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Abstract

Pretrained Large Language Models (LLMs) achieve strong performance across
a wide range of tasks, yet exhibit substantial variability in the various layers’
training quality with respect to specific downstream applications, limiting their
downstream performance. It is therefore critical to estimate layer-wise training
quality in a manner that accounts for both model architecture and training data.
However, existing approaches predominantly rely on model-centric heuristics (such
as spectral statistics, outlier detection, or uniform allocation) while overlooking
the influence of data. To address these limitations, we propose LAYERIF, a data-
driven framework that leverages Influence Functions to quantify the training quality
of individual layers in a principled and task-sensitive manner. By isolating each
layer’s gradients and measuring the sensitivity of the validation loss to training
examples by computing layer-wise influences, we derive data-driven estimates of
layer importance. Notably, our method produces fask-specific layer importance
estimates for the same LLM, revealing how layers specialize for different test-time
evaluation tasks. We demonstrate the utility of our scores by leveraging them for
two downstream applications: (a) expert allocation in LORA-MOoE architectures
and (b) layer-wise sparsity distribution for LLM pruning. Experiments across
multiple LLM architectures demonstrate that our model-agnostic, influence-guided
allocation leads to consistent gains in task performance.

1 Introduction

Deep neural networks, particularly Large Language Models (LLMs), have become increasingly
powerful, achieving impressive performance across numerous natural language processing tasks such
as question answering [1} 2], natural language inference [3]], commonsense reasoning [4} 5], and code
generation [6]. Recent models have demonstrated strong generalization across these benchmarks,
such as Mistral [[7], Gemma [8], GPT-4 [9]], DeepSeek [10], LLaMA [11], and Qwen [12] model
families. However, despite their effectiveness, these models exhibit significant internal variability,
with layers differing substantially in terms of training quality and contribution to overall model
performance [13H16]. Recent diagnostic tools, such as layer-wise adaptive learning rates [17} |18]
and pruning strategies [[19] informed by empirical spectral densities (ESDs), have highlighted that
not all layers within a deep model are equally well-trained or consequential to its final performance.

There is a broad effort in the ML community to interpret and explain the behavior of these complex
models. Many approaches take a model-centric perspective, examining how the model’s learned
weights effect predictions [20} 19]. Other methods use activations, or attention patterns to deduce
internal mechanisms [21H24]. In contrast Influence Functions (IFs) [25,126] offer a more explicitly
data-centric perspective by quantifying the effect of individual training points on model’s loss
landscape. Rather than focusing on internal representations, Influence Functions (IFs) measure how
a model’s output would change if a given training example was perturbed or removed, effectively
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Figure 1: We present an overview of the LAYERIF pipeline via the green arrows. We quantify
per-layer quality in a pretrained LLM using Influence Functions (IFs), demonstrating that the same
model produces distinct layer-wise IF scores across different datasets, revealing dataset-specific
specialization. The pipeline begins by extracting gradients at each Transformer block of the LLM,
computed separately for each dataset. These gradients and the dataset are then used to estimate
layer-wise IF scores that serve as data-driven proxies for layer quality. To demonstrate the utility
of these scores, we consider two downstream applications: (a) the allocation of optimal experts per
layer in a LoORA-MOoE architecture, and (b) the computation of structured layer-wise sparsity ratios
for model pruning. For each task, we apply a dedicated mapping function, to transform the raw
IF scores into task-specific layer importance measures. On the contrary, pre-existing methods only
use model-only information or heuristics to compute these metrics as indicated by the red arrows.
FigureT]is a conceptual illustration contrasting our method with the baselines; the shown values are
illustrative, not experimental.

tracing the influence of training data on the model’s predictions. They have proven effective in a
range of downstream machine learning tasks, including mislabeled data detection [27H29]], optimal
subset selection [30-32], model interpretation [33H335]], data attribution [36], data valuation [37],
in-context learning [38]], and analyzing model biases [39,40].

Since IFs offer an empirical approach to measure the impact of training samples on model predictions,
they present a promising avenue for assessing and quantifying this variability in layer quality.
Surprisingly, despite their clear potential, Influence Functions have not yet been formally applied
or systematically formulated for evaluating the quality or importance of individual layers within
deep neural networks, particularly LLMs. In this work, we address this gap by introducing a novel
framework, LAYERIF, that leverages Influence Functions to rigorously quantify and interpret the
training efficacy of individual model layers. By systematically analyzing each layer’s gradient
information through IFs, we can obtain actionable insights into layer importance.

A key advantage of using IFs for estimating layer quality is their ability to combine perspectives
from both the data- and model-level. For instance, the same model (if trained to different number of
epochs) may exhibit layer-wise specialization that varies depending on the dataset or task, and IFs
can capture this variability. Specifically, as part of our LAYERIF framework (illustrated in Fig. [T), we
hypothesize that since IFs measure the sensitivity of model loss to individual training points and the
loss of well-trained layers should show smaller changes, layer-wise IF scores can serve as a proxy for
layer quality. These task-specific layer quality estimates can then be mapped to downstream settings
using corresponding transformation functions.

We evaluate our LAYERIF framework on two practical downstream settings: (a) expert allocation
in Mixture-of-Experts (MoE) architectures, and (b) layer sparsity allocation for model pruning.
In recent work, MoE models have emerged as a compelling strategy for scaling LLMs efficiently
by activating only a small subset of specialized subnetworks (“‘experts”) per input token [41} 42].



While several parameter-efficient fine-tuning methods (e.g., LoORA) have been extended to MoE
settings by training multiple low-rank adapters (LoRA experts) with learned routing mechanisms
[43H45]], typically, the same number of experts are allocated to every Transformer block. Recent
studies [46, 47| have questioned this uniform allocation, finding that expert redundancy and routing
overfitting can degrade performance. However, the alternatives proposed by them rely on group-based
heuristics or model-driven ablations. In contrast, we propose to use data- and model-driven IF-based
layer quality estimates to inform expert allocation.

Similarly, for the setting of layer sparsity allocation for LLM pruning, the traditional approach of
imposing a uniform sparsity ratio per layer limits the ability to push toward greater global sparsity
without sacrificing performance [48|149]. Recent work on more principled approaches for allocating
sparsity across layers includes OWL [20] and AlphaPruning [19], which perform non-uniform sparsity
allocation using metrics derived from weight statistics (e.g., outlier activations or heavy-tailed spectral
properties). These approaches rely solely on model weights and heuristics, without leveraging training
data. Our method offers a complementary, data-driven alternative: we use LAYERIF to identify layers
with lower aggregate influence and prune them more aggressively, while preserving better trained
layers. In both pruning and MoE routing, our results show that LAYERIF-informed decisions yield
improved accuracy trade-offs over uniform, heuristic, or solely model-driven baselines. Moreover,
our method applies to both pretrained and fine-tuned models and is agnostic to the model architecture.

Contributions. In sum, our work advances layer quality estimation in LLMs through the following
key contributions and findings:

* To the best of our knowledge, we are the first work to show that Influence Functions (IFs) can be
effectively used to analyze LLM layer quality using our LAYERIF framework.

* We study the effectiveness of LAYERIF in two downstream tasks: (a) expert allocation in Mixture-
of-Experts (MoE) architectures, and (b) layer sparsity allocation for model pruning.

* For expert allocation in Mixture-of-Experts (MoE) architectures we conduct experiments on Mistral-
7b-v0.1 and Gemma-7b by computing the post fine-tuning accuracy over several GLUE (CoLA,
MRPC) and QA (CommonsenseQ, OpenbookQ, TextScienceQ) datasets. This leads to percentage
increase of 1.61% over the best performing baseline.

* For layer sparsity allocation for model pruninng we conduct experiments on Mistral-7b-v0.1 and
Gemma-7b on several by computing the post-pruning zero shot accuracy on several NLP tasks
namely BoolQ, Hellaswag, Winogrande, RTE, OpenbookQA, ARC Easy and ARC Challenge. This
leads to a 0.90% increase over the next best baseline.

2 Related Works

Layer Quality Estimation. Prior work has examined the representational differences that emerge
across layers within deep neural networks [S0H52]]. Several probing techniques have been deployed
to capture the semantics of internal layer representations [53}154]. Additionally, [S5] employs random
matrix theory to analyze the weight matrices of Deep Neural Networks. They show that these
matrices exhibit heavy tail empirical spectral density (ESD) and a decay coefficient of this ESD,
PL_Alpha_Hill, can effectively gauge layer quality. More recent work has used Shapley Values [56]
to identify which layers contribute more to the model’s capabilities [57]. Other research has found
that the middle layers in LLMs provide stronger features for downstream tasks [S8].

Model Pruning and Layer-wise Sparsity Budgets. Pruning is a long-established technique in neural
network optimization, aimed at reducing the size of a trained model by eliminating redundant or non-
essential parameters. [59,160]. Modern works have used the similarity between the representations at
different layers to identify the optimal layers to prune, finding that the deepest layers can be pruned
with minimal degradation [61]].[62] Compared the change in cosine similarity of the input and output
representations of a layer to prune the model. Similarly, [63]] prunes model structures based on
gradient information, followed by LoRA finetuning, [48]] prunes based on the Hessian inverse, and
[49] uses weights and activations of layers to introduce sparsity. Computing layer-wise sparsity ratios
has been commonly used in older pruning methods [64] and quantization approaches [65]. [19] uses
the aforementioned PL_Alpha_Hill metric [S5] to calculate layer-wise sparsity ratios for pruning.
Finally, [20] proposes a non-uniform, layer-specific sparsity scheme informed by the distribution of
outlier activations across layers.



Allocating Mixture of Experts. Research in combining LoRA based finetuning [66] and Mixture
of Experts Models [41] to boost performance is an actively growing field. Several works have
proposed uniform strategies for allocating experts in LoORA-MoE settings [67H71]. Other works have
looked into heuristics-based group methods [46]] and Heavy-Tailed Self-Regularization Theory [47]]
based adaptive layer-wise methods to allocate experts. Other research directions aim to improve the
composability of LoRA for cross-task generalization [[72]].

Influence Functions. Classical influence function approaches seek to estimate the effect of training
samples on the model’s loss, either by leave-one-out retraining [26},73H76] or through gradient-based
approximation [27| (77, [78| 35 [79]. However, most of these methods are inapplicable for large
language models due to computational inefficiency or convexity assumptions [80, |29]. More recently,
several influence function methods have been proposed for LLMs, such as Datalnf [81]], Arnoldi itera-
tion [82]), alternative Hessian forms [34, [83]], self-influence [84}85], ensemble approaches [36,I86]], as
well as less performant but compute-efficient Hessian-free approaches [29} 128}, 132} [87]. It is important
to note that our LAYERIF framework is agnostic to the choice of influence function, so new advance-
ments made in this area can be directly utilized as part of our layer quality estimation approach.

3 Proposed Approach

In this section we will first define the preliminaries and notation that we will use and then formally
define our method.

3.1 Preliminaries and Notation

We clarify that in this work, the term layer refers specifically to a Transformer block, which comprises
multiple weight matrices, including those associated with the attention mechanism and the mlp
projection layers. We will now describe the preliminaries for Influence Functions and then for the
two tasks we consider in this work: (a) allocating mixture of experts for LORA finetuning and (b)
layer sparsity allocation for model pruning.

Influence Functions. Let the training dataset be D" = {2,}7 , and the validation dataset be
DY = {zjv 74, with fp representing a pretrained large language model with parameters 6 € ©
trained using loss ¢. The Influence Function (IF) quantifies the sensitivity of model parameters to
individual training examples [25, 26, [88]]. Formally, it characterizes how the optimal parameter
estimate 0* changes when a specific training point is infinitesimally up-weighted in the empirical
risk objective. Specifically, for a training point indexed by k € [n] and perturbed by infinitesimal
weight e € R, we can obtain perturbed model parameters as 6(*) (¢). Then, assuming the loss is twice
differentiable, [27]] showed that the influence of the k-th training point on the learned parameters 6*
can be derived by taking the limit of the perturbed solution with respect to €, as € — 0:

dok)
Ig*(zk) = p = —H(G*)_1V9€(Zk79),
€ e=0

Where H (f) is the Hessian matrix. Subsequently, the influence of a training sample z; € D" on

the validation loss becomes: X
m

I(z;) = = Vol(z),0)TH(6) "' Vol(z;,0).

The influence function I(z;) measures the effect of an individual training example on the validation
loss. Specifically, it captures whether the sample z; has a beneficial or detrimental impact on the
model’s predictive performance. A larger negative/positive value of I(z;) indicates that the data point
contributes to a reduction/increase in the loss, thereby serving as a beneficial/detrimental example for
model optimization.

LoRA-MoE. In the Mixture-of-Experts (MoE) paradigm, each Transformer layer is augmented
with N parallel expert modules [42]. Given an input x € R¢, the MoE layer computes the output

as: o = Wox + vazl G;(x)E;(x) where W, is the pre-trained weight matrix, E;(x) denotes the



output of the i-th expert, and G;(x) is the routing probability for expert ¢, typically produced by a
softmax over a trainable gating network: G(x) = Softmax(xW ) with W, being the gating matrix.
In practical implementations, only the top-K experts are selected to compute F;(x), and their outputs
are aggregated with load-balancing losses to avoid expert collapse.

Layer Sparsity Allocation for Model Pruning. Given a pretrained Transformer-based language
model NV with L layers, we denote the set of prunable weights by W, and the model architecture by a
tuple D = (dq,ds, ...,dr), where d; represents the number of prunable parameters in the i-th layer.
The goal of layer-wise pruning is to remove a fraction of parameters in W while maintaining model
performance. Rather than pruning uniformly across layers, a strategy is adopted to allocate different
pruning budgets based on layer quality.

We now define the process of selecting important layers based on IF scores via LAYERIF. We then
discuss how we can use LAYERIF for (a) allocating a mixture of experts for LoRA finetuning and (b)
layer sparsity allocation for model pruning.

3.2 LAYERIF: Estimating Layer Quality via Influence Functions

To assess the relative quality of different layers in the model, we localize IF computation to each
layer I. We denote the per-layer parameter vectors as 6" for each layer I € {1,..., N}. Let V) 4;
and H"(#) be the gradient and Hessian restricted to layer /. We define the layer-specific influence
score of training point z; as:

10(z) = = > Voo t(=V,0)T (HV(0)) Vo t(2:,6)
j=1

For each layer [, we aggregate the influence scores across the training set, considering only positively
influential samples after a sign inversion[[} SO = S°7" | [[1®(z;) > 0] - IV (z;) where T[] is the
indicator function. This yields a vector S € RY, where each element S() captures the cumulative
positive influence of training data on validation performance through layer [.

Justification. We now provide some intuitive justification for why the LAYERIF framework can
estimate layer quality with a high degree of accuracy. It is important to note that IF theory states
that positive/negative influence scores for samples increase/decrease model loss and are hence,
detrimental/beneficial to learning the task. In the same vein, to assess overall detriment/benefit to
the end-task performance as a scalar, we can sum over all positive/negative influence sample scores.
Moreover, by restricting influence to a particular combination of training samples and layers we can
obtain these scalar influence contributions for these layers. Since we do this layer-wise influence
computation in LAYERIF for different layers but keep the training samples fixed, we essentially
isolate the impact of different layers on end-task performance. Thus, LAYERIF can serve as an
effective approach for estimating layer quality in a data- and model-centric manner, unlike prior
approaches. Layers with lower cumulative positive influence S() exhibit less sensitivity to training
data, indicating greater stability and training maturity. Conversely, higher scores suggest under-
trained or less generalizable layers. Finally, our layer quality scores obtained through LAYERIF can
subsequently be used to guide pruning or resource allocation strategies that are dependent on accurate
layer quality estimates, as we show next.

3.3 Layer-wise Expert Allocation using LAYERIF

We now discuss how we can use our LAYERIF method to calculate the optimal distribution of a fixed
set of N parallel expert modules. To inform expert allocation, we evaluate the guality of each layer
using LAYERIF, which measures the sensitivity of model predictions to individual training samples.
We compute the IF matrix for each of the Transformer layers in an LLM on a train and validation set.
To obtain a scalar score v; for each layer, we aggregate its corresponding IF values while excluding
any training samples with negative influence, i.e., those that decrease the model’s loss, from the final
sum.

To map LAYERIF scores to expert allocations, we first invert the raw scores obtained for each layer.
Since our IF values are inverted to reflect loss sensitivity, we apply a sign inversion to ensure that layers

'This sign inversion is done since it is more intuitive that positive influential samples are beneficial to the
model.



with higher (i.e., less negative) IF scores remain lower in magnitude after transformation. Formally,
for each layer i, we compute ¥; = —v; where v; = —S). Next, we apply a power transformation to
modulate the sharpness of the allocation. Specifically, we raise the inverted values to a hyperparameter-

controlled exponent 5 > 0, yielding transformed scores v; = ﬁf . This exponent controls the
dispersion of the allocation: higher values of S amplify disparities between layers. We then scale the
transformed values such that the total allocation, excluding a baseline of one expert per layer, matches

the desired target sum 7. Specifically, we compute f; = ﬁ - (T —m), where m is the number of
layers, and the floor of each fractional allocation f; is taken with a minimum of 1 added: s; = | f;|+1.
This guarantees that each layer receives at least one expert. Due to flooring, the sum ) _. s; may be less
than 7. We compute the remaining allocation budget 7 = 7" — )" s; and distribute these remaining
units to the 7 layers with the largest fractional remainders f; — | f; ], ensuring the total sum constraint
is satisfied: s; < s; + 1, for top r layers with highest (f; — | fi]). This procedure produces a final

expert allocation vector S = [s1, S2,...,sp,] suchthat ) . s, = T and s; > 1 for all 4.

For each module ¢ in layer ¢, let Wé’t € R™*" denote the frozen pre-trained weight matrix. To
construct the experts, we instantiate s; low-rank adaptation modules comprising trainable matrix pairs
{Az’t, B;’.’t};":l, where Ajﬁt € R™*" is initialized with random Gaussian weights and B;’t € R
is initialized to zero. Here, r < min(m, n) denotes the rank of the adaptation [[66].

A router S;’t, parameterized by a trainable weight matrix Wt € R"*; dynamically assigns
experts for a given input x. Following the MoLA framework [46], we adopt a top-K routing

strategy, where only the K most relevant experts are selected for computation. To encourage
balanced expert utilization, we additionally incorporate a load balancing loss at each layer [89].

. . i, _ TopK (Softmax(W '), K); .t
The routing process is formally defined as .S () = SE TopK (Softmax (W "), K, where 5; (x)

denotes the normalized assignment weight for expert j. The final layer output h*! is computed
as: hit = Wh'e + Efil S;’t(x)Aé»’tB;’tx, where W' is a pre-trained base weight matrix, and
A;-’t, B;’t are low-rank matrices parameterizing the j-th expert. Thus, the output h*** combines the
base transformation of x with the aggregated contributions of the top-K experts, each scaled by
its corresponding assignment probability S;t(x) A step-by-step walkthrough of our algorithm is
provided in Appendix [C|for greater clarity.

3.4 Layer Sparsity Allocation for Model Pruning via LAYERIF

We describe how our LAYERIF method can be applied to the problem of allocating layer sparsity bud-
gets for model pruning [[19,90]. The motivating hypothesis is that the less well-trained a layer is, the
more it can be pruned as opposed to pruning each layer uniformly. We compute the IF scores for each
Transformer layer in an LLM on a train and validation set. These scores are aggregated by summing
the positive influence contributions across all samples, resulting in a vector of layer quality scores
s = (s1,89,...,8), where each s; quantifies the total positive influence attributable to the i-th layer.

To ensure stable and meaningful sparsity allocation, we post-process the raw layer-wise IF scores
before applying the mapping function. First, we take the absolute value of each score, and normalize
these values to the range [0, 1] using min-max normalization. This normalization step standardizes the
range of IF magnitudes across layers. Next, we apply the Savitzky—Golay filter [91] to the normalized
vector § = (31, §2,...,51) to smooth local fluctuations and reduce noise while preserving the
overall trend in layer quality The smoothed scores are then used as input to the sparsity allocation
function ¢ described below. This two-step normalization and smoothing process improves robustness
and consistency in sparsity assignment, particularly in cases where the raw influence scores vary
erratically between adjacent layers.

To convert these quality scores into sparsity budgets, we build upon ideas in prior work [[19]. First, we
apply a normalized linear mapping ¢ : RY — RE, namely ¢(3); = n (L;‘“:“‘(eg —e1) + 61) ,

Smax — Smin

where Spin and sy« are the minimum and maximum elements in the vector s, and ey, e, are tunable
parameters that control the minimum and maximum sparsity levels per layer. The scaling factor 7 is

Raw Influence Function (IF) scores at adjacent layers exhibit high-frequency noise due to stochastic Hessian
approximations and mini-batch gradient estimates. This variance is well documented by [34]], whose layer—token
heatmaps show similar oscillations.



Table 1: Accuracy across datasets using ALPHALORA, MOLA and LAYERIF variants. We report
scores under three IF strategies: Top 25% positively influential samples, all positively influential
samples (+ve), and all samples (top performers in bold).

Dataset ALPHALORA MoLA LAYERIF

2468 5555 8642 +VE Topr25% ALL
MRPC 75.30 82.02 80.64 80.70 82.49 82.63 81.63
Cola 82.07 82.26 85.14 84.56 83.60 83.80 84.47
Text Science Q 78.52 64.65 72.75 76.39 75.04 79.59 77.61
Common Q 82.06 80.91 79.93 81.00 80.26 80.75 80.34
Openbook Q 84.60 64.00 83.80 82.20 87.40 84.60  85.20
Average 80.51 74.77 80.45 80.97 81.76 82.27 81.85

computed to satisfy the global sparsity constraint .S, such that Zle o(8);-d; =S ZiL:1 d; with d;
denoting the number of prunable parameters in the i-th layer. This ensures that the total number of
remaining parameters matches the target sparsity level. We then incorporate these layer-wise sparsity
ratios in LLM pruning methods Magnitude [92], Wanda [49] and SparseGPT [48]] and evaluate
zero-shot capabilities.

4 Experimental Results

We delineate our experimental setup for experiments and analysis, and discuss our dataset details,
models used to conduct the experiments, our methods and baselines we compare against.

Datasets and Base LLMs. For the layer-wise expert allocation in the LORA-MoE application, we
assess post-training zero-shot performance on two GLUE datasets and three commonsense reasoning
tasks, following a protocol similar to that of Qing et al. [47]. The datasets used include: MRPC [93]],
CoLA [94]], ScienceQA [95], CommonsenseQA [96], and OpenBookQA [97]. For layer sparsity
allocation for model pruning we again assess the post-pruning zero-shot performance of our models
on several NLP tasks. Namely, BoolQ [98], Hellaswag [99], Winogrande [100], ARC Easy and
ARC Challenge [[101], RTE [94]], and OpenBookQA [97]]. For both of the applications we conduct
experiments on Mistral-7b-v0.1 [7] and Gemma-7b [8]. All of our experiments run on 8 xNVIDIA
RTX 6000 Ada GPUs. All code and reproducibility configurations are provided in Appendix [[and
we provide further information on statistical significance of our results in

Method Protocol and Baseline Configurations. For the layer-wise expert allocation application we
train our models for 3 epochs and then compare zero-shot accuracy on the datasets using a protocol
similar to [47]. We experimented with 3 LAYERIF configurations: using all samples LAYERIF
(ALL), using only positively influential training samples LAYERIF (+VE) and using the top 25 % of
the most influential training samples for our layer-wise summation: LAYERIF (ToP 25%).

Additionally, we compare against ALPHALORA [47]], and 3 baselines from MOLA [46]: MOLA-
2468, MOLA-5555 and MOLA-8642.

For layer sparsity allocation for model pruning, we apply the layer-wise sparsities derived from our
LAYERIF method to traditional LLM pruning methods such as Magnitude [92]], Wanda [49], and
SparseGPT [48]], and compare zero-shot performance. All of these methods originally have uniform
layer-wise sparsity, which we use as a baseline for comparison. We also compare with state-of-the-art
baselines ALPHAPRUNING [19] and OWL [20]. We prune our LLMs to 50% sparsity, since we can
achieve strong accuracy while removing half of the model weights, hence maintaining the real-world
utility of our method.

4.1 Results on Layer-wise Expert Allocation using LAYERIF

All LAYERIF configurations outperform baselines. Table [I| presents accuracy across datasets
for expert allocation methods, including ALPHALORA, three variants of MOLA, and our proposed
LAYERIF configurations. LAYERIF consistently outperforms prior approaches, achieving the highest
average accuracy across datasets. Specifically, the best performing LAYERIF configuration had
a relative percentage increase of 1.61% over the best performing baseline and the average of the



Table 2: Comparison of average accuracies across different pruning strategies (Magnitude, Wanda,
SparseGPT) and layer-wise sparsity allocation methods at 50% pruning on Mistral-7b-v0.1 (top
performers in bold).

Method Magnitude Wanda SparseGPT Average
UNIFORM 56.41 58.71 60.45 58.52
ALPHAPRUNING  56.74 58.48 60.07 58.43
OWL 56.16 58.75 59.99 58.30
LAYERIF 56.89 58.94 60.61 58.81

LAYERIF configurations had a 3.52% percentage increase over the average of other strong baselines.
These results demonstrate that [F-based layer quality estimation provides a more effective signal for
expert allocation in LLMs.

Consistently strong performance across varying
number of experts. In Figure[2] we provide aver-
age results for varying the number of experts, specif- _s
ically 80, 160 and 224 experts on Mistral-7b-v0.1.
MoOLA(1234) and MOLA(46810) are introduced
as additional baselines, following the most perfor-
mant pattern as claimed in the MOLA paper. We
can clearly see that LAYERIF clearly outperforms
the baselines in all three settings by having an aver- N
age accuracy that is a 3.64% percent increase over > e Bets Nfr?ixf?ssx ol
the second best average accuracy ALPHALORA. Ex- i’
pert allocation results for Gemma-7b are provided
in Appendix D]
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Figure 2: Comparison between ALPHALORA,
MoLA and LAYERIF with varying number of
total experts (80, 160, 224).

4.2 Results on Layer Sparsity Allocation for Model Pruning via LAYERIF

Yy

Superior performance on all pruning techniques. 64

Table [2] clearly indicates that using LAYERIF for
layer-wise sparsity allocation leads to performance
gains over the baselines with a 1.03% percentage
increase over OWL and a 0.90% increase over AL- —e— Uniform
PHAPRUNING in SparseGPT respectively. The re- AlphaPruning
sults reiterate the value of IF-based layer quality = OVL

. . 601 —— LayerlF
estimation.

Accuracy (%)
()}
N

20 30 40 50
Sparsity (%)

Figure 3: Mean accuracy across 4 sparsity lev-
els (20%—-50%) for Mistral-7b-v0.1 pruned us-
ing SparseGPT.

Robust performance across multiple pruning ra-
tios. Figure [3|demonstrates the consistently reliable
performance of LAYERIF across multiple pruning
ratios. LAYERIF consistently achieved the highest
accuracy across all pruning ratios, while baseline methods exhibited greater performance variability,
frequently changing ranks across sparsity levels. On average, LAYERIF outperformed the next best
method, OWL, by a 0.37% percentage increase. Moreover, we provide additional layer-wise sparsity
allocation results for Gemma-7b in Appendix [E|and results with and without the smoothing of IF
values in Appendix [

5 Discussion

In this section, we provide a discussion of the components of the LAYERIF pipeline and elaborate on
key design choices and ablation studies conducted as part of our experiments.

Layer-wise Allocation Differences. We show a comparison between the number of experts allocated
in LAYERIF versus other baselines in Figure [} Unlike ALPHALORA and MOLA, which apply the
same allocations to every test task, LAYERIF dynamically adapts the allocations based on data-driven
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Figure 4: Heatmap showing expert allocations across Transformer layers for Mistral-7B-v0.1 at a
total of 160 experts, comparing our dataset-specific approach LAYERIF to ALPHALORA and MOLA.
Unlike ALPHALORA and MOLA, which apply the same allocations to every test task, LAYERIF
adapts allocations based on the dataset. This is reflected in the diverse allocation patterns across the
various LAYERIF rows as darker shades indicate higher expert allocation to that particular layer.

Table 3: Comparison of accuracies across different pruning strategies (Magnitude, Wanda,
SparseGPT) between LAYERIF and reversed allocation at 70% pruning on Mistral-7b-vO0.1.

Method Magnitude Wanda SparseGPT Average

LAYERIF 33.44 32.50 41.14 35.69
Reversed Allocation 33.10 32.02 38.45 34.52

task-affinity estimates. This clearly indicates the unique benefit of our approach, as we can tune
the allocation based on how much task affinity a model has, as opposed to prior work, which offers
allocation for all datasets based on model-only information at best.

Interpretation of Layer Sensitivity. Influence Functions quantify how small perturbations in
training data affect the model’s loss. In this view, layers that are well-trained and have effectively
converged tend to exhibit lower sensitivity to such perturbations, as reflected by smaller IF
magnitudes. To further examine this relationship, we conduct an ablation in which we invert our
allocation strategy, assigning higher pruning ratios to layers with lower IF sensitivity. Under a
70% sparsity budget on MISTRAL-7B-V0.1, this reversed allocation leads to consistently worse
downstream performance, reinforcing that layers with lower IF sensitivity are better trained and
should be preserved more aggressively, as can be seen in Table 3]

Guidelines for Influence Sample Selection. We provide a empirical perspective on how to select the
subset of influence samples used to estimate layer quality. Throughout the paper, we aggregate only
positive-influence samples (+VE) by default, as they reflect training points that reduce validation
loss and thus carry constructive learning signal. In Section 4, we additionally examine two variants:
(ALL) which includes all samples regardless of sign, and (TOP-25%) which retains the top quartile
of positive scores by magnitude. Empirically, the TOP-25% variant achieves the highest average
performance across datasets, suggesting it is a strong default in practice.

From a theoretical standpoint, this selection serves as a noise-filtering mechanism. Because IF
estimates are computed from stochastic Hessian and gradient approximations, small-magnitude
scores often correspond to spurious or weak training—validation interactions. Retaining only the
upper tail of positive influences increases the signal-to-noise ratio. Prior studies have also shown that
IF values in deep models are heavy-tailed [34]], implying that a small fraction of training samples
account for most of the total positive influence. Hence, focusing on this high-influence subset isolates
the most informative training signals.

In practice, one can determine the cutoff ratio using a simple cumulative influence curve: sorting
positive IF values in descending order and identifying the elbow point where marginal contribution
drops sharply provides a data-driven threshold. This adaptive thresholding remains an exciting
direction for future work.

Per Matrix versus Per Block. We compute the IF scores on a per-block basis within each
Transformer layer. That is to say, the IF scores are aggregated across the attention and MLP heads



of a given layer, and the average score is uniformly applied to all associated weights, rather than
computing separate scores for each component. This design choice follows the precedent set by
prior work [19} [20]. To empirically assess the impact of this decision, we conducted an ablation
study using LLaMA2-7B [[11]] at 70% sparsity across all three pruning methods. We observed that
computing scores on a per-block basis yielded a 2.14% average improvement in accuracy, thereby
corroborating the effectiveness of this approach.

Computational Complexity. One limitation of IF-based methods in general (at test-time) is their
high computational complexity, primarily due to the Hessian inversion. However, optimizing this
compute time is an active area of research [29, |82]] and our LAYERIF framework can employ any
efficient IF method proposed in the future. Additionally, it is important to note that our framework
is not for use during inference. That is, since our framework is applied during model training, the
computational overhead of IF is a minuscule fraction of the time it takes to pretrain LLMs. Detailed
wall-clock times and memory consumption for varying model and dataset sizes are presented in

Appendix

Comparison with Alternative IF Methods. One class of alternative T,ple 4: Measuring Spear-
IF methods are Hessian-free methods like TracIn [28]]. While Hessian- ,21°s correlation coefficient
free IF methods are computationally more efficient, they generally petween Hessian-based
lead to a drop in performance [38, 29]]. To assess if Hessian-free  [ecsian-free methods when
methods such as TracIn [28] can be used for layer quality influence employed in LAYERIF.
estimation, we compute the layer-wise expert allocations for each

dataset from our main experiments using TracIn as the IF method Dataset Correlation
in LAYERIF and compare these allocations with those derived from

. . . MRPC -0.22
the Hessian-based method, Datalnf [81]] (employed in our main ex- Cola 0.44
periments). We compute the Spearman’s correlation coefficient and Openbook Q 0.09
present our findings in Table[d We find that Hessian-free methods fail ~ Text Science Q ~ -0.69
to capture meaningful information about layer-wise training quality as Common Q 0.12

there is little to no agreement in the resulting layer allocations across
datasets when employing Tracln compared to Datalnf in LAYERIF. Another class of alternative
IF methods are Gauss-Newton Hessians like the EK-FAC method [34]. The main bottleneck with
the Gauss-Newton Hessian is the time required for IF computation. In our experiments, the Gauss
Newton Hessian was roughly 160x slower than using the Datalnf approximation, making Datalnf the
only practical choice for our large-scale experiments.

6 Conclusion

In this work, we introduced LAYERIF, a novel framework that leverages Influence Functions (IFs)
to quantify layer quality in large language models (LLMs). Departing from prior model-centric
information and heuristics, our approach provides a data-informed perspective by capturing the
sensitivity of model loss to individual training examples at the layer level. To validate the utility of
our layer-wise IF estimates, we applied them to two practical downstream tasks: expert allocation
in Mixture-of-Experts (MoE) architectures and layer sparsity allocation for model pruning. Our
method consistently outperformed the previously best approaches, achieving a 1.61% improvement
in LoRA-MOoE and a 0.90% gain in zero-shot accuracy after pruning. These results confirm that
IF-based layer quality estimation can guide more effective structural adaptations in LLMs. Beyond
its empirical gains, LAYERIF offers a general, training-data-aware framework for interpreting and
optimizing deep models, applicable across architectures and deployment scenarios.
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Appendix

A Limitations

A key limitation of Influence Functions is their reliance on an implicit convexity assumption, which
may not strictly hold in LLMs. While this is a known limitation of IF theory and an ongoing area of
research, we find that our proposed LAYERIF framework demonstrates strong empirical performance
on LL.Ms despite this. We also note that LAYERIF is a training-time method and does not impact
inference latency. Although computing IFs can be computationally intensive, particularly due to the
Hessian inverse approximation, recent approaches such as Datalnf offer closed-form solutions that
significantly reduce this overhead. Future work will explore integrating such scalable IF estimators
to further improve the efficiency of our method. Another limitation of our method stems from
its data-driven nature: the subset of data used to compute IF scores must be representative of the
overall training and validation distribution. Failure to ensure representativeness can lead to biased or
unreliable influence estimates, potentially degrading the effectiveness of the method.

B Broader Impact

Our data-driven approach to assessing layer quality using Influence Functions offers a promising
direction for making pretrained LLMs more efficient for downstream tasks. By enabling more targeted
pruning, models can be made both more lightweight and environmentally sustainable. Additionally,
optimizing expert allocation can enhance the performance of smaller models on specialized tasks,
further improving efficiency and reducing computational and environmental costs. Our method also
contributes to model interpretability by identifying which layers are most responsible for performance
on specific downstream tasks. This insight can guide further research, ultimately leading to more
effective and efficient language models.

C Clarifying Walk-Through Example

Here, we provide a concrete step-by-step walk-through of our method for greater clarity of our
method.

Concrete walk-through for expert allocation (CommonQ dataset, 32-layer LLM, T=160 experts,
f=3)

Below we provide the exact numbers produced by our implementation. For brevity only the first 5
layers are shown; the remaining layers follow identically.

Layer i Raw IF score v; Inverted v; Power-scaled v; Fractional f; Final experts s;

0 —5.01 x 10" 5.01 x 10'*  1.26 x 1035 1.12 2
1 —8.36 x 10 8.36 x 10!t 5.84 x 103° 5.21 6
2 —7.99 x 101 7.99 x 10! 5.10 x 103° 4.55 6
3 —8.46 x 10 8.46 x 10" 6.05 x 10%° 5.40 6
4 6

—8.16 x 1011 8.16 x 10! 5.43 x 103° 4.84

* Stepl (sign inversion). Invert the negative values to positive.
* Step2 (power transform). Amplify disparities by raising to the power (3 to get 0.

* Step3 (normalise to budget). Scale ¢ so that the fractional allocations ) f; equal T — m = 128
extra experts (m = 32 layers).

Step4 (floor + redistribute). Set s; = | f;| + 1, guaranteeing > 1 expert/layer, then distribute
the remaining 24 units to the layers with the largest fractional parts.

Finally, the complete allocation for Common(Q becomes:
[2’ 67 67 67 67 5’ 77 67 87 77 6’ 77 67 67 67 5’ 67 67 57 47 5’ 57 47 27 47 57 35 47 27 37 4’ 3]
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Interpretation. The middle layers receive the most experts, indicating they are comparatively under-
trained for CommonQ); the first and very deep layers receive lower number of experts, reflecting

higher estimated quality.

D Gemma-7b Expert Allocation Results

This section presents results on layer-wise expert allocation for Gemma-7B, using a total of 160

experts in Table 3]

Table 5: Accuracy across datasets using ALPHALORA, MOLA(3,5,7,8) and LAYERIF (+VE) for

160 experts on Gemma-7b.

Dataset ALPHALORA MOLA(3,5,7,8) LAYERIF (+VE)
MRPC 82.61 82.89 84.75
Cola 86.09 86.86 86.96
Text Science Q 94.15 93.88 93.66
Common Q 84.11 83.94 83.46
Openbook Q 87.80 88.80 88.20
Average 86.55 87.47 87.81

As shown in the results, LAYERIF achieves superior average performance compared to the baseline
methods.

E Gemma-7b Sparsity Allocation Results

Here, we provide results on layer-wise sparsity allocation for Gemma-7B for 50% sparsity in Table [6]

Table 6: Comparison of average accuracies across different pruning strategies (Magnitude, Wanda,
SparseGPT) and layer-wise sparsity allocation methods at 50% pruning on Gemma-7b.

Method Magnitude Wanda SparseGPT Average
UNIFORM 32.21 51.19 49.92 44 .44
ALPHAPRUNING  34.21 50.76 51.39 45.45
OWL 33.27 47.15 47.48 42.63
LAYERIF 32.94 53.01 50.90 45.62

We can again see that LAYERIF has both the highest average and the best individual performance
after pruning.

F Sparsity Allocation Results with and without smoothing for Mistral-7b-v0.1

As described in Section 3, we apply Savitzky—Golay smoothing [91]] to the min-max normalized IF
values within our layer-wise sparsity allocation algorithm. This smoothing step helps prevent any
individual layer from being entirely pruned, while also enhancing the robustness and consistency of
sparsity assignments. This was particularly helpful in scenarios where raw influence scores fluctuate
significantly between adjacent layers.

We used a window-length of 7 and a polyorder of 3 for our filter. We present the percentage changeﬂ
in performance at 70% sparsity, comparing results with and without smoothing, for Mistral-7B-v0.1
in Table

We can clearly see that smoothing leads to an overall increase in performance across the different
epsilon values and pruning methods.

: ith hing —without s hi
3Percentage change is computed as (W" Smoothing — Without smoot "‘g) x 100%

without smoothing
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Table 7: Percentage change between zero-shot accuracies across different e values and LLM pruning
methods.

Magnitude Wanda SparseGPT

e=01 (+)149 (+)094 (+)0.97
e=02 (1052 (+) 115 (+)0.46
e=03 (+)0.03 (+)0.05 (+) 041
e=04 (181 (1069 (+)0.48
e=05 (063 (+0.78 (-)0.02

G Statistical Significance of Results

We present the t-test statistical significance of our empirical results across both subsettings. Specifi-
cally, we analyze the average accuracy of LAYERIF compared to baseline methods across all expert
counts and datasets evaluated for layer-wise expert allocation, as shown in Table

Table 8: Computing the t-test metric to compare LAYERIF with MOLA and ALPHALORA on zero-
shot accuracy across the different number of experts (** indicates statistical significance i.e., p-value
< 0.05)

Algorithm Average Accuracy p-value
_ ALPHALORA 79.30 0.03152"

MoLA 78.97 0.03123"

LAYERIF 82.28 -

Table 8] clearly shows a statistically significant improvement over both of the other baselines.

Table 9: Computing the t-test metric to compare LAYERIF with ALPHAPRUNING, UNIFORM and
OWL on zero-shot accuracy across the different number of pruning ratios (** indicates statistical
significance i.e., p-value < 0.05)

Algorithm Average Accuracy p-value
ALPHAPRUNING 62.42 0.01969™
- UNIFORM 62.58 0.03077"
OWL 62.61 0.09156
LAYERIF 62.84 -

We now analyze the average accuracy of LAYERIF compared to baseline methods across all pruning
ratios for layer-wise sparsity allocation, as shown in Table[9]

Table Q] clearly shows that LAYERIF produces statistically significant improvements in all of the
baselines, except OWL, where it shows a marginally significant improvement.

H Wall Clock Times and Memory Consumption for Varying Dataset and
Model Sizes

We report the wall-clock times of our Influence Function (IF) computation using the DATAINF
approximation, compared against the TRACIN baseline, under varying dataset sizes and model scales.
All experiments were performed on 4 x NVIDIA RTX 6000 Ada Generation GPUs.

H.1 Scalability to Dataset Size

Table[I0| presents runtimes for computing IFs over a single layer with increasing numbers of training
and validation samples. As expected, the runtime scales approximately linearly with dataset size.
Although DATAINF is substantially slower than TRACIN, the total cost remains modest relative to the
computational expense of pretraining large language models. For comparison, training LLAMA?2-
70B reportedly required ~1.72M GPU hours, whereas DATAINF adds only a minor diagnostic
overhead that can be amortized across layers to identify underperforming components during training.

The peak GPU memory consumption during influence computation for a dataset of 300 training
and 50 validation samples was approximately 35000MiB for the 7B model. This footprint remains
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Table 10: Wall-clock runtimes (in seconds) for computing IFs for a single layer under different dataset
sizes on MISTRAL-7B-Vv0.1.

Dataset Size (TrainxVal) Method Runtime (s)
DATAINF 163,721

3000>300 TRACIN 1.35 x 102
DATAINF 402.77

300x50 TRACIN 3.31 x 10~°

30%5 DATAINF 15.3

TRACIN 1.19 x 1076

well within the typical per-GPU memory budget, indicating that influence-based diagnostics can be
feasibly integrated into existing training pipelines.

H.2 Scalability to Model Size

We also evaluate scaling across model sizes in Table[IT] The runtime grows roughly proportionally
to parameter count.

Table 11: Wall-clock runtimes (in seconds) for DATAINF and TRACIN under different model sizes
(300x50 dataset).

Model Method Runtime (s)
DATAINF 58.063

QWEN2.5-3B peacIN 2.7 x 107

QWEN2.5-32B DATAINF  2,824.16

TRACIN 6.82 x 107°

Overall, while DATAINF incurs higher per-layer computation cost than first-order approximations
such as TRACIN, it remains computationally tractable even for multi-billion-parameter models. Its
cost is negligible relative to the full pretraining budget, while providing rich layer-wise diagnostic
signals that can inform targeted retraining or pruning strategies.

I Code and Reproducibility

We follow the datasets and evaluation protocol of Alphal.ora [47] for layer-wise expert allocation
and the datasets and evaluation protocol of Alphapruning [19] for layer-wise sparsity allocation.
Our code has been anonymized and uploaded here: https://github.com/HadiAskari/Expert_
Allocation and https://github.com/HadiAskari/LayerIF_Pruning_New.
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