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Abstract

This paper presents a groundbreaking multi-001
modal, multi-task, multi-teacher joint-grained002
knowledge distillation model for visually-rich003
form document understanding. The model is004
designed to leverage insights from both fine-005
grained and coarse-grained levels by facilitat-006
ing a nuanced correlation between token and007
entity representations, addressing the complex-008
ities inherent in form documents. Addition-009
ally, we introduce new inter-grained and cross-010
grained loss functions to further refine diverse011
multi-teacher knowledge distillation transfer012
process, presenting distribution gaps and a har-013
monised understanding of form documents.014
Through a comprehensive evaluation across015
publicly available form document understand-016
ing datasets, our proposed model consistently017
outperforms existing baselines, showcasing its018
efficacy in handling the intricate structures and019
content of visually complex form documents.020

1 Introduction021

Understanding and extracting structural informa-022

tion from Visually-Rich Documents (VRDs), such023

as academic papers (Zhong et al., 2019; Ding024

et al., 2023b), receipts (Park et al., 2019), and025

forms (Jaume et al., 2019; Ding et al., 2023a), holds026

immense value for Natural Language Processing027

(NLP) tasks, particularly in information extraction028

and retrieval. While significant progress has been029

made in solving various VRD benchmark chal-030

lenges, including layout analysis and table structure031

recognition, the task of form document understand-032

ing remains notably challenging. This complexity033

of the form document understanding arises from034

two main factors: 1) the involvement of two dis-035

tinct authors in a form and 2) the integration of036

diverse visual cues. Firstly, forms mainly involve037

two primary authors: form designers and users.038

Form designers create a structured form to collect039

necessary information as a user interface. Unfortu-040

nately, the form layouts, designed to collect varied041

information, often lead to complex logical rela- 042

tionships, causing confusion for form users and 043

heightening the challenges in form document under- 044

standing. Secondly, diverse authors in forms may 045

encounter a combination of different document na- 046

tures, such as digital, printed, or handwritten forms. 047

Users may submit forms in various formats, intro- 048

ducing noise such as low resolution, uneven scan- 049

ning, and unclear handwriting. Traditional doc- 050

ument understanding models do not account for 051

the diverse carriers of document versions and their 052

associated noises, exacerbating challenges in un- 053

derstanding form structures and their components. 054

Most VRD understanding models inherently hold 055

implicit multimodal document structure analysis 056

(Vision and Text understanding) knowledge either 057

at fine-grained (Huang et al., 2022; Wang et al., 058

2022) or coarse-grained (Tan and Bansal, 2019; Li 059

et al., 2019) levels. The fine-grained only mod- 060

els mainly focus on learning detailed logical lay- 061

out arrangement, which cannot handle complex 062

relationships of multimodal components, while 063

the coarse-grained models tend to omit significant 064

words or phrases. Hence, we introduce a novel 065

joint-grained document understanding approach 066

with multimodal multi-teacher knowledge distil- 067

lation. This method leverages knowledge from 068

various task-based teachers (pre-trained models) 069

throughout the training process, intending to cre- 070

ate more inclusive and representative multi- and 071

joint-grained document representations. 072

Our contributions can be summarised as follows: 073

1) We present a groundbreaking multimodal, multi- 074

task, multi-teacher joint-grained knowledge dis- 075

tillation model designed explicitly to understand 076

visually-rich form documents. 2) The proposed 077

model outperforms across publicly available form 078

document datasets. 3) To the best of our knowledge, 079

this research marks the first in adopting multi-task 080

knowledge distillation, focusing on incorporating 081

multimodal form document components. 082
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Model Modalities Pre-training
Datasets

Pre-training
Tasks

Downstream
Tasks Granularity

Donut (2022) V IIT-CDIP NTP DC, VQA, KIE Token
Pix2struct (2023b) V C4 corpus NTP VQA Token

LiLT (2022) T, S IIT-CDIP MVLM, KPL, CAI DC, KIE Token
BROS (2022) T, S IIT-CDIP MLM, A-MLM KIE Token

LayoutLMv3 (2022) T, S, V IIT-CDIP MLM, MIM, WPA DC, VQA, KIE Token
DocFormerv2 (2023) T, S, V IDL TTL, TTG, MLM DC, VQA, KIE Token
Fast-StrucText (2023) T, S, V IIT-CDIP MVLM, GTR, SOP, TIA KIE Token
FormNetV2 (2023a) T, S, V IIT-CDIP MLM, GCL KIE Token

M3-DVQA (Ours) T, S, V FUNSD,
FormNLU

Multi-teacher
Knowledge
Distillation

KIE Token,
Entity

Table 1: Comparison with state-of-the-art models for receipt and form understanding. In the Modalities column, T
represents Textual information, V represents Visual information, and S represents Spatial information.

2 Related Works083

Visually Rich Document (VRD) understanding en-084

tails comprehending the structure and content of085

documents by capturing the underlying relations be-086

tween textual and visual modalities. Several down-087

stream tasks such as Key Information Extraction088

(KIE), Document Classification (DC), and Visual089

Question Answering (VQA), have contributed to090

raise the attention of the multimodal learning com-091

munity. In this work, we cope with form docu-092

ments, whose structure and content are particu-093

larly challenging to understand (Srivastava et al.,094

2020). Form documents possess intricate struc-095

tures, involving collaboration between form design-096

ers, who craft clear structures for data collection,097

and form users, who interact with the forms based098

on their comprehension, with clarity and ease of un-099

derstanding being variable. Table 1 enumerates the100

main characteristics of the latest models proposed101

for document understanding.102

Vision-only approaches: They exclusively rely on103

the visual representation (denoted by V modality104

in Table 1) of the document components thus cir-105

cumventing the limitations of state-of-the-art text106

recognition tools (e.g., Donut (Kim et al., 2022)107

and Pix2struct (Lee et al., 2023b)). Their document108

representations are commonly pre-trained using a109

Next Token Prediction (NTP) strategy, offering al-110

ternative solutions to traditional techniques based111

on Natural Language Processing.112

Multimodal approaches: They leverage both113

the recognised text and the spatial relations (de-114

noted by T and S) between document components115

(see, for instance, LiLT (Wang et al., 2022) and116

BROS (Hong et al., 2022)). The main goal is to117

complement raw content understanding with lay-118

out information. Expanding upon this multimodal119

framework, models such as LayoutLMv3 (Huang 120

et al., 2022), DocFormerv2 (Appalaraju et al., 121

2023), Fast-StrucText (Zhai et al., 2023), and, 122

FormNetV2 (Lee et al., 2023a) integrate the visual 123

modality with text and layout information. These 124

approaches are capable of capturing nuances in the 125

document content hidden in prior works. To lever- 126

age multimodal relations, these models are typi- 127

cally pre-trained in a multi-task fashion, exploiting 128

a curated set of token- or word-based pre-training 129

tasks, such as masking or alignment. 130

Our approach aligns with the multimodal model 131

paradigm, distinguishing itself by eschewing 132

generic pre-training tasks reliant on masking, align- 133

ment, or NTP. Instead, it leverages the direct ex- 134

traction of knowledge from multiple teachers, each 135

trained on downstream datasets, encompassing 136

both entity and token levels of analysis with the 137

proposed inter-grained and cross-grained losses. 138

This enriches the depth of understanding in visual 139

documents, capturing intricate relationships and 140

semantic structures beyond individual tokens. 141

3 Methodology 142

As previously noted, our paper focuses on inter- 143

preting visually rich documents, particularly form 144

documents created and used collaboratively by mul- 145

tiple parties. To accomplish this objective, we intro- 146

duce and employ two tiers of multimodal informa- 147

tion: fine-grained and coarse-grained levels, which 148

play a crucial role in understanding the structure 149

and content of an input form page. Note that ex- 150

isting pre-trained visual-language models, whether 151

designed for generic documents, possess implicit 152

knowledge on either fine-grained or coarse-grained 153

aspects. Hence, we propose an approach that har- 154

nesses knowledge from diverse pre-trained models 155

throughout training. This strategy aims to generate 156
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Figure 1: Multimodal Multi-task Multi-Teacher Joint-Grained Document Understanding Framework. Each section
is aligned with the specific colours, Green: Section 3.2.1, Blue: Section 3.2.2, Orange: Section 3.3

more comprehensive and representative multi- and157

joint-grained document representations, ultimately158

enhancing the effectiveness of downstream tasks159

related to document understanding.160

3.1 Preliminary Definitions161

Prior to going through our proposed approach in162

detail, we would provide formal definitions for the163

terminology employed throughout this paper. We164

believe establishing clear and precise definitions165

could contribute to a comprehensive understanding166

of the concepts and terms integral to our research.167

1) Fine-grained Document Understand-168

ing (Huang et al., 2022; Wang et al., 2022; Hong169

et al., 2022) is a pivotal aspect of document170

analysis, involving frameworks that offer de-171

tailed insights to comprehend document content,172

particularly when addressing token-level tasks,173

such as span-based information extraction and174

question answering. Regarding input features,175

existing pre-trained models at the fine-grained level176

harness multimodal features, such as positional177

information and image-patch embedding, to en-178

hance the fine-grained token representations. The179

pre-training phase incorporates several learning180

techniques, including Masked Visual-Language181

Modelling, Text-Image Matching, and Multi-label182

Document Classification, strategically designed to183

acquire inter or cross-modality correlations and184

contextual knowledge. However, it is essential185

to acknowledge the limitations of fine-grained186

frameworks, as their primary focus lies in learning187

the logical and layout arrangement of input188

documents. These frameworks may encounter189

challenges in handling complex multimodal 190

components. 191

2) Coarse-grained Document Understand- 192

ing (Tan and Bansal, 2019; Li et al., 2019) is a 193

vital component in document analysis, with frame- 194

works adept at grasping the logical relations and 195

layout structures within input documents. Partic- 196

ularly well-suited for tasks like document compo- 197

nent entity parsing, coarse-grained models excel 198

in capturing high-level document understanding. 199

Despite the dominant trend of fine-grained docu- 200

ment understanding models, some research recog- 201

nises (Tan and Bansal, 2019; Li et al., 2019) that 202

the knowledge from general domain-based Visual- 203

Language Pre-trained Models (VLPMs) could be 204

leveraged to form a foundational document under- 205

standing. However, the coarse-grained document 206

understanding models have significant limitations, 207

including their tendency to overlook detailed in- 208

formation, leading to the omission of significant 209

words or phrases. Preliminary entity-level annota- 210

tions are often necessary, and the current backbone 211

models are pre-trained on the general domain, high- 212

lighting the need for document domain frameworks 213

specifically pre-trained at the coarse-grained level. 214

3.2 Multimodal Multi-task Multi-teacher 215

Joint-grained Document Understanding1 216

Therefore, we introduce a joint-grained document 217

understanding framework Fjg, designed to harness 218

pre-trained knowledge from both fine-grained and 219

coarse-grained levels. Our approach integrates in- 220

1Subsections are aligned with different colour in Figure 1,
Green: Section 3.2.1, Blue: Section 3.2.2, Orange: Section 3.3
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sights from multiple pre-trained backbones, facil-221

itating a unified understanding of document con-222

tent encompassing detailed nuances and high-level223

structures. It aims to synergise the strengths of fine-224

grained and coarse-grained models, enhancing the225

overall effectiveness of form understanding tasks.226

3.2.1 Multimodal Multi-task Multi-Teacher227

To facilitate this joint-grained framework, we em-228

ploy Multimodal Multi-teachers from two Multi-229

tasks, fine-grained and coarse-grained tasks within230

our framework. While the fine-grained teacher231

Ffg is characterised by checkpoints explicitly fine-232

tuned for the token classification, the coarse-233

grained teacher Fcg utilises fine-tuning checkpoints234

for the document component entity classifica-235

tion. The details of fine-grained and coarse-grained236

teacher models are articulated in Section 4.3. The237

ablation study of those teacher models is in Sec-238

tion 5.2. Ffg and Fcg get the encoded inputs of239

token and entity level, respectively, to acquire the240

corresponding last layer hidden states and logits241

for downstreaming procedures. For example, after242

feeding the sequence of tokens t̃ = {t̃1, t̃2, ..., t̃k}243

and sequence of multimodal entity embeddings244

Ẽ = {Ẽ1, Ẽ2, ..., Ẽn} into Ffg1 and Fcg1, re-245

spectively, we acquire the hidden states t1 =246

{t11, t12, ..., t1k} and E1 = {E1
1 , E

1
2 , ..., E

1
n}, as well247

as classification logits pt1 = {pt11 , pt12 , ..., pt1k}248

and pE1 = {pE1
1
, pE1

2
, ..., pE1

n
}. Supposing T =249

{t1, t2, ...} and E = {E1,E2, ...} are hidden250

states from multiple teachers, the combined rep-251

resentations are fed into corresponding projec-252

tion layers Lfg and Lcg to get the multi-teacher253

representations t̂ = {t̂1, t̂2, ..., t̂k} and Ê =254

{Ê1, Ê2, ..., Ên} for each grain.255

3.2.2 Joint-Grained Learning256

Our joint-grained learning framework comprises257

Joint-grained Encoder and Decoders.258

The joint-grained encoder E , implemented as259

a transformer encoder, is designed to learn the260

contextual correlation between fine-grained t̂ and261

coarse-grained Ê representations. This enables the262

model to capture nuanced details at the token level263

while simultaneously grasping the high-level struc-264

tures represented by entities within the document.265

The joint-grained decoders D play a crucial role266

in processing the augmented joint-grained represen-267

tations. For the fine-grained decoder Dfg, the in-268

put comprises fine-grained token representations t̂,269

with the entity representation serving as memory Ê.270

This configuration allows the decoder to focus on 271

refining and generating augmented token represen- 272

tations t based on the contextual information pro- 273

vided by both token and entity representations. In 274

contrast, for coarse-grained decoder Dcg, the input 275

is the entity representation Ê, while the memory 276

consists of token representations t̂. This approach 277

enables the coarse-grained decoders to emphasise 278

broader structures and relationships at the entity 279

level, leveraging the memory of fine-grained to- 280

ken information to generate a more comprehensive 281

entity representation E. Overall, the proposed joint- 282

grained architecture facilitates a comprehensive un- 283

derstanding of document content by incorporating 284

fine-grained and coarse-grained perspectives. 285

The pre-training of different teacher models in- 286

volves diverse techniques and features, so a simplis- 287

tic approach of merely concatenating or pooling 288

hidden states may not fully leverage the individual 289

strengths of each model. Traditional self-/cross 290

attention-based transformer encoders or decoders 291

might encounter challenges in integrating knowl- 292

edge from various grains, potentially introducing 293

noise to specific grained weights. To address this 294

concern, we propose using multiple types of losses 295

to thoroughly explore implicit knowledge within 296

the diverse teachers (pre-trained models). 297

3.3 Multimodal Multi-task Multi-Teacher 298

Knowledge Distillation 299

This section introduces the multi-loss strategy to 300

enhance inter-grained and cross-grained knowledge 301

exchange, ensuring a more nuanced and effective 302

integration of insights from fine-grained and coarse- 303

grained representations. The accompanying multi- 304

loss ablation study (Section 5.3) aims to optimise 305

the synergies between multiple teacher models, 306

thereby contributing to a more robust and com- 307

prehensive joint-grained learning process. 308

3.3.1 Task-oriented Cross Entropy Loss 309

The Task-oriented Cross Entropy (CE) loss is piv- 310

otal in facilitating a task-based knowledge distilla- 311

tion strategy. This is computed by comparing the 312

predictions of the student model with the ground 313

truth for each specific task. Adopting the CE loss 314

provides the student model with direct supervisory 315

signals, thereby aiding and guiding its learning 316

process. Note that we address two task-oriented 317

CE losses within our proposed approach, one from 318

the token classification task and the other from 319

the entity classification task. The output hidden 320
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states from Dfg and Dcg are fed into classifiers to321

get the output logits pt = {pt1 , pt2 , ..., ptk} and322

pE = {pE1 , pE2 , ..., pEn}. Supposing the label323

sets for fine-grained and entity-level tasks are Yt =324

{yt1 , yt2 , ..., ytk} and YE = {yE1 , yE2 , ..., yEn},325

the fine-grained and coarse-grained Task-oriented326

Cross Entropy losses lt and lE are calculated as:327

lt = CrossEntropy(pt,Yt) (1)328

329
le = CrossEntropy(pE,YE) (2)330

3.3.2 Inter-Grained Loss Functions331

Since various pre-trained models provide differ-332

ent specific knowledge to understand the form333

comprehensively, effectively distilling valuable in-334

formation from selected fine-tuned checkpoints335

may generate more representative token represen-336

tations. In addressing this, we introduce two target-337

oriented loss functions tailored to distil knowl-338

edge from teachers at different levels. These aim339

to project the label-based distribution from fine-340

grained pT = {pt1 ,pt2 , ...} or coarse-grained341

teacher logits pE = {pE1 ,pE2 , ...} to correspond-342

ing student logits pt and pE, enabling efficient343

learning of label distributions.344

Similarity Loss: This is introduced as an effec-345

tive method to distil knowledge from the output346

logits pt and pE of selected fine-grained or coarse-347

grained teacher checkpoints from pT and pE. It348

aims to mitigate the logit differences between the349

student classifier and the chosen teachers using350

cosine similarity (CosSim), promoting a more351

aligned understanding of the label-based distribu-352

tion. Supposing we have nt and ne teachers for353

fine-grained and coarse-grained tasks, respectively,354

the similarity loss of fine-grained lsimt and coarse-355

grained lsime can calculated by:356

lsimt = −
i=nt

Σ
i

j=k

Σ
j
CosSim(ptij

, ptj ) (3)357

358

lsime = −
i=ne

Σ
i

j=n

Σ
j
CosSim(pEi

j
, pEj ) (4)359

Distilling Loss: Inspired by (Phuong and Lam-360

pert, 2019), we adopt an extreme logit learning361

model for the distilling loss. This loss implements362

knowledge distillation using Mean Squared Error363

(MSE) between the students’ logits pt and pE and364

the teachers’ logit sets pT and pE. This method365

is employed to refine the knowledge transfer pro-366

cess further, promoting a more accurate alignment367

between the student and teacher models. 368

ldistilt =
1

k

j=k

Σ
j
MSE(ptij

, ptj ) (5) 369

370

ldistile =
1

n

j=n

Σ
j
MSE(pEi

j
, pEj ) (6) 371

The introduction of these inter-grained loss func- 372

tions, including the similarity loss and the distilling 373

loss, contributes to mitigating distribution gaps and 374

fostering a synchronised understanding of the form 375

across various levels of granularity. 376

3.3.3 Cross-Grained Loss Functions 377

In addition, we incorporate cross-grained loss func- 378

tions. While fine-grained and coarse-grained infor- 379

mation inherently align, the joint-grained frame- 380

work employs self-attention and cross-attention to 381

approximate the correlation between token and en- 382

tity representations. T and E are teachers hidden 383

states sets, each ti ∈ T and Ei ∈ E are represented 384

ti = {ti1, ti2, ..., tik} and Ei = {Ei
1, E

i
2, ..., E

i
n} 385

and t and E are hidden states from student decoder. 386

Cross-grained Triplet Loss: Inherent in each 387

grained feature are parent-child relations between 388

tokens and aligned semantic form entities. The in- 389

troduction of triplet loss aids the framework in auto- 390

matically selecting more representative feature rep- 391

resentations by measuring the feature distance from 392

one grain to another-grained aligned representation. 393

This effectively enhances joint-grained knowledge 394

transfer, optimising the overall understanding of 395

the form. For acquiring the loss ltripletfg to select 396

fine-grained teachers based on coarse-grained dis- 397

tribution adaptively, we define the anchor as each 398

entity Ei ∈ E which has the paired token repre- 399

sentations t1i ∈ t1 and t2i ∈ t2 (if the number of 400

teachers is more significant than 2, randomly select 401

two of them). The L-2 norm distance is used to 402

measure the distance between fine-grained teach- 403

ers (t1i , t2i ) and anchor Ej , where the more similar 404

entities are treated as positive samples (tposi ) other- 405

wise negative (tnegi ). For coarse-grained triplet loss 406

ltripletcg , the same measurements are adopted for 407

coarse-grained teacher positive (Epos
j ) and negative 408

selection (Eneg
j ) for an anchor ti. Supposing the 409

j-th, ltripletfg and ltripletcg are defined: 410

ltripletfg =
1

k

i=k
Σ
i
Triplets(Ej , t

pos
i , tnegi ) (7) 411

412

ltripletcg =
1

k

i=k
Σ
i
Triplets(ti, E

pos
j , Eneg

j ) (8) 413
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As one entity is typically paired with more than one414

token, when calculating ltripletcg , we will consider415

all k entity-token pairs.416

Cross-grained Alignment Loss: In addition to the417

triplet loss, designed to filter out less representative418

teachers, we introduce another auxiliary task. This419

task focuses on predicting the relations between420

tokens and entities, providing an additional layer421

of refinement to the joint-grained framework. The422

cross-grained alignment loss further contributes to423

the comprehensive learning and alignment of token424

and entity representations, reinforcing the joint-425

grained understanding of the form document. For426

an input form document page containing k tokens427

and n entities, we have a targeting tensor Yalign428

where Dim(Yalign) = Rk×n. We use acquired429

alignment logit palign = t×E to represent the pre-430

dicted token-entity alignments. The cross-grained431

alignment loss lalign can be calculated by:432

lalign = CrossEntropy(palign,Yalign) (9)433

4 Evaluation Setup434

4.1 Datasets2435

FUNSD (Jaume et al., 2019) comprises 199 noisy436

scanned documents from various domains includ-437

ing marketing, advertising, and science reports, re-438

lated to US tobacco firms. It is split into train and439

test sets (149/50 documents), and each document440

is presented in either printed or handwritten format441

with low resolutions. Our evaluation focuses on442

the semantic-entity labeling task that identifies four443

predefined labels (i.e., question, answer, header,444

and other) based on input text content.445

FormNLU (Ding et al., 2023a) consists of 867 fi-446

nancial form documents collected from Australian447

Stock Exchange (ASX) filings. It includes three448

form types: digital (D), printed (P), and handwrit-449

ten (H), and is split into five sets: train-D (535),450

val-D (76), test-D (146), test-P (50), and test-H (50451

documents) and supports two tasks: Layout Analy-452

sis and Key Information Extraction. Our evaluation453

focuses on the layout analysis that identifies seven454

labels (i.e., title, section, form key, form value, ta-455

ble key, table value, and others), detecting each456

document entity, especially for P and H, the com-457

plex multimodal form document.458

4.2 Baselines and Metrics459

For token-level information extraction baselines,460

we use three Document Understanding (DU) mod-461

2The statistics of token/entity are shown in Table 5 and 6.

els: LayoutLMV3 (Huang et al., 2022), LiLT 462

(Wang et al., 2022), and BROS (Hong et al., 2022). 463

LayoutLMV3 employs a word-image patch align- 464

ment, that utilises a document image along with 465

its corresponding text and layout position infor- 466

mation. In contrast, LiLT and BROS focus only 467

on text and layout information without incorporat- 468

ing images. LiLT uses a bi-directional attention 469

mechanism across token embedding and layout 470

embedding, whereas BROS uses a relative spatial 471

encoding between text blocks. For entity-level in- 472

formation extraction baselines, we use two vision- 473

language (VL) models: LXMERT (Tan and Bansal, 474

2019) and VisualBERT (Li et al., 2019). Com- 475

pared to the two DU models, these VL models use 476

both image and text input without layout informa- 477

tion. LXMERT focuses on cross-modality learn- 478

ing between word-level sentence embeddings and 479

object-level image embeddings, while VisualBERT 480

simply inputs image regions and text, relying on 481

implicit alignments within the network. For eval- 482

uation metrics, inspired by (Jaume et al., 2019) 483

and (Ding et al., 2023a), we primarily use F1-score 484

to represent both overall and detailed performance 485

breakdowns, aligning with other baselines. 486

4.3 Implementation Details3 487

In token-level experiments, we fine-tuned 488

LayoutLMV3-base using its text tokeniser 489

and image feature extractor. We also fine- 490

tuned LiLT combined with RoBERTa base. In 491

entity-level experiments, we employ pre-trained 492

BERT (748-d) for encoding textual content, 493

while ResNet101(2048-d) is used for region- 494

of-interest(RoI) feature to capture the visual 495

aspect. These extracted features serve as input 496

for fine-tuning LXMERT and VisualBERT. All 497

fine-tuned models serve as teacher models. Our 498

hyperparameter testing involves a maximum of 50 499

epochs with learning rates set at 1e-5 and 2e-5. All 500

are conducted on a Tesla V100-SXM2 with 16GB 501

graphic memory and 51 GB memory, CUDA 11.2. 502

5 Results 503

5.1 Overall Performance 504

Extensive experiments are conducted to highlight 505

the effectiveness of the proposed Multimodal 506

Multi-task Multi-Teacher framework, including 507

joint-grained learning, multi-teacher and multi- 508

loss architecture. Table 2 shows representative 509

3Additional Implemtnation Details are in Appendix D
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Model Config & Loss FUNSD FormNLU
P H

BROS Single Teacher 82.44 92.45 93.68
LiLT Single Teacher 87.54 96.50 91.35
LayoutLMv3 Single Teacher 90.61 95.99 97.39
JG-E Joint Cross Entropy 90.45 94.91 96.55
JG-D Joint Cross Entropy 90.48 95.68 97.62
JG-E&D Joint Cross Entropy 90.57 95.93 97.62

MT-JG-E&D

Joint Cross Entropy 90.53 97.21 97.75
+ Sim 91.05 98.25 98.09
+ Distil 90.90 98.12 97.72
+ Triplet 90.28 97.58 97.28

(Ours) + Align 90.55 97.24 97.42
+ Sim + Distil

90.92 98.69 98.39
+ Triplet + Align

Table 2: Overall Performance of Model and Configura-
tions on FormNLU printed P and handwritten H. The
full form of acronyms can be found in Section 5.1. The
best is in bold. The second best is underlined.

model configurations on various adopted modules.510

LayoutLMv3 performs notably superior to BROS511

and LiLT, except for the FormNLU printed test set.512

LayoutLMv3 outperforms around 3% and 4% the513

second-best baseline on FUNSD and FormNLU514

handwritten sets, respectively. This superiority515

can be attributed to LayoutLMv3’s utilisation of516

patched visual cues and textual and layout features,517

resulting in more comprehensive multimodal rep-518

resentations. So we found LayoutLMv3 would519

be a robust choice for fine-grained baselines in520

further testing4. To find the most suitable Joint-521

Grained learning (JG), we compare the results522

of single-teacher joint-grained frameworks includ-523

ing Encoder (E) only, Decoder (D) only, and En-524

coder with Decoder (E&D). Table 2 illustrates525

E&D achieving the highest performance among526

three baselines. However, upon integrating multi-527

ple teachers from each grain (MT-JG-E&D), com-528

petitive performance is observed compared to the529

baselines on both FormNLU printed (P) (from LiLT530

96.5% to 97.21%) and handwritten set (H) (from531

LiLT 97.39% to 97.75%). Still, additional tech-532

niques may be necessary to distil the cross-grained533

multi-teacher information better.534

To thoroughly distil joint-grained knowledge535

from multiple teachers, we introduced multiple loss536

functions encompassing Multiple auxiliary tasks.537

These functions capture teacher knowledge from538

inter-grained and cross-grained perspectives, gener-539

ating representative token embeddings. Typically,540

using either inter-grained or coarse-grained loss541

4We chose LLmv3 and LXMERT for JG and select
LLMv3&LilT and VBERT&LXMERT for MT-JG-E&D.
More teacher combinations analysis is in Section 5.2.

FG Teacher CG Teacher FUNSD FormNLU
P H

LLmv3
VBERT 90.19 94.72 96.99

LXMERT 90.57 95.93 97.62
Transformer 90.22 93.65 95.94

LiLT
VBERT 87.66 97.65 90.53

LXMERT 87.34 96.76 91.18
Transformer 87.91 97.20 90.58

LLmv3 VBERT&LXMERT 90.42 95.05 97.25
LLmv3 & LiLT LXMERT 90.39 96.73 97.42
LLmv3&LiLT VBERT&LXMERT 90.53 97.21 97.75

Table 3: Comparison of Performance across Teacher
Combinations. FG: Fine-Grained, CG: Coarse-Grained,
LLmv3: LayoutLMv3, VBERT: VisualBERT. The best
is in bold. The second best is underlined. This ablation
study is based on only Joint Cross Entropy Loss.

individually leads to better performance than the 542

best baselines across various test sets. Inter-grained 543

Similarity (Sim) and Distilling (Distil) loss consis- 544

tently achieve higher F1 scores in nearly all test 545

sets. Moreover, cross-grained Triplet and align- 546

ment (Align) losses outperform the best baseline 547

on the FormNLU (P) or (H). This highlights the 548

effectiveness of the proposed multi-task learning 549

approach in enhancing token representations by 550

integrating knowledge from joint-grained multi- 551

teachers. Inter-grained loss functions exhibit higher 552

robustness on both datasets, whereas cross-grained 553

loss functions only perform well on FormNLU. 554

This difference may stem from the FUNSD being 555

sourced from multiple origins, whereas FormNLU 556

is a single-source dataset. Coarse-grained loss func- 557

tions may excel on single-source documents by cap- 558

turing more prevalent knowledge but might intro- 559

duce noise when applied to multiple sources. Also, 560

the model demonstrates its most competitive per- 561

formance by integrating all proposed loss functions 562

(+Sim+Distil+Triplet+Align). This highlights how 563

the proposed inter-grained and cross-grained loss 564

functions enhance multi-teacher knowledge distil- 565

lation in form understanding tasks5. 566

5.2 Effect of Multi-Teachers 567

We analysed various teacher combinations to en- 568

sure they provide sufficient knowledge for improv- 569

ing joint-grained representations, as depicted in 570

Table 3. For fine-grained teachers, since BROS 571

underperforms compared to others, we only in- 572

clude the performance of its counterparts. The 573

LayoutLMv3-based joint framework performs bet- 574

ter, outperforming LiLT-based by approximately 575

3% on FUNSD and over 5% on FormNLU (H). 576

5More loss combination analysis is in Section 5.3
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Figure 2: Example output showing (a) Ground Truth (b) JG-E&D (c) LayoutLMv3, and (d) Ours on a FUNSD page.
The color code for layout component labels is as follows; Question, Answer, Header, Other. Our model, employing
the best loss combination (cross-entropy + similarity) on FUNSD, accurately classified all layout components.

Loss Functions FUNSD FormNLU
Similarity Distiling Triplet Alignment P H

O X X X 91.05 98.25 98.09
X O X X 90.90 98.12 97.72
X X O X 90.28 97.58 97.28
X X X O 90.55 97.24 97.42
O O X X 90.63 98.53 97.22
O X O X 90.51 97.71 97.79
O X X O 90.82 97.80 98.05
X O O X 90.82 98.22 98.35
X O X O 90.83 98.63 97.45
O O O X 90.79 98.56 97.72
O O X O 90.66 98.72 97.85
O O O O 90.92 98.69 98.39

Table 4: Performance comparison across loss functions.
The best is in bold. The second best is underlined.

This improvement can be attributed to the con-577

textual learning facilitated by visual cues. No-578

tably, LiLT achieves the highest performance on579

the FormNLU (P), likely due to its well-designed580

positional-aware pre-training tasks. For coarse-581

grained teachers, pre-trained backbones demon-582

strate better robustness than randomly initialised583

Transformers, highlighting the benefits of general584

domain pre-trained knowledge in form understand-585

ing tasks. Table 3 illustrates multiple teachers can-586

not always ensure the best performance, however,587

the robustness of the proposed model is enhanced588

by capturing more implicit knowledge from cross-589

grained teachers.590

5.3 Effect of Loss Functions591

To comprehensively investigate the impact of dif-592

ferent loss functions and their combinations, we593

present the performance of various combinations594

in Table 4. While employing inter-grained loss595

individually often proves more effective than us-596

ing cross-grained loss alone, combining the two597

losses can enhance knowledge distillation from598

joint-grained multi-teachers. For instance, concur- 599

rently employing distilling(Distil) and Triplet loss 600

improved accuracy from 97.72% to 98.35%. No- 601

tably, stacking all proposed loss functions resulted 602

in the best or second-best performance across all 603

test sets, showcasing their effectiveness in distilling 604

knowledge from multi-teacher to student models 605

for generating more representative representations. 606

Even though cross-grained Triplet and Alignment 607

losses were ineffective individually, when com- 608

bined with inter-grained loss, they significantly 609

improved knowledge distillation effectiveness. 610

5.4 Qualitative Analysis: Case Studies6 611

We visualised the sample results for the top 3 - Our 612

best model with the best configuration, the best 613

baseline LayoutLMv3 and the second best base- 614

line JG-E&D of FUNSD in Figure 2. We can see 615

that both LayoutLMv3 and JG-E&D have wrongly 616

recognised an Other (marked by a white cross in 617

red circle), whereas ours has accurately recognised 618

all document tokens and components. 619

6 Conclusion 620

We introduced a Multimodal Multi-task Multi- 621

Teacher framework in Visually-Rich form doc- 622

uments. Our model incorporates multi-teacher, 623

multi-task, and multi-loss, and the results show the 624

robustness in capturing implicit knowledge from 625

multi-teachers for understanding diverse form doc- 626

ument natures, such as scanned, printed, and hand- 627

written. We hope our work provides valuable in- 628

sights into leveraging multi-teacher and multi-loss 629

strategies for document understanding research. 630

6A Case Study for FormNLU can be found in Figure 3
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Limitations631

Benchmark Scope: Despite the paramount im-632

portance of document understanding across var-633

ious domains such as finance, medicine, and re-634

sources, our study is constrained by the limited635

availability of visually-rich form document under-636

standing datasets, particularly those of high quality.637

In this research, we solely rely on publicly avail-638

able English-based form document understanding639

datasets. The scope of benchmark datasets, there-640

fore, may not comprehensively represent the di-641

versity and complexity present in form documents642

across different languages and industries.643

Availability of Document Understanding Teach-644

ers: The current limitation stems from the reliance645

on general document understanding teacher mod-646

els due to the absence of large pre-trained form-647

specific document models. The availability of high-648

quality teachers specifically tailored for form doc-649

ument understanding is crucial. Future advance-650

ments in the field would benefit from the devel-651

opment of dedicated pre-trained models for form652

document understanding, providing more accurate653

knowledge transfer during training.654
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A Statistics of tokens and entities763

The following Table 5 and 6 demonstrates the num-764

ber of tokens(length) and number of document enti-765

ties. While FUNSD has 4 types(Question, Answer,766

Header, Other) of document entities, FormNLU767

has 7 types(Title, Section, Form Key, Form Value,768

Table Key, Table Value, Other). For the FormNLU,769

we applied two types of test set, including Printed P770

and Handwritten H.771

FUNSD
(Testing) Question Answer Header Other Total

Entity 1077 821 122 312 2332
Token 2654 3294 374 2385 8707

Table 5: FUNSD Testing Dataset Distribution by Label.

FormNLU
(Testing) Title Section Form

Key
Form
Value

Table
Key

Table
Value Others Total

P Entity 98 100 346 332 250 249 152 1527
H 100 100 348 315 249 226 149 1487
P Token 700 1258 1934 1557 993 389 3321 10152
H 742 1031 1805 866 779 366 2918 8507

Table 6: FormNLU Testing Dataset Distribution by La-
bel, where P and H are printed and handwritten sets.

B Breakdown Result Analysis772

Model Config Overall Breakdown
Header Question Answer

LiLT Teacher 87.54 55.61 90.20 88.34
LayoutLMv3 Teacher 90.61 66.09 91.60 92.78
JG-E Joint CE 90.45 64.94 91.70 92.67
JG-D Joint CE 90.48 64.07 91.58 92.73
JG-E&D Joint CE 90.57 64.66 91.48 92.73

MT-JG-E&D

Joint CE 90.53 61.24 92.40 91.75
Sim 91.05 64.81 92.58 92.46
Distil 90.90 66.96 92.61 91.97
Triplet 90.28 62.44 92.00 91.44
Align 90.55 63.81 91.82 92.29
+Sim+Distil

90.92 64.22 92.54 92.31
+Triplet+Align

Table 7: Breakdown Results of FUNSD dataset.

As shown in Table 7, for the FUNSD dataset,773

we could find all Joint-Grained(JG-) frameworks774

can have a delicate performance on recognising775

Question and Answer, but decreased in Header776

classification. This might result from the limited777

number of Headers in the FUNSD, leading to in-778

adequate learning of the fine-grained and coarse-779

grained Header information. Multi-task-oriented780

inter-grained and coarse-grained functions can in-781

crease the performance of Question recognition782

by boosting the knowledge distilling from joint-783

grained multi-teachers. Especially, inter-grained784

knowledge distillation methods can achieve around785

1% higher than LayoutLMv3. The FUNSD dataset786

cannot illustrate the benefits of cross-grained loss 787

functions well. 788

For FormNLU printed and handwritten sets, the 789

joint-grained framework and proposed loss func- 790

tions can effectively improve Section (Sec) and Ti- 791

tle recognition. As the Title, Section and Form_key 792

(F_K) are normally located at similar positions for 793

single-source forms, this may demonstrate both 794

joint-grained framework and multi-task loss func- 795

tion could distil knowledge. Additionally, base- 796

line models are not good at recognising table keys 797

and values, especially handwritten sets. As we 798

use the layoutLMv3 in the joint-grained frame- 799

work, the performance of recognising table-related 800

tokens is not good for the joint-learning frame- 801

work. After integrating multiple teachers, the per- 802

formance has increased from 91.97% to 97.35% 803

on the printed set. The proposed multi-task loss 804

functions may achieve a higher performance of 805

97.96%. Significant improvements can also be ob- 806

served across two test sets across all table-related 807

targets. This illustrates that the joint-grained multi- 808

teacher framework can effectively tackle the limi- 809

tation of one teacher to generate more comprehen- 810

sive token representations, and the inter-grained 811

and cross-grained loss could boost the effective 812

knowledge exchange to make the generalisation 813

and robustness of the entire framework. 814

C Additional Qualitative Analysis 815

In our qualitative evaluation, we took a closer 816

look at the results by visualising the output of 817

the top two models—our best-performing model 818

with the optimal configuration and the baseline 819

LayoutLM3—on the FormNLU handwritten set, as 820

presented in Figure 3. This examination revealed a 821

notable discrepancy between the models. Specifi- 822

cally, LayoutLM3 exhibited an erroneous identifi- 823

cation of the Table Key as a Form Key. In contrast, 824

our model demonstrated a higher level of precision 825

by accurately recognising and distinguishing all 826

components within this intricate and noise-laden 827

handwritten document. 828

This illustrative case serves as a compelling ex- 829

ample highlighting the challenges associated with 830

relying solely on knowledge from a single docu- 831

ment to understand teachers. The complexity of 832

distinguishing various document structures, such as 833

the nuanced difference between a form key and a ta- 834

ble key, becomes evident. The inadequacy of a sin- 835

gular teacher’s knowledge in capturing such intri- 836
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Figure 3: Example output showing (a) Ground Truth (b) LayoutLMv3, and (c) Ours on a FormNLU handwritten
test set. The color code for layout component labels is as follows; Title, Section, Form Key, Form Value, Table Key,
Table Value, Other. Our model, the best loss combination (+Sim+Distil+Triplet+Align) on FormNLU H, accurately
classified all layout components.

Model Config FormNLU Printed Overall and Breakdown FormNLU Handwritten Overall and Breakdown
Overall Sec Title F_K F_V T_K T_V Overall Sec Title F_K F_V T_K T_V

LiLT Teacher 96.50 98.32 96.97 98.84 96.62 96.57 93.60 91.35 95.39 99.50 94.81 90.67 84.19 89.81
LayoutLMV3 Teacher 95.99 98.45 97.96 97.97 96.73 92.37 92.98 97.39 99.33 99.01 99.85 98.24 93.95 95.95
JG-E Joint CE 94.91 99.66 98.99 98.11 95.73 90.14 90.31 96.55 99.33 99.01 99.42 98.56 88.37 94.67
JG-D Joint CE 95.68 99.66 100.00 98.55 96.45 91.94 91.10 97.62 99.33 99.01 99.85 98.56 93.02 95.98
JG-E&D Joint CE 95.93 99.66 97.96 97.82 97.18 91.97 92.15 97.62 99.33 99.01 99.85 98.40 93.74 95.75

MT-JG-E&D

Joint CE 97.21 99.32 98.48 99.57 96.58 97.35 95.06 97.75 97.67 99.50 99.13 97.93 95.55 96.41
Sim 98.25 99.32 99.49 99.28 97.75 97.96 97.12 98.09 99.00 100.00 99.27 98.25 96.45 96.61
Distil 98.12 99.32 100.00 99.71 97.90 97.55 96.30 97.72 97.35 100.00 99.13 97.62 95.75 97.07
Triplet 97.58 99.32 99.49 99.28 97.18 97.55 95.87 97.28 98.00 100.00 98.83 97.31 93.90 96.83
Align 97.24 99.32 98.48 99.71 96.57 96.13 95.47 97.42 99.33 99.50 99.13 96.85 92.86 97.52
+Sim+Distil 98.69 99.32 100.00 99.71 99.25 97.35 97.12 98.39 98.33 100.00 99.56 98.09 96.94 97.75
+Triplet+Align

Table 8: Overall and Breakdown Analysis of FormNLU Printed Set and Handwritten Set. The categories of
FormNLU dataset Task A include Section (Sec), Title, Form_Key (F_K), Form_Value (F_V), Table_Key (T_K),
Table_Value (T_V).

cacies emphasises the importance of our proposed837

Multi-modal Multi-task Multi-Teacher frame-838

work, which leverages insights from multiple teach-839

ers to enhance the robustness and accuracy of form840

document understanding.841

D Additional Implementation Details842

The table presented in Table 9 outlines the num-843

ber of total parameters and trainable parameters844

across various model configurations. It is evident845

that the choice of teacher models primarily deter-846

mines the total number of parameters. As the num-847

ber of teachers increases, there is a corresponding848

enhancement in the total parameter count. Further-849

more, the architecture of the student model signifi-850

cantly influences the number of trainable parame-851

ters. For instance, encoder-decoder-based student852

models exhibit a higher count of trainable parame-853

ters compared to architectures employing only an854

Fine-grained Coarse-Grained Configure # Para # Trainable
LiLT N/A Teacher 130,169,799 130,169,799

LayoutLMv3

N/A Teacher 125,332,359 125,332,359

LXMERT
JG-Encoder 393,227,514 19,586,415
JG-Decoder 423,952,890 50,311,791

JG-E&D

440,494,842 66,853,743
VisualBERT&LXMERT 557,260,798 70,394,991

Layoutlmv3&LiLT
LXMERT 574,205,889 68,034,159

VisualBERT&LXMERT 688,611,013 71,575,407

Table 9: Model configurations and parameters

encoder or decoder. This discrepancy implies that 855

training encoder-decoder models demands more 856

computational resources. Despite the variation 857

in trainable parameters among different student 858

model architectures, it is noteworthy that the over- 859

all number remains substantially smaller than that 860

of single-teacher fine-tuning processes. This obser- 861

vation underscores the efficiency of student model 862

training in comparison to fine-tuning pre-trained 863

models. 864
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