
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

CARD: TOWARDS CONDITIONAL DESIGN OF MULTI-AGENT
TOPOLOGICAL STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM)-based multi-agent systems have shown strong capabilities in
tasks such as code generation and collaborative reasoning. However, the effectiveness and
robustness of these systems critically depend on their communication topology, which is
often fixed or statically learned, ignoring real-world dynamics such as model upgrades, API
(or tool) changes, or knowledge source variability. To address this limitation, we propose
CARD (Conditional Agentic Graph Designer), a conditional graph-generation framework
that instantiates AMACP, a protocol for adaptive multi-agent communication. CARD
explicitly incorporates dynamic environmental signals into graph construction, enabling
topology adaptation at both training and runtime. Through a conditional variational graph
encoder and environment-aware optimization, CARD produces communication structures
that are both effective and resilient to shifts in model capability or resource availability.
Empirical results on HumanEval, MATH, and MMLU demonstrate that CARD consistently
outperforms static and prompt-based baselines, achieving higher accuracy and robustness
across diverse conditions. The source code is available at: https://anonymous.
4open.science/r/agentgraph-FF9A.

1 INTRODUCTION

Multi-agent systems powered by large language models (LLMs) (OpenAI, 2024a; Liu et al., 2023a) have
recently demonstrated remarkable capabilities across a wide range of complex tasks, from code synthe-
sis (Chen et al., 2023) to collaborative reasoning (Liu et al., 2023b). By integrating each model’s internal
knowledge, natural language generation, and inference abilities with external tools (Zhang et al., 2023) or peer
LLMs, these systems effectively decompose problems (Yao et al., 2023a), coordinate subgoals (Liang et al.,
2023), and integrate diverse information sources (Lee et al., 2023). However, the communication topology,
which specifies how agents are interconnected, significantly influences performance, affecting both solution
quality and robustness to evolving conditions such as model upgrades, API modifications, and fluctuating
data sources.

Current topology design approaches typically fall into two categories (Bei et al., 2025; Liu et al., 2025). Many
systems depend on manually crafted pipelines (Hong et al., 2023) or predefined agent sequences (Wu et al.,
2023), which perform effectively in stable, well-understood scenarios but lack adaptability. Conversely, recent
methods automatically learn communication structures by backpropagating through "text gradients" (Zhuge
et al., 2024) or parameterizing inter-agent connections via differentiable modules (Zhang et al., 2025a).
Yet, these learned topologies generally assume static environments, failing to account for transient external
factors. Consequently, when conditions change, such as upgrading a model base (e.g. GPT-4o→ GPT-5),
tool availability variations, or deterioration in data source quality, static or naively learned topologies become
fragile, resulting in redundant interactions or disrupted information flows (see Figure 1).

1

https://anonymous.4open.science/r/agentgraph-FF9A
https://anonymous.4open.science/r/agentgraph-FF9A

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

LLM BASE

External Tool/Source

Agent Attributes

PDFWordPPT

Arxiv Reddit

CSDNStackoverflow

A

B

C

E

A

B

C

D

E

Quora

Agent C

Role: Programmer

LLM: Deepseek-V3

Tool: Python

Knowledge

source: CSDN

Agent C

Role: Programmer

LLM: Qwen-72B-Chat

Tool: Python

Knowledge

source: Stackoverflow

Multi Agent System with different configurations

D

Topology Variations Under Different Configurations

Configuration I Configuration II

MATH CODE QA

Historian Manager Programmer

Openai Deepseek Qwen Llama

Google Duckduckgo Wiki Python

Task

Role
Topology I Topology I Topology II Topology II

CARDCARD

Figure 1: Agent attributes and corresponding communication topologies under two environmental configura-
tions, illustrating that topology is determined by both task requirements and the capabilities of the model base
and available resources.

Adaptive LLM-based Multi-agent Communication Protocol (AMACP):

Given a task/query q, an optimal communication topology for q should satisfy the following protocol
logics: Effectiveness: The communication structure must effectively produce a qualified solution for
the given task q. Cost-efficiency: The communication structure should minimize the overall resource
consumption (e.g., model usage, API calls, token cost) required to solve q under the given condition.
Adaptiveness: The communication structure should dynamically adjust to varying conditions, ensuring
robustness across diverse availability.

We address this gap by formalizing the Adaptive Multi-Agent Communication Protocol (AMACP) and
instantiating it via the Conditional Agentic gRaph Designer (CARD). CARD is a conditional graph-generation
framework that (i) represents each agent via profile and condition channels, (ii) encodes dynamic environment
signals, and (iii) decodes an interaction graph whose edges adapt at training time and at runtime as conditions
change without retraining. The objective balances task utility and condition-aware communication cost,
enforcing effectiveness, cost-efficiency, and adaptiveness required by AMACP. Empirically, on HUMANEVAL,
MATH, and MMLU with simulated environmental changes (model upgrades, tool availability, data-source
perturbations), CARD yields substantial gains over static and prompt-only or naively learned topologies
while remaining competitive in static regimes. Our primary contributions are:

• Formalization of AMACP, a protocol enabling adaptive multi-agent communication under dynamic
external conditions.

• Introduction of CARD, a conditional graph-generation framework explicitly learning effective and
adaptive agent topologies from environmental states.

• Comprehensive empirical validation demonstrating that CARD consistently outperforms existing
fixed and learned topology baselines under dynamic conditions.

• Detailed analyses of topology adaptations, elucidating how environmental state conditioning en-
hances the efficiency and robustness of multi-agent coordination.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Collaborative LLM Agents. Early work on LLM-based multi-agent communication has relied on manually
defined coordination pipelines, with ranging from non-interactive queries and chain-of-thought prompting to
debate frameworks and fixed tree- or graph-based structures (Wei et al., 2022b; Yao et al., 2023b; Besta et al.,
2024). To reduce the effort of handcrafting these pipelines, automated topology-learning methods such as
GPT-Swarm (Zhuge et al., 2024), G-Designer (Zhang et al., 2025a), and Aflow (Zhang et al., 2025b) have
been developed. These approaches optimize agent connections via differentiable modules or heuristic search,
yielding strong performance in static settings. However, they continue to assume a stationary environment
and lack mechanisms for responding to changes in model capabilities, tool access, or data quality.

Multi-Agents as Graphs. Although a few dynamic communication protocols have been proposed in
distributed-systems literature (Wei et al., 2022a; Yao et al., 2023a; Liang et al., 2023), most learned topologies
remain static and brittle under evolving conditions, such as model upgrades, fluctuations in external tool
reliability, or shifts in data-source quality (Pareja et al., 2020; Chang et al., 2020). In these scenarios, pre-
defined or naively optimized graphs can produce redundant interactions or disrupted information flows (Liu
et al., 2025). To bridge this gap, we introduce the Conditional Agentic Graph Designer, which explicitly
conditions graph generation on external signals (e.g., model version, tool performance, data-source fidelity)
to produce adaptive, robust multi-agent topologies .

3 PROBLEM FORMULATION

We begin by formalizing the topology and protocol design space for LLM-based multi-agent systems (MAS),
grounding the CARD framework (Figure 2) in well-defined constructs.

Topological Structure of LLM-based Multi-Agent Systems. A multi-agent system is represented as
a directed graph G = (V, E), where each node vi ∈ V denotes an LLM-based agent and each directed
edge (vi, vj) ∈ E represents a communication path from vi to vj . Each agent vi is described by: profile
attributes Pi, including [role identity, model base, tool access, historical state];
And condition attributes Ci, capturing runtime environmental conditions. We model the condition C as a
composition of multiple features, where each feature corresponds to a distinct semantic aspect F such as
model type, tool availability, or task complexity. Formally,

C = {c1, c2, . . . , ck}, ci ∈ Fi, (1)
C = F1 ×F2 × · · · × Fk, (2)

To ensure semantic consistency across heterogeneous features, we encode the structured condition using a
unified pretrained language model, aligning all feature dimensions into a shared embedding space, enabling
the model to handle unseen combinations of features during inference.

3.1 COMMUNICATION PIPELINE

Given a user query Q, our system executes K rounds of communication across a multi-agent topology
G = (V, E), where V = {v1, . . . , vN} is the set of agents and E represents directed communication edges.

Topological Scheduling. To ensure valid information flow, a topological scheduling function φ determines
a permutation σ = {v(1), . . . , v(N)} of agents that respects acyclic dependencies:

φ : G → σ, such that ∀j > i, v(j) /∈ Nin(v(i)), (3)

where Nin(v(i)) denotes the set of upstream neighbors of agent v(i).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

"DeepSeek-V3" : "A 671B-parameter

model developed by DeepSeek,

achieves SOTA performance in

programming, mathematics..."

"Wikipedia": "Wikipedia is a

multilingual, crowd-sourced

encyclopedia..."

 "Project Manager": "You are a

project manager. You will be given a

function signature..."

"Math" : "Find the smallest positive

integer that is greater than 1..."

discript

Openai Deepseek Qwen

MATH CODE QA

Historian Manager Programmer

Google Duckduckgo Wiki

Xp

Xc

Condition

CARD

Agent Representation
Conditional Graph

Generation

Environment-Aware

Training

Runtime Adaptation via

CARD

LLM
Search

engine

Knoledge

source

RoleRole

TaskTask

LlamaLlama

Python

LLM BASELLM BASELLM BASE

External Tool/SourceExternal Tool/SourceExternal Tool/Source
estimate

Node

Encoder

Node

Encoder

Conditional Graph GenerationConditional Graph GenerationAgent RepresentationAgent Representation

 Encoder Encoder Decoder Decoder

Environment-Aware Training

Environment Group

Runtime Adaptation via CARDRuntime Adaptation via CARD

Shift Condition
Configuration I Configuration I Configuration IIConfiguration II

CARDCARD

Figure 2: Overview of the Conditional Agentic Graph Designer (CARD) framework. Agent profiles and
dynamic environment conditions are encoded into embeddings, which a conditional graph-generation module
(Encoder → Condition Adaptation → Decoder) uses to produce an adaptive communication topology.
CARD then performs environment-aware training, iteratively refining graphs under changing resource
configurations, and deploys runtime adaptation to automatically update the multi-agent topology in response
to new environmental states.

Message Propagation. At each communication round t ∈ {1, . . . ,K}, each agent vi receives (i) a system-
level prompt P(t)

sys , (ii) a user-level prompt P(t)
usr , and (iii) the collection of responses from its incoming

neighbors at the same round:

R(t)
i = vi

(
P(t)

sys ,P(t)
usr ,

{
R(t)

j : vj ∈ Nin(vi)
})
, (4)

whereR(t)
i is the response generated by agent vi at round t.

Output Aggregation. After K rounds of interaction, the system aggregates the final-round outputs from all
agents to form the final system response:

α(K) = Aggregate
(
R(K)

1 , . . . ,R(K)
N

)
, (5)

where Aggregate(·) denotes a task-specific aggregation function (e.g., voting, selection, or summarization)
over the terminal responses.

3.2 AMACP: ADAPTIVE MULTI-AGENT COMMUNICATION PROTOCOL

To ensure meaningful topology construction, we define AMACP:

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

AMACP Definition

Given a query Q, a communication topology G must satisfy: 1. Effectiveness: Maximize condi-
tioned task utility u(G(Q|C); 2. Cost-efficiency: Minimize conditioned financial cost w(G; C); 3.
Adaptiveness: Adjust topology in response to environmental condition C shifts.
These objectives are jointly encoded in the following optimization problem:

min
G∈G

LAMACP(G;Q, C) = −u(G(Q | C)) + β · w(G; C), (6)

where u(·) denotes the task-specific utility function, w(·) is the conditioned communication cost, and
β ∈ R+ is a tunable trade-off hyperparameter.

4 CONDITIONAL AGENTIC GRAPH DESIGNER

We introduce Conditional Agentic Graph Designer (CARD) that constructs adaptive, environment-conditioned
multi-agent topologies. CARD comprises four key stages: (1) Agent representation, (2) Conditional graph gen-
eration, (3) Environment-aware training, and (4) Runtime adaptation. The complete workflow is summarized
in Algorithm 1 and visualized in Figure 2.

Agent Representation. Given a query Q and an environment configuration C, CARD first constructs an
initial multi-agent network. Each agent vi ∈ V is described by two components: Firstly, a profile vector
Pi = [Tp(Basei),Rolei, Tp(Plugini)], capturing static attributes of the agent, including its base model,
assigned role, and supported tools. Here, Tp(·) denotes a natural-language template function used to verbalize
categorical features (e.g., model name, role identity, plugin type) into a text embedding. Secondly, a condition
vector Ci = Tc(Ci), describing runtime environment status for vi, such as model availability, token cost, or
API reliability. The function Tc(·) generates textual descriptions that encode dynamic system conditions.
These representations are later encoded as node features for conditional graph generation (Section 4). See
Appendix F for template instantiations of Tp and Tc.

Conditional Graph Generation Given a user query Q and an initial environment configuration, CARD
constructs a preliminary agent graph G̃ = (V, Ẽ) over N = |V| agents. Each agent vi ∈ V is associated with
a profile text Pi and a condition text Ci, which are embedded as Xp

i and Xc
i , respectively. Stacking across

agents yields Xp = [Xp
1 , . . . , X

p
N] and Xc = [Xc

1 , . . . , X
c
N]. The edge set Ẽ is initialized from an anchor

topology A (e.g., chain or star), which provides structural priors for initial connectivity.

To obtain a refined, query- and context-aware communication topology, CARD applies an encoder–decoder
graph generation module. The encoder comprises two learnable graph encoders, ϕp and ϕc, that produce
latent representations for profile and condition channels:

Hp = ϕp(Hp | Xp,A; Θp), (7)
Hc = ϕc(Hc | Xc,A; Θc), (8)

where Hp = [hp
1, . . . ,h

p
N] and Hc = [hc

1, . . . ,h
c
N] denote the latent states, and Θp,Θc are encoder parame-

ters. The decoder ψθ then estimates pairwise edge probabilities conditioned on these latent states and a query
embedding hQ (the query is treated as an auxiliary node that attends to all agents in both channels):

ψ(S | Hp,Hc) =
∏
i,j

ψ
(
Sij

∣∣hp
i ,h

c
i ,h

p
j ,h

c
j ,hQ; Θd

)
, (9)

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

where Sij ∈ [0, 1] is the predicted link probability and Θd are decoder parameters. Finally, the communication
topology is obtained by thresholding the predicted adjacency:

Ecom = {(vi, vj) | Sij > τ}, Gcom = (V, Ecom), (10)

with a user-specified or validation-selected threshold τ ∈ (0, 1). The resulting Gcom serves as the backbone for
downstream multi-agent communication and reasoning, adaptively modulated by static profiles and dynamic
runtime states.

Environment-Aware Training. Given a query Q and an environment condition C (Section 3), CARD trains
by iterating over sampled (Q, C) pairs and running K ∈ N rounds of multi-agent interaction on Gcom. At
communication round t ∈ {1, . . . ,K}, agent vi receives a system-level prompt I(t)sys, a user-level prompt I(t)usr,
and upstream messages {R(t)

j | vj ∈ Nin(vi)}, and produces a response R(t)
i with equation 4. And after

K rounds, a task-specific aggregation operator AGGREGATE(·) (e.g., voting, selection, or summarization)
combines terminal responses into the system output α(K) with equation 5.

Let Θp,Θc,Θd denote the parameters of the profile encoder ϕp, condition encoder ϕc, and graph decoder ψ.
We optimize these parameters by gradient descent on a CARD loss that instantiates the AMACP objective
(Eq. equation 6):

LCARD(Q, C; Θp,Θc,Θd) = −u
(
α(K)

)
︸ ︷︷ ︸

task utility

+ β w(Gcom; C)︸ ︷︷ ︸
condition-aware cost

, (11)

where u(·) is a task-specific utility (e.g., accuracy/probability of correctness), w(·) measures the conditioned
communication cost, and β > 0 balances utility and cost. Specifically, to encourage communication efficiency
while preserving performance, we regularize the soft communication graph G̃com output by the decoder. Let
S ∈ [0, 1]N×N be the predicted (directed) link-probability matrix and define pij := Sij as the probability that
edge (vi→ vj) is active under condition C. Let Costij ≥ 0 denote the expected token-level inference cost
on edge (i, j) (a function of the base model(s) and the number of exchanged tokens). The condition-aware
regularizer is:

min
G̃com∈G

w
(
G̃com, C

)
=

∑
(i,j)∈G̃com

Costij pij , (12)

where G is the space of admissible (soft) directed graphs over V . In practice, Gcom used for execution is
obtained by thresholding S; training backpropagates through S to update (Θp,Θc,Θd) via equation 11.

Runtime Adaptation via CARD. At deployment, when external conditions change (e.g., base model
capability, tool reliability, or cost), CARD updates the communication topology without retraining by
decoding new edges from refreshed condition signals:

Gnewcom = ψ
(
ϕp(Xp), ϕc(X

new
c), A

)
, (13)

whereXp encodes the agent profiles static (role, base model, and tools), Xnew
c encodes the runtime conditions

updated, ϕp, ϕc maps these to latent node states,A is the anchor prior (e.g. chain, star, or fully connected), and
ψ decodes edge probabilities (thresholded at τ) to produce the revised adjacency. This one-pass recomputation
preserves robust, cost-efficient collaboration under real-time shifts.

5 EXPERIMENT

Datasets and Metrics. We assess CARD on three standard benchmarks: programming code generation
(HumanEval)Chen et al. (2021), mathematical reasoning (MATH)Hendrycks et al. (2021b), and general
reasoning and language understanding (MMLU)Hendrycks et al. (2021a).

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Baselines and Setup. We compare our approach against three categories of methods: Vanilla LLM,
using the model’s native capabilities to produce direct answers; Manually designed agents, including
Chain-of-Thought (CoT)Wei et al. (2022b) in a single-agent setup, and LLM-DebateDu et al. (2023) and
Random Graph in a multi-agent configuration; And Automatically optimized topologies — graph-learning
techniques such as GPT-SwarmZhuge et al. (2024) and G-DesignerZhang et al. (2025a) (which share our
graph formulation), alongside the heuristic rule-based optimizer AflowZhang et al. (2025b). We evaluate
a diverse set of language models sourced from different providers, each representing distinct technical
paradigms, training methodologies, and architectural designs. Please see Appendix C and G for more details.

5.1 MAIN RESULTS

Table 1: Evaluation of multi-agent and topology design methods on HumanEval, MATH, and MMLU.
"Mul.", "Auto.", and "Cond." indicate support for multi-agent collaboration, automated topology design, and
conditional configuration, where ✓ indicates "Yes" and ✗ indicates "No". For automated methods, CYAN
cells denote in-domain adaptation (trained and tested on the same LLM), GREEN cells denote out-domain
adaptation (generalization to unseen LLMs), and YELLOW cells denote the average performance.

Method Mul. Auto. Cond. gpt4o-mini deepseek-v3 llama3-70B gpt4o qwen-72B Avg.

HumanEval

Vanilla ✗ ✗ ✗ 85.83 92.50 76.66 85.83 86.66 85.50
CoT ✗ ✗ ✗ 88.33 93.33 78.33 90.00 88.33 87.66
Random-graph ✓ ✗ ✗ 87.50 94.16 73.33 90.00 85.00 86.00
LLM-Debate ✓ ✗ ✗ 91.66 95.00 75.83 87.50 80.00 86.00
GPTswarm ✓ ✓ ✗ 89.16 92.50 78.33 91.66 81.66 86.66
Aflow ✓ ✓ ✗ 90.83 92.50 85.83 93.33 86.66 89.83
G-designer ✓ ✓ ✗ 89.16 94.16 75.00 88.33 85.83 86.50
CARD ✓ ✓ ✓ 93.33 95.83 81.66 93.33 88.33 90.50

MATH

Vanilla ✗ ✗ ✗ 59.16 74.16 41.66 70.00 71.66 63.33
CoT ✗ ✗ ✗ 61.66 80.00 41.66 65.00 73.33 64.33
Random-graph ✓ ✗ ✗ 60.00 88.33 38.33 70.00 66.67 64.67
LLM-Debate ✓ ✗ ✗ 59.16 85.00 46.66 71.66 71.66 66.83
GPTswarm ✓ ✓ ✗ 67.50 90.83 46.66 67.50 78.33 70.16
Aflow ✓ ✓ ✗ 80.83 91.66 40.00 75.83 80.83 73.83
G-designer ✓ ✓ ✗ 70.00 91.66 47.50 75.00 79.16 72.66
CARD ✓ ✓ ✓ 73.33 91.66 48.33 76.67 82.50 74.50

MMLU

Vanilla ✗ ✗ ✗ 77.12 86.27 75.16 86.93 79.74 81.04
CoT ✗ ✗ ✗ 81.05 92.16 75.16 88.89 83.66 84.18
Random-graph ✓ ✗ ✗ 79.74 90.85 75.82 86.93 83.00 83.27
LLM-Debate ✓ ✗ ✗ 80.39 90.20 76.47 88.24 84.31 83.92
GPTswarm ✓ ✓ ✗ 82.35 89.54 77.78 86.27 84.31 84.05
Aflow ✓ ✓ ✗ 79.74 84.97 77.12 89.54 83.00 82.87
G-designer ✓ ✓ ✗ 83.00 90.85 77.12 86.93 84.31 84.44
CARD ✓ ✓ ✓ 84.97 93.46 80.39 89.54 84.97 86.67

Conditional design (CARD) consistently delivers the best overall performance. With 90.50% on
HumanEval, 74.50% on MATH, and 86.67% on MMLU, remarkably, CARD attains or ties for the top score
in 13 out of 15 model–benchmark combinations, demonstrating strong robustness across different LLM bases.

Gains accrue progressively with richer design abstractions. Single-agent methods (Vanilla, CoT) estab-
lish a competitive baseline but lack collaboration. Fixed multi-agent topologies (Random-graph, LLM-Debate)
add modest gains (+0.5–2.0 pp) by enabling parallel reasoning. Automated topology learners (GPT-swarm,
Aflow, G-designer) further boost performance (+1.0–4.0 pp) by optimizing static communication structures.
Finally, CARD’s conditional adaptation delivers an extra +0.5–3.0 pp advantage over these static designs by
tailoring the topology to environmental signals.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Figure 3: Performance and gains of w/o Cond., w/ Cond.p, and CARD on HumanEval, MATH, and MMLU
across LLM bases (M1–M5, same to Table 1). Top: absolute accuracy (%). Bottom: ∆ accuracy (%) over
the w/o Cond. baseline.

Conditional adaptation pays off especially under out-of-domain settings. By explicitly conditioning
on model- and tool-state, CARD narrows the gap between in-domain and out-domain evaluations. For
example, on MATH, G-designer’s accuracy falls from 91.66% to 79.16% when changing from deepseek-v3
to qwen-72B, whereas CARD’s drop is smaller (from 91.66% to 82.50%), underscoring its adaptability to
unseen settings.

5.2 HOW TO EMBED CONDITIONS IN LLM TOPOLOGY GENERATION?

Figure 3 reports an ablation study on different ways to inject environmental conditions into the generation of
multi-agent topologies. We compare an unconditioned baseline (w/o Cond.), a naive prompt-level injection
(w/ Cond.p) that appends condition descriptors to the system prompt, and our CARD approach which embeds
conditions directly within the graph-generation module. Each variant is evaluated in HumanEval, MATH,
and MMLU on five LLM bases, reporting absolute precision and ∆ precision relative to the unconditioned
baseline.

CARD delivers robust, non-negative gains across all benchmarks. While simple prompt conditioning
can backfire, causing up to a –12.50 % drop on MATH with base M5 and –2.00 % on MMLU with base M1.
CARD consistently yields positive improvements on every model–benchmark pair (e.g., +0.83 % to +3.34 %
on MATH, +0.66 % to +2.62 % on MMLU, and +2.50 % to +23.33 % on HumanEval), proving structured
topology adaptation far more reliable than prompt-only methods.

CARD compensates for weaker baseline models. The greatest uplifts appear in the most challenging
settings, such as a +2.62 % gain on MMLU with M3 and a +3.34 % boost on MATH with M5, demonstrating
the ability of CARD to narrow out-of-domain performance gaps and mitigate the limitations of less capable
LLM bases. Further analyses isolating source/tool effects and localized condition perturbations are in
Appendix B.2.

5.3 HOW DO ENVIRONMENTAL CONDITIONS SHAPE THE FINAL COMMUNICATION ARCHITECTURE?

In Figure 4, we present four representative experimental configurations, combining two LLM capacities
(GPT-4o-mini vs. GPT-4o or Llama3-70B) with two search engines (Google Search vs. Wiki Search) to
illustrate CARD’s conditional adaptation in action. By visualizing the resulting topology matrices, we aim

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Figure 4: Visualization of CARD topology matrices (See Appendix D for matrices and correlation analysis
details.) under different conditions. Edge thickness reflects the communication probability between agents.
Configurations 1 to 4 (Table 10) are shown from left to right.

to quantify how variations in model strength and retrieval quality drive changes in edge density, directional
flow patterns, and overall graph structure. This case study validates CARD’s ability to tailor multi-agent
communication graphs to dynamic environmental signals, providing insight into the practical behavior of the
protocol under realistic operational changes.

Weaker Models Demand Denser Collaboration. In Configuration 1 (GPT-4o-mini + Google Search), the
average edge weight is substantially greater than in Configuration 2 (GPT-4o + Google Search), demonstrating
that the smaller model compensates for lower inherent capacity by intensifying multi-agent communication.

Search-Engine Swap Preserves Global Structure but Shifts Local Flows. Replacing Google with Wiki
for GPT-4o-mini (Config 1 vs. 3) yields a Pearson correlation of r = 0.9797 and p = 0.0006 (Appendix D.2),
confirming near-identical overall topology. Locally, however, the Knowledge Expert→Searcher edge weight
decreases markedly, and the Searcher→Mathematician link drops more than Searcher→Philosopher, reflect-
ing domain-specific retrieval efficacy differences.

Lowest Capacity + Lower-Quality Search Maximizes External-Knowledge Reliance. The Llama3-
70B + Wiki configuration (Config 4) produces the densest graph with the highest average edge weights,
demonstrating peak dependence on external information when both model capacity and search quality are
reduced (Config 1 vs. 4: r = 0.7789, p = 0.0679 (Appendix D.2)).

We provide additional quantitative breakdowns by model capability and size in Appendix B.1 and by
tools/knowledge sources in Appendix B.2. Scalability under varying agent counts is detailed in Appendix B.3,
and robustness under targeted attacks and accuracy–cost trade-offs are summarized in Appendix B.4.

6 CONCLUSION

We introduced AMACP, a protocol for adaptive multi-agent communication, and CARD, a conditional
graph-generation framework that tailors LLM-based agent topologies to dynamic environments. Experiments
on HumanEval, MATH, and MMLU under simulated shifts (model upgrades, tool changes, and data per-
turbations) show CARD outperforms static and prompt-based designs by up to three percentage points in
accuracy while remaining cost-effective. Topology visualizations underscore CARD’s capability to adjust
communication patterns based on agent capabilities and resource quality. Future work will scale to larger
agent ensembles, integrate online reinforcement for continual adaptation, and validate CARD in real-world
multi-agent applications. For a detailed discussion of limitations and avenues for future work, please refer to
Appendix A.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work uses only publicly available datasets and models, and does not involve human subjects or private
data. We acknowledge the broader societal risks of autonomous multi-agent LLM systems and encourage
responsible deployment with appropriate safeguards.

8 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide the full source code, training and evaluation scripts, and prompt
templates at https://anonymous.4open.science/r/agentgraph-FF9A. All experiments are
based on publicly available benchmarks (HumanEval, MATH, MMLU) and open-source or API-accessible
LLMs, with full implementation details, model configurations, and hyperparameters documented in Appen-
dices C–F. Results are averaged over multiple runs, and all metrics and visualizations are script-generated for
easy verification.

REFERENCES

Yuanchen Bei, Weizhi Zhang, Siwen Wang, Weizhi Chen, Sheng Zhou, Hao Chen, Yong Li, Jiajun Bu,
Shirui Pan, Yizhou Yu, Irwin King, Fakhri Karray, and Philip S. Yu. Graphs meet AI agents: Taxonomy,
progress, and future opportunities. CoRR, abs/2506.18019, 2025. URL https://doi.org/10.
48550/arXiv.2506.18019.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph of thoughts:
Solving elaborate problems with large language models. In Michael J. Wooldridge, Jennifer G. Dy, and
Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp.
17682–17690. AAAI Press, 2024. doi: 10.1609/AAAI.V38I16.29720. URL https://doi.org/10.
1609/aaai.v38i16.29720.

Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and Yuan Qi. Continuous-time
dynamic graph learning via neural interaction processes. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 145–154, 2020.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=ktrw68Cmu9c.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Brockman, et al. Evaluating large language models trained on code.
CoRR, abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, et al.
Deepseek-v3 technical report. CoRR, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
https://doi.org/10.48550/arXiv.2412.19437.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL
https://doi.org/10.48550/arXiv.2501.12948.

10

https://anonymous.4open.science/r/agentgraph-FF9A
https://doi.org/10.48550/arXiv.2506.18019
https://doi.org/10.48550/arXiv.2506.18019
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=ktrw68Cmu9c
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2501.12948

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving factuality and
reasoning in language models through multiagent debate. CoRR, abs/2305.14325, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, and others. The llama 3 herd of
models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/
10.48550/arXiv.2407.21783.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021a. URL
https://openreview.net/forum?id=d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In Joaquin
Vanschoren and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, vir-
tual, 2021b. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, and Chenglin Wu. Metagpt: Meta
programming for multi-agent collaborative framework, August 01, 2023 2023.

Sungwoo Lee, Younghyun Oh, Hyunhoe An, Hyebhin Yoon, Karl J. Friston, Seok Jun Hong, and Choong-
Wan Woo. Life-inspired interoceptive artificial intelligence for autonomous and adaptive agents. CoRR,
abs/2309.05999, 2023. doi: 10.48550/ARXIV.2309.05999. URL https://doi.org/10.48550/
arXiv.2309.05999.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. Encouraging divergent thinking in large language models through multi-agent debate, May
01, 2023 2023. Work in progress.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM
Comput. Surv., 55(9), 2023a. ISSN 0360-0300. doi: 10.1145/3560815. URL https://doi.org/10.
1145/3560815.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu, Soroush Vosoughi, Claire Cui, Denny Zhou,
and Andrew M. Dai. Mind’s eye: Grounded language model reasoning through simulation. In ICLR.
OpenReview.net, 2023b. URL https://openreview.net/pdf?id=4rXMRuoJlai.

Yixin Liu, Guibin Zhang, Kun Wang, Shiyuan Li, and Shirui Pan. Graph-augmented large language
model agents: Current progress and future prospects. CoRR, abs/2507.21407, 2025. URL https:
//doi.org/10.48550/arXiv.2507.21407.

OpenAI. Hello gpt-4o, 2024a. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. URL https://openai.com/
index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,
Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks for dynamic
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 5363–5370, 2020.

11

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2309.05999
https://doi.org/10.48550/arXiv.2309.05999
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://openreview.net/pdf?id=4rXMRuoJlai
https://doi.org/10.48550/arXiv.2507.21407
https://doi.org/10.48550/arXiv.2507.21407
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, January 01, 2022
2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022, 2022b. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation
framework, August 01, 2023 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, , et al. Qwen2 technical report. CoRR, abs/2407.10671, 2024. doi:
10.48550/ARXIV.2407.10671. URL https://doi.org/10.48550/arXiv.2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models, May 01, 2023 2023a.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang, Tianlong
Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies via graph
neural networks. In Forty-second International Conference on Machine Learning, 2025a. URL https:
//openreview.net/forum?id=LpE54NUnmO.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin Wu. AFlow:
Automating agentic workflow generation. In The Thirteenth International Conference on Learning
Representations, 2025b. URL https://openreview.net/forum?id=z5uVAKwmjf.

Jintian Zhang, Xin Xu, and Shumin Deng. Exploring collaboration mechanisms for llm agents: A social
psychology view. arXiv preprint arXiv:2310.02124, 2023.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen Schmidhuber.
Gptswarm: Language agents as optimizable graphs. In Forty-first International Conference on Machine
Learning, 2024.

12

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2407.10671
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://openreview.net/forum?id=LpE54NUnmO
https://openreview.net/forum?id=LpE54NUnmO
https://openreview.net/forum?id=z5uVAKwmjf

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Limitation 14

B Analysis and Discussion 14

B.1 Quantitative Analysis of Conditions: Model Size and Reasoning Ability 14

B.2 Quantitative Analysis of Conditions: Tools and Knowledge Resources 15

B.3 Multi-agent Scalability Analysis . 15

B.4 Multi-agent Robustness & Cost-Efficiency Analysis . 16

C Implementation Details 17

D Source Data 18

D.1 Adjacency Matrix of Visualization . 18

D.2 Correlation Analysis of Adjacency Matrix . 19

E Algorithm Workflow 19

F Prompt 20

G Experiment Configuration Sets 25

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

A LIMITATION

This work focuses on conditional optimization and adaptation of multi-agent communication topologies.
However, it does not explicitly update agent-level configurations such as individual prompts or internal
profiles in response to environmental shifts. In practice, jointly optimizing both the communication topology
and agent behaviors, including prompt augmentation and tool selection strategies, may further improve
system performance. Exploring this direction remains an open avenue for future research. Additionally, while
our formulation represents the multi-agent system as a graph, which offers a cognitively interpretable and
analyzable abstraction, graph-based representations may be insufficient for capturing domain-specific nuances
in complex real-world settings. For example, in software engineering workflows, procedural constraints, tool
dependencies, and execution semantics are often critical. Future work may incorporate human-in-the-loop
expertise, such as software development best practices and debugging heuristics, and explore hybrid models
that combine symbolic priors with learned agent adaptation mechanisms.

B ANALYSIS AND DISCUSSION

B.1 QUANTITATIVE ANALYSIS OF CONDITIONS: MODEL SIZE AND REASONING ABILITY

We conduct further experimental analysis to investigate how variations in model capability, model size,
external tools, and knowledge sources impact multi-agent topology design and overall performance.

Figure 5: Left: Accuracy on MATH and HumanEval across LLMs with different reasoning capabilities.
Right: Accuracy across different model sizes within the same LLM family.

Stronger and larger base models yield higher multi-agent performance, with CARD amplifying these
gains, but on simple tasks a single powerful LLM can outperform multi-agent coordination due to
communication overhead On both MATH and HumanEval benchmarks, upgrading from qwen-7b to
the higher-capability deepseek-distill-qwen-7b yields consistent accuracy improvements across all methods,
with CARD showing the largest absolute gains and the best performance(e.g., MATH accuracy rises from
69.16 % to 88.33 % (+19.17 pp)). However, on simple benchmarks with a capable model (Figure 5 Right),
vanilla single-agent slightly outperforms multi-agent due to redundant communication. This underscores that
multi-agent benefits require task complexity to outweigh coordination costs.

CARD exhibits superior robustness to variations in external tools and knowledge resources Evidence:
When switching among Google Search, DuckDuckGo, and Wikipedia as the external tool, CARD’s Hu-
manEval accuracy only drops from 85.62 % to 83.00 % Figure 6(Left), a smaller decline than alternative
methods. Similarly, across knowledge sources (Wikipedia, Tutorialspoint, Quora), CARD achieves its highest
performance (85.62 %) on the richest data source and outperforms other approaches by 1–2 percentage points

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

even on less informative sources. This resilience highlights CARD’s ability to maintain strong multi-agent
topologies under diverse resource conditions.

B.2 QUANTITATIVE ANALYSIS OF CONDITIONS: TOOLS AND KNOWLEDGE RESOURCES

Figure 6: Left: Performance comparison using different external knowledge sources. Central: Performance
across various available tools (search engines). Right: Impact on multi-agent performance on HumanEval,
when only a single node’s condition is updated instead of the global agent condition.

We evaluate how external conditions, namely knowledge sources and retrieval tools, affect performance in the
CARD framework. Experiments use HumanEval with the same base LLM and agent-role design as in the
main paper. The only varying factors are the condition features: switching among three knowledge corpora
(Wikipedia, Tutorialspoint, Quora), changing search tools (Google, DuckDuckGo, WikiSearch), and applying
localized perturbations by modifying a single node’s condition embedding. All configurations share the same
retrieval budget, prompt formatting, and random seed.

Across source and tool variations, CARD consistently outperforms baselines and exhibits smaller performance
drops under weaker conditions. Accuracy declines from 85.6% on Wikipedia to 83.0% on Quora, yet CARD
maintains a clear margin over LLM-Debate and G-Designer. This resilience stems from condition-aware
graph generation that adapts edge density and agent coordination to upstream content quality. The results
indicate that topology-level adaptation provides stronger robustness than prompt-only conditioning when
facing domain shift or noisy external knowledge.

In local perturbation tests, changing the condition for only one node, either the root or an intermediate node,
preserves most performance at 88.3% and 85.0% respectively, substantially surpassing baselines. This shows
that CARD enables low-cost, localized reconfiguration without full graph retraining. The modular design
supports practical online adaptation in production, allowing lightweight updates in response to tool variability
or hotfixes while maintaining stable accuracy under dynamic real-world constraints.

B.3 MULTI-AGENT SCALABILITY ANALYSIS

We evaluate the scalability and robustness of CARD against G-Designer by grouping base LLMs into
in-domain (gpt4o-mini, deepseek-v3, llama3) and out-of-domain (GPT-4o, qwen-72B) settings.

CARD scales more effectively than G-Designer as agent count increases, especially in out-of-domain
settings. As shown in Figure 7, CARD consistently achieves higher MMLU scores as the number of agents
increases, with particularly pronounced gains in the out-of-domain setting (up to +1.99 pp over G-Designer at
10 agents). In the in-domain case, both methods improve over Vanilla, but CARD shows a steeper upward

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Figure 7: MMLU performance of CARD vs G-Designer across varying agent counts. CARD consistently
outperforms G-Designer in both (a) in-domain and (b) out-of-domain settings, with larger gains under domain
shift; shaded areas denote 95% confidence intervals.

Figure 8: Left: Accuracy comparison before and after adversarial attacks across different methods. Right:
The inference cost (USD per instance) across methods and LLMs.

trend, with its advantage widening at 5–10 agents. This indicates that conditional topology generation in
CARD helps agents coordinate more effectively as system size grows.

CARD also demonstrates stronger robustness under domain shift with comparable uncertainty. The
method also exhibits greater robustness under distribution shift. While G-Designer’s performance gains
plateau in the out-of-domain setting, CARD continues to benefit from agent scaling. Moreover, CARD
achieves these improvements with comparable or slightly lower confidence interval widths, suggesting more
reliable and generalizable coordination gains. These results align with the design goal of CARD—namely, to
generate topology conditioned on external constraints (e.g., model type, cost, capability), enabling adaptive
and scalable multi-agent collaboration even in unseen environments.

B.4 MULTI-AGENT ROBUSTNESS & COST-EFFICIENCY ANALYSIS

We evaluate both robustness and cost-efficiency by simulating targeted attacks and configuration faults at
intermediate agents on the HumanEval benchmark to measure resilience in accuracy, and by calculating
total training and evaluation expenses across different LLM bases to quantify economic trade-offs, thereby
enabling a systematic comparison of static, learned, and conditionally adapted communication topologies
under both adverse conditions and budget constraints.

Robustness under attack is markedly improved by conditional adaptation. As shown in Figure 8
(Left), when an agent node is attacked, LLM Debate, which relies on fixed pairwise prompting without

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

structural adaptation, and suffers the sharpest performance drop (–6.67 pp on HumanEval, -3.34 pp on MATH).
G-Designer, trained under attack conditions, filters out the faulty node and shows smaller degradation (–1.24
pp on HumanEval, –3.33 pp on MATH), but loses generalization once the node recovers. In contrast, CARD,
trained under both attacked and clean conditions, not only outperforms G-Designer under attack (87.50%
vs. 86.66% on HumanEval; 65.83% vs. 60.00% on MATH), but also shows significantly greater recovery
when the compromised node is restored (+3.33 pp vs. +1.24 pp on HumanEval; the accuracy under attack
is even higher than non-attacked on MATH, indicating that our topology is fully adaptable to both attacked
and non-attacked conditions.) highlighting its superior resilience and adaptability across both degraded and
recovered environments.

Localized condition updates recover most of the lost performance at minimal adaptation cost. Figure 6
(Right) illustrates that, upon replacing only a single node’s condition rather than regenerating the entire
communication graph, CARD retains 88.33 % accuracy under head-node perturbations and 85.00 % under
intermediate-node perturbations, demonstrating overall superiority over both LLM-Debate and G-Designer,
highlighting that fine-grained adaptation can preserve robustness with far lower computational overhead than
global reconfiguration.

Conditional designs deliver the best accuracy-to-cost balance among all methods. In Figure 8 (Right),
CARD’s configurations (e.g., achieving 94 % accuracy at an evaluation cost of 4× 10−3 USD) occupy the
upper–left region of the cost–performance plane, while static multi-agent schemes like LLM-Debate and
learned topologies such as G-Designer generally cost more to reach a lower accuracy; this confirms that
conditionally adapted graphs not only boost resilience but also minimize economic expenditure for a given
performance level.

C IMPLEMENTATION DETAILS

Specifically, we include OpenAI’s GPT-4oOpenAI (2024a) and GPT-4o-miniOpenAI (2024b),
DeepSeek’s DeepSeek-V3DeepSeek-AI et al. (2024) (630B), Meta’s Llama3-70BDubey et al. (2024),
and the Qwen series from Alibaba, comprising Qwen-2.5 models (7B, 14B, and 72B)Yang et al.
(2024) as well as the distilled variant qwen-distill-r1-7bDeepSeek-AI et al. (2025) derived from
Qwen-2.5-7B. These models differ across providers (capturing variations in technical trajectories and
architectural choices), model sizes (correlating with computational capacity and performance), and domain
specializations (affecting knowledge scope and inference behaviors). In addition, we examine the influence of
external tools on multi-agent architectures by varying the underlying data sources and search engines. The
search engines considered are Google Search, DuckDuckGo, and Wiki Search; the data sources
include Quora, Wikipedia, and Tutorialspoint. These configurations represent diverse retrieval
qualities and knowledge coverage levels. This setup is intended to emulate the dynamic evolution of resources
in real-world multi-agent systems, enhancing the robustness and adaptability of learned multi-agent topologies
under changing conditions.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

D SOURCE DATA

D.1 ADJACENCY MATRIX OF VISUALIZATION

Table 2: Adjacency Matrix 1: gpt-4o-mini + Google

Knowlegable Expert Searcher Philosopher Mathematician Critic
Knowlegable Expert Masked 0.79 0.88 0.81 0.5
Searcher 0.17 Masked 0.79 0.69 0.34
Philosopher 0.11 0.17 Masked 0.81 0.5
Mathematician 0.15 0.21 0.15 Masked 0.37
Critic 0.25 0.22 0.25 0.23 Masked

Table 3: Adjacency Matrix 2: gpt-4o + Google

Knowlegable Expert Searcher Philosopher Mathematician Critic
Knowlegable Expert Masked 0.54 0.15 0.4 0.14
Searcher 0.25 Masked 0.53 0.81 0.5
Philosopher 0.13 0.25 Masked 0.39 0.13
Mathematician 0.24 0.15 0.24 Masked 0.36
Critic 0.12 0.25 0.11 0.23 Masked

Table 4: Adjacency Matrix 3: gpt-4o-mini + Wiki

Knowlegable Expert Searcher Philosopher Mathematician Critic
Knowlegable Expert Masked 0.73 0.86 0.73 0.46
Searcher 0.2 Masked 0.76 0.57 0.3
Philosopher 0.12 0.18 Masked 0.75 0.5
Mathematician 0.2 0.25 0.19 Masked 0.29
Critic 0.25 0.21 0.25 0.21 Masked

Table 5: Adjacency Matrix 4: Llama-3-70B + Wiki

Knowlegable Expert Searcher Philosopher Mathematician Critic
Knowlegable Expert Masked 0.84 0.73 0.8 0.5
Searcher 0.13 Masked 0.67 0.75 0.42
Philosopher 0.2 0.22 Masked 0.6 0.27
Mathematician 0.16 0.19 0.24 Masked 0.35
Critic 0.25 0.24 0.2 0.23 Masked

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

D.2 CORRELATION ANALYSIS OF ADJACENCY MATRIX

CORRELATION ANALYSIS

Table 6: Pearson correlation between matrix pairs with corresponding strength and significance.

Comparison r p Strength Sig.
Matrix 1 vs 2 0.32 0.54 Weak No
Matrix 1 vs 3 0.98 0.001 Very strong Yes
Matrix 1 vs 4 0.78 0.07 Strong Marginal

E ALGORITHM WORKFLOW

Algorithm 1 Workflow of CARD: Conditional Agentic Graph Designer
Input: Query set {Q1, . . . ,QD}, condition configurations {C1, . . . , CC},
Graph auto-encoder fν = (qstat, qdyn, ψ) with parameters (Θp,Θc,Θd), learning rate α

1: for each query Qd ∈ {Q1, . . . ,QD} do
2: for each condition Cc ∈ {C1, . . . , CC} do
3: /* Construct agent features under condition Cc */
4: for agent vi ∈ {v1, . . . , vN} do
5: xp

i ← Tp(Basei,Rolei,Plugini)
6: xc

i ← Tc(Cc[i])
7: end for
8: Xp ← [xp

1, . . . ,x
p
N]⊤, Xc ← [xc

1, . . . ,x
c
N]⊤

9: xQ ← Embed(Qd) ▷ query treated as a virtual agent node
10: Define anchor topology A (e.g., fully-connected + task node)
11: G̃ ← ({Xp,Xc,xQ},A)
12: /* Generate communication topology via encoder-decoder */
13: Hp ← ϕp(Xp | A), Hc ← ϕc(Xc | A)
14: S← ψ(Hp,Hc,xQ) ▷ compute link probabilities
15: Gcom ← {(i, j) | Sij > τ} ▷ retain edges above threshold
16: /* Multi-agent collaboration under Gcom */
17: for t = 1 to K do
18: for agent vi in schedule ϕ(Gcom) do
19: P(t)

usr ← {Qd} ∪ {R(t)
j | vj ∈ Nin(vi)}

20: R(t)
i ← vi(P(t)

sys ,P(t)
usr)

21: end for
22: α(t) ← Aggregate({R(t)

i }Ni=1)
23: end for
24: /* Optimize graph generation parameters */
25: Θ← Θ− α · ∇ΘLCARD
26: end for
27: end for

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

F PROMPT

LLM Dynamic Information Template

model_template = {
'Name': '{model_name}',
'Description': '{ModelName} is a {model_type} model developed by

{developer}, supporting {modalities}. '↪→
'It is optimized for {key_strengths}. '
'{ModelName} offers {performance_advantage}. '
'The model costs ${input_cost} per million input

tokens and ${output_cost} per million output
tokens. '

↪→
↪→
'{evaluation_info}'

}

evaluation_info = (
'In {domain_a}, {ModelName} achieves an accuracy of

{evaluation_score_a}. '↪→
'In {domain_b}, {ModelName} achieves an accuracy of

{evaluation_score_b}. '...↪→
)

Search Engine Dynamic Information Template

search_engine_template = {
'Name': '{engine_name}',
'Description': '{EngineName} is a {engine_type} developed by

{provider}. '↪→
'It supports {supported_query_types} and delivers

results across {content_scope}. '↪→
'The engine integrates {additional_features}, making

it suitable for {application_scenarios}. '↪→
'{evaluation_info}'

}

evaluation_info = (
'In the task of {task_name}, {EngineName} achieved a score of

{score_value} on the {metric_name} metric. '↪→
...

)

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

HumanEval Role Profile

"Project Manager":
"You are a project manager. "
"You will be given a function signature and its docstring by the

user. "↪→
"You are responsible for overseeing the overall structure of the

code, ensuring that the code is structured to complete the task
Implement code concisely and correctly without pursuing
over-engineering."

↪→
↪→
↪→
"You need to suggest optimal design patterns to ensure that the code

follows best practices for maintainability and flexibility. "↪→
"You can specify the overall design of the code, including the

classes that need to be defined(maybe none) and the functions
used (maybe only one function) ."

↪→
↪→
"I hope your reply will be more concise. Preferably within fifty

words. Don’t list too many points.",↪→
"Algorithm Designer":

"You are an algorithm designer. "
"You will be given a function signature and its docstring by the

user. "↪→
"You need to specify the specific design of the algorithm, including

the classes that may be defined and the functions used. "↪→
"You need to generate the detailed documentation, including

explanations of the algorithm, usage instructions, and API
references. "

↪→
↪→
"When the implementation logic is complex, you can give the

pseudocode logic of the main algorithm."↪→
"I hope your reply will be more concise. Preferably within fifty

words. Don’t list too many points.",↪→
"Programming Expert":

"You are a programming expert. "
"You will be given a function signature and its docstring by the

user. "↪→
"You may be able to get the output results of other agents. They may

have passed internal tests, but they may not be completely
correct. "

↪→
↪→
"Write your full implementation (restate the function signature). "
"Use a Python code block to write your response. For

example:\n```python\nprint('Hello world!')\n```"↪→
"Do not include anything other than Python code blocks in your

response. "↪→
"Do not change function names and input variable types in tasks.",

"Test Analyst":
"You are a test analyst. "
"You will be given a function signature and its docstring by the

user. "↪→
"You need to provide problems in the current code or solution based

on the test data and possible test feedback in the question. "↪→
"You need to provide additional special use cases, boundary

conditions, etc. that should be paid attention to when writing
code. "

↪→
↪→
"You can point out any potential errors in the code."
"I hope your reply will be more concise. Preferably within fifty

words. Don’t list too many points.",↪→
"Bug Fixer":

"You are a bug fixer."
"You will be given a function signature and its docstring by the

user. "↪→
"You need to provide modified and improved python code based on the

current overall code design, algorithm framework, code
implementation or test problems. "

↪→
↪→
"Write your full implementation (restate the function signature). "
"Use a Python code block to write your response. For

example:\n```python\nprint('Hello world!')\n```"↪→
"Do not include anything other than Python code blocks in your

response "↪→
"Do not change function names and input variable types in tasks",

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

MATH Role Profile

"Math Solver":
"You are a math expert. "
"You will be given a math problem and hints from other agents. "
"Give your own solving process step by step based on hints. "
"The last line of your output contains only the final result without

any units, for example: The answer is 140\n"↪→
"You will be given some examples you may refer to.",

"Mathematical Analyst":
"You are a mathematical analyst. "
"You will be given a math problem, analysis and code from other

agents. "↪→
"You need to first analyze the problem-solving process step by step,

where the variables are represented by letters. "↪→
"Then you substitute the values into the analysis process to perform

calculations and get the results."↪→
"The last line of your output contains only the final result without

any units, for example: The answer is 140\n"↪→
"You will be given some examples you may refer to.",

"Programming Expert":
"You are a programming expert. "
"You will be given a math problem, analysis and code from other

agents. "↪→
"Integrate step-by-step reasoning and Python code to solve math

problems. "↪→
"Analyze the question and write functions to solve the problem. "
"The function should not take any arguments and use the final result

as the return value. "↪→
"The last line of code calls the function you wrote and assigns the

return value to the \(answer\) variable. "↪→
"Use a Python code block to write your response. For

example:\n```python\ndef fun():\n x = 10\n y = 20\n return x +
y\nanswer = fun()\n```\n"

↪→
↪→
"Do not include anything other than Python code blocks in your

response."↪→
"You will be given some examples you may refer to.",

"Inspector":
"You are an Inspector. "
"You will be given a math problem, analysis and code from other

agents. "↪→
"Check whether the logic/calculation of the problem solving and

analysis process is correct(if present). "↪→
"Check whether the code corresponds to the solution analysis(if

present). "↪→
"Give your own solving process step by step based on hints. "
"The last line of your output contains only the final result without

any units, for example: The answer is 140\n"↪→
"You will be given some examples you may refer to.",

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

MMLU Role Profile

"Knowlegable Expert":
"""
You are a knowlegable expert in question answering.
Please give less than 3 key entities that need to be searched on the

Internet to solve the problem. Each entity must be wrapped with @
symbols.

↪→
↪→
For example: @catfish effect@, @broken window effect@, @Shakespeare@.
If there is no entity in the question that needs to be searched on the

Internet, you don't have to provide it.↪→
"""
"Searcher":
"""
You will be given a question and Internet search overview of the key

entities within it.↪→
Please refer to them step by step to give your answer.
"""
"Critic":
"""
You are an excellent critic.
Please point out potential issues in other agent's analysis point by

point.↪→
"""
"Mathematician":
"""
You are a mathematician who is good at arithmetic calculation and

long-term planning.↪→
You can use your logic and reasoning skills to solve problems step by

step.↪→
"""
"Philosopher":
"""
You are a philosopher with deep knowledge in literature, history, and

cultural studies.↪→
You analyze texts critically, draw nuanced interpretations, and make

connections across time, societies, and disciplines.↪→
"""
"Doctor":
"""
You are a medical professional who good at biology, medicine, and health.
You combine modern medicine with herbal and natural remedies.
You consider age, lifestyle, and medical history in every recommendation.
"""
"Programmer":
"""
You are a programmer skilled in software development, systems design, and

technical problem-solving.↪→
You apply principles from computer science, engineering, and coding.
You write clean, efficient code across diverse platforms.
"""

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Table 7: HumanEval Environment Configuration Set

Configuration LLM Role

Train & Test

Configuration 1

gpt-4o-mini Project Manager
gpt-4o-mini Algorithm Designer
gpt-4o-mini Programming Expert
gpt-4o-mini Test Analyst
gpt-4o-mini Bug Fixer

Configuration 2

deepseek-v3 Project Manager
deepseek-v3 Algorithm Designer
deepseek-v3 Programming Expert
deepseek-v3 Test Analyst
deepseek-v3 Bug Fixer

Configuration 3

llama-3-70B Project Manager
llama-3-70B Algorithm Designer
llama-3-70B Programming Expert
llama-3-70B Test Analyst
llama-3-70B Bug Fixer

Only Test

Configuration 4

gpt-4o Project Manager
gpt-4o Algorithm Designer
gpt-4o Programming Expert
gpt-4o Test Analyst
gpt-4o Bug Fixer

Configuration 5

qwen-2.5-72B Project Manager
qwen-2.5-72B Algorithm Designer
qwen-2.5-72B Programming Expert
qwen-2.5-72B Test Analyst
qwen-2.5-72B Bug Fixer

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

G EXPERIMENT CONFIGURATION SETS

Table 8: MATH Environment Configuration Set

Configuration LLM Role

Train & Test

Configuration 1

gpt-4o-mini Math Solver
gpt-4o-mini Mathematical Analyst
gpt-4o-mini Mathematical Analyst
gpt-4o-mini Programming Expert
gpt-4o-mini Inspector

Configuration 2

deepseek-v3 Math Solver
deepseek-v3 Mathematical Analyst
deepseek-v3 Mathematical Analyst
deepseek-v3 Programming Expert
deepseek-v3 Inspector

Configuration 3

llama-3-70B Math Solver
llama-3-70B Mathematical Analyst
llama-3-70B Mathematical Analyst
llama-3-70B Programming Expert
llama-3-70B Inspector

Only Test

Configuration 4

gpt-4o Math Solver
gpt-4o Mathematical Analyst
gpt-4o Mathematical Analyst
gpt-4o Programming Expert
gpt-4o Inspector

Configuration 5

qwen-2.5-72B Math Solver
qwen-2.5-72B Mathematical Analyst
qwen-2.5-72B Mathematical Analyst
qwen-2.5-72B Programming Expert
qwen-2.5-72B Inspector

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Table 9: MMLU Environment Configuration Set

Configuration LLM Role

Train & Test

Configuration 1

gpt-4o-mini Mathematician
gpt-4o-mini Programmer
gpt-4o-mini Critic
gpt-4o-mini Doctor
gpt-4o-mini Psychologist

Configuration 2

deepseek-v3 Mathematician
deepseek-v3 Programmer
deepseek-v3 Critic
deepseek-v3 Doctor
deepseek-v3 Psychologist

Configuration 3

llama-3-70B Mathematician
llama-3-70B Programmer
llama-3-70B Critic
llama-3-70B Doctor
llama-3-70B Psychologist

Only Test

Configuration 4

gpt-4o Mathematician
gpt-4o Programmer
gpt-4o Critic
gpt-4o Doctor
gpt-4o Psychologist

Configuration 5

qwen-2.5-72B Mathematician
qwen-2.5-72B Programmer
qwen-2.5-72B Critic
qwen-2.5-72B Doctor
qwen-2.5-72B Psychologist

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Table 10: MMLU Environment Configuration Set with External Tools

Configuration LLM Role External Tool (search engine)

Train & Test Configuration 1

gpt-4o-mini Knowlegable Expert
gpt-4o-mini Searcher Google
gpt-4o-mini Psychologist
gpt-4o-mini Mathematician
gpt-4o-mini Critic

Only Test

Configuration 2

gpt-4o Knowlegable Expert
gpt-4o Searcher Google
gpt-4o Psychologist
gpt-4o Mathematician
gpt-4o Critic

Configuration 3

gpt-4o-mini Knowlegable Expert
gpt-4o-mini Searcher Wiki
gpt-4o-mini Psychologist
gpt-4o-mini Mathematician
gpt-4o-mini Critic

Train & Test Configuration 4

llama-3-70B Knowlegable Expert
llama-3-70B Searcher Wiki
llama-3-70B Psychologist
llama-3-70B Mathematician
llama-3-70B Critic

27

	Introduction
	Related Work
	Problem Formulation
	Communication Pipeline
	AMACP: Adaptive Multi-Agent Communication Protocol

	Conditional Agentic Graph Designer
	Experiment
	Main Results
	How to Embed Conditions in LLM Topology Generation?
	How Do Environmental Conditions Shape the Final Communication Architecture?

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix Contents
	Limitation
	Analysis and Discussion
	Quantitative Analysis of Conditions: Model Size and Reasoning Ability
	Quantitative Analysis of Conditions: Tools and Knowledge Resources
	Multi-agent Scalability Analysis
	Multi-agent Robustness & Cost-Efficiency Analysis

	Implementation Details
	Source Data
	Adjacency Matrix of Visualization
	Correlation Analysis of Adjacency Matrix

	Algorithm Workflow
	Prompt
	Experiment Configuration Sets

