3D network to learn
fine-grained point-wise semantic attributes and instance-
wise position information from caption supervision. In this
regard, we further propose a fine-grained point-language as-
sociation that owns the potential to build entity-level point-
caption pairs, i.e. object instances with a caption.

Specifically, as illustrated in Fig. 3, we leverage the dif-
ferences and intersections of adjacent view-level point sets
p̂v and their corresponding view-caption tv to obtain the
entity-level associated points p̂e and caption te. First, we
calculate entity-level caption te as below:

wi = E(tvi ), (11)

we
i\j = wi \ wj , we

j\i = wj \ wi, we
i∩j = wi ∩ wj , (12)

te = Concate(we), (13)

where E denotes extracting a set of entity words w from
caption tv , \ and ∩ represent the set difference and inter-
section separately, and Concate denotes the concatenation
of all words with spaces to form an entity-level caption te.
Similarly, we can easily calculate entity-level point sets and
associate them to previously obtained entity-level captions
to form point-caption pairs as below:
p̂e
i\j = (p̂v

i \ p̂v
j ), p̂e

j\i = (p̂v
j \ p̂v

i ), p̂e
i∩j = p̂v

i ∩ p̂v
j , (14)

< p̂e
i\j , t

e
i\j >,< p̂e

j\i, t
e
j\i >,< p̂e

i∩j , t
e
i∩j > . (15)

With entity-level ⟨p̂e, te⟩ pairs, we further filter them to
ensure each entity-level points set p̂e relates to at least one
entity and focuses on a small enough 3D space as follows,

γ < |p̂e| < δ ·min(|p̂v
i |, |p̂v

j |) and |te| > 0, (16)

where γ is a scalar to define minimal number of points, δ is
a ratio to control the maximum size of p̂e, and caption te is
not empty. Such a constraint helps focus on a fine-grained
3D space with fewer entities in each caption supervision.

Comparison Among Different Point-Caption Associa-
tion Manners. The above-proposed three coarse-to-fine

scene-level view-level entity-level
complexity simplest middle hardest
# captions 1,201 24,902 6,163
# points for each caption 145,171 24,294 3,933

Table 1. Comparison among point-caption association manners.

point-caption association manners actually hold different
merits and drawbacks. As shown in Table 1, the scene-level
association has the simplest implementation but obtains the
coarsest correspondence between captions and points (i.e.
each caption corresponds to over 140K points); the view-
level association provides point-language mapping relation
at a finer level, enjoying a larger semantic label space (i.e.
over 20× more captions) and a more localized point set (i.e.
around 6× fewer corresponding points per caption) than
scene caption; the entity-level association owns the most
fine-grained correspondence relation, matching each cap-
tion to only 4K points on average, and thus can further bene-
fit dense prediction and instance localization in downstream
tasks. We empirically show that the fine-grained association
and the semantic-rich label space are two important factors
for open-vocabulary perception tasks (see Sec. 5).

3.4. Contrastive Point-Language Training
With obtained point-caption pairs ⟨p̂, t⟩, we are ready

to guide the 3D network F3D to learn from vocabulary-rich
language supervisions. Here, we introduce a general point-
language feature contrastive learning that can be applied to
all kinds of coarse-to-fine point-caption pairs.

Specifically, we first obtain caption embeddings f t with
a pre-trained text encoder Ftext. As for the associated partial
point set p̂, we select its corresponding point-wise features
from adapted features fv and leverage global average pool-
ing to obtain its feature vector f p̂ as follows,

f t = Ftext(t), f p̂ = Pool(p̂, fv). (17)

We then adopt contrastive loss as [49] to pull correspond-
ing point-caption feature embeddings closer and push away
unrelated point-caption features as follows,

Lcap = − 1

nt

nt∑
i=1

log
exp(f p̂i · f ti /τ)∑nt

j=1 exp(f
p̂
i · f tj/τ)

, (18)

where nt is the number of point-caption pairs in any given
association fashion and τ is a learnable temperature to mod-
ulate the logits as CLIP [33]. It is also worth noting that
we remove duplicate captions in a batch to avoid noisy op-
timization during contrastive learning. With Eq. (17) and
Eq. (18), we can easily compute caption losses on scene-
level Ls

cap, view-level Lv
cap and entity-level Le

cap. Our final
caption loss is a weighted combination as follows,

Lall
cap = α1 ∗ Ls

cap + α2 ∗ Lv
cap + α3 ∗ Le

cap, (19)

where α1, α2 and α3 are trade-off factors. As shown in
Fig. 2, the overall training objective can be written as

L = Lsem + Lloc + Lall
cap + Lbi. (20)



Method CN prior
ScanNet S3DIS

B15/N4 B12/N7 B10/N9 B8/N4 B6/N6
hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN

LSeg-3D [26] × 00.0 64.4 00.0 00.9 55.7 00.1 01.8 68.4 00.9 00.1 49.0 00.1 00.0 30.1 00.0
3DGenZ [27] ✓ 20.6 56.0 12.6 19.8 35.5 13.3 12.0 63.6 06.6 08.8 50.3 04.8 09.4 20.3 06.1
3DTZSL [5] ✓ 10.5 36.7 06.1 03.8 36.6 02.0 07.8 55.5 04.2 08.4 43.1 04.7 03.5 28.2 01.9

PLA (w/o Cap.) × 39.7 68.3 28.0 24.5 70.0 14.8 25.7 75.6 15.5 13.0 58.0 07.4 12.2 54.5 06.8
PLA × 65.3 68.3 62.4 55.3 69.5 45.9 53.1 76.2 40.8 34.6 59.0 24.5 38.5 55.5 29.4

PLA (w/ self-train) ✓ 70.3 68.9 71.7 61.1 70.4 54.0 59.2 76.9 48.2 36.1 59.7 26.0 46.7 58.9 38.7
Fully-Sup. ✓ 73.3 68.4 79.1 70.6 70.0 71.8 69.9 75.8 64.9 67.5 61.4 75.0 65.4 59.9 72.0

Table 2. Results for open-vocabulary 3D semantic segmentation on ScanNet and S3DIS in terms of hIoU, mIoUB and mIoUN . CN prior
denotes whether novel category names CN need to be known during training. PLA (w/o Cap.) denotes training without point-caption pairs
as supervision. Best open-vocabulary results are highlighted in bold.

Method CN prior
ScanNet S3DIS

B13/N4 B10/N7 B8/N9 B8/N4 B6/N6
hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50

LSeg-3D [26] × 05.1 57.9 02.6 02.0 50.7 01.0 02.4 59.4 01.2 00.5 58.3 00.3 01.1 41.4 00.5
PLA (w/o Cap.) × 21.0 59.6 12.6 11.1 56.2 06.2 15.9 63.2 09.1 01.8 59.3 00.9 01.3 49.2 01.2

PLA × 55.5 58.5 52.9 31.2 54.6 21.9 35.9 63.1 25.1 15.0 59.0 08.6 16.0 46.9 09.8
PLA (w/ self-train) ✓ 58.6 58.0 59.2 41.4 56.9 32.6 42.1 61.1 32.1 26.7 60.3 17.2 23.4 45.6 15.8

Fully-Sup. ✓ 64.5 59.4 70.5 62.5 57.6 62.0 62.0 65.1 62.0 57.6 60.8 54.6 57.4 50.0 67.5

Table 3. Results for open-vocabulary 3D instance segmentation on ScanNet and S3DIS in terms of hAP50, mAPB
50 and mAPN

50.

4. Experiments
4.1. Basic Setups
Datasets and Perception Tasks. To validate the effective-
ness of our point-language association paradigm, we con-
duct experiments on two datasets: ScanNet [7] densely an-
notated in 20 classes and S3DIS [2] with 13 classes on both
semantic and instance segmentation tasks.

Category Partitions. Without standard open-vocabulary
partitions on these two datasets, we build an open-
vocabulary benchmark with multiple base/novel partitions.
To circumvent model confusion, we disregard the “otherfur-
niture” class in ScanNet and the “clutter” class in S3DIS as
they lack exact semantic meanings and can include any se-
mantic categories. As for ScanNet, we randomly partition
the rest 19 classes into 3 base/novel partitions for seman-
tic segmentation, i.e. B15/N4, B12/N7 and B10/N9, where
B15/N4 indicates 15 base and 4 novel categories. We also
follow SoftGroup [38] to exclude two background classes
and thus obtain B13/N4, B10/N7, and B8/N9 partitions for
instance segmentation on ScanNet. As for S3DIS, we ran-
domly shuffle the rest 12 classes into 2 base/novel splits,
i.e. B8/N4, B6/N6 for both semantic and instance segmen-
tation. Specific category splits are presented in the Suppl..

Metrics. We employ widely adopted mean intersection
over union (mIoU) and mean average precision under 50%
IoU threshold (mAP50) as evaluation metrics for semantic
and instance segmentation, respectively. These metrics are
calculated on base and novel classes separately with super-
scripts of B and N (e.g. mIoUB). Further, we use harmonic
mean IoU (hIoU) and AP50 (hAP50) as major indicators fol-
lowing popular zero-shot learning works [40, 43] to con-
sider category partition between base and novel.

Architectures and Baseline Methods. We adopt the popu-
lar and high-performance sparse convolutional UNet [13, 6]
as 3D encoder F3D, the text encoder of CLIP as Ftext, two
fully-connected layers with batch normalization [21] and
ReLU [30] as VL adapter Fθ, an UNet decoder as binary
head Fb. Also, we utilize the state-of-the-art instance seg-
mentation network SoftGroup [38] for instance head Fins.

As for baseline methods, other than the above-mentioned
LSeg-3D in Sec.3.2.1, we also re-produce two 3D zero-shot
learning methods 3DGenZ [27] and 3DTZSL [5] with task-
tailored modifications. The implementation details are pro-
vided in the Suppl..

4.2. Main Results
3D Semantic Segmentation. As shown in Table 2, com-
pared to LSeg-3D [26] baseline, our method obtains around
51.3% ∼ 65.3% and 34.5% ∼ 38.5% hIoU improvements
among different partitions on ScanNet and S3DIS respec-
tively, demonstrating its superior open-vocabulary capa-
bility. Even compared to previous zero-shot methods
3DGenZ [27] and 3DTZSL [5] that know novel category
names during training, our method still obtains 35.5% ∼
54.8% improvements in terms of hIoU among various par-
titions on ScanNet. Especially, our PLA trained model
largely surpasses its no caption supervision counterparts
(i.e. PLA (w/o Cap.)) by 25.6% ∼ 30.8% hIoU and 21.6%
∼ 26.3% hIoU on ScanNet and S3DIS, respectively. It is
noteworthy that the improvement from our method is con-
sistent on different base/novel partitions and datasets, fur-
ther illustrating its robustness and effectiveness.

3D Instance Segmentation. As demonstrated in Table 3,
our method remarkably surpasses baseline methods by
29.2% ∼ 50.4% hAP50 and 14.5% ∼ 14.9% hAP50 among
different base/novel partitions on ScanNet and S3DIS, re-



spectively. Such outstanding performance indicates our
contrastive point-language training helps the 3D backbone
learn not only semantic attributes but also instance localiza-
tion information from captions. Notice that the improve-
ment for S3DIS is slighter than ScanNet on both semantic
segmentation and instance segmentation. This is actually
caused by S3DIS’s small number of training samples (only
271 scenes) and much fewer point-caption pairs owing to
fewer overlapped regions between images and 3D scenes.

Self-Bootstrap with Novel Category Prior. As some exist-
ing zero-shot methods (i.e. 3DGenZ [27] and 3DTZSL [5])
can access novel category names but no human-annotation
during training, here we also provide a simple variant to
leverage such novel category prior in self-training fash-
ion [41]. As shown in Table 2 and 3, PLA (w/ self-train) ob-
tains around 2% ∼ 12% gains among semantic and instance
segmentation on two datasets. This demonstrates that our
model can further self-bootstrap its zero-shot capability and
extend its vocabulary size without any human annotation.

4.3. Zero-shot Domain Transfer
Our method already shows excellent potential in solving

in-domain open-vocabulary scene understanding tasks with
category shifts. However, transferable open-vocabulary
learners across different domains/datasets also merit ex-
ploration, as they face both category and data distribution
shifts. In this regard, we conduct zero-shot domain transfer
experiments that train the model on ScanNet’s base classes
and test it on all S3DIS classes without fine-tuning. No-
tably, S3DIS has 4 categories not present in ScanNet. As
shown in Table 4, our PLA consistently outperforms LSeg-
3D [26] by 7.7% ∼ 18.3% mIoU for semantic segmenta-
tion and 5.0% ∼ 9.5% mAP50 for instance segmentation.
Such outstanding improvements substantiate our model’s
generality for both category shift and data distribution shift.
Note that we do not use the binary head for domain trans-
fer here, as the base/novel partition is dataset-specific. We
leave calibrating base and novel semantic predictions in out-
of-domain open-vocabulary scenarios to future work.

5. Ablation Studies
In this section, we examine key components of our

framework through in-depth ablation studies. Experiments
are conducted on ScanNet B15/N4 partition by default. The
default setting is marked in gray .

ScanNet
partition

S3DIS Semantic (mIoU) S3DIS Instance (mAP50)
LSeg-3D PLA LSeg-3D PLA

B19/N0 42.5 50.2 (+7.7) 37.5 43.6 (+6.1)
B15/N4 30.2 48.5 (+18.3) 31.2 40.7 (+9.5)
B12/N7 26.1 38.3 (+12.2) 28.2 35.1 (+6.9)
B10/N9 34.5 48.1 (+13.6) 33.8 38.8 (+5.0)

Table 4. Zero-shot domain transfer results for semantic segmenta-
tion and instance segmentation on ScanNet → S3DIS.
Component Analysis. We investigate the effectiveness of

our proposed binary calibration module and three coarse-
to-fine point-caption supervision here. As shown in Ta-
ble 5, adopting binary head for semantic calibration greatly
surpasses baseline LSeg-3D by 39.8% hIoU on semantic
segmentation and 15.9% hAP50 on instance segmentation.
Such performance lifts on both base and novel classes verify
that it correctly rectifies semantic scores.

As for point-caption association manners, they all sub-
stantially improve results by a large margin of 14.8% ∼
23.8% hIoU and 31.8% ∼ 35.6% hAP50 on semantic and
instance segmentation, respectively. Among three associa-
tion fashions, entity-level caption supervision performs the
best, demonstrating that fine-grained language-point corre-
spondence is one of the most vital considerations for con-
structing point-caption pairs. Notice that when we combine
different types of captions, the model will not always obtain
improvements in all scenarios, potentially caused by the dif-
ficulty of simultaneously optimizing multiple caption losses
with various granularities on some tasks.

Components
hIoU / mIoUB /mIoUN hAP50 / mAPB

50 / mAPN
50Binary Caps Capv Cape

00.0 / 64.4 / 00.0 05.1 / 57.9 / 02.6
✓ 39.8 / 68.5 / 28.1 21.0 / 59.6 / 12.8
✓ ✓ 54.6 / 67.9 / 45.7 52.8 / 57.8 / 36.6
✓ ✓ 61.3 / 68.5 / 55.5 55.9 / 58.9 / 53.3
✓ ✓ 63.6 / 67.8 / 60.0 56.6 / 59.0 / 54.4
✓ ✓ ✓ 61.9 / 68.1 / 56.8 54.9 / 59.5 / 51.0
✓ ✓ ✓ 65.3 / 68.3 / 62.4 55.5 / 58.5 / 52.9
✓ ✓ ✓ ✓ 64.6 / 69.0 / 60.8 54.5 / 58.2 / 51.4

Table 5. Component analysis on ScanNet. Binary denotes binary
head calibration. Caps, Capv and Cape denotes scene-level, view-
level and entity-level caption supervision, respectively.

Caption Composition Analysis. As a caption can com-
posite entities (e.g. sofa), their relationships (e.g. spatial re-
lation) and attributes (e.g. color and texture), we investi-
gate which types of words mainly contribute to the open-
vocabulary capability. As shown in Table 6, when only
keeping entity phrases in the caption, (a) variant even out-
performs the full caption variant. In addition, if we only
keep entities that exactly match category names in cap-
tions, obtained (b) variant suffers over 13% mIoU degrada-
tion on novel categories, showing that diverse entity words
to expand semantic space is a crucial factor for captions.
Furthermore, although the (c) variant introduces both cor-
rect base and novel label names in the caption, it still ob-
tains slightly inferior performance to our foundation-model-
generated caption, illustrating existing foundation models
are powerful enough to provide promising supervision.

Caption Composition hIoU / mIoUB / mIoUN

(a) keep only entities 65.7 / 69.0 / 62.7
(b) keep only label names 57.6 / 68.5 / 49.6
(c) ground-truth label names 64.8 / 68.1 / 61.9
(d) full caption 65.3 / 68.3 / 62.4

Table 6. Ablation of caption composition.

Text Encoder Selection. Here, we compare different text
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Figure 4. Qualitative results of recognizing out-of-vocabulary classes. (a) demonstrates the results of recognizing synonymical classes. (b)
shows the segmentation results on abstract concepts. (c) presents the results of segmenting unannotated categories in the dataset.

encoders Ftext for extracting caption and category embed-
dings. As shown in Table 7, the vision-language pre-trained
text encoder of CLIP [33] shows over 7% higher mIoUN

than BERT [10] and GPT2 [34] that are only pre-trained on
language modality. This demonstrates that the vision-aware
text encoder can provide better language embedding for 3D-
language tasks since 3D also leverages texture, shape and
RGB information as images for recognition.

Text Encoder BERT [10] GPT2 [34] CLIP [33]
hIoU / mIoUB / mIoUN 61.2 / 68.7 / 55.2 61.0 / 69.1 / 54.6 65.3 / 68.3 / 62.4

Table 7. Ablation of text encoder.

Foundation Model for Image Captioning. By default, we
employ one of the most popular open-source image cap-
tioning models, GPT-ViT2 [1], on the HuggingFace plat-
form to generate captions in main experiments. However,
as shown in Table 8, the recent state-of-the-art founda-
tion model OFA [39] can consistently surpass GPT-ViT2 on
three partitions, which reflects the potential of our method
to be further boosted with stronger foundation models.

model hIoU / mIoUB / mIoUN

B15/N4 B12/N7 B10/N9
ViT-GPT2 [1] 65.3 / 68.3 / 62.4 55.3 / 69.5 / 45.9 53.1 / 76.2 / 40.8
OFA [39] 65.6 / 68.3 / 63.1 57.5 / 69.8 / 48.9 56.6 / 75.9 / 45.1

Table 8. Ablation of VL foundation model for image captioning.

6. Qualitative Analysis
To more straightforwardly illustrate the open-vocabulary

ability of our method, we present some interesting quali-
tative results in terms of recognizing synonymical classes,
abstract classes and even unannotated classes.
Synonymical Novel Classes. Here, we substitute class
names with related but new words for inference. As illus-
trated in Fig. 4 (a), when we replace “sofa” with “couch” or
“refrigerator” with “freezer”, the model still attains a high-
quality segmentation mask. This demonstrates our model is
robust to recognize synonymical concepts.

Abstract Novel Classes. Apart from object entities, we find
the model is able to understand more abstract concepts such
as room types. As shown in Fig. 4 (b), by removing “shower
curtain”, “toilet”, “sink” and “bathtub” in input categories
and adding “bathroom”, the predicted “bathroom” roughly
covers the real bathroom region. The right example shows
the model can also understand ‘kitchen’ regions. It indi-
cates our model is capable to recognize out-of-vocabulary
and abstract concepts beyond concrete semantic objects.
Unannotated Novel Classes. As current 3D datasets fail
to annotate all classes due to insufferable annotation costs,
our model owns the potential to recognize those unan-
notated classes with high-quality predictions, facilitating
open-world applications. As shown in Fig. 4 (c), the model
successfully identifies “monitor” and “blackboard” that are
not included in the dataset annotations with accurate masks.

7. Conclusion
We propose PLA, a general and effective language-

driven 3D scene understanding framework that enables the
3D model to localize and recognize novel categories. By
leveraging images as a bridge, we construct hierarchical
point-language pairs harvesting powerful 2D VL foundation
models and geometric constraints between 3D scenes and
2D images. We employ contrastive learning to pull features
of such associated pairs closer, introducing rich semantic
concepts into the 3D network. Extensive experimental re-
sults show the superiority of our method on not only in-
domain open-vocabulary semantic and instance segmenta-
tion, but also challenging out-of-domain zero-shot transfer.
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