LAYERIF: Estimating Layer Quality for Large
Language Models using Influence Functions

Hadi Askari’, Shivanshu Gupta®, Fei Wang |, Anshuman Chhabra’{ Muhao Chen®
t University of California, Davis § University of California, Irvine
I University of Southern California ffUniversity of South Florida

Abstract

Pretrained Large Language Models (LLMs) achieve strong performance across
a wide range of tasks, yet exhibit substantial variability in the various layers’
training quality with respect to specific downstream applications, limiting their
downstream performance. It is therefore critical to estimate layer-wise training
quality in a manner that accounts for both model architecture and training data.
However, existing approaches predominantly rely on model-centric heuristics (such
as spectral statistics, outlier detection, or uniform allocation) while overlooking
the influence of data. To address these limitations, we propose LAYERIF, a data-
driven framework that leverages Influence Functions to quantify the training quality
of individual layers in a principled and task-sensitive manner. By isolating each
layer’s gradients and measuring the sensitivity of the validation loss to training
examples by computing layer-wise influences, we derive data-driven estimates of
layer importance. Notably, our method produces fask-specific layer importance
estimates for the same LLM, revealing how layers specialize for different test-time
evaluation tasks. We demonstrate the utility of our scores by leveraging them for
two downstream applications: (a) expert allocation in LORA-MOoE architectures
and (b) layer-wise sparsity distribution for LLM pruning. Experiments across
multiple LLM architectures demonstrate that our model-agnostic, influence-guided
allocation leads to consistent gains in task performance.

1 Introduction

Deep neural networks, particularly Large Language Models (LLMs), have become increasingly
powerful, achieving impressive performance across numerous natural language processing tasks such
as question answering [1} 2], natural language inference [3]], commonsense reasoning [4} 5], and code
generation [6]. Recent models have demonstrated strong generalization across these benchmarks,
such as Mistral [[7], Gemma [8], GPT-4 [9]], DeepSeek [10], LLaMA [11], and Qwen [12] model
families. However, despite their effectiveness, these models exhibit significant internal variability,
with layers differing substantially in terms of training quality and contribution to overall model
performance [13H16]. Recent diagnostic tools, such as layer-wise adaptive learning rates [17} |18]
and pruning strategies [[19] informed by empirical spectral densities (ESDs), have highlighted that
not all layers within a deep model are equally well-trained or consequential to its final performance.

There is a broad effort in the ML community to interpret and explain the behavior of these complex
models. Many approaches take a model-centric perspective, examining how the model’s learned
weights effect predictions [20} 19]. Other methods use activations, or attention patterns to deduce
internal mechanisms [21H24]. In contrast Influence Functions (IFs) [25,126] offer a more explicitly
data-centric perspective by quantifying the effect of individual training points on model’s loss
landscape. Rather than focusing on internal representations, Influence Functions (IFs) measure how
a model’s output would change if a given training example was perturbed or removed, effectively

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Dataset) Layer N 34 3{
Expert Allocation
Mapping Function
o Layer i 56
\ 4 N
Layer N u
t " ’

Layer N
Layerwise Experts Allocated per

]
% Gradients‘ Layer i :l Layer
]

Layer1 > o
1 v
. v
@ . Layerwise IF 2| —>
f __ Scores / £ | —
‘, Layer1 ‘ M Laygr Slgarsity
o Model-only lapping Function
Pre-trained Model information
B — or heuristics)
Layer Sparsity
Green Arrows: LayerlF workflow \L

Red Arrows: Pre-existing methods

Figure 1: We present an overview of the LAYERIF pipeline via the green arrows. We quantify
per-layer quality in a pretrained LLM using Influence Functions (IFs), demonstrating that the same
model produces distinct layer-wise IF scores across different datasets, revealing dataset-specific
specialization. The pipeline begins by extracting gradients at each Transformer block of the LLM,
computed separately for each dataset. These gradients and the dataset are then used to estimate
layer-wise IF scores that serve as data-driven proxies for layer quality. To demonstrate the utility
of these scores, we consider two downstream applications: (a) the allocation of optimal experts per
layer in a LoORA-MOoE architecture, and (b) the computation of structured layer-wise sparsity ratios
for model pruning. For each task, we apply a dedicated mapping function, to transform the raw
IF scores into task-specific layer importance measures. On the contrary, pre-existing methods only
use model-only information or heuristics to compute these metrics as indicated by the red arrows.
FigureT]is a conceptual illustration contrasting our method with the baselines; the shown values are
illustrative, not experimental.

tracing the influence of training data on the model’s predictions. They have proven effective in a
range of downstream machine learning tasks, including mislabeled data detection [27H29]], optimal
subset selection [30-32], model interpretation [33H335]], data attribution [36], data valuation [37],
in-context learning [38]], and analyzing model biases [39,40].

Since IFs offer an empirical approach to measure the impact of training samples on model predictions,
they present a promising avenue for assessing and quantifying this variability in layer quality.
Surprisingly, despite their clear potential, Influence Functions have not yet been formally applied
or systematically formulated for evaluating the quality or importance of individual layers within
deep neural networks, particularly LLMs. In this work, we address this gap by introducing a novel
framework, LAYERIF, that leverages Influence Functions to rigorously quantify and interpret the
training efficacy of individual model layers. By systematically analyzing each layer’s gradient
information through IFs, we can obtain actionable insights into layer importance.

A key advantage of using IFs for estimating layer quality is their ability to combine perspectives
from both the data- and model-level. For instance, the same model (if trained to different number of
epochs) may exhibit layer-wise specialization that varies depending on the dataset or task, and IFs
can capture this variability. Specifically, as part of our LAYERIF framework (illustrated in Fig. [T), we
hypothesize that since IFs measure the sensitivity of model loss to individual training points and the
loss of well-trained layers should show smaller changes, layer-wise IF scores can serve as a proxy for
layer quality. These task-specific layer quality estimates can then be mapped to downstream settings
using corresponding transformation functions.

We evaluate our LAYERIF framework on two practical downstream settings: (a) expert allocation
in Mixture-of-Experts (MoE) architectures, and (b) layer sparsity allocation for model pruning.
In recent work, MoE models have emerged as a compelling strategy for scaling LLMs efficiently
by activating only a small subset of specialized subnetworks (“‘experts”) per input token [41} 42].

While several parameter-efficient fine-tuning methods (e.g., LoORA) have been extended to MoE
settings by training multiple low-rank adapters (LoRA experts) with learned routing mechanisms
[43H45]], typically, the same number of experts are allocated to every Transformer block. Recent
studies [46, 47| have questioned this uniform allocation, finding that expert redundancy and routing
overfitting can degrade performance. However, the alternatives proposed by them rely on group-based
heuristics or model-driven ablations. In contrast, we propose to use data- and model-driven IF-based
layer quality estimates to inform expert allocation.

Similarly, for the setting of layer sparsity allocation for LLM pruning, the traditional approach of
imposing a uniform sparsity ratio per layer limits the ability to push toward greater global sparsity
without sacrificing performance [48|149]. Recent work on more principled approaches for allocating
sparsity across layers includes OWL [20] and AlphaPruning [19], which perform non-uniform sparsity
allocation using metrics derived from weight statistics (e.g., outlier activations or heavy-tailed spectral
properties). These approaches rely solely on model weights and heuristics, without leveraging training
data. Our method offers a complementary, data-driven alternative: we use LAYERIF to identify layers
with lower aggregate influence and prune them more aggressively, while preserving better trained
layers. In both pruning and MoE routing, our results show that LAYERIF-informed decisions yield
improved accuracy trade-offs over uniform, heuristic, or solely model-driven baselines. Moreover,
our method applies to both pretrained and fine-tuned models and is agnostic to the model architecture.

Contributions. In sum, our work advances layer quality estimation in LLMs through the following
key contributions and findings:

* To the best of our knowledge, we are the first work to show that Influence Functions (IFs) can be
effectively used to analyze LLM layer quality using our LAYERIF framework.

* We study the effectiveness of LAYERIF in two downstream tasks: (a) expert allocation in Mixture-
of-Experts (MoE) architectures, and (b) layer sparsity allocation for model pruning.

* For expert allocation in Mixture-of-Experts (MoE) architectures we conduct experiments on Mistral-
7b-v0.1 and Gemma-7b by computing the post fine-tuning accuracy over several GLUE (CoLA,
MRPC) and QA (CommonsenseQ, OpenbookQ, TextScienceQ) datasets. This leads to percentage
increase of 1.61% over the best performing baseline.

* For layer sparsity allocation for model pruninng we conduct experiments on Mistral-7b-v0.1 and
Gemma-7b on several by computing the post-pruning zero shot accuracy on several NLP tasks
namely BoolQ, Hellaswag, Winogrande, RTE, OpenbookQA, ARC Easy and ARC Challenge. This
leads to a 0.90% increase over the next best baseline.

2 Related Works

Layer Quality Estimation. Prior work has examined the representational differences that emerge
across layers within deep neural networks [S0H52]]. Several probing techniques have been deployed
to capture the semantics of internal layer representations [53}154]. Additionally, [S5] employs random
matrix theory to analyze the weight matrices of Deep Neural Networks. They show that these
matrices exhibit heavy tail empirical spectral density (ESD) and a decay coefficient of this ESD,
PL_Alpha_Hill, can effectively gauge layer quality. More recent work has used Shapley Values [56]
to identify which layers contribute more to the model’s capabilities [57]. Other research has found
that the middle layers in LLMs provide stronger features for downstream tasks [S8].

Model Pruning and Layer-wise Sparsity Budgets. Pruning is a long-established technique in neural
network optimization, aimed at reducing the size of a trained model by eliminating redundant or non-
essential parameters. [59,160]. Modern works have used the similarity between the representations at
different layers to identify the optimal layers to prune, finding that the deepest layers can be pruned
with minimal degradation [61]].[62] Compared the change in cosine similarity of the input and output
representations of a layer to prune the model. Similarly, [63]] prunes model structures based on
gradient information, followed by LoRA finetuning, [48]] prunes based on the Hessian inverse, and
[49] uses weights and activations of layers to introduce sparsity. Computing layer-wise sparsity ratios
has been commonly used in older pruning methods [64] and quantization approaches [65]. [19] uses
the aforementioned PL_Alpha_Hill metric [S5] to calculate layer-wise sparsity ratios for pruning.
Finally, [20] proposes a non-uniform, layer-specific sparsity scheme informed by the distribution of
outlier activations across layers.

Allocating Mixture of Experts. Research in combining LoRA based finetuning [66] and Mixture
of Experts Models [41] to boost performance is an actively growing field. Several works have
proposed uniform strategies for allocating experts in LoORA-MoE settings [67H71]. Other works have
looked into heuristics-based group methods [46]] and Heavy-Tailed Self-Regularization Theory [47]]
based adaptive layer-wise methods to allocate experts. Other research directions aim to improve the
composability of LoRA for cross-task generalization [[72]].

Influence Functions. Classical influence function approaches seek to estimate the effect of training
samples on the model’s loss, either by leave-one-out retraining [26},73H76] or through gradient-based
approximation [27| (77, [78| 35 [79]. However, most of these methods are inapplicable for large
language models due to computational inefficiency or convexity assumptions [80, |29]. More recently,
several influence function methods have been proposed for LLMs, such as Datalnf [81]], Arnoldi itera-
tion [82]), alternative Hessian forms [34, [83]], self-influence [84}85], ensemble approaches [36,I86]], as
well as less performant but compute-efficient Hessian-free approaches [29} 128}, 132} [87]. It is important
to note that our LAYERIF framework is agnostic to the choice of influence function, so new advance-
ments made in this area can be directly utilized as part of our layer quality estimation approach.

3 Proposed Approach

In this section we will first define the preliminaries and notation that we will use and then formally
define our method.

3.1 Preliminaries and Notation

We clarify that in this work, the term layer refers specifically to a Transformer block, which comprises
multiple weight matrices, including those associated with the attention mechanism and the mlp
projection layers. We will now describe the preliminaries for Influence Functions and then for the
two tasks we consider in this work: (a) allocating mixture of experts for LORA finetuning and (b)
layer sparsity allocation for model pruning.

Influence Functions. Let the training dataset be D" = {2,}7 , and the validation dataset be
DY = {zjv 74, with fp representing a pretrained large language model with parameters 6 € ©
trained using loss ¢. The Influence Function (IF) quantifies the sensitivity of model parameters to
individual training examples [25, 26, [88]]. Formally, it characterizes how the optimal parameter
estimate 0* changes when a specific training point is infinitesimally up-weighted in the empirical
risk objective. Specifically, for a training point indexed by k € [n] and perturbed by infinitesimal
weight e € R, we can obtain perturbed model parameters as 6(*) (¢). Then, assuming the loss is twice
differentiable, [27]] showed that the influence of the k-th training point on the learned parameters 6*
can be derived by taking the limit of the perturbed solution with respect to €, as € — 0:

dok)
Ig*(zk) = p = —H(G*)_1V9€(Zk79),
€ e=0

Where H (f) is the Hessian matrix. Subsequently, the influence of a training sample z; € D" on

the validation loss becomes: X
m

I(z;) = = Vol(z),0)TH(6) "' Vol(z;,0).

The influence function I(z;) measures the effect of an individual training example on the validation
loss. Specifically, it captures whether the sample z; has a beneficial or detrimental impact on the
model’s predictive performance. A larger negative/positive value of I(z;) indicates that the data point
contributes to a reduction/increase in the loss, thereby serving as a beneficial/detrimental example for
model optimization.

LoRA-MoE. In the Mixture-of-Experts (MoE) paradigm, each Transformer layer is augmented
with N parallel expert modules [42]. Given an input x € R¢, the MoE layer computes the output

as: o = Wox + vazl G;(x)E;(x) where W, is the pre-trained weight matrix, E;(x) denotes the

output of the i-th expert, and G;(x) is the routing probability for expert ¢, typically produced by a
softmax over a trainable gating network: G(x) = Softmax(xW) with W, being the gating matrix.
In practical implementations, only the top-K experts are selected to compute F;(x), and their outputs
are aggregated with load-balancing losses to avoid expert collapse.

Layer Sparsity Allocation for Model Pruning. Given a pretrained Transformer-based language
model NV with L layers, we denote the set of prunable weights by W, and the model architecture by a
tuple D = (dq,ds, ...,dr), where d; represents the number of prunable parameters in the i-th layer.
The goal of layer-wise pruning is to remove a fraction of parameters in W while maintaining model
performance. Rather than pruning uniformly across layers, a strategy is adopted to allocate different
pruning budgets based on layer quality.

We now define the process of selecting important layers based on IF scores via LAYERIF. We then
discuss how we can use LAYERIF for (a) allocating a mixture of experts for LoRA finetuning and (b)
layer sparsity allocation for model pruning.

3.2 LAYERIF: Estimating Layer Quality via Influence Functions

To assess the relative quality of different layers in the model, we localize IF computation to each
layer I. We denote the per-layer parameter vectors as 6" for each layer I € {1,..., N}. Let V) 4;
and H"(#) be the gradient and Hessian restricted to layer /. We define the layer-specific influence
score of training point z; as:

10(z) = = > Voo t(=V,0)T (HV(0)) Vo t(2:,6)
j=1

For each layer [, we aggregate the influence scores across the training set, considering only positively
influential samples after a sign inversion[[} SO = S°7" | [[1®(z;) > 0] - IV (z;) where T[] is the
indicator function. This yields a vector S € RY, where each element S() captures the cumulative
positive influence of training data on validation performance through layer [.

Justification. We now provide some intuitive justification for why the LAYERIF framework can
estimate layer quality with a high degree of accuracy. It is important to note that IF theory states
that positive/negative influence scores for samples increase/decrease model loss and are hence,
detrimental/beneficial to learning the task. In the same vein, to assess overall detriment/benefit to
the end-task performance as a scalar, we can sum over all positive/negative influence sample scores.
Moreover, by restricting influence to a particular combination of training samples and layers we can
obtain these scalar influence contributions for these layers. Since we do this layer-wise influence
computation in LAYERIF for different layers but keep the training samples fixed, we essentially
isolate the impact of different layers on end-task performance. Thus, LAYERIF can serve as an
effective approach for estimating layer quality in a data- and model-centric manner, unlike prior
approaches. Layers with lower cumulative positive influence S() exhibit less sensitivity to training
data, indicating greater stability and training maturity. Conversely, higher scores suggest under-
trained or less generalizable layers. Finally, our layer quality scores obtained through LAYERIF can
subsequently be used to guide pruning or resource allocation strategies that are dependent on accurate
layer quality estimates, as we show next.

3.3 Layer-wise Expert Allocation using LAYERIF

We now discuss how we can use our LAYERIF method to calculate the optimal distribution of a fixed
set of N parallel expert modules. To inform expert allocation, we evaluate the guality of each layer
using LAYERIF, which measures the sensitivity of model predictions to individual training samples.
We compute the IF matrix for each of the Transformer layers in an LLM on a train and validation set.
To obtain a scalar score v; for each layer, we aggregate its corresponding IF values while excluding
any training samples with negative influence, i.e., those that decrease the model’s loss, from the final
sum.

To map LAYERIF scores to expert allocations, we first invert the raw scores obtained for each layer.
Since our IF values are inverted to reflect loss sensitivity, we apply a sign inversion to ensure that layers

'This sign inversion is done since it is more intuitive that positive influential samples are beneficial to the
model.

with higher (i.e., less negative) IF scores remain lower in magnitude after transformation. Formally,
for each layer i, we compute ¥; = —v; where v; = —S). Next, we apply a power transformation to
modulate the sharpness of the allocation. Specifically, we raise the inverted values to a hyperparameter-

controlled exponent 5 > 0, yielding transformed scores v; = ﬁf . This exponent controls the
dispersion of the allocation: higher values of S amplify disparities between layers. We then scale the
transformed values such that the total allocation, excluding a baseline of one expert per layer, matches

the desired target sum 7. Specifically, we compute f; = ﬁ - (T —m), where m is the number of
layers, and the floor of each fractional allocation f; is taken with a minimum of 1 added: s; = | f;|+1.
This guarantees that each layer receives at least one expert. Due to flooring, the sum) _. s; may be less
than 7. We compute the remaining allocation budget 7 = 7" —)" s; and distribute these remaining
units to the 7 layers with the largest fractional remainders f; — | f;], ensuring the total sum constraint
is satisfied: s; < s; + 1, for top r layers with highest (f; — | fi]). This procedure produces a final

expert allocation vector S = [s1, S2,...,sp,] suchthat) . s, = T and s; > 1 for all 4.

For each module ¢ in layer ¢, let Wé’t € R™*" denote the frozen pre-trained weight matrix. To
construct the experts, we instantiate s; low-rank adaptation modules comprising trainable matrix pairs
{Az’t, B;’.’t};":l, where Ajﬁt € R™*" is initialized with random Gaussian weights and B;’t € R
is initialized to zero. Here, r < min(m, n) denotes the rank of the adaptation [[66].

A router S;’t, parameterized by a trainable weight matrix Wt € R"*; dynamically assigns
experts for a given input x. Following the MoLA framework [46], we adopt a top-K routing

strategy, where only the K most relevant experts are selected for computation. To encourage
balanced expert utilization, we additionally incorporate a load balancing loss at each layer [89].

. . i, _ TopK (Softmax(W '), K); .t
The routing process is formally defined as .S () = SE TopK (Softmax (W "), K, where 5; (x)

denotes the normalized assignment weight for expert j. The final layer output h*! is computed
as: hit = Wh'e + Efil S;’t(x)Aé»’tB;’tx, where W' is a pre-trained base weight matrix, and
A;-’t, B;’t are low-rank matrices parameterizing the j-th expert. Thus, the output h*** combines the
base transformation of x with the aggregated contributions of the top-K experts, each scaled by
its corresponding assignment probability S;t(x) A step-by-step walkthrough of our algorithm is
provided in Appendix [C|for greater clarity.

3.4 Layer Sparsity Allocation for Model Pruning via LAYERIF

We describe how our LAYERIF method can be applied to the problem of allocating layer sparsity bud-
gets for model pruning [[19,90]. The motivating hypothesis is that the less well-trained a layer is, the
more it can be pruned as opposed to pruning each layer uniformly. We compute the IF scores for each
Transformer layer in an LLM on a train and validation set. These scores are aggregated by summing
the positive influence contributions across all samples, resulting in a vector of layer quality scores
s = (s1,89,...,8), where each s; quantifies the total positive influence attributable to the i-th layer.

To ensure stable and meaningful sparsity allocation, we post-process the raw layer-wise IF scores
before applying the mapping function. First, we take the absolute value of each score, and normalize
these values to the range [0, 1] using min-max normalization. This normalization step standardizes the
range of IF magnitudes across layers. Next, we apply the Savitzky—Golay filter [91] to the normalized
vector § = (31, §2,...,51) to smooth local fluctuations and reduce noise while preserving the
overall trend in layer quality The smoothed scores are then used as input to the sparsity allocation
function ¢ described below. This two-step normalization and smoothing process improves robustness
and consistency in sparsity assignment, particularly in cases where the raw influence scores vary
erratically between adjacent layers.

To convert these quality scores into sparsity budgets, we build upon ideas in prior work [[19]. First, we
apply a normalized linear mapping ¢ : RY — RE, namely ¢(3); = n (L;‘“:“‘(eg —e1) + 61) ,

Smax — Smin

where Spin and sy« are the minimum and maximum elements in the vector s, and ey, e, are tunable
parameters that control the minimum and maximum sparsity levels per layer. The scaling factor 7 is

Raw Influence Function (IF) scores at adjacent layers exhibit high-frequency noise due to stochastic Hessian
approximations and mini-batch gradient estimates. This variance is well documented by [34]], whose layer—token
heatmaps show similar oscillations.

Table 1: Accuracy across datasets using ALPHALORA, MOLA and LAYERIF variants. We report
scores under three IF strategies: Top 25% positively influential samples, all positively influential
samples (+ve), and all samples (top performers in bold).

Dataset ALPHALORA MoLA LAYERIF

2468 5555 8642 +VE Topr25% ALL
MRPC 75.30 82.02 80.64 80.70 82.49 82.63 81.63
Cola 82.07 82.26 85.14 84.56 83.60 83.80 84.47
Text Science Q 78.52 64.65 72.75 76.39 75.04 79.59 77.61
Common Q 82.06 80.91 79.93 81.00 80.26 80.75 80.34
Openbook Q 84.60 64.00 83.80 82.20 87.40 84.60 85.20
Average 80.51 74.77 80.45 80.97 81.76 82.27 81.85

computed to satisfy the global sparsity constraint .S, such that Zle o(8);-d; =S ZiL:1 d; with d;
denoting the number of prunable parameters in the i-th layer. This ensures that the total number of
remaining parameters matches the target sparsity level. We then incorporate these layer-wise sparsity
ratios in LLM pruning methods Magnitude [92], Wanda [49] and SparseGPT [48]] and evaluate
zero-shot capabilities.

4 Experimental Results

We delineate our experimental setup for experiments and analysis, and discuss our dataset details,
models used to conduct the experiments, our methods and baselines we compare against.

Datasets and Base LLMs. For the layer-wise expert allocation in the LORA-MoE application, we
assess post-training zero-shot performance on two GLUE datasets and three commonsense reasoning
tasks, following a protocol similar to that of Qing et al. [47]. The datasets used include: MRPC [93]],
CoLA [94]], ScienceQA [95], CommonsenseQA [96], and OpenBookQA [97]. For layer sparsity
allocation for model pruning we again assess the post-pruning zero-shot performance of our models
on several NLP tasks. Namely, BoolQ [98], Hellaswag [99], Winogrande [100], ARC Easy and
ARC Challenge [[101], RTE [94]], and OpenBookQA [97]]. For both of the applications we conduct
experiments on Mistral-7b-v0.1 [7] and Gemma-7b [8]. All of our experiments run on 8 xNVIDIA
RTX 6000 Ada GPUs. All code and reproducibility configurations are provided in Appendix [[and
we provide further information on statistical significance of our results in

Method Protocol and Baseline Configurations. For the layer-wise expert allocation application we
train our models for 3 epochs and then compare zero-shot accuracy on the datasets using a protocol
similar to [47]. We experimented with 3 LAYERIF configurations: using all samples LAYERIF
(ALL), using only positively influential training samples LAYERIF (+VE) and using the top 25 % of
the most influential training samples for our layer-wise summation: LAYERIF (ToP 25%).

Additionally, we compare against ALPHALORA [47]], and 3 baselines from MOLA [46]: MOLA-
2468, MOLA-5555 and MOLA-8642.

For layer sparsity allocation for model pruning, we apply the layer-wise sparsities derived from our
LAYERIF method to traditional LLM pruning methods such as Magnitude [92]], Wanda [49], and
SparseGPT [48]], and compare zero-shot performance. All of these methods originally have uniform
layer-wise sparsity, which we use as a baseline for comparison. We also compare with state-of-the-art
baselines ALPHAPRUNING [19] and OWL [20]. We prune our LLMs to 50% sparsity, since we can
achieve strong accuracy while removing half of the model weights, hence maintaining the real-world
utility of our method.

4.1 Results on Layer-wise Expert Allocation using LAYERIF

All LAYERIF configurations outperform baselines. Table [I| presents accuracy across datasets
for expert allocation methods, including ALPHALORA, three variants of MOLA, and our proposed
LAYERIF configurations. LAYERIF consistently outperforms prior approaches, achieving the highest
average accuracy across datasets. Specifically, the best performing LAYERIF configuration had
a relative percentage increase of 1.61% over the best performing baseline and the average of the

Table 2: Comparison of average accuracies across different pruning strategies (Magnitude, Wanda,
SparseGPT) and layer-wise sparsity allocation methods at 50% pruning on Mistral-7b-v0.1 (top
performers in bold).

Method Magnitude Wanda SparseGPT Average
UNIFORM 56.41 58.71 60.45 58.52
ALPHAPRUNING 56.74 58.48 60.07 58.43
OWL 56.16 58.75 59.99 58.30
LAYERIF 56.89 58.94 60.61 58.81

LAYERIF configurations had a 3.52% percentage increase over the average of other strong baselines.
These results demonstrate that [F-based layer quality estimation provides a more effective signal for
expert allocation in LLMs.

Consistently strong performance across varying
number of experts. In Figure[2] we provide aver-
age results for varying the number of experts, specif- _s
ically 80, 160 and 224 experts on Mistral-7b-v0.1.
MoOLA(1234) and MOLA(46810) are introduced
as additional baselines, following the most perfor-
mant pattern as claimed in the MOLA paper. We
can clearly see that LAYERIF clearly outperforms
the baselines in all three settings by having an aver- N
age accuracy that is a 3.64% percent increase over > e Bets Nfr?ixf?ssx ol
the second best average accuracy ALPHALORA. Ex- i’
pert allocation results for Gemma-7b are provided
in Appendix D]

MoLA(1234)
AlphaLoRA(80)
LayerIF(80)
MoLA(2468)
AlphalLoRA(160)
LayerlF(160)
R MOoLA(46810)
2223 AlphaloRA(224)
B LayerlF(224)

\

©
S

Average Score (%)
<
3

~
o

74

Figure 2: Comparison between ALPHALORA,
MoLA and LAYERIF with varying number of
total experts (80, 160, 224).

4.2 Results on Layer Sparsity Allocation for Model Pruning via LAYERIF

Yy

Superior performance on all pruning techniques. 64

Table [2] clearly indicates that using LAYERIF for
layer-wise sparsity allocation leads to performance
gains over the baselines with a 1.03% percentage
increase over OWL and a 0.90% increase over AL- —e— Uniform
PHAPRUNING in SparseGPT respectively. The re- AlphaPruning
sults reiterate the value of IF-based layer quality = OVL

. . 601 —— LayerlF
estimation.

Accuracy (%)
()}
N

20 30 40 50
Sparsity (%)

Figure 3: Mean accuracy across 4 sparsity lev-
els (20%—-50%) for Mistral-7b-v0.1 pruned us-
ing SparseGPT.

Robust performance across multiple pruning ra-
tios. Figure [3|demonstrates the consistently reliable
performance of LAYERIF across multiple pruning
ratios. LAYERIF consistently achieved the highest
accuracy across all pruning ratios, while baseline methods exhibited greater performance variability,
frequently changing ranks across sparsity levels. On average, LAYERIF outperformed the next best
method, OWL, by a 0.37% percentage increase. Moreover, we provide additional layer-wise sparsity
allocation results for Gemma-7b in Appendix [E|and results with and without the smoothing of IF
values in Appendix [

5 Discussion

In this section, we provide a discussion of the components of the LAYERIF pipeline and elaborate on
key design choices and ablation studies conducted as part of our experiments.

Layer-wise Allocation Differences. We show a comparison between the number of experts allocated
in LAYERIF versus other baselines in Figure [} Unlike ALPHALORA and MOLA, which apply the
same allocations to every test task, LAYERIF dynamically adapts the allocations based on data-driven

LayerlF MRPC
LayerlF Cola

LayerlF Text_Science_Q

B IZ
moma |

LayerlF Common_Q

Method

LayerlF Openbook_Q

Alphalora
MoLA(2,4,6,8) 2
0 8 16 24 32
Layer Number

Figure 4: Heatmap showing expert allocations across Transformer layers for Mistral-7B-v0.1 at a
total of 160 experts, comparing our dataset-specific approach LAYERIF to ALPHALORA and MOLA.
Unlike ALPHALORA and MOLA, which apply the same allocations to every test task, LAYERIF
adapts allocations based on the dataset. This is reflected in the diverse allocation patterns across the
various LAYERIF rows as darker shades indicate higher expert allocation to that particular layer.

Table 3: Comparison of accuracies across different pruning strategies (Magnitude, Wanda,
SparseGPT) between LAYERIF and reversed allocation at 70% pruning on Mistral-7b-vO0.1.

Method Magnitude Wanda SparseGPT Average

LAYERIF 33.44 32.50 41.14 35.69
Reversed Allocation 33.10 32.02 38.45 34.52

task-affinity estimates. This clearly indicates the unique benefit of our approach, as we can tune
the allocation based on how much task affinity a model has, as opposed to prior work, which offers
allocation for all datasets based on model-only information at best.

Interpretation of Layer Sensitivity. Influence Functions quantify how small perturbations in
training data affect the model’s loss. In this view, layers that are well-trained and have effectively
converged tend to exhibit lower sensitivity to such perturbations, as reflected by smaller IF
magnitudes. To further examine this relationship, we conduct an ablation in which we invert our
allocation strategy, assigning higher pruning ratios to layers with lower IF sensitivity. Under a
70% sparsity budget on MISTRAL-7B-V0.1, this reversed allocation leads to consistently worse
downstream performance, reinforcing that layers with lower IF sensitivity are better trained and
should be preserved more aggressively, as can be seen in Table 3]

Guidelines for Influence Sample Selection. We provide a empirical perspective on how to select the
subset of influence samples used to estimate layer quality. Throughout the paper, we aggregate only
positive-influence samples (+VE) by default, as they reflect training points that reduce validation
loss and thus carry constructive learning signal. In Section 4, we additionally examine two variants:
(ALL) which includes all samples regardless of sign, and (TOP-25%) which retains the top quartile
of positive scores by magnitude. Empirically, the TOP-25% variant achieves the highest average
performance across datasets, suggesting it is a strong default in practice.

From a theoretical standpoint, this selection serves as a noise-filtering mechanism. Because IF
estimates are computed from stochastic Hessian and gradient approximations, small-magnitude
scores often correspond to spurious or weak training—validation interactions. Retaining only the
upper tail of positive influences increases the signal-to-noise ratio. Prior studies have also shown that
IF values in deep models are heavy-tailed [34]], implying that a small fraction of training samples
account for most of the total positive influence. Hence, focusing on this high-influence subset isolates
the most informative training signals.

In practice, one can determine the cutoff ratio using a simple cumulative influence curve: sorting
positive IF values in descending order and identifying the elbow point where marginal contribution
drops sharply provides a data-driven threshold. This adaptive thresholding remains an exciting
direction for future work.

Per Matrix versus Per Block. We compute the IF scores on a per-block basis within each
Transformer layer. That is to say, the IF scores are aggregated across the attention and MLP heads

of a given layer, and the average score is uniformly applied to all associated weights, rather than
computing separate scores for each component. This design choice follows the precedent set by
prior work [19} [20]. To empirically assess the impact of this decision, we conducted an ablation
study using LLaMA2-7B [[11]] at 70% sparsity across all three pruning methods. We observed that
computing scores on a per-block basis yielded a 2.14% average improvement in accuracy, thereby
corroborating the effectiveness of this approach.

Computational Complexity. One limitation of IF-based methods in general (at test-time) is their
high computational complexity, primarily due to the Hessian inversion. However, optimizing this
compute time is an active area of research [29, |82]] and our LAYERIF framework can employ any
efficient IF method proposed in the future. Additionally, it is important to note that our framework
is not for use during inference. That is, since our framework is applied during model training, the
computational overhead of IF is a minuscule fraction of the time it takes to pretrain LLMs. Detailed
wall-clock times and memory consumption for varying model and dataset sizes are presented in

Appendix

Comparison with Alternative IF Methods. One class of alternative T,ple 4: Measuring Spear-
IF methods are Hessian-free methods like TracIn [28]]. While Hessian- ,21°s correlation coefficient
free IF methods are computationally more efficient, they generally petween Hessian-based
lead to a drop in performance [38, 29]]. To assess if Hessian-free [ecsian-free methods when
methods such as TracIn [28] can be used for layer quality influence employed in LAYERIF.
estimation, we compute the layer-wise expert allocations for each

dataset from our main experiments using TracIn as the IF method Dataset Correlation
in LAYERIF and compare these allocations with those derived from

. . . MRPC -0.22
the Hessian-based method, Datalnf [81]] (employed in our main ex- Cola 0.44
periments). We compute the Spearman’s correlation coefficient and Openbook Q 0.09
present our findings in Table[d We find that Hessian-free methods fail ~ Text Science Q ~ -0.69
to capture meaningful information about layer-wise training quality as Common Q 0.12

there is little to no agreement in the resulting layer allocations across
datasets when employing Tracln compared to Datalnf in LAYERIF. Another class of alternative
IF methods are Gauss-Newton Hessians like the EK-FAC method [34]. The main bottleneck with
the Gauss-Newton Hessian is the time required for IF computation. In our experiments, the Gauss
Newton Hessian was roughly 160x slower than using the Datalnf approximation, making Datalnf the
only practical choice for our large-scale experiments.

6 Conclusion

In this work, we introduced LAYERIF, a novel framework that leverages Influence Functions (IFs)
to quantify layer quality in large language models (LLMs). Departing from prior model-centric
information and heuristics, our approach provides a data-informed perspective by capturing the
sensitivity of model loss to individual training examples at the layer level. To validate the utility of
our layer-wise IF estimates, we applied them to two practical downstream tasks: expert allocation
in Mixture-of-Experts (MoE) architectures and layer sparsity allocation for model pruning. Our
method consistently outperformed the previously best approaches, achieving a 1.61% improvement
in LoRA-MOoE and a 0.90% gain in zero-shot accuracy after pruning. These results confirm that
IF-based layer quality estimation can guide more effective structural adaptations in LLMs. Beyond
its empirical gains, LAYERIF offers a general, training-data-aware framework for interpreting and
optimizing deep models, applicable across architectures and deployment scenarios.

Acknowledgment

We appreciate the reviewers for their insightful comments and suggestions, and for helping strengthen
our work. Hadi Askari and Muhao Chen were supported by the NSF of the United States Grants ITE
2333736, OAC 2531126, and the Amazon Nova Trusted Al Prize. Anshuman Chhabra was supported
by the USF Faculty Startup Fund.

10

References

(1]

(2]

(3]

[4

—_—

(5]

(6]

(7]

(8]

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Proceedings of EMNLP, pages 2383-2392.
Association for Computational Linguistics, 2016.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhut-
dinov, and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering, 2018. URL https://arxiv.org/abs/1809.09600.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of NAACL-HLT, 2018.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A
question answering challenge targeting commonsense knowledge. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4149-4158, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https:
//aclanthology.org/N19-1421/.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever,
and Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL
https://arxiv.org/abs/2107.03374l

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL
https://arxiv.org/abs/2310.06825|

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova,
Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-
Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni,
Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane
Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret,
Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund,
Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuta, Mateo Wirth, Michael Sharman, Nikolai
Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul
Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross
Mcllroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto
Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad
Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin,
Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu,
Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy.

11

https://arxiv.org/abs/1809.09600
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2310.06825

[9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

Gemma: Open models based on gemini research and technology, 2024. URL fhttps://
arxiv.org/abs/2403.08295.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
lIms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Tim-
othée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Ro-
driguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models, 2023. URL https://arxiv.org/abs/2302.13971|

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts.
The unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua,
Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding, et al. Exploring concept depth: How
large language models acquire knowledge and concept at different layers? arXiv preprint
arXiv:2404.07066, 2024.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan
Wang, and Zhongyuan Wang. Not all layers of 1lms are necessary during inference. arXiv
preprint arXiv:2403.02181, 2024.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. arXiv
preprint arXiv:2502.02013, 2025.

Yefan Zhou, Tianyu Pang, Keqin Liu, Michael W Mahoney, Yaoqing Yang, et al. Temperature
balancing, layer-wise weight analysis, and neural network training. Advances in Neural
Information Processing Systems, 36:63542—-63572, 2023.

Zihang Liu, Yuanzhe Hu, Tianyu Pang, Yefan Zhou, Pu Ren, and Yaoqing Yang. Model
balancing helps low-data training and fine-tuning. arXiv preprint arXiv:2410.12178, 2024.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing
Yang. Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise

pruning of large language models. Advances in Neural Information Processing Systems, 37:
9117-9152, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay
Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei
Liu. Outlier weighed layerwise sparsity (owl): A missing secret sauce for pruning llms to high
sparsity, 2024. URL https://arxiv.org/abs/2310.05175|

Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv preprint arXiv:1906.03731,
2019.

Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers, 2020. URL
https://arxiv.org/abs/2005.00928|

12

https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2310.05175
https://arxiv.org/abs/2005.00928

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

(40]

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation, 2019. URL https:
//arxiv.org/abs/1908.04626,

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. Self-attention attribution: Interpreting information
interactions inside transformer, 2021. URL https://arxiv.org/abs/2004.11207,

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383-393, 1974.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function
for detecting influential cases in regression. Technometrics, 22(4):495-508, 1980.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International Conference on Machine Learning (ICML), pages 1885-1894. PMLR, 2017.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training
data influence by tracing gradient descent. Advances in Neural Information Processing Systems,

33:19920-19930, 2020.

Anshuman Chhabra, Bo Li, Jian Chen, Prasant Mohapatra, and Hongfu Liu. Outlier Gradient
Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models. In
International Conference on Machine Learning (ICML). PMLR, 2025.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering
the long tail via influence estimation. Advances in Neural Information Processing Systems, 33:
2881-2891, 2020.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif:
Scalable influence functions for efficient model interpretation and debugging. arXiv preprint
arXiv:2012.15781, 2020.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333,
2024.

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. Explaining black box predictions and
unveiling data artifacts through influence functions. arXiv preprint arXiv:2005.06676, 2020.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model
generalization with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. ”What Data Benefits
My Classifier?” Enhancing Model Performance and Interpretability through Influence-Based
Data Selection. In International Conference on Learning Representations (ICLR), 2024.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via
approximate unrolled differentation. arXiv preprint arXiv:2405.12186, 2024.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung,
Adithya Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is
your data worth to gpt? llm-scale data valuation with influence functions. arXiv preprint
arXiv:2405.13954, 2024.

Hadi Askari, Shivanshu Gupta, Terry Tong, Fei Wang, Anshuman Chhabra, and Muhao
Chen. Unraveling indirect in-context learning using influence functions, 2025. URL https:
//arxiv.org/abs/2501.01473,

Hao Wang, Berk Ustun, and Flavio Calmon. Repairing without retraining: Avoiding disparate
impact with counterfactual distributions. In International Conference on Machine Learning
(ICML), pages 6618-6627. PMLR, 2019.

Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-
based data relabeling. In International Conference on Learning Representations (ICLR),
2021.

13

https://arxiv.org/abs/1908.04626
https://arxiv.org/abs/1908.04626
https://arxiv.org/abs/2004.11207
https://arxiv.org/abs/2501.01473
https://arxiv.org/abs/2501.01473

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48

[r}

[49]

(50]

[51]

[52]

(53]

[54

[}

[55]

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1-39, 2022.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng
Zheng. When moe meets 1lms: Parameter efficient fine-tuning for multi-task medical appli-
cations. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1104—1114, 2024.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng
Xi, Xiao Wang, Xiaoran Fan, et al. Loramoe: Alleviate world knowledge forgetting in large
language models via moe-style plugin. arXiv preprint arXiv:2312.09979, 2023.

Ted Zadouri, Ahmet Ustiin, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker.
Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction
tuning. arXiv preprint arXiv:2309.05444, 2023.

Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen Sun, Ruibo Liu, Daiyi Peng, Yawen
Zhang, Xiaoyuan Guo, Jie Yang, and VS Subrahmanian. Higher layers need more lora experts,
2024. URL https://arxiv.org/abs/2402.08562.

Peijun Qing, Chongyang Gao, Yefan Zhou, Xingjian Diao, Yaoqing Yang, and Soroush
Vosoughi. Alphalora: Assigning lora experts based on layer training quality. arXiv preprint
arXiv:2410.10054, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot, 2023. URL https://arxiv.org/abs/2301.00774,

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith.
Linguistic knowledge and transferability of contextual representations. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1073—1094, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1112. URL https!
//aclanthology.org/N19-1112/.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does
BERT look at? an analysis of BERT ‘s attention. In Tal Linzen, Grzegorz Chrupata, Yonatan
Belinkov, and Dieuwke Hupkes, editors, Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 276286, Florence, Italy, August
2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4828. URL https:
//aclanthology.org/W19-4828/.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via
information, 2017. URL https://arxiv.org/abs/1703.00810.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung
Kim, Benjamin Van Durme, Samuel R. Bowman, Dipanjan Das, and Ellie Pavlick. What do
you learn from context? probing for sentence structure in contextualized word representations,
2019. URL https://arxiv.org/abs/1905.06316.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes, 2018. URL https://arxiv.org/abs/1610.01644.

Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural
networks: Evidence from random matrix theory and implications for learning, 2018. URL
https://arxiv.org/abs/1810.01075|

14

https://arxiv.org/abs/2402.08562
https://arxiv.org/abs/2301.00774
https://aclanthology.org/N19-1112/
https://aclanthology.org/N19-1112/
https://aclanthology.org/W19-4828/
https://aclanthology.org/W19-4828/
https://arxiv.org/abs/1703.00810
https://arxiv.org/abs/1905.06316
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1810.01075

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker,
editors, Contributions to the Theory of Games II, pages 307-317. Princeton University Press,
Princeton, 1953.

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. Investigating layer importance in large
language models, 2024. URL https://arxiv.org/abs/2409.14381.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models, 2025.
URL https://arxiv.org/abs/2502.02013,

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky, ed-
itor, Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/file/
6c9882bbac1c7093bd25041881277658-Paper . pdf.

Babak Hassibi and David Stork. Second order derivatives for network prun-
ing: Optimal brain surgeon. In S. Hanson, J. Cowan, and C. Giles, editors,
Advances in Neural Information Processing Systems, volume 5. Morgan-Kaufmann,
1992. URL https://proceedings.neurips.cc/paper_files/paper/1992/file/
303ed4c69846ab36c2904d3ba8573050-Paper . pdf.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts.
The unreasonable ineffectiveness of the deeper layers, 2025. URL https://arxiv.org/
abs/2403.17887.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han,
and Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you
expect, 2024. URL https://arxiv.org/abs/2403.03853,

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models, 2023. URL https://arxiv.org/abs/2305.11627.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks,
2019. URL https://arxiv.org/abs/1902.09574.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization, 2024. URL https:
//arxiv.org/abs/2306.07629,

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1
(2):3, 2022.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang,
Yan Zhang, Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models
fine-tuning with lora-based mixture of experts. arXiv preprint arXiv:2404.15159, 2024.

Shu Yang, Muhammad Asif Ali, Cheng-Long Wang, Lijie Hu, and Di Wang. Moral: Moe
augmented lora for llms’ lifelong learning. arXiv preprint arXiv:2402.11260, 2024.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou, Xiao
Wang, Zhiheng Xi, Xiaoran Fan, et al. Loramoe: Alleviating world knowledge forgetting in
large language models via moe-style plugin. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1932-1945, 2024.

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large
language models. arXiv preprint arXiv:2402.12851, 2024.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An
efficient multitask tuning method for large language models. In Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pages 11371-11380, 2024.

15

https://arxiv.org/abs/2409.14381
https://arxiv.org/abs/2502.02013
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2306.07629

[72]

[73

[}

[74

[}

[75]

[76]

[77]

(78]

[79

—

(80]

(81]

[82]

[83]

[84]

[85]

[86]

[87]

(88]

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition, 2024. URL https://arxiv|
org/abs/2307.13269|

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine
learning. In International Conference on Machine Learning (ICML). PMLR, 2019.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Giirel,
Bo Li, Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on
the shapley value. In International Conference on Artificial Intelligence and Statistics, 2019.

Yongchan Kwon and James Zou. Beta Shapley: a unified and noise-reduced data valuation
framework for machine learning. In International Conference on Artificial Intelligence and
Statistics, 2022.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas Spanos, and Dawn Song. Efficient task specific data valuation for nearest neighbor
algorithms. Proceedings of the VLDB Endowment, 2018.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point
selection for explaining deep neural networks. Advances in Neural Information Processing
Systems, 2018.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergra-
dient data relevance analysis for interpreting deep neural networks. In AAAI Conference on
Artificial Intelligence, 2021.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry.
Datamodels: Predicting predictions from training data. arXiv preprint arXiv:2202.00622,
2022.

Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
perspectives on what influence functions do. Advances in Neural Information Processing
Systems, 2024.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datalnf: Efficiently Estimating
Data Influence in LoRA-tuned LLMs and Diffusion Models. In International Conference on
Learning Representations (ICLR), 2024.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence
functions. In AAAI Conference on Artificial Intelligence, 2022.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
Trak: Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Irina Bejan, Artem Sokolov, and Katja Filippova. Make every example count: On the stability
and utility of self-influence for learning from noisy nlp datasets. In Conference on Empirical
Methods in Natural Language Processing, 2023.

Megh Thakkar, Tolga Bolukbasi, Sriram Ganapathy, Shikhar Vashishth, Sarath Chandar, and
Partha Talukdar. Self-influence guided data reweighting for language model pre-training. In
Conference on Empirical Methods in Natural Language Processing, 2023.

SungYub Kim, Kyungsu Kim, and Eunho Yang. Gex: A flexible method for approximating
influence via geometric ensemble. Advances in Neural Information Processing Systems, 36,
2024.

Guillaume Charpiat, Nicolas Girard, Loris Felardos, and Yuliya Tarabalka. Input similarity
from the neural network perspective. Advances in Neural Information Processing Systems,
2019.

R Douglas Martin and Victor J Yohai. Influence functionals for time series. The annals of
Statistics, pages 781-818, 1986.

16

https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269

[89]

[90]

[91

—

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer,

and William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv
preprint arXiv:2202.08906, 2022.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue,
Qifeng Liu, Xiaowen Chu, and Yike Guo. Discovering sparsity allocation for layer-wise
pruning of large language models. Advances in Neural Information Processing Systems, 37:
141292-141317, 2024.

Abraham Savitzky and M. J. E. Golay. Smoothing and Differentiation of Data by Sim-
plified Least Squares Procedures. Anal. Chem., 36(8):1627-1639, July 1964. doi:
10.1021/ac60214a047. URL http://dx.doi.org/10.1021/ac60214a047,

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. Advances in neural information processing systems, 28, 2015.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Third international workshop on paraphrasing (IWP2005), 2005.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. Advances in Neural Information Processing Systems,
35:2507-2521, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa:
A question answering challenge targeting commonsense knowledge. arXiv preprint
arXiv:1811.00937, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

17

http://dx.doi.org/10.1021/ac60214a047

Appendix

A Limitations

A key limitation of Influence Functions is their reliance on an implicit convexity assumption, which
may not strictly hold in LLMs. While this is a known limitation of IF theory and an ongoing area of
research, we find that our proposed LAYERIF framework demonstrates strong empirical performance
on LL.Ms despite this. We also note that LAYERIF is a training-time method and does not impact
inference latency. Although computing IFs can be computationally intensive, particularly due to the
Hessian inverse approximation, recent approaches such as Datalnf offer closed-form solutions that
significantly reduce this overhead. Future work will explore integrating such scalable IF estimators
to further improve the efficiency of our method. Another limitation of our method stems from
its data-driven nature: the subset of data used to compute IF scores must be representative of the
overall training and validation distribution. Failure to ensure representativeness can lead to biased or
unreliable influence estimates, potentially degrading the effectiveness of the method.

B Broader Impact

Our data-driven approach to assessing layer quality using Influence Functions offers a promising
direction for making pretrained LLMs more efficient for downstream tasks. By enabling more targeted
pruning, models can be made both more lightweight and environmentally sustainable. Additionally,
optimizing expert allocation can enhance the performance of smaller models on specialized tasks,
further improving efficiency and reducing computational and environmental costs. Our method also
contributes to model interpretability by identifying which layers are most responsible for performance
on specific downstream tasks. This insight can guide further research, ultimately leading to more
effective and efficient language models.

C Clarifying Walk-Through Example

Here, we provide a concrete step-by-step walk-through of our method for greater clarity of our
method.

Concrete walk-through for expert allocation (CommonQ dataset, 32-layer LLM, T=160 experts,
f=3)

Below we provide the exact numbers produced by our implementation. For brevity only the first 5
layers are shown; the remaining layers follow identically.

Layer i Raw IF score v; Inverted v; Power-scaled v; Fractional f; Final experts s;

0 —5.01 x 10" 5.01 x 10'* 1.26 x 1035 1.12 2
1 —8.36 x 10 8.36 x 10!t 5.84 x 103° 5.21 6
2 —7.99 x 101 7.99 x 10! 5.10 x 103° 4.55 6
3 —8.46 x 10 8.46 x 10" 6.05 x 10%° 5.40 6
4 6

—8.16 x 1011 8.16 x 10! 5.43 x 103° 4.84

* Stepl (sign inversion). Invert the negative values to positive.
* Step2 (power transform). Amplify disparities by raising to the power (3 to get 0.

* Step3 (normalise to budget). Scale ¢ so that the fractional allocations) f; equal T — m = 128
extra experts (m = 32 layers).

Step4 (floor + redistribute). Set s; = | f;| + 1, guaranteeing > 1 expert/layer, then distribute
the remaining 24 units to the layers with the largest fractional parts.

Finally, the complete allocation for Common(Q becomes:
[2’ 67 67 67 67 5’ 77 67 87 77 6’ 77 67 67 67 5’ 67 67 57 47 5’ 57 47 27 47 57 35 47 27 37 4’ 3]

18

Interpretation. The middle layers receive the most experts, indicating they are comparatively under-
trained for CommonQ); the first and very deep layers receive lower number of experts, reflecting

higher estimated quality.

D Gemma-7b Expert Allocation Results

This section presents results on layer-wise expert allocation for Gemma-7B, using a total of 160

experts in Table 3]

Table 5: Accuracy across datasets using ALPHALORA, MOLA(3,5,7,8) and LAYERIF (+VE) for

160 experts on Gemma-7b.

Dataset ALPHALORA MOLA(3,5,7,8) LAYERIF (+VE)
MRPC 82.61 82.89 84.75
Cola 86.09 86.86 86.96
Text Science Q 94.15 93.88 93.66
Common Q 84.11 83.94 83.46
Openbook Q 87.80 88.80 88.20
Average 86.55 87.47 87.81

As shown in the results, LAYERIF achieves superior average performance compared to the baseline
methods.

E Gemma-7b Sparsity Allocation Results

Here, we provide results on layer-wise sparsity allocation for Gemma-7B for 50% sparsity in Table [6]

Table 6: Comparison of average accuracies across different pruning strategies (Magnitude, Wanda,
SparseGPT) and layer-wise sparsity allocation methods at 50% pruning on Gemma-7b.

Method Magnitude Wanda SparseGPT Average
UNIFORM 32.21 51.19 49.92 44 .44
ALPHAPRUNING 34.21 50.76 51.39 45.45
OWL 33.27 47.15 47.48 42.63
LAYERIF 32.94 53.01 50.90 45.62

We can again see that LAYERIF has both the highest average and the best individual performance
after pruning.

F Sparsity Allocation Results with and without smoothing for Mistral-7b-v0.1

As described in Section 3, we apply Savitzky—Golay smoothing [91]] to the min-max normalized IF
values within our layer-wise sparsity allocation algorithm. This smoothing step helps prevent any
individual layer from being entirely pruned, while also enhancing the robustness and consistency of
sparsity assignments. This was particularly helpful in scenarios where raw influence scores fluctuate
significantly between adjacent layers.

We used a window-length of 7 and a polyorder of 3 for our filter. We present the percentage changeﬂ
in performance at 70% sparsity, comparing results with and without smoothing, for Mistral-7B-v0.1
in Table

We can clearly see that smoothing leads to an overall increase in performance across the different
epsilon values and pruning methods.

: ith hing —without s hi
3Percentage change is computed as (W" Smoothing — Without smoot "‘g) x 100%

without smoothing

19

Table 7: Percentage change between zero-shot accuracies across different e values and LLM pruning
methods.

Magnitude Wanda SparseGPT

e=01 (+)149 (+)094 (+)0.97
e=02 (1052 (+) 115 (+)0.46
e=03 (+)0.03 (+)0.05 (+) 041
e=04 (181 (1069 (+)0.48
e=05 (063 (+0.78 (-)0.02

G Statistical Significance of Results

We present the t-test statistical significance of our empirical results across both subsettings. Specifi-
cally, we analyze the average accuracy of LAYERIF compared to baseline methods across all expert
counts and datasets evaluated for layer-wise expert allocation, as shown in Table

Table 8: Computing the t-test metric to compare LAYERIF with MOLA and ALPHALORA on zero-
shot accuracy across the different number of experts (** indicates statistical significance i.e., p-value
< 0.05)

Algorithm Average Accuracy p-value
_ ALPHALORA 79.30 0.03152"

MoLA 78.97 0.03123"

LAYERIF 82.28 -

Table 8] clearly shows a statistically significant improvement over both of the other baselines.

Table 9: Computing the t-test metric to compare LAYERIF with ALPHAPRUNING, UNIFORM and
OWL on zero-shot accuracy across the different number of pruning ratios (** indicates statistical
significance i.e., p-value < 0.05)

Algorithm Average Accuracy p-value
ALPHAPRUNING 62.42 0.01969™
- UNIFORM 62.58 0.03077"
OWL 62.61 0.09156
LAYERIF 62.84 -

We now analyze the average accuracy of LAYERIF compared to baseline methods across all pruning
ratios for layer-wise sparsity allocation, as shown in Table[9]

Table Q] clearly shows that LAYERIF produces statistically significant improvements in all of the
baselines, except OWL, where it shows a marginally significant improvement.

H Wall Clock Times and Memory Consumption for Varying Dataset and
Model Sizes

We report the wall-clock times of our Influence Function (IF) computation using the DATAINF
approximation, compared against the TRACIN baseline, under varying dataset sizes and model scales.
All experiments were performed on 4 x NVIDIA RTX 6000 Ada Generation GPUs.

H.1 Scalability to Dataset Size

Table[I0| presents runtimes for computing IFs over a single layer with increasing numbers of training
and validation samples. As expected, the runtime scales approximately linearly with dataset size.
Although DATAINF is substantially slower than TRACIN, the total cost remains modest relative to the
computational expense of pretraining large language models. For comparison, training LLAMA?2-
70B reportedly required ~1.72M GPU hours, whereas DATAINF adds only a minor diagnostic
overhead that can be amortized across layers to identify underperforming components during training.

The peak GPU memory consumption during influence computation for a dataset of 300 training
and 50 validation samples was approximately 35000MiB for the 7B model. This footprint remains

20

Table 10: Wall-clock runtimes (in seconds) for computing IFs for a single layer under different dataset
sizes on MISTRAL-7B-Vv0.1.

Dataset Size (TrainxVal) Method Runtime (s)
DATAINF 163,721

3000>300 TRACIN 1.35 x 102
DATAINF 402.77

300x50 TRACIN 3.31 x 10~°

30%5 DATAINF 15.3

TRACIN 1.19 x 1076

well within the typical per-GPU memory budget, indicating that influence-based diagnostics can be
feasibly integrated into existing training pipelines.

H.2 Scalability to Model Size

We also evaluate scaling across model sizes in Table[IT] The runtime grows roughly proportionally
to parameter count.

Table 11: Wall-clock runtimes (in seconds) for DATAINF and TRACIN under different model sizes
(300x50 dataset).

Model Method Runtime (s)
DATAINF 58.063

QWEN2.5-3B peacIN 2.7 x 107

QWEN2.5-32B DATAINF 2,824.16

TRACIN 6.82 x 107°

Overall, while DATAINF incurs higher per-layer computation cost than first-order approximations
such as TRACIN, it remains computationally tractable even for multi-billion-parameter models. Its
cost is negligible relative to the full pretraining budget, while providing rich layer-wise diagnostic
signals that can inform targeted retraining or pruning strategies.

I Code and Reproducibility

We follow the datasets and evaluation protocol of Alphal.ora [47] for layer-wise expert allocation
and the datasets and evaluation protocol of Alphapruning [19] for layer-wise sparsity allocation.
Our code has been anonymized and uploaded here: https://github.com/HadiAskari/Expert_
Allocation and https://github.com/HadiAskari/LayerIF_Pruning_New.

21

https://github.com/HadiAskari/Expert_Allocation
https://github.com/HadiAskari/Expert_Allocation
https://github.com/HadiAskari/LayerIF_Pruning_New

	Introduction
	Related Works
	Proposed Approach
	Preliminaries and Notation
	LayerIF: Estimating Layer Quality via Influence Functions
	Layer-wise Expert Allocation using LayerIF
	Layer Sparsity Allocation for Model Pruning via LayerIF

	Experimental Results
	Results on Layer-wise Expert Allocation using LayerIF
	Results on Layer Sparsity Allocation for Model Pruning via LayerIF

	Discussion
	Conclusion
	Limitations
	Broader Impact
	Clarifying Walk-Through Example
	Gemma-7b Expert Allocation Results
	Gemma-7b Sparsity Allocation Results
	Sparsity Allocation Results with and without smoothing for Mistral-7b-v0.1
	Statistical Significance of Results
	Wall Clock Times and Memory Consumption for Varying Dataset and Model Sizes
	Scalability to Dataset Size
	Scalability to Model Size

	Code and Reproducibility

