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ABSTRACT

Large language model (LLM)-based multi-agent systems have shown strong capabilities in
tasks such as code generation and collaborative reasoning. However, the effectiveness and
robustness of these systems critically depend on their communication topology, which is
often fixed or statically learned, ignoring real-world dynamics such as model upgrades, API
(or tool) changes, or knowledge source variability. To address this limitation, we propose
CARD (Conditional Agentic Graph Designer), a conditional graph-generation framework
that instantiates AMACP, a protocol for adaptive multi-agent communication. CARD
explicitly incorporates dynamic environmental signals into graph construction, enabling
topology adaptation at both training and runtime. Through a conditional variational graph
encoder and environment-aware optimization, CARD produces communication structures
that are both effective and resilient to shifts in model capability or resource availability.
Empirical results on HumanEval, MATH, and MMLU demonstrate that CARD consistently
outperforms static and prompt-based baselines, achieving higher accuracy and robustness
across diverse conditions. The source code is available at: https://anonymous.
4dopen.science/r/agentgraph-FF9A.

1 INTRODUCTION

Multi-agent systems powered by large language models (LLMs) (OpenAl, 20244} [Liu et al.| [2023a) have
recently demonstrated remarkable capabilities across a wide range of complex tasks, from code synthe-
sis (Chen et al.} 2023)) to collaborative reasoning (Liu et al.,[2023b)). By integrating each model’s internal
knowledge, natural language generation, and inference abilities with external tools (Zhang et al.|[2023)) or peer
LLMs, these systems effectively decompose problems (Yao et al.| [2023a), coordinate subgoals (Liang et al.}
2023)), and integrate diverse information sources (Lee et al.,|2023). However, the communication topology,
which specifies how agents are interconnected, significantly influences performance, affecting both solution
quality and robustness to evolving conditions such as model upgrades, API modifications, and fluctuating
data sources.

Current topology design approaches typically fall into two categories (Bei et al.,2025; [Liu et al., 2025)). Many
systems depend on manually crafted pipelines (Hong et al.,|2023) or predefined agent sequences (Wu et al.|
2023), which perform effectively in stable, well-understood scenarios but lack adaptability. Conversely, recent
methods automatically learn communication structures by backpropagating through "text gradients" (Zhuge
et al., [2024) or parameterizing inter-agent connections via differentiable modules (Zhang et al.l 2025al).
Yet, these learned topologies generally assume static environments, failing to account for transient external
factors. Consequently, when conditions change, such as upgrading a model base (e.g. GPT-40 — GPT-5),
tool availability variations, or deterioration in data source quality, static or naively learned topologies become
fragile, resulting in redundant interactions or disrupted information flows (see Figure I)).
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Figure 1: Agent attributes and corresponding communication topologies under two environmental configura-
tions, illustrating that topology is determined by both task requirements and the capabilities of the model base
and available resources.

Adaptive LLM-based Multi-agent Communication Protocol (AMACP):

Given a task/query ¢, an optimal communication topology for g should satisfy the following protocol
logics: Effectiveness: The communication structure must effectively produce a qualified solution for
the given task q. Cost-efficiency: The communication structure should minimize the overall resource
consumption (e.g., model usage, API calls, token cost) required to solve q under the given condition.
Adaptiveness: The communication structure should dynamically adjust to varying conditions, ensuring
robustness across diverse availability.

We address this gap by formalizing the Adaptive Multi-Agent Communication Protocol (AMACP) and
instantiating it via the Conditional Agentic gRaph Designer (CARD). CARD is a conditional graph-generation
framework that (i) represents each agent via profile and condition channels, (ii) encodes dynamic environment
signals, and (iii) decodes an interaction graph whose edges adapt at training time and at runtime as conditions
change without retraining. The objective balances task utility and condition-aware communication cost,
enforcing effectiveness, cost-efficiency, and adaptiveness required by AMACP. Empirically, on HUMANEVAL,
MATH, and MMLU with simulated environmental changes (model upgrades, tool availability, data-source
perturbations), CARD yields substantial gains over static and prompt-only or naively learned topologies
while remaining competitive in static regimes. Our primary contributions are:

» Formalization of AMACEP, a protocol enabling adaptive multi-agent communication under dynamic
external conditions.

* Introduction of CARD, a conditional graph-generation framework explicitly learning effective and
adaptive agent topologies from environmental states.

» Comprehensive empirical validation demonstrating that CARD consistently outperforms existing
fixed and learned topology baselines under dynamic conditions.

* Detailed analyses of topology adaptations, elucidating how environmental state conditioning en-
hances the efficiency and robustness of multi-agent coordination.
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2  RELATED WORK

Collaborative LLM Agents. Early work on LLM-based multi-agent communication has relied on manually
defined coordination pipelines, with ranging from non-interactive queries and chain-of-thought prompting to
debate frameworks and fixed tree- or graph-based structures (Wei et al., [ 2022bj | Yao et al., | 2023b; |Besta et al.,
2024). To reduce the effort of handcrafting these pipelines, automated topology-learning methods such as
GPT-Swarm (Zhuge et al., [2024), G-Designer (Zhang et al.,[2025a), and Aflow (Zhang et al.,|2025b) have
been developed. These approaches optimize agent connections via differentiable modules or heuristic search,
yielding strong performance in static settings. However, they continue to assume a stationary environment
and lack mechanisms for responding to changes in model capabilities, tool access, or data quality.

Multi-Agents as Graphs. Although a few dynamic communication protocols have been proposed in
distributed-systems literature (Wei et al.,2022a}; |Yao et al.,[2023a; [Liang et al., | 2023)), most learned topologies
remain static and brittle under evolving conditions, such as model upgrades, fluctuations in external tool
reliability, or shifts in data-source quality (Pareja et al., [2020; |(Chang et al.| [2020). In these scenarios, pre-
defined or naively optimized graphs can produce redundant interactions or disrupted information flows (Liu
et al., [2025). To bridge this gap, we introduce the Conditional Agentic Graph Designer, which explicitly
conditions graph generation on external signals (e.g., model version, tool performance, data-source fidelity)
to produce adaptive, robust multi-agent topologies .

3 PROBLEM FORMULATION

We begin by formalizing the topology and protocol design space for LLM-based multi-agent systems (MAS),
grounding the CARD framework (Figure [2) in well-defined constructs.

Topological Structure of LLM-based Multi-Agent Systems. A multi-agent system is represented as
a directed graph G = (V, &), where each node v; € V denotes an LLM-based agent and each directed
edge (v;,v;) € € represents a communication path from v; to v;. Each agent v; is described by: profile
attributes P;, including [role identity, model base, tool access, historical state];
And condition attributes C}, capturing runtime environmental conditions. We model the condition C' as a
composition of multiple features, where each feature corresponds to a distinct semantic aspect F such as
model type, tool availability, or task complexity. Formally,

C={c,co,....ax}, i €F, )]
C:f1Xf2X~--X.Fk7 (2)

To ensure semantic consistency across heterogeneous features, we encode the structured condition using a
unified pretrained language model, aligning all feature dimensions into a shared embedding space, enabling
the model to handle unseen combinations of features during inference.

3.1 COMMUNICATION PIPELINE

Given a user query Q, our system executes K rounds of communication across a multi-agent topology
G=W,&),where V = {vy,...,vx} is the set of agents and £ represents directed communication edges.

Topological Scheduling. To ensure valid information flow, a topological scheduling function ¢ determines
a permutation o = {v(1), ..., v(n)} of agents that respects acyclic dependencies:
©:G — o0, suchthat Vj > i, vy & Na(ve), 3)

where N, (v(;)) denotes the set of upstream neighbors of agent V(5
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Figure 2: Overview of the Conditional Agentic Graph Designer (CARD) framework. Agent profiles and
dynamic environment conditions are encoded into embeddings, which a conditional graph-generation module
(Encoder — Condition Adaptation — Decoder) uses to produce an adaptive communication topology.
CARD then performs environment-aware training, iteratively refining graphs under changing resource
configurations, and deploys runtime adaptation to automatically update the multi-agent topology in response
to new environmental states.

Message Propagation. At each communication round ¢ € {1,..., K}, each agent v; receives (i) a system-

level prompt Ps(yts) , (ii) a user-level prompt 72552 , and (iii) the collection of responses from its incoming
neighbors at the same round:
’R,Et) = V; <73(t) Plg:r)’ {R;t) Y S Mn (’Ui)}), (4)

sys

where Rgt) is the response generated by agent v; at round ¢.

Output Aggregation. After K rounds of interaction, the system aggregates the final-round outputs from all
agents to form the final system response:

aB) = Aggregate(RgK), e aR%())’ )

where Aggregate(-) denotes a task-specific aggregation function (e.g., voting, selection, or summarization)
over the terminal responses.

3.2 AMACP: ADAPTIVE MULTI-AGENT COMMUNICATION PROTOCOL

To ensure meaningful topology construction, we define AMACP:
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AMACEP Definition

Given a query Q, a communication topology G must satisfy: 1. Effectiveness: Maximize condi-
tioned task utility u(G(Q|C); 2. Cost-efficiency: Minimize conditioned financial cost w(G;C); 3.
Adaptiveness: Adjust topology in response to environmental condition C shifts.

These objectives are jointly encoded in the following optimization problem:

Ignei(g Lamace(G; 9Q,C) = —u(G(Q | C)) + 8- w(G;C), (6)

where u(-) denotes the task-specific utility function, w(-) is the conditioned communication cost, and
B € RT is a tunable trade-off hyperparameter.

4 CONDITIONAL AGENTIC GRAPH DESIGNER

We introduce Conditional Agentic Graph Designer (CARD) that constructs adaptive, environment-conditioned
multi-agent topologies. CARD comprises four key stages: (1) Agent representation, (2) Conditional graph gen-
eration, (3) Environment-aware training, and (4) Runtime adaptation. The complete workflow is summarized
in Algorithm T]and visualized in Figure 2]

Agent Representation. Given a query () and an environment configuration C', CARD first constructs an
initial multi-agent network. Each agent v; € V is described by two components: Firstly, a profile vector
P, = [T,(Base;),Role;, T,(Plugin,)], capturing static attributes of the agent, including its base model,
assigned role, and supported tools. Here, 7,(-) denotes a natural-language template function used to verbalize
categorical features (e.g., model name, role identity, plugin type) into a text embedding. Secondly, a condition
vector C; = 7.(C;), describing runtime environment status for v;, such as model availability, token cost, or
API reliability. The function 7.(-) generates textual descriptions that encode dynamic system conditions.
These representations are later encoded as node features for conditional graph generation (Section[d)). See
Appendix [F for template instantiations of 7, and 7.

Conditional Graph Generation Given a user query Q and an initial environment configuration, CARD
constructs a preliminary agent graph G = (V, £) over N = |V| agents. Each agent v; € V is associated with
a profile text P; and a condition text C;, which are embedded as X? and X, respectively. Stacking across
agents yields X, = [XV, ..., X% ] and X. = [X{,..., X§]. The edge set £ is initialized from an anchor
topology A (e.g., chain or star), which provides structural priors for initial connectivity.

To obtain a refined, query- and context-aware communication topology, CARD applies an encoder—decoder

graph generation module. The encoder comprises two learnable graph encoders, ¢, and ¢, that produce
latent representations for profile and condition channels:

H, = ¢,(H, | Xp, A; Op), @)
Hc = ¢C(HC | Xch; Gc)a (8)
where H, = [h],... h% ] and H. = [h{, ..., h{] denote the latent states, and ©,,, ©, are encoder parame-

ters. The decoder 1)y then estimates pairwise edge probabilities conditioned on these latent states and a query
embedding hg (the query is treated as an auxiliary node that attends to all agents in both channels):

(S | Hy, He) = [[4(S; | bY, b, h?, hS, ho; 04) , )
i
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where S;; € [0, 1] is the predicted link probability and © 4 are decoder parameters. Finally, the communication
topology is obtained by thresholding the predicted adjacency:

Eeom = {(’Uivvj) | Sij > T}; Geom = (Vagcom)> (10)

with a user-specified or validation-selected threshold 7 € (0, 1). The resulting G.om serves as the backbone for
downstream multi-agent communication and reasoning, adaptively modulated by static profiles and dynamic
runtime states.

Environment-Aware Training. Given a query () and an environment condition C (Section[3), CARD trains
by iterating over sampled (Q, C) pairs and running K € N rounds of multi-agent interaction on G.op,. At
communication round ¢ € {1,..., K}, agent v; receives a system-level prompt Ib(f,)b, a user-level prompt Il(fsl,
and upstream messages {R§t) | v; € Nin(v;)}, and produces a response RZ@ with equation@ And after
K rounds, a task-specific aggregation operator AGGREGATE(-) (e.g., voting, selection, or summarization)
combines terminal responses into the system output %) with equation

Let ©,, ©., ©4 denote the parameters of the profile encoder ¢,, condition encoder ¢., and graph decoder ).
We optimize these parameters by gradient descent on a CARD loss that instantiates the AMACP objective

(Eq. equation [6)):

Learn (@0, 00,04) = —u(a™) + 8 w(GeomiC) . (an
task utility condition-aware cost

where u/(+) is a task-specific utility (e.g., accuracy/probability of correctness), w(-) measures the conditioned
communication cost, and 8 > 0 balances utility and cost. Specifically, to encourage communication efficiency
while preserving performance, we regularize the soft communication graph G, output by the decoder. Let
S € [0,1]V <N be the predicted (directed) link-probability matrix and define p;; := S;; as the probability that
edge (v; — v;) is active under condition C. Let Cost;; > 0 denote the expected token-level inference cost
on edge (4, j) (a function of the base model(s) and the number of exchanged tokens). The condition-aware
regularizer is:

~IIlill w (écom, C) = Z COStiJ‘ Dij, (12)
Geom €EG N
(%])egcom

where G is the space of admissible (soft) directed graphs over V. In practice, Gcom used for execution is
obtained by thresholding S; training backpropagates through .S to update (6,, 0., ©4) via equation

Runtime Adaptation via CARD. At deployment, when external conditions change (e.g., base model
capability, tool reliability, or cost), CARD updates the communication topology without retraining by
decoding new edges from refreshed condition signals:

gélsx = ¢( ¢P(XP)7 ¢C(Xélew)? A)a (13)

where X, encodes the agent profiles static (role, base model, and tools), X °* encodes the runtime conditions
updated, ¢,,, ¢. maps these to latent node states, .A is the anchor prior (e.g. chain, star, or fully connected), and
1 decodes edge probabilities (thresholded at 7) to produce the revised adjacency. This one-pass recomputation
preserves robust, cost-efficient collaboration under real-time shifts.

5 EXPERIMENT

Datasets and Metrics. We assess CARD on three standard benchmarks: programming code generation
(HumanEval)Chen et al.| (2021, mathematical reasoning (MATH)Hendrycks et al.| (2021b), and general
reasoning and language understanding (MMLU)Hendrycks et al.|(2021a)).
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Baselines and Setup. We compare our approach against three categories of methods: Vanilla LLM,
using the model’s native capabilities to produce direct answers; Manually designed agents, including
Chain-of-Thought (CoT)Wei et al.| (2022b) in a single-agent setup, and LLM-DebateDu et al.[(2023) and
Random Graph in a multi-agent configuration; And Automatically optimized topologies — graph-learning
techniques such as GPT-SwarmZhuge et al.|(2024) and G-DesignerZhang et al.[(2025a)) (which share our
graph formulation), alongside the heuristic rule-based optimizer AflowZhang et al.|(2025b). We evaluate
a diverse set of language models sourced from different providers, each representing distinct technical
paradigms, training methodologies, and architectural designs. Please see Appendix [Cland [G]for more details.

5.1 MAIN RESULTS

Table 1: Evaluation of multi-agent and topology design methods on HumanEval, MATH, and MMLU.
"Mul.", "Auto.", and "Cond." indicate support for multi-agent collaboration, automated topology design, and
conditional configuration, where v" indicates "Yes" and X indicates "No". For automated methods, CYAN
cells denote in-domain adaptation (trained and tested on the same LLM), cells denote out-domain
adaptation (generalization to unseen LL.Ms), and cells denote the average performance.

Method Mul. Auto. Cond. ' gptdo-mini deepseek-v3 llama3-70B gptdo qwen-72B  Avg.

HumanEval
Vanilla 85.83 92.50 76.66 85.83 86.66 85.50
CoT 88.33 93.33 78.33 90.00 88.33 87.66
Random-graph v 87.50 94.16 73.33 90.00 85.00 86.00
LLM-Debate v 91.66 95.00 75.83 87.50 80.00 86.00
GPTswarm v v 89.16 92.50 78.33 91.66 81.66 86.66
Aflow v v 90.83 92.50 85.83 93.33 86.66 89.83
G-designer v v 89.16 94.16 75.00 88.33 85.83 86.50
CARD v v v 93.33 95.83 81.66 93.33 88.33 90.50
MATH
Vanilla 59.16 74.16 41.66 70.00 71.66 63.33
CoT 61.66 80.00 41.66 65.00 73.33 64.33
Random-graph v 60.00 88.33 38.33 70.00 66.67 64.67
LLM-Debate v 59.16 85.00 46.66 71.66 71.66 66.83
GPTswarm v v 67.50 90.83 46.66 67.50 78.33 70.16
Aflow v v 80.83 91.66 40.00 75.83 80.83 73.83
G-designer v v 70.00 91.66 47.50 75.00 79.16 72.66
CARD v Vv v 73.33 91.66 48.33 76.67 82.50 74.50
MMLU
Vanilla 77.12 86.27 75.16 86.93 79.74 81.04
CoT 81.05 92.16 75.16 88.89 83.66 84.18
Random-graph v 79.74 90.85 75.82 86.93 83.00 83.27
LLM-Debate v 80.39 90.20 76.47 88.24 84.31 83.92
GPTswarm v v 82.35 89.54 77.78 86.27 84.31 84.05
Aflow v v 79.74 84.97 77.12 89.54 83.00 82.87
G-designer v v 83.00 90.85 77.12 86.93 84.31 84.44
CARD v v v 84.97 93.46 80.39 89.54 84.97 86.67

Conditional design (CARD) consistently delivers the best overall performance. With 90.50% on
HumanEval, 74.50% on MATH, and 86.67% on MMLU, remarkably, CARD attains or ties for the top score
in 13 out of 15 model-benchmark combinations, demonstrating strong robustness across different LLM bases.

Gains accrue progressively with richer design abstractions. Single-agent methods (Vanilla, CoT) estab-
lish a competitive baseline but lack collaboration. Fixed multi-agent topologies (Random-graph, LLM-Debate)
add modest gains (+0.5-2.0 pp) by enabling parallel reasoning. Automated topology learners (GPT-swarm,
Aflow, G-designer) further boost performance (+1.0-4.0 pp) by optimizing static communication structures.
Finally, CARD’s conditional adaptation delivers an extra +0.5-3.0 pp advantage over these static designs by
tailoring the topology to environmental signals.
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Figure 3: Performance and gains of w/o Cond., w/ Cond.p, and CARD on HumanEval, MATH, and MMLU
across LLM bases (M1-MS5, same to Table |I|) Top: absolute accuracy (%). Bottom: A accuracy (%) over
the w/o Cond. baseline.

Conditional adaptation pays off especially under out-of-domain settings. By explicitly conditioning
on model- and tool-state, CARD narrows the gap between in-domain and out-domain evaluations. For
example, on MATH, G-designer’s accuracy falls from 91.66% to 79.16% when changing from deepseek-v3
to qwen-72B, whereas CARD’s drop is smaller (from 91.66% to 82.50%), underscoring its adaptability to
unseen settings.

5.2 How 1O EMBED CONDITIONS IN LLM TOPOLOGY GENERATION?

Figure [3|reports an ablation study on different ways to inject environmental conditions into the generation of
multi-agent topologies. We compare an unconditioned baseline (w/o Cond.), a naive prompt-level injection
(w/ Cond.p) that appends condition descriptors to the system prompt, and our CARD approach which embeds
conditions directly within the graph-generation module. Each variant is evaluated in HumanEval, MATH,
and MMLU on five LLM bases, reporting absolute precision and A precision relative to the unconditioned
baseline.

CARD delivers robust, non-negative gains across all benchmarks. While simple prompt conditioning
can backfire, causing up to a —12.50 % drop on MATH with base M5 and —2.00 % on MMLU with base M1.
CARD consistently yields positive improvements on every model-benchmark pair (e.g., +0.83 % to +3.34 %
on MATH, +0.66 % to +2.62 % on MMLU, and +2.50 % to +23.33 % on HumanEval), proving structured
topology adaptation far more reliable than prompt-only methods.

CARD compensates for weaker baseline models. The greatest uplifts appear in the most challenging
settings, such as a +2.62 % gain on MMLU with M3 and a +3.34 % boost on MATH with M5, demonstrating
the ability of CARD to narrow out-of-domain performance gaps and mitigate the limitations of less capable
LLM bases. Further analyses isolating source/tool effects and localized condition perturbations are in

Appendix [B.2]
5.3 How DO ENVIRONMENTAL CONDITIONS SHAPE THE FINAL COMMUNICATION ARCHITECTURE?
In Figure ] we present four representative experimental configurations, combining two LLM capacities

(GPT-40-mini vs. GPT-40 or Llama3-70B) with two search engines (Google Search vs. Wiki Search) to
illustrate CARD’s conditional adaptation in action. By visualizing the resulting topology matrices, we aim
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gpt-4o-mini + google search gpt-4o + google search gpt-4o-mini arct llama3~708 + wiki search

Figure 4: Visualization of CARD topology matrices (See Appendix @] for matrices and correlation analysis
details.) under different conditions. Edge thickness reflects the communication probability between agents.
Configurations 1 to 4 (Table[I0) are shown from left to right.

to quantify how variations in model strength and retrieval quality drive changes in edge density, directional
flow patterns, and overall graph structure. This case study validates CARD’s ability to tailor multi-agent
communication graphs to dynamic environmental signals, providing insight into the practical behavior of the
protocol under realistic operational changes.

Weaker Models Demand Denser Collaboration. In Configuration 1 (GPT-40-mini + Google Search), the
average edge weight is substantially greater than in Configuration 2 (GPT-40 + Google Search), demonstrating
that the smaller model compensates for lower inherent capacity by intensifying multi-agent communication.

Search-Engine Swap Preserves Global Structure but Shifts Local Flows. Replacing Google with Wiki
for GPT-40-mini (Config 1 vs. 3) yields a Pearson correlation of r = 0.9797 and p = 0.0006 (Appendix [D.2),
confirming near-identical overall topology. Locally, however, the Knowledge Expert—Searcher edge weight
decreases markedly, and the Searcher —Mathematician link drops more than Searcher—Philosopher, reflect-
ing domain-specific retrieval efficacy differences.

Lowest Capacity + Lower-Quality Search Maximizes External-Knowledge Reliance. The Llama3-
70B + Wiki configuration (Config 4) produces the densest graph with the highest average edge weights,
demonstrating peak dependence on external information when both model capacity and search quality are
reduced (Config 1 vs. 4: r = 0.7789, p = 0.0679 (Appendix [D.2)).

We provide additional quantitative breakdowns by model capability and size in Appendix and by
tools/knowledge sources in Appendix[B.2] Scalability under varying agent counts is detailed in Appendix [B.3]
and robustness under targeted attacks and accuracy—cost trade-offs are summarized in Appendix [B.4]

6 CONCLUSION

We introduced AMACP, a protocol for adaptive multi-agent communication, and CARD, a conditional
graph-generation framework that tailors LLM-based agent topologies to dynamic environments. Experiments
on HumanEval, MATH, and MMLU under simulated shifts (model upgrades, tool changes, and data per-
turbations) show CARD outperforms static and prompt-based designs by up to three percentage points in
accuracy while remaining cost-effective. Topology visualizations underscore CARD’s capability to adjust
communication patterns based on agent capabilities and resource quality. Future work will scale to larger
agent ensembles, integrate online reinforcement for continual adaptation, and validate CARD in real-world
multi-agent applications. For a detailed discussion of limitations and avenues for future work, please refer to

Appendix [A]
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7 ETHICS STATEMENT

This work uses only publicly available datasets and models, and does not involve human subjects or private
data. We acknowledge the broader societal risks of autonomous multi-agent LLM systems and encourage
responsible deployment with appropriate safeguards.

8 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide the full source code, training and evaluation scripts, and prompt
templates at https://anonymous.4open.science/r/agentgraph—FF9A. All experiments are
based on publicly available benchmarks (HumanEval, MATH, MMLU) and open-source or API-accessible
LLMs, with full implementation details, model configurations, and hyperparameters documented in Appen-
dices C-F. Results are averaged over multiple runs, and all metrics and visualizations are script-generated for
easy verification.
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A LIMITATION

This work focuses on conditional optimization and adaptation of multi-agent communication topologies.
However, it does not explicitly update agent-level configurations such as individual prompts or internal
profiles in response to environmental shifts. In practice, jointly optimizing both the communication topology
and agent behaviors, including prompt augmentation and tool selection strategies, may further improve
system performance. Exploring this direction remains an open avenue for future research. Additionally, while
our formulation represents the multi-agent system as a graph, which offers a cognitively interpretable and
analyzable abstraction, graph-based representations may be insufficient for capturing domain-specific nuances
in complex real-world settings. For example, in software engineering workflows, procedural constraints, tool
dependencies, and execution semantics are often critical. Future work may incorporate human-in-the-loop
expertise, such as software development best practices and debugging heuristics, and explore hybrid models
that combine symbolic priors with learned agent adaptation mechanisms.

B ANALYSIS AND DISCUSSION

B.1 QUANTITATIVE ANALYSIS OF CONDITIONS: MODEL SIZE AND REASONING ABILITY

We conduct further experimental analysis to investigate how variations in model capability, model size,
external tools, and knowledge sources impact multi-agent topology design and overall performance.
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Figure 5: Left: Accuracy on MATH and HumanEval across LLMs with different reasoning capabilities.
Right: Accuracy across different model sizes within the same LLM family.

Stronger and larger base models yield higher multi-agent performance, with CARD amplifying these
gains, but on simple tasks a single powerful LLM can outperform multi-agent coordination due to
communication overhead On both MATH and HumanEval benchmarks, upgrading from qwen-7b to
the higher-capability deepseek-distill-qwen-7b yields consistent accuracy improvements across all methods,
with CARD showing the largest absolute gains and the best performance(e.g., MATH accuracy rises from
69.16 % to 88.33 % (+19.17 pp)). However, on simple benchmarks with a capable model (Figure [5|Right),
vanilla single-agent slightly outperforms multi-agent due to redundant communication. This underscores that
multi-agent benefits require task complexity to outweigh coordination costs.

CARD exhibits superior robustness to variations in external tools and knowledge resources Evidence:
When switching among Google Search, DuckDuckGo, and Wikipedia as the external tool, CARD’s Hu-
manEval accuracy only drops from 85.62 % to 83.00 % Figure [6[Left), a smaller decline than alternative
methods. Similarly, across knowledge sources (Wikipedia, Tutorialspoint, Quora), CARD achieves its highest
performance (85.62 %) on the richest data source and outperforms other approaches by 1-2 percentage points
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even on less informative sources. This resilience highlights CARD’s ability to maintain strong multi-agent
topologies under diverse resource conditions.

B.2 QUANTITATIVE ANALYSIS OF CONDITIONS: TOOLS AND KNOWLEDGE RESOURCES

—8— LLM debate
—o— G-Designer
—e— CARD

Data-Source Comparison Tool Comparison Single-Node Condition Update Impact

oReplace

T
goog. duck. wiki.

T
wiki tuto. quor.

Figure 6: Left: Performance comparison using different external knowledge sources. Central: Performance
across various available tools (search engines). Right: Impact on multi-agent performance on HumanEval,
when only a single node’s condition is updated instead of the global agent condition.

We evaluate how external conditions, namely knowledge sources and retrieval tools, affect performance in the
CARD framework. Experiments use HumanEval with the same base LLM and agent-role design as in the
main paper. The only varying factors are the condition features: switching among three knowledge corpora
(Wikipedia, Tutorialspoint, Quora), changing search tools (Google, DuckDuckGo, WikiSearch), and applying
localized perturbations by modifying a single node’s condition embedding. All configurations share the same
retrieval budget, prompt formatting, and random seed.

Across source and tool variations, CARD consistently outperforms baselines and exhibits smaller performance
drops under weaker conditions. Accuracy declines from 85.6% on Wikipedia to 83.0% on Quora, yet CARD
maintains a clear margin over LLM-Debate and G-Designer. This resilience stems from condition-aware
graph generation that adapts edge density and agent coordination to upstream content quality. The results
indicate that topology-level adaptation provides stronger robustness than prompt-only conditioning when
facing domain shift or noisy external knowledge.

In local perturbation tests, changing the condition for only one node, either the root or an intermediate node,
preserves most performance at 88.3% and 85.0% respectively, substantially surpassing baselines. This shows
that CARD enables low-cost, localized reconfiguration without full graph retraining. The modular design
supports practical online adaptation in production, allowing lightweight updates in response to tool variability
or hotfixes while maintaining stable accuracy under dynamic real-world constraints.

B.3 MULTI-AGENT SCALABILITY ANALYSIS

We evaluate the scalability and robustness of CARD against G-Designer by grouping base LLMs into
in-domain (gpt4o-mini, deepseek-v3, 11ama3) and out-of-domain (GPT-40, gqwen—72B) settings.

CARD scales more effectively than G-Designer as agent count increases, especially in out-of-domain
settings. As shown in Figure[7] CARD consistently achieves higher MMLU scores as the number of agents
increases, with particularly pronounced gains in the out-of-domain setting (up to +1.99 pp over G-Designer at
10 agents). In the in-domain case, both methods improve over Vanilla, but CARD shows a steeper upward
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In-domain (Avg across models): CARD vs G-Designer Out-of-domain (Avg across models): CARD vs G-Designer

MMLU (%)
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Figure 7: MMLU performance of CARD vs G-Designer across varying agent counts. CARD consistently
outperforms G-Designer in both (a) in-domain and (b) out-of-domain settings, with larger gains under domain
shift; shaded areas denote 95% confidence intervals.
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Figure 8: Left: Accuracy comparison before and after adversarial attacks across different methods. Right:
The inference cost (USD per instance) across methods and LLMs.

trend, with its advantage widening at 5-10 agents. This indicates that conditional topology generation in
CARD helps agents coordinate more effectively as system size grows.

CARD also demonstrates stronger robustness under domain shift with comparable uncertainty. The
method also exhibits greater robustness under distribution shift. While G-Designer’s performance gains
plateau in the out-of-domain setting, CARD continues to benefit from agent scaling. Moreover, CARD
achieves these improvements with comparable or slightly lower confidence interval widths, suggesting more
reliable and generalizable coordination gains. These results align with the design goal of CARD—namely, to
generate topology conditioned on external constraints (e.g., model type, cost, capability), enabling adaptive
and scalable multi-agent collaboration even in unseen environments.

B.4 MULTI-AGENT ROBUSTNESS & COST-EFFICIENCY ANALYSIS

We evaluate both robustness and cost-efficiency by simulating targeted attacks and configuration faults at
intermediate agents on the HumanEval benchmark to measure resilience in accuracy, and by calculating
total training and evaluation expenses across different LLM bases to quantify economic trade-offs, thereby
enabling a systematic comparison of static, learned, and conditionally adapted communication topologies
under both adverse conditions and budget constraints.

Robustness under attack is markedly improved by conditional adaptation. As shown in Figure [§]
(Left), when an agent node is attacked, LLM Debate, which relies on fixed pairwise prompting without
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structural adaptation, and suffers the sharpest performance drop (—6.67 pp on HumanEval, -3.34 pp on MATH).
G-Designer, trained under attack conditions, filters out the faulty node and shows smaller degradation (-1.24
pp on HumanEval, —3.33 pp on MATH), but loses generalization once the node recovers. In contrast, CARD,
trained under both attacked and clean conditions, not only outperforms G-Designer under attack (87.50%
vs. 86.66% on HumanEval; 65.83% vs. 60.00% on MATH), but also shows significantly greater recovery
when the compromised node is restored (+3.33 pp vs. +1.24 pp on HumanEval; the accuracy under attack
is even higher than non-attacked on MATH, indicating that our topology is fully adaptable to both attacked
and non-attacked conditions.) highlighting its superior resilience and adaptability across both degraded and
recovered environments.

Localized condition updates recover most of the lost performance at minimal adaptation cost. Figure[6]
(Right) illustrates that, upon replacing only a single node’s condition rather than regenerating the entire
communication graph, CARD retains 88.33 % accuracy under head-node perturbations and 85.00 % under
intermediate-node perturbations, demonstrating overall superiority over both LLM-Debate and G-Designer,
highlighting that fine-grained adaptation can preserve robustness with far lower computational overhead than
global reconfiguration.

Conditional designs deliver the best accuracy-to-cost balance among all methods. In Figure §|(Right),
CARD’s configurations (e.g., achieving 94 % accuracy at an evaluation cost of 4 x 1072 USD) occupy the
upper—left region of the cost—performance plane, while static multi-agent schemes like LLM-Debate and
learned topologies such as G-Designer generally cost more to reach a lower accuracy; this confirms that
conditionally adapted graphs not only boost resilience but also minimize economic expenditure for a given
performance level.

C IMPLEMENTATION DETAILS

Specifically, we include OpenAl's GPT-400OpenAl (2024a) and GPT-4o-minilOpenAll (2024b),
DeepSeek’s DeepSeek-v3DeepSeek-Al et al.[(2024) (630B), Meta’s L1ama3—-70RDubey et al.| (2024),
and the Qwen series from Alibaba, comprising Qwen—-2.5 models (7B, 14B, and 72B)Yang et al.
(2024)) as well as the distilled variant gwen-distill-r1-7bDeepSeek-Al et al. (2025) derived from
Qwen-2.5-7B. These models differ across providers (capturing variations in technical trajectories and
architectural choices), model sizes (correlating with computational capacity and performance), and domain
specializations (affecting knowledge scope and inference behaviors). In addition, we examine the influence of
external tools on multi-agent architectures by varying the underlying data sources and search engines. The
search engines considered are Google Search, DuckDuckGo, and Wiki Search; the data sources
include Quora, Wikipedia, and Tutorialspoint. These configurations represent diverse retrieval
qualities and knowledge coverage levels. This setup is intended to emulate the dynamic evolution of resources
in real-world multi-agent systems, enhancing the robustness and adaptability of learned multi-agent topologies
under changing conditions.
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D SOURCE DATA

D.1 ADJACENCY MATRIX OF VISUALIZATION

Table 2: Adjacency Matrix 1: gpt-4o-mini + Google

Knowlegable Expert Searcher Philosopher Mathematician  Critic

Knowlegable Expert Masked 0.79 0.88 0.81 0.5
Searcher 0.17 Masked 0.79 0.69 0.34
Philosopher 0.11 0.17 Masked 0.81 0.5
Mathematician 0.15 0.21 0.15 Masked 0.37
Critic 0.25 0.22 0.25 0.23 Masked

Table 3: Adjacency Matrix 2: gpt-40 + Google

Knowlegable Expert Searcher Philosopher Mathematician  Critic

Knowlegable Expert Masked 0.54 0.15 0.4 0.14
Searcher 0.25 Masked 0.53 0.81 0.5
Philosopher 0.13 0.25 Masked 0.39 0.13
Mathematician 0.24 0.15 0.24 Masked 0.36
Critic 0.12 0.25 0.11 0.23 Masked

Table 4: Adjacency Matrix 3: gpt-4o-mini + Wiki

Knowlegable Expert Searcher Philosopher Mathematician  Critic

Knowlegable Expert Masked 0.73 0.86 0.73 0.46
Searcher 0.2 Masked 0.76 0.57 0.3
Philosopher 0.12 0.18 Masked 0.75 0.5
Mathematician 0.2 0.25 0.19 Masked 0.29
Critic 0.25 0.21 0.25 0.21 Masked

Table 5: Adjacency Matrix 4: Llama—-3-70B + Wiki

Knowlegable Expert Searcher Philosopher Mathematician  Critic

Knowlegable Expert Masked 0.84 0.73 0.8 0.5
Searcher 0.13 Masked 0.67 0.75 0.42
Philosopher 0.2 0.22 Masked 0.6 0.27
Mathematician 0.16 0.19 0.24 Masked 0.35
Critic 0.25 0.24 0.2 0.23 Masked
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D.2 CORRELATION ANALYSIS OF ADJACENCY MATRIX

CORRELATION ANALYSIS

Table 6: Pearson correlation between matrix pairs with corresponding strength and significance.

Comparison r D Strength Sig.

Matrix 1 vs2 032 0.54 Weak No
Matrix 1 vs3  0.98 0.001 Very strong Yes
Matrix 1 vs 4  0.78  0.07 Strong Marginal

E ALGORITHM WORKFLOW

Algorithm 1 Workflow of CARD: Conditional Agentic Graph Designer

Input: Query set {Qy, ..., Qp}, condition configurations {C1,...,Cc},
Graph auto-encoder f, = (gstat, Gayn, ¥) With parameters (0, O., ©4), learning rate o

1: for each query Q4 € {Q1,...,9p} do
2: for each condition C, € {Cy,...,Cc} do

3: /* Construct agent features under condition C. */
4: for agent v; € {v1,...,ux} do
5: x? + T,(Base;,Role;,Pluginy)
6: x§ + To(Celi])
7: end for
8: Xy X, xR Xe e x6 L x$]T
9: xg < Embed(Qy) > query treated as a virtual agent node
10: Define anchor topology A (e.g., fully-connected + task node)
11: G+ ({X,, X, x0},A)
12: /* Generate communication topology via encoder-decoder */
13: H, —¢,(X, | A), H.+ ¢.(Xc| A
14: S« ¢(H,, He,x0) > compute link probabilities
15: Geom < {(4,7) | Sij > 7} > retain edges above threshold
16: /* Multi-agent collaboration under Geop */
17: fort =1to K do
18: for agent v; in schedule ¢(Geom) do
19: G {Qa} ULRY v € Ni(vi)}
20: R vi(PYL,PY)
21: end for
22: alt) Aggregate({Rgt)}i]\Ll)
23: end for
24: /* Optimize graph generation parameters */
25: © <« 0 —a-VeLcarp
26: end for
27: end for
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F PROMPT

LLM Dynamic Information Template

model_template = {
'Name': '{model_name}',
'Description': '{ModelName} is a {model_type} model developed by
— {developer}, supporting {modalities}. '
'It is optimized for {key_strengths}. !
'{ModelName} offers {performance_advantage}. '
'The model costs ${input_cost} per million input

— tokens and ${output_cost} per million output
— tokens. '

'"{evaluation_info}'

}

evaluation_info = (

'In {domain_a}, {ModelName} achieves an accuracy of
« {evaluation_score_a}. '
'In {domain_b}, {ModelName} achieves an accuracy of

— {evaluation_score_b}. '...

Search Engine Dynamic Information Template

search_engine_template = {
'Name': '{engine_name}',
'Description': '{EngineName} is a {engine_type} developed by
— {provider}. '
'It supports {supported_query_types} and delivers
— results across {content_scope}. '
'The engine integrates {additional_features}, making

— it suitable for {application_scenarios}. '
'"{evaluation_info}'

}

evaluation_info = (

'In the task of {task_name}, {EngineName} achieved a score of
<« {score_value} on the {metric_name} metric. '

20
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HumanEval Role Profile

"Project Manager":
"You are a project manager. "
"You will be given a function signature and its docstring by the
— user. "
"You are responsible for overseeing the overall structure of the
— code, ensuring that the code is structured to complete the task
— Implement code concisely and correctly without pursuing
— over—-engineering."
"You need to suggest optimal design patterns to ensure that the code
— follows best practices for maintainability and flexibility. "
"You can specify the overall design of the code, including the
— classes that need to be defined(maybe none) and the functions
— used (maybe only one function) ."
"I hope your reply will be more concise. Preferably within fifty
— words. Don’t list too many points.",
"Algorithm Designer":
"You are an algorithm designer. "
"You will be given a function signature and its docstring by the
— user. "
"You need to specify the specific design of the algorithm, including
— the classes that may be defined and the functions used. "
"You need to generate the detailed documentation, including
— explanations of the algorithm, usage instructions, and API
— references. "
"When the implementation logic is complex, you can give the
— pseudocode logic of the main algorithm."
"I hope your reply will be more concise. Preferably within fifty
— words. Don’t list too many points.",
"Programming Expert":
"You are a programming expert. "
"You will be given a function signature and its docstring by the
— user. "
"You may be able to get the output results of other agents. They may
— have passed internal tests, but they may not be completely
« correct. "
"Write your full implementation (restate the function signature). "
"Use a Python code block to write your response. For
— example:\n " “python\nprint ('Hello world!')\n "
"Do not include anything other than Python code blocks in your
— response. "
"Do not change function names and input variable types in tasks.",
"Test Analyst":
"You are a test analyst. "
"You will be given a function signature and its docstring by the
— user. "
"You need to provide problems in the current code or solution based
— on the test data and possible test feedback in the question. "
"You need to provide additional special use cases, boundary
— conditions, etc. that should be paid attention to when writing
— code. "
"You can point out any potential errors in the code."
"I hope your reply will be more concise. Preferably within fifty
— words. Don’t list too many points.",
"Bug Fixer":
"You are a bug fixer."
"You will be given a function signature and its docstring by the
— user. " 21
"You need to provide modified and improved python code based on the
— current overall code design, algorithm framework, code
— 1implementation or test problems. "
"Write your full implementation (restate the function signature). "
"Use a Python code block to write your response. For
— example:\n ~“python\nprint ('Hello world!')\n """
"Do not include anything other than Python code blocks in your
— response "
"Do not change function names and input variable types in tasks",
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MATH Role Profile

"Math Solver":
"You are a math expert. "
"You will be given a math problem and hints from other agents. "
"Give your own solving process step by step based on hints. "
"The last line of your output contains only the final result without
— any units, for example: The answer is 140\n"
"You will be given some examples you may refer to.",
"Mathematical Analyst":
"You are a mathematical analyst. "
"You will be given a math problem, analysis and code from other
— agents. "
"You need to first analyze the problem-solving process step by step,
— where the variables are represented by letters. "
"Then you substitute the values into the analysis process to perform
— calculations and get the results."
"The last line of your output contains only the final result without
— any units, for example: The answer is 140\n"
"You will be given some examples you may refer to.",
"Programming Expert":
"You are a programming expert.
"You will be given a math problem, analysis and code from other
— agents. "
"Integrate step-by-step reasoning and Python code to solve math
— problems. "
"Analyze the question and write functions to solve the problem. "
"The function should not take any arguments and use the final result
— as the return value. "
"The last line of code calls the function you wrote and assigns the
— return value to the \ (answer\) variable. "
"Use a Python code block to write your response. For
— example:\n " “python\ndef fun():\n x = 10\n y = 20\n return x +
< y\nanswer = fun()\n ~"\n"
"Do not include anything other than Python code blocks in your
— response."
"You will be given some examples you may refer to.",
"Inspector":
"You are an Inspector. "
"You will be given a math problem, analysis and code from other
— agents. "
"Check whether the logic/calculation of the problem solving and
— analysis process is correct (if present). "
"Check whether the code corresponds to the solution analysis(if
— present). "
"Give your own solving process step by step based on hints. "
"The last line of your output contains only the final result without
— any units, for example: The answer is 140\n"
"You will be given some examples you may refer to.",
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MMLU Role Profile

"Knowlegable Expert":

nmmwn

You are a knowlegable expert in question answering.

Please give less than 3 key entities that need to be searched on the
— Internet to solve the problem. Each entity must be wrapped with @
— symbols.

For example: (@catfish effect@, @broken window effect@, @Shakespeare@.
If there is no entity in the question that needs to be searched on the
— Internet, you don't have to provide it.

nun

"Searcher":

nmmwn

You will be given a question and Internet search overview of the key
— entities within it.

Please refer to them step by step to give your answer.

nmnon

"Critic":

mnon

You are an excellent critic.

Please point out potential issues in other agent's analysis point by
— point.

nun

"Mathematician":

nmn

You are a mathematician who is good at arithmetic calculation and

— long-term planning.

You can use your logic and reasoning skills to solve problems step by
— step.

nun

"Philosopher":

nmmwn

You are a philosopher with deep knowledge in literature, history, and
— cultural studies.

You analyze texts critically, draw nuanced interpretations, and make
— connections across time, societies, and disciplines.

nun

"Doctor":

nmmwn

You are a medical professional who good at biology, medicine, and health.
You combine modern medicine with herbal and natural remedies.

You consider age, lifestyle, and medical history in every recommendation.

nun

"Programmer":

mmwn

You are a programmer skilled in software development, systems design, and
— technical problem-solving.

You apply principles from computer science, engineering, and coding.

You write clean, efficient code across diverse platforms.
nmn
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Table 7: HumanEval Environment Configuration Set

Configuration LLM Role
gpt-40-mini Project Manager
gpt-40-mini Algorithm Designer
Configuration 1 ~ gpt-4o-mini Programming Expert
gpt-40-mini Test Analyst
gpt-40-mini Bug Fixer
deepseek-v3 Project Manager
. ) deepseek-v3 Algorithm Designer
Train & Test Configuration 2 deepseek-v3 Programming Expert
deepseek-v3 Test Analyst
deepseek-v3 Bug Fixer
1lama-3-70B Project Manager
1lama-3-70B Algorithm Designer
Configuration 3  llama-3-70B Programming Expert
llama-3-70B Test Analyst
1lama-3-70B Bug Fixer
gpt-4o Project Manager
gpt-4o Algorithm Designer
Configuration 4  gpt-4o Programming Expert
gpt-40 Test Analyst
Only Test gpt-4o Bug Fixer
qwen-2.5-72B  Project Manager
qwen-2.5-72B  Algorithm Designer
Configuration 5 qwen-2.5-72B  Programming Expert
qwen-2.5-72B  Test Analyst
qwen-2.5-72B  Bug Fixer
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G EXPERIMENT CONFIGURATION SETS

Table 8: MATH Environment Configuration Set

Train & Test

Configuration LLM Role
gpt-4o0-mini Math Solver
gpt-4o0-mini Mathematical Analyst
Configuration I  gpt-40-mini Mathematical Analyst
gpt-4o0-mini Programming Expert
gpt-4o0-mini Inspector

Configuration 2

deepseek-v3
deepseek-v3
deepseek-v3
deepseek-v3
deepseek-v3

Math Solver
Mathematical Analyst
Mathematical Analyst
Programming Expert
Inspector

Configuration 3

Ilama-3-70B
Ilama-3-70B
Ilama-3-70B
Ilama-3-70B
Ilama-3-70B

Math Solver
Mathematical Analyst
Mathematical Analyst
Programming Expert
Inspector

Only Test

Configuration 4

gpt-4o
gpt-4o
gpt-4o
gpt-4o
gpt-4o

Math Solver
Mathematical Analyst
Mathematical Analyst
Programming Expert
Inspector

Configuration 5

qwen-2.5-72B
qwen-2.5-72B
qwen-2.5-72B
qwen-2.5-72B
qwen-2.5-72B

Math Solver
Mathematical Analyst
Mathematical Analyst
Programming Expert
Inspector
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Table 9: MMLU Environment Configuration Set

Configuration LLM Role
gpt-4o-mini Mathematician
gpt-4o-mini Programmer

Configuration 1 ~ gpt-40-mini Critic
gpt-40-mini Doctor
gpt-40-mini Psychologist
deepseek-v3 Mathematician

. deepseek-v3 Programmer
Train & Test Configuration 2 deepseek-v3 Critic
deepseek-v3 Doctor
deepseek-v3 Psychologist
llama-3-70B Mathematician
llama-3-70B Programmer

Configuration 3  llama-3-70B Critic
llama-3-70B Doctor
llama-3-70B Psychologist
gpt-4o Mathematician
gpt-4o Programmer

Configuration 4  gpt-4o Critic
gpt-4o Doctor

Only Test gpt-4o Psychologist
qwen-2.5-72B  Mathematician
qwen-2.5-72B  Programmer

Configuration 5 qwen-2.5-72B  Critic
qwen-2.5-72B  Doctor
qwen-2.5-72B  Psychologist

26



Under review as a conference paper at ICLR 2026

Table 10: MMLU Environment Configuration Set with External Tools

Configuration LLM Role External Tool (search engine)
gpt-4o-mini  Knowlegable Expert
gpt-4o-mini  Searcher Google

Train & Test Configuration 1  gpt-4o-mini  Psychologist
gpt-4o-mini  Mathematician
gpt-4o-mini  Critic
gpt-40 Knowlegable Expert
gpt-4o Searcher Google

Configuration 2 gpt-4o Psychologist

gpt-4o Mathematician

Only Test gpt-4o Critic
gpt-4o-mini  Knowlegable Expert
gpt-4o-mini  Searcher Wiki

Configuration 3  gpt-4o-mini ~ Psychologist
gpt-4o-mini ~ Mathematician
gpt-4o-mini  Critic
llama-3-70B  Knowlegable Expert
llama-3-70B  Searcher Wiki

Train & Test Configuration 4 llama-3-70B  Psychologist
llama-3-70B  Mathematician
llama-3-70B  Critic
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