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ABSTRACT

Gradient Descent (GD) is a powerful workhorse of modern machine learning thanks
to its scalability and efficiency in high-dimensional spaces. Its ability to find local
minimisers is only guaranteed for losses with Lipschitz gradients, where it can be
seen as a ‘bona-fide’ discretisation of an underlying gradient flow. Yet, many ML
setups involving overparametrised models do not fall into this problem class, which
has motivated research beyond the so-called “Edge of Stability” (EoS), where the
step-size crosses the admissibility threshold inversely proportional to the Lipschitz
constant above. Perhaps surprisingly, GD has been empirically observed to still
converge regardless of local instability and oscillatory behavior.
The incipient theoretical analysis of this phenomena has mainly focused in the
overparametrised regime, where the effect of choosing a large learning rate may
be associated to a ‘Sharpness-Minimisation’ implicit regularisation within the
manifold of minimisers, under appropriate asymptotic limits. In contrast, in this
work we directly examine the conditions for such unstable convergence, focusing
on simple, yet representative, learning problems. Specifically, we characterize
a local condition involving third-order derivatives that stabilizes oscillations of
GD above the EoS, and leverage such property in a teacher-student setting, under
population loss. Finally, focusing on Matrix Factorization, we establish a non-
asymptotic ‘Local Implicit Bias’ of GD above the EoS, whereby quasi-symmetric
initializations converge to symmetric solutions — where sharpness is minimum
amongst all minimisers.

1 INTRODUCTION

Given a differentiable objective function f(θ), where θ ∈ Rd is a high-dimensional parameter vector,
the most basic and widely used optimization method is gradient descent (GD), defined as

θ(t+1) = θ(t) − η∇θf(θ(t)), (1)

where η is the learning rate. For all its widespread application across many different ML setups, a
basic question remains: what are the convergence guarantees (even to a local minimiser) under typical
objective functions, and how they depend on the (only) hyperaparameter η? In the modern context of
large-scale ML applications, an additional key question is not only to understand whether or not GD
converges to minimisers, but to which ones, since overparametrisation defines a whole manifold of
global minimisers, all potentially enjoying drastically different generalisation performance.

The sensible regime to start the analysis is η → 0, where GD inherits the local convergence properties
of the Gradient Flow ODE via standard arguments from numerical integration. However, in the early
phase of training, a large learning rate has been observed to result in better generalization (LeCun
et al., 2012; Bjorck et al., 2018; Jiang et al., 2019; Jastrzebski et al., 2021), where the extent of “large”
is measured by comparing the learning rate η and the curvature of the loss landscape, measured with
λ(θ) := λmax

[
∇2
θf(θ)

]
, the largest eigenvalue of the Hessian with respect to learnable parameters.

Although one requires supθ λ(θ) < 2/η to guarantee the convergence of GD (Bottou et al., 2018) to
(local) minimisers 1, the work of (Cohen et al., 2020) noticed a remarkable phenomena in the context

1One can replace the uniform curvature bound by supθ;f(θ)≤f(θ(0)) λ(θ).
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of neural network training: even in problems where λ(θ) is unbounded (as in NNs), for a fixed η, the
curvature λ(θ(t)) increases along the training trajectory (1), bringing λ(θ(t)) ≥ 2/η (Cohen et al.,
2020). After that, a surprising phenomena is that λ(θ(t)) stably hovers above 2/η and the neural
network still eventually achieves a decreasing training loss — the so-called “Edge of Stability”. We
would like to understand and analyse the conditions of such convergence with a large learning rate
under a variety models that capture such observed empirical behavior.

Recently, some works have built connections between EoS and implicit bias (Arora et al., 2022; Lyu
et al., 2022; Damian et al., 2021; 2022) in the context of large, overparametrised models such as neural
networks. In this setting, GD is expected to converge to a manifold of minimisers, and the question is
to what extent a large learning rate ‘favors’ solutions with small curvature. In essence, these works
show that under certain structural assumptions, GD is asymptotically tracking a continuous sharpness-
reduction flow, in the limit of small learning rates. Compared with these, we study non-asymptotic
properties of GD beyond EoS, by focusing on certain learning problems (e.g., single-neuron ReLU
networks and matrix factorization). In particular, we characterize a range of learning rates η above
the EoS such that GD dynamics hover around minimisers. Moreover, in the matrix factorization setup,
where minimisers form a manifold with varying local curvature, our results give a non-asymptotic
analogue of the ‘Sharpness-Minimisation’ arguments from Arora et al. (2022); Lyu et al. (2022);
Damian et al. (2022).

The straightforward starting point for the local convergence analysis is via Taylor approximations
of the loss function. However, in a quadratic Taylor expansion, gradient descent diverges once
λ(θ) > 2/η (Cohen et al., 2020), indicating that a higher order Taylor approximation is required. By
considering a 1-D function with local minima θ∗ of curvature λ∗ = λ(θ∗), we show that it is possible
to stably oscillate around the minima with η slightly above the threshold 2/λ∗, provided its high
order derivative satisfies mild conditions as in Theorem 1. A typical example of such functions is
f(x) = 1

4 (x2 − µ)2 with µ > 0. Furthermore, we prove that it converges to an orbit of period 2 from
a more global initialization rather than the analysis of high-order local approximation.

As it turns out, the analysis of such stable one-dimensional oscillations is sufficiently intrinsic
to become useful in higher-dimensional problems. First, we leverage the analysis to a two-layer
single-neuron ReLU network, where the task is to learn a teacher neuron with data on a uniform
high-dimensional sphere. We show a convergence result under population loss with GD beyond EoS,
where the direction of the teacher neuron can be learnt and the norms of two-layer weights stably
oscillate. We then focus on matrix factorization, a canonical non-convex problem whose geometry is
characterized by a manifold of minimisers having different local curvature. Our techniques allow us
to establish a local, non-asymptotic implicit bias of GD beyond EoS, around certain quasi-symmetric
initialization, by which the large learning rate regime ‘attracts’ the dynamics towards symmetric
minimisers — precisely those where the local curvature is minimal. A further discussion is provided
in Appendix M.

2 RELATED WORK

Implicit regularization. Due to its theoretical closeness to gradient descent with a small learning
rate, gradient flow is a common setting to study the training behavior of neural networks. Barrett
& Dherin (2020) suggests that gradient descent is closer to gradient flow with an additional term
regularizing the norm of gradients. Through analysing the numerical error of Euler’s method, Elkabetz
& Cohen (2021) provides theoretical guarantees of a small gap depending on the convexity along
the training trajectory. Neither of them fits in the case of our interest, because it is hard to track the
parametric gap when η > 1/λ. For instance, in a quadratic function, the trajectory jumps between
the two sides once η > 1/λ. Damian et al. (2021) shows that SGD with label noise is implicitly
subjected to a regularizer penalizing sharp minimizers but the learning rate is constraint strictly below
the edge of stability threshold.

Balancing effect. Du et al. (2018) proves that gradient flow automatically preserves the norms’
differences between different layers of a deep homogeneous network. (Ye & Du, 2021) shows
that gradient descent on matrix factorization with a constant small learning rate still enjoys the
auto-balancing property. Also in matrix factorization, Wang et al. (2021) proves that gradient descent
with a relatively large learning rate leads to a solution with a more balanced (perhaps not perfectly
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balanced) solution while the initialization can be in-balanced. In a similar spirit, we extend their
finding to a larger learning rate, with which the perfect balance may be achieved in our setting. We
estimate our learning rate is strictly larger than theirs (Wang et al., 2021), where they show GD with
large learning rates converges to a flat region in the interpolation manifold while the flat region w.r.t.
our larger learing rate does not exists so GD is forced to wander around the flattest minima. Note that
the implication of balancing effect is to get close to a flatter solution in the global minimum manifold,
which may help improve generalization in some common arguments in the community.

Edge of stability. Cohen et al. (2020) observes a two-stage process in gradient descent, where
the first is loss curvature grows until the sharpness touches the bound 2/η, and the second is the
curvature hovers around the bound and training loss still decreases in a macro view regardless of
local instability. Gilmer et al. (2021) reports similar observations in stochastic gradient descent and
conducts comprehensive experiments of loss sharpness on learning rates, architecture choices and
initialization. Lewkowycz et al. (2020) argues that gradient descent would “catapult” into a flatter
region if loss landscape around initialization is too sharp.

Some concurrent works (Ahn et al., 2022; Ma et al., 2022; Arora et al., 2022; Damian et al., 2022)
are also theoretically investigating the edge of stability. Ahn et al. (2022) suggests that unstable
convergence happens when the loss landscape of neural networks forms a local forward-invariant set
near the minima due to some ingredients, such as tanh as the nonlinear activation. Ma et al. (2022)
empirically observes a multi-scale structure of loss landscape and, with it as an assumption, shows
that gradient descent with different learning rates may stay in different levels. Arora et al. (2022)
shows the training provably enters the edge of stability with modified gradient descent or modified
loss, and then its associated flow goes to flat regions. Under mild conditions, Damian et al. (2022)
proves that GD beyond EoS follows an optimization trajectory subjected to a sharpness constraint so
that a flatter region is found.

Learning a single neuron. Yehudai & Ohad (2020) studies necessary conditions on both the
distribution and activation functions to guarantee a one-layer single student neuron aligning with
the teacher neuron under gradient descent, SGD and gradient flow. Vardi et al. (2021) extends the
investigation into a neuron with a bias term. Vardi & Shamir (2021) empirically studies the training
dynamics of a two-layer single neuron, focusing on its implicit bias. In this work, we present a
convergence analysis of a two-layer single-neuron ReLU network trained with population loss in a
large learning rate beyond the edge of stability.

3 PROBLEM SETUP

We consider a differentiable objective function f(θ) with θ ∈ Rd, and the GD algorithm from (1).

Definition 1. A differentiable function f is L-gradient Lipschitz if

‖∇f(θ1)−∇f(θ2)‖ ≤ L ‖θ1 − θ2‖ , ∀ θ1, θ2. (2)

The above definition is equivalent to saying that the spectral norm of the Hessian is bounded by L, or
the local curvature at each point is bounded by L. Then η needs to be bounded by 1/L in GD so that
it is guaranteed to visit an approximate first-order stationary point (Nesterov, 1998). The perturbed
GD requires η = 1/L to visit an approximate second-order stationary point (Jin et al., 2021), and
stochastic variants share similar assumptions (Ghadimi & Lan, 2013; Jin et al., 2021).

However, in practice, such an assumption may be violated, or even impossible to satisfy when ‖∇2f‖
is not uniformly bounded. Cohen et al. (2020) observes that, with learning rate η fixed, the largest
eigenvalue λ1 of the loss Hessian of a neural network is below 2/η at initialization, but it grows
above the threshold along training. Such a phenomena is more obvious when the network is deeper
or narrower. This reveals the non-smooth nature of the loss landscape of neural networks.

Furthermore, another observation from Cohen et al. (2020) is that once λ1 ≥ 2/η, the training loss
starts to perturb sharply. This is not surprising because GD would diverge in a quadratic function
with such a large curvature. However, despite of local instability, the training loss still decreases in
a longer range of steps, during which the local curvature stays around 2/η. A further phenomena
is that, when GD is at the edge of stability, if the learning rate suddenly changes to a smaller value
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ηs < η, then the local curvature quickly grows to 2/ηs — indicating the ability to ‘manipulate’ the
local curvature by adjusting the learning rate.

Besides the analysis of GD, the local curvature itself has also received a lot of attention. Due to the
nature of over-parameterization in modern neural networks, the global minimizers of the objective f
form a manifold of solutions. There have been active directions to understand the implicit bias of GD
methods, namely where do they converge to in the manifold, and why some points in the manifold
are more preferable than others. For the former question, it is believed that (stochastic) GD prefers
flatter minima (Barrett & Dherin, 2020; Smith et al., 2021; Damian et al., 2021; Ma & Ying, 2021).
For the latter, flatter minima brings better generalization (Hochreiter & Schmidhuber, 1997; Li et al.,
2018; Keskar et al., 2016; Ma & Ying, 2021; Ding et al., 2022). It would be meaningful if flatter
minima could be obtained via GD with a large learning rate.

More specifically, it has been shown that the eigenvalues of the hessian of a deep homogeneous
network could be manipulated to infinity via rescaling the weights of each layer (Elkabetz & Cohen,
2021). Fortunately, gradient flow preserves the difference of norms across layers along the train-
ing (Du et al., 2018). As a result, a balanced initialization induces balanced convergence, while GD
would break this balancing effect due to finite learning rate. However, recently it has been observed
that GD with large learning rates enjoys a balancing effect (Wang et al., 2021), where it converges to
a (not perfect) balanced result despite of inbalanced initialization.

Motivated by the connections of optimization, loss landscape and generalization, we would like to
understand the training behavior of gradient descent with a large learning rate, from low-dimensional
to representative models.

4 STABLE OSCILLATION ON 1-D FUNCTIONS

Definition 2. (Period-2 stable oscillation.) Consider GD on a function f in domain Ω. Denote
the update rule of GD as F (x) for x ∈ Ω. A period-2 stable oscillation is ∃ x ∈ Ω such that
F (F (x)) = x and x is not a minima of f .

We initiate our analysis of the stable oscillation phenomenon in 1-D. Starting from a condition on
general 1-D functions, we look into several specific 1-D functions to verify our arguments. Then,
focusing on a function in the form of f(x) = (x2 − µ)2, we present the convergence analysis as a
foundation for the following discussions. Furthermore, to shed light on the multi-layer setting, we
propose a balancing effect to make a connection to the 1-D analysis, as shown in Appendix A.1.

General 1-D functions. Consider a 1-D function f(x) with a learnable parameter x ∈ R. The
parameter updates following GD with the learning rate η as

x(t+1) := x(t) − ηf ′(x(t)). (3)
Assuming f is differentiable and all derivatives are bounded, the function value in the next step can
be approximated by

f(x(t+1)) = f(x(t))− η[f ′(x(t))]2
(

1− η

2
f ′′(x(t))

)
+ o((x(t+1) − x(t))2). (4)

If η < 2/f ′′(x(t)), this approximation reveals that the function monotonically decreases for each
step of GD, ignoring higher terms. Such an assumption would guarantee the convergence to a global
minimum in a convex function. However, our interest is what happens if η > 2/f ′′(x). For instance,
if f is a quadratic function, the second-order derivative f ′′ is constant. As a result, once η > 2/f ′′,
GD diverges except when being initialized at the optimum. However, when trained with a large
learning rate η > 2/f ′′(x̄), there is still some hope for a function to stay around a local minima x̄, as
stated in the following theorem.
Theorem 1. Consider any 1-D differentiable function f(x) around a local minima x̄, satisfying (i)
f (3)(x̄) 6= 0, and (ii) 3[f (3)]2 − f ′′f (4) > 0 at x̄. Then, there exists ε with sufficiently small |ε| and
ε · f (3) > 0 such that: for any point x0 between x̄ and x̄− ε, there exists a learning rate η such that
the update rule Fη of GD satisfies Fη(Fη(x0)) = x0, and

2

f ′′(x̄)
< η <

2

f ′′(x̄)− ε · f (3)(x̄)
.
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The details of proof are presented in the Appendix C. As stated in the Theorem 1, we provide a
necessary condition that allows GD to stably oscillate around a local minima. But still we cannot tell
whether or not some functions allow it with f (3)(x̄) = 0. For instance, a quadratic function does not
satisfy this condition since f (3) = f (4) ≡ 0 and it diverges when GD is beyond the edge of stability.
For f(x) = sin(x) around x̄ = −π2 where f (3)(x̄) = 0, it turns out the sine function allows stable
oscillation. Therefore, we extend the argument in Theorem 1 to a higher order case in Lemma 1.
Lemma 1. Consider any 1-D differentiable function f(x) around a local minima x̄, satisfying that
the lowest order non-zero derivative (except the f ′′) at x̄ is f (k)(x̄) with k ≥ 4. Then, there exists ε
with sufficiently small |ε| such that: for any point x0 between x̄ and x̄− ε, and

1. if k is odd and ε · f (k)(x̄) > 0, f (k+1)(x̄) < 0, then there exists η ∈ ( 2
f ′′ ,

2
f ′′−f(k)εk−2 ),

2. if k is even and f (k)(x̄) < 0, then there exists η ∈ ( 2
f ′′ ,

2
f ′′+f(k)εk−2 ),

such that: the update rule Fη of GD satisfies Fη(Fη(x0)) = x0.

With Lemma 1, we can verify the sine function to allow stable oscillation as in Corollary 1, because
its lowest order of nonzero derivative (except f ′′) at the local minima is f (4)(x̄) < 0. Meanwhile,
Theorem 1 provides a guarantee that squared-loss on any function g provably allows stable oscillation
once g satisfies some mild conditions, as stated below.
Lemma 2. Consider a 1-D function g(x) , and define the loss function f as f(x) = (g(x) − y)2.
Assuming (i) g′ is not zero when g(x̄) = y, (ii) g′(x̄)g(3)(x̄) < 6[g′′(x̄)]2, then it satisfies the
condition in Theorem 1 or Lemma 1 to allow period-2 stable oscillation around x̄.

This setup covers generic non-linear least squares problems, including the base model g being sine,
tanh, high-order monomial, exponential, logarithm, sigmoid, softplus, gaussian, etc. The proof details
for these settings of g(x) are provided as Corollaries 1-8 in Appendix D and E. Moreover, we provide
a straightforward method to build a more complicated model from two simple base models, as follows.

Proposition 1 (Composition Rule for Stable Oscillation). Consider two 1-D functions p, q. Assume
both p(x), q(y) at x = x̄, y = p(x̄) satisfies the conditions of g in Lemma 2 to allow stable
oscillations. Then q(p(x)) allows stable oscillation around x = x̄.

Proof details of the above lemmas and proposition are presented in the Appendix D and E. Next we
are going to present a careful analysis on g(x) = x2.

A special 1-D function. Consider f(x) = 1
4 (x2 − µ)2 with µ > 0, f (3)(

√
µ) = 6

√
µ, f ′′(

√
µ) =

2µ. Note that this function is more special to us because it can be viewed as a symmetric scalar
factorization problem subjected to the squared loss. Later we will leverage it to gain insights for
asymmetric initialization, two-layer single-neuron networks and matrix factorization. Before that, we
would like to show where it converges to when η > 2

f ′′(
√
µ) as follows.

Theorem 2. For f(x) = 1
4 (x2−µ)2, consider GD with η = K · 1µ where 1 < K <

√
4.5−1 ≈ 1.121,

and initialized on any point 0 < x0 <
√
µ. Then it converges to an orbit of period 2, except for

a measure-zero initialization where it converges to
√
µ. More precisely, the period-2 orbit are the

solutions x = δ1 ∈ (0,
√
µ), x = δ2 ∈ (

√
µ, 2
√
µ) of solving δ in

η =
1

δ2
(√

µ
δ2 −

3
4 + 1

2

) . (5)

The details of proof are presented in the Appendix F. As shown above, Theorem 1 and Theorem 2
stand in two different levels: Theorem 1 restricts the discussion in a local view because of Taylor
approximation, while Theorem 2 starts from local convergence and then generalizes it into a global
view. However, Theorem 1 builds a foundation for Theorem 2 because the latter would degenerate to
the former when K is extremely close to 1.

A natural follow-up question is what implications Theorem 2 brings, because 1-D is far from the
practice of neural networks that contain multi-layer structures, nonlinearity and high dimensions. We
precisely incorporate two layers and nonlinearity in Section 5, and high dimensions in Section 6.
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5 ON A TWO-LAYER SINGLE-NEURON HOMOGENEOUS NETWORK

We denote a two-layer single-neuron network as f(x; θ) = v · σ(w>x) where v ∈ R, w ∈ Rd, the
set of trained parameters θ = (v, w>) ∈ Rd+1, and the nonlinearity σ is ReLU. We will keep such
an order in θ to view it as a vector. The input x ∈ Rd is drawn uniformly from a unit sphere Sd−1.
The parameters are trained by GD subjected to L2 population loss, as

θt+1 = θt − η∇θL(θt), L(θt) = Ex∈Sd−1

(
f(x; θt)− y

)2
.

We generate labels from a single teacher neuron function, as y|x = σ(w̃>x). Hence w̃ is our target
neuron to learn. We denote the angle between w and w̃ as α ≥ 0. Note that α is set as non-negative
because the loss function is symmetric w.r.t. the angle. Moreover, the rotational symmetry of the
population data distribution results in a loss landscape that only depends on w through the angle α
and the norm ‖w‖. Indeed, from the definition, we have

∇θL =
1

d

[
v ‖w‖22 −

‖w‖
π

(
sinα+ (π − α) cosα

)
‖w̃‖

v2w − v
π (π − α+ 1

2 sin 2α) · w̃ − v
π (− 1

2 cos 2α+ 1
2 ) ‖w̃‖ w̃⊥

]
,

where we denote w̃⊥ as the normalized of w − projw̃ w. Consider the Hessian

H ,

[
∂2
vL ∂w∂vL

∂v∂wL ∂2
wL

]
if vw = w̃

===
1

d

[
‖w‖2 vw>

vw v2I

]
∈ R(d+1)×(d+1). (6)

Hence, in the global minima manifold where vw = w̃, the eigenvalues of the Hessian are λ1 =
‖w‖2+v2

d , λ2...d = v2

d , λd+1 = 0. Therefore, the largest eigenvalue λ1 measures the imbalance (i.e.,

| ‖w‖ − v|) between the two layers again as λ1 = (‖w‖−v)2+2‖w̃‖
d similar to the 2-D case in (15) in

Appendix A.1. So we would like to investigate where GD converges if η > 2
2‖w̃‖/d = d/ ‖w̃‖ that is

too large even for the flattest minima. Note that a key difference between the current case and the
previous 2-D analysis is that the current one includes a neuron as a vector and a nonlinear ReLU unit.

From the second row of ∇θL, which is ∇wL, it is clear that updates of w always stay in the plane
spanned by w̃ and w(0). Hence, this problem can be simplified to three variables (v, wx, wy) with the
target neuron w̃ = [1, 0]. The three variables stand for

v(t) := v(t), w(t)
x := projw̃ w

(t), w(t)
y := projw̃⊥ w

(t) =

√∥∥w(t)
∥∥2 − (w

(t)
x )2.

We keep wy as nonnegative because the loss L is invariant to its sign and our previous notation α ≥ 0
requires a non-negative wy . Then we show that wy decays to 0 as follows.
Theorem 3. In the above setting, consider a teacher neuron w̃ = [1, 0] and set the learning
rate η = Kd with K ∈ (1, 1.1]. Initialize the student as

∥∥w(0)
∥∥ = v(0) , ε ∈ (0, 0.10] and

〈w(0), w̃〉 ≥ 0. Then, for t ≥ T1 + 4, w(t)
y decays as

w(t)
y < 0.1 · (1− 0.030K)t−T1−4, T1 ≤

⌈
log2.56

1.35

πβ2

⌉
, β =

(
1 +

1.1

π

)
ε.

Proof sketch The details of proof are presented in the Appendix I. The proof is divided into two
stages, depending on whether wy grows or not. The key is that the change of wy follows (omitting all
superscripts t)

∆wy
wy

∝ −vwx +
1

π

wy
wx

1 + (
wy
wx

)2
, w(t+1)

y = |wy + ∆wy| . (7)

where the second term in ∆wy/wy is bounded in [0, 1
2π ]. In stage 1 where vwx is relatively small, we

show the growth ratio of wy is smaller than those of wx and vwx, resulting in an upper bound of
number of iterations for vwx to reach 1

2π , so max(wy) is bounded too. Although the initialization
is balanced as v(0) =

∥∥w(0)
∥∥ for simplicity of proof, v − wx is also bounded at the end of stage 1.

From the beginning of stage 2, thanks to the relatively narrow range of K, we are able to compute the
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bounds of three variables (including v − wx, vwx and wy) and they turn out to fall into a basin in the
parameter space after four iterations. In this basin, wy decays exponentially with a linear rate of 0.97
at most. �

With the guarantee of wy decaying in the above theorem, the dynamics of the single-neuron ReLU
network follow the convergence of the 2-D case in Appendix A.1, with a convergence result as
follows.
Proposition 2. The single-neuron model in Theorem 3 converges to a period-2 orbit where wy = 0
and (v, wx) ∈ γK with γK = {(δ1, δ1), (δ2, δ2)}. Here δ1 ∈ (0, 1), δ2 ∈ (1, 2) are the solutions δ in

K =
1

δ2
(√

1
δ2 −

3
4 + 1

2

) . (8)

Remark. Actually this convergence is close to the flattest minima because: if the learning rate decays
to infinitesimal after sufficient oscillations, then the trajectory walks towards the flattest minima
(v = wx = 1, wy = 0).

To summarize, the single-neuron model goes through three phases of training dynamics, with a
intialization of the angle ](w, w̃) as π

2 at most. First, the angle decreases monotonically but, due
to the growth of norms, the absolute deviation wy still increases. Meanwhile, the inbalance v − wx
stays in a bounded level. Second, wy starts to decrease and the parameters fall into a basin within
four steps. Third, in the basin, wy decreases exponentially and, after wy at a reasonable low level, the
model approximately follows the dynamic of the 2-D case and the inbalance v − wx decreases as
well, following Theorem 5. The model converges to a period-2 orbit as in the 1-D case in Theorem 2.

6 QUASI-SYMMETRIC MATRIX FACTORIZATION: WALKING TOWARDS
FLATTEST MINIMA

Consider a matrix factorization problem, parameterized by learnable weights X ∈ Rm×p, Y ∈ Rq×p,
and the target matrix is C ∈ Rm×q . The loss L is defined as

L(X,Y) =
1

2

∥∥XY> −C
∥∥2

F
. (9)

Obviously {X,Y : XY> = C} forms a minimum manifold. In this context, the question is to
describe GD dynamics in terms of a ‘descent’ phase (i.e., reaching the manifold), followed by a
‘hovering’ phase, where the dynamics evolve nearby the minimum manifold. Although we prove
that the necessary 1-D condition holds around minimum as Theorem 6 (in Appendix A.2), it is more
attracting to investigate GD in high dimensions.

A straightforward subsets of the “flattest" points in the manifold of minimisers are in fact given
by symmetric matrices, i.e., points of the form (X,X) with XX> = C. As it turns out, the local
behavior of GD beyond EoS in this symmetric submanifold of minimisers can be explicitly analysed.
Indeed, Theorem 7 (in Appendix A.2) shows that the dynamics follows the direction of the leading
eigenvector and then stably oscillates with a period-2 analogous to the 1D case in Theorem 2. Note
that, although {X : XX> = X0X

>
0 } forms a manifold that contains infinite number of minimizers

2, all of them have the same sharpness due to the same leading singular values. So a natural follow-up
question is to analyse minimizers with different sharpness.

The simplest setting that contains minimizers of varying-sharpness is to rescale symmetric minimizers,
leading to Quasi-symmetric Matrix Factorization. Given a symmetric target C = X0X

>
0 , assume

that we are around the (global) minima Y1 = αX0 + ∆Y1,Z1 = 1
αX0 + ∆Z1 with α > 0 and

small deviation ‖∆Y1‖ , ‖∆Z1‖ ≤ ε. The top singular value and vectors in SVD of X0 is σ1u1v
>
1 .

Then the EoS-learning rate at (αX0,
1
αX0) is 2

σ2
1(α2+ 1

α2 )
, which is largest as 1

σ2
1

at α = 1. We study

the convergence of GD starting from Y1 = αX0 + ∆Y1,Z1 = 1
αX0 + ∆Z1 with learning rate

η = 1
σ2
1

+ β, β > 0. The following theorem shows that, although starting nearby a sharper minima,
GD still converges to and stably scillate around the flattest one.

2in particular, it contains the orbit {X0U ;U ∈ O(p)}

7
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Theorem 4. Consider the above quasi-symmetric matrix factorization with learning rate η = 1
σ2
1

+β.

Assume 0 < βσ2
1 <
√

4.5 − 1 ≈ 0.121. Consider a minimum (Y0 = αX0,Z0 = 1/αX0), α > 0.
The initialization is around the minimum, as Y1 = Y0 + ∆Y1,Z1 = Z0 + ∆Z1, with the deviations
satisfying u>1 ∆Y1v1 6= 0, u>1 ∆Z1v1 6= 0 and ‖∆Y1‖ , ‖∆Z1‖ ≤ ε. The second largest singular
value of X0 needs to satisfy

max

{
η
σ2

1

α2

(
1 + α4σ

2
2

σ2
1

)
, ησ2

1α
2

(
1 +

σ2
2

α4σ2
1

)}
≤ 2. (10)

Then GD would converge to a period-2 orbit γη approximately with error inO(ε), formally written as

(Yt,Zt)→ γη + (∆Y,∆Z), ‖∆Y‖ , ‖∆Z‖ = O(ε), (11)

γη =

{(
Y0 + (ρi − α)σ1u1v

>
1 ,Z0 + (ρi − 1/α)σ1u1v

>
1

)}
, (i = 1, 2) (12)

where ρ1 ∈ (1, 2), ρ2 ∈ (0, 1) are the two solutions of solving ρ in

1 + βσ2
1 =

1

ρ2
(√

1
ρ2 −

3
4 + 1

2

) . (13)

Proof sketch Details of proof can be found in Appendix J.3, which shares a similar spirit with The-
orem 7. The analysis consists of two phases, depending on whether εy,t , 〈Yt −Y0, u1v

>
1 〉, εz,t ,

〈Zt − Z0, u1v
>
1 〉 are small or not. In Phase I, all components of Yt −Y0 and Zt − Z0 are small

due to the initialization near minima, but both εy,t and εz,t are growing exponentially in a rate of

ησ2
1α

2 + η
σ2
1

α2 − 1 ≥ 2ησ2
1 − 1 > 1. In Phase II, both εy,t and εz,t are much larger than other

components, as long as other components are still not growing. So the dynamics of them matches GD
of 2-D function f(y, z) = 1

2 (yz−1)2 with learning rate η′ = 1 +βσ2
1 . Following the 2-D analysis in

Theorem 5, we have εy,t and εz,t converge to the same values, which degenerates the 2-D problem to
1-D function. Therefore, the proof concludes with 1-D convergence analysis of f(x) = 1

4 (x2 − 1)2

as shown in Theorem 2. �
Remark. Note that both Y0 − α · σ1u1v

>
1 , Z0 − 1/α · σ1u1v

>
1 are residuals of Y0,Z0 with the top

singular value eliminated. Then, compared with Theorem 7, we have ρi corresponds to δi + 1, which
means both symmetric and quasi-symmetric cases converge to parameters with the same top singular
values and wander around the flattest minima. In other words, this convergence is close to the flattest
minima because: if the learning rate decays to infinitesimal after sufficient oscillations, then the
trajectory walks towards the flattest minima approximately with parameter distance in O(ε). Also
note that, if η < 1

σ2
1

, we anticipate it still escapes from the sharp minima and converges to a flatter one

(not necessarily the flattest). The result could be obtained by tracking GD on f(x, y) = 1
2 (xy − 1)2

with η < 1 slightly. But the closed form can not be expressed explicitly, because it strongly depends
on initialization.

7 NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to verify our theorems. Additional experiments on
2-D functions, MLP and MNIST can be found in Appendix B.

1-D functions. As discussed in the Section 4, we have f(x) = 1
4 (x2 − 1)2 satisfying the condition

in Theorem 1 and g(x) = 2 sin(x) satisfying Lemma 1, so we estimate that both f and g allow stable
oscillation around the local minima. It turns out GD stably oscillates around the local minima on
both functions, when η > 2

f ′′(x̄) slightly, as shown in Figure 1.

Two-layer single-neuron model. As discussed in the Section 5, with a learning rate η ∈ (d, 1.1d],
a single-neuron network f(x) = v · σ(w>x) is able to align with the direction of the teacher neuron
under population loss. We train such a model in empirical loss on 1000 data points uniformly sampled
from a sphere S1, as shown in Figure 2. The student neuron is initialized orthogonal to the teacher

8
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Figure 1: Running GD around the local minima of f(x) = 1
4 (x2 − 1)2 (left) and f(x) = 2 sin(x)

(right) with learning rate η = 1.01 > 2
f ′′(x̄) = 1. Stars denote the start points. It turns out both

functions allow stable oscillation around the local minima.

neuron. In the end of training, wy decays to a small value before the inbalance |v−wx| decays sharply,
which verifies our argument in Section 5. With a small wy, this nonlinear problem degenerates to a
2-D problem on v, wx. Then, the balanced property makes it align with the 1-D problem where v
and wx converge to a period-2 orbit. Note that the small residuals of |v − wx| and wy are due to the
difference between population loss and empirical loss.
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Figure 2: Running GD in the teacher-student setting with learning rate η = 2.2 = 1.1d, trained on
1000 points uniformly sampled from sphere S1 of ‖x‖ = 1. The teacher neuron is w̃ = [1, 0] and the
student neuron is initialized as w(0) = [0, 0.1] with v(0) = 0.1.

Symmetric and quasi-symmetric matrix factorization. As discussed in the Section 6 and Ap-
pendix A.2, with mild assumptions, both symmetric and quasi-symmetric cases stably wanders
around the flattest minima. We train GD on a matrix factorization problem with X0X

>
0 = C ∈ R8×8.

The learning rate is 1.02× EoS threshold. Following the setting in Section 6, for symmetric case,
the training starts near X0 and, for quasi-symmetric case, it starts near (αX0, 1/αX0) with α = 0.8,
as shown in Figure 3. Although starting with a re-scaling, the quasi-symmetric case achieves the
same top singular values in Y and Z, which verifies the balancing effect of 2-D functions in Theo-
rem 5. Then, the top singular values of both cases converge to the same period-2 orbit, supported by
Theorem 2, 4 and 7.

100 101 102 103
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101
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ss
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Figure 3: Symmetric and Quasi-symmetric Matrix factorization: running GD around flat (α = 1) and
sharp (α = 0.8) minima. In both cases, their leading singular values converge to the same period-2
orbit (about 6.1 and 5.3). (Left: Training loss. Middle: Largest singular value of symmetric case.
Right: Largest singular values of quasi-symmetric case.)
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A ADDITIONAL RESULTS

A.1 ON A 2-D FUNCTION

Similar to f(x) = 1
4 (x2 − µ)2, consider a 2-D function f(x, y) = 1

2 (xy − µ)2. Apparently, if x
and y initialize as the same, then (x(t), y(t)) would always align with the 1-D case from the same
initialization. Therefore, it is significant to analyze this problem under different initialization for x
and y, which we would call “in-balanced” initialization. Meanwhile, another giant difference is that
all the global minima in 2-D case form a manifold {(x, y)|xy = µ} while the 1-D case only has two
points of global minima. It would be great if we could understand which points in the global minima
manifold, or in the whole parameter space, are preferable by GD.

Note that reweighting the two parameters would manipulate the curvature to infinity as in (Elkabetz
& Cohen, 2021), so the inbalance strongly affects the local curvature. Viewing f(x) as a symmetric
scalar factorization problem, we treat f(x, y) as asymmetric scalar factorization. The update rule of
GD is

x(t+1) := x(t) − η(x(t)y(t) − µ)y(t), y(t+1) := y(t) − η(x(t)y(t) − µ)x(t). (14)

Consider the Hessian as

H ,

[
∂2
xf ∂y∂xf

∂x∂yf ∂2
yf

]
=

[
y2 2xy − µ

2xy − µ x2

]
. (15)

When xy = µ, the eigenvalues of H are λ1 = x2 + y2, λ2 = 0. Note that λ1 = (x − y)2 + 2µ.
Hence, in the global minima manifold, the local curvature of each point is larger if its two parameters
are more inbalanced. Among all these points, the smallest curvature appears to be λ1 = 2µ when
x = y =

√
µ. In other words, if the learning rate η > 2/2µ, all points in the manifold would be too

sharp for GD to converge. We would like to investigate the behavior of GD in this case. It turns out
the two parameters are driven to a perfect balance although they initialized differently, as follows.

Theorem 5. For f(x, y) = 1
2 (xy − µ)

2, consider GD with learning rate η = K · 1
µ . Assume both x

and y are always positive during the whole process {xi, yi}i≥0. In this process, denote a series of all
points with xy > µ as P = {(xi, yi)|xiyi > µ}. Then |x−y| decays to 0 in P , for any 1 < K < 1.5.

Proof sketch The details of proof are presented in the Appendix G. Start from a point (x(t), y(t))
where x(t)y(t) > µ. Because y(t+1)−x(t+1) = (y(t)−x(t))(1+η(x(t)y(t)−µ)), it suffices to show∣∣∣∣y(t+2) − x(t+2)

y(t) − x(t)

∣∣∣∣ = |(1 + η(x(t)y(t) − µ))(1 + η(x(t+1)y(t+1) − µ))| < 1. (16)

Since 1 + η(x(t)y(t) − µ) > 1, the analysis of 1 + η(x(t+1)y(t+1) − µ) is divided into three cases
considering the coupling of (x(t), y(t)), (x(t+1), y(t+1)). �
Remark. Actually, for a larger K ≥ 1.5, it is possible for GD to converge to an inbalanced orbit.
For instance, Figure 15 in (Wang et al., 2021) shows inbalanced orbits for f(x) = 1

2 (xy − 1)2 with
K = 1.9.

Combining with the fact that the probability of GD converging to a stationary point that has sharpness
beyond the edge of stability is zero (Ahn et al., 2022), Theorem 5 reveals x and y would converge to a
perfect balance. Note that this balancing effect is different from that of gradient flow (Du et al., 2018),
where the latter states that gradient flow preserves the difference of norms of different layers along
training. As a result, in gradient flow, inbalanced initialization induces inbalanced convergence, while
in our case inbalanced-initialized weights converge to a perfect balance. Furthermore, Theorem 5
shows an effect that the two parameters are squeezed to a single variable, which re-directs to
our 1-D analysis in Theorem 2. Therefore, actually both cases converge to the same orbit when
1 < K < 1.121, as stated in Prop 3. Numerical results are presented in Figure 4.

Proposition 3. Following the setting in Theorem 5. Further assume 1 < K <
√

4.5− 1 ≈ 1.121.
Then GD converges to an orbit of period 2. The orbit is formally written as {(x = y = δi)|i = 1, 2},
with δ1 ∈ (0,

√
µ), δ2 ∈ (

√
µ, 2
√
µ) as the solutions of solving δ in

η =
1

δ2
(√

µ
δ2 −

3
4 + 1

2

) .
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Remark. Actually this convergence is close to the flattest minima because: if the learning rate decays
to infinitesimal after sufficient oscillations, then the trajectory walks towards the flattest minima.

However, one thing to notice is that the inbalance at initialization needs to be bounded in Theorem 5
because both x and y are assumed to stay positive along the training. More precisely, we have

x(t+1)y(t+1) = x(t)y(t)(1− η(x(t)y(t) − µ))2 − η(x(t)y(t) − µ)(x(t) − y(t))2, (17)

and then x(t+1)y(t+1) < 0 when |x(t) − y(t)| is large with x(t)y(t) > µ fixed. Therefore, we provide
a condition to guarantee both x, y positive as follows, with details presented in the Appendix H.

Lemma 3. In the setting of Theorem 5, denote the initialization as m = |y0−x0|√
µ and x0y0 > µ.

Then, during the whole process, both x and y will always stay positive, denoting p = 4

(m+
√
m2+4)

2

and q = (1 + p)2, if

max

{
η(x0y0 − µ),

4

27
(1 +K)

3
+

(
2

3
K2 − 1

3
K +

qK2

2(K + 1)
m2

)
qm2 −K

}
< p.

A.2 ON MATRIX FACTORIZATION

In this section, we present two additional results of matrix factorization.

A.2.1 ASYMMETRIC CASE: 1D FUNCTION AT THE MINIMA

Before looking into the theorem, we would like to clarify the definition of the loss Hessian. Inherently,
we squeeze X,Y into a vector θ = vec(X,Y) ∈ Rmp+pq, which vectorizes the concatnation.
As a result, we are able to represent the loss Hessian w.r.t. θ as a matrix in R(mp+pq)×(mp+pq).
Meanwhile, the support of the loss landscape is in Rmp+pq. Similarly, we use (∆X,∆Y) in the
same shape of (X,Y) to denote . In the following theorem, we are to show the leading eigenvector
∆ , vec(∆X,∆Y) ∈ Rmp+pq of the loss Hessian. Since the cross section of the loss landscape and
∆ forms a 1D function f∆, we would also show the stable-oscillation condition on 1D function holds
at the minima of f∆.
Theorem 6. For a matrix factorization problem, assume XY = C. Consider SVD of both matrices
as X =

∑min{m,p}
i=1 σx,iux,iv

>
x,i and Y =

∑min{p,q}
i=1 σy,iuy,iv

>
y,i, where both groups of σ·,i’s

are in descending order and both top singular values σx,1 and σy,1 are unique. Also assume
v>x,1uy,1 6= 0. Then the leading eigenvector of the loss Hessian is ∆ = vec(C1ux,1u

>
y,1, C2vx,1v

>
y,1)

with C1 =
σy,1√

σ2
x,1+σ2

y,1

, C2 =
σx,1√

σ2
x,1+σ2

y,1

. Denote f∆ as the 1D function at the cross section of the

loss landscape and the line following the direction of ∆ passing vec(∆X,∆Y). Then, at the minima
of f∆, it satisfies

3[f
(3)
∆ ]2 − f (2)

∆ f
(4)
∆ > 0. (18)

The proof is provided in Appendix J.1. This theorem aims to generalize our 1-D analysis into higher
dimension, and it turns out the 1-D condition is sastisfied around any minima for two-layer matrix
factorization. In Theorem 1 and Lemma 1, if such 1-D condition holds, there must exist a period-2
orbit around the minima for GD beyond EoS. However, this is not straightforward to generalize
to high dimensions, because 1) directions of leading eigenvectors and (nearby) gradient are not
necessarily aligned, and 2) it is more natural and practical to consider initialization in any direction
around the minima instead of strictly along leading eigenvectors. Therefore, below we present a
convergence analysis with initialization near the minima, but in any direction instead.

A.2.2 SYMMETRIC CASE: CONVERGENCE ANALYSIS AROUND THE MINIMA

In this section, we focus on the symmetric case of matrix factorization where Y = X>. Accordingly,
we rescale the loss function as L(X,X) = 1

4

∥∥XX> −C
∥∥2

F
. Denote the target as C = X0X

>
0 , and

14



Under review as a conference paper at ICLR 2023

assume we are around the minima X1 = X0 + ∆X1 with small ‖∆X1‖ ≤ ε. Consider SVD as
X1 =

∑min{m,p}
i=1 σiuiv

>
i , σ1u1v

>
1 + X̃0. Then the EoS-learning-rate threshold at X = X0 is

η = 1
σ2
1

. Therefore, we are to show the convergence of GD starting from X1 = X0 + ∆X1 with

learning rate η = 1
σ2
1

+ β where β > 0.

Theorem 7. Consider the above symmetric matrix factorization with learning rate η = 1
σ2
1

+ β.

Assume 0 < βσ2
1 <
√

4.5− 1 ≈ 1.121 and ησ2
2 < 1. The initialization is around the minimum, as

X1 = X0 + ∆X1, with the deviation satisfying u>1 ∆X1v1 6= 0 and ‖∆X1‖ ≤ ε bounded by a small
value. Then GD would converge to a period-2 orbit γη approximately by a small margin in O(ε),
formally written as

Xt → γη + ∆X, ‖∆X‖ = O(ε), (19)

γη = {X0 + δ1σ1u1v
>
1 ,X0 + δ2σ1u1v

>
1 }, (20)

where δ1 ∈ (0, 1), δ2 ∈ (−1, 0) are the two solutions of solving δ in

1 + βσ2
1 =

1

(δ + 1)2
(√

1
(δ+1)2

− 3
4 + 1

2

) . (21)

Proof sketch The proof is provided in Appendix J.2. The analysis consists of two phases, depending
on whether εt , 〈Xt − X0, u1v

>
1 〉 is small or not. In Phase I, all components of Xt − X0 are

small due to the initialization near minima, but only εt is growing exponentially in a rate of 1 + βσ2
1 .

In Phase II, εt is much larger than other components, as long as other components are still not
growing. So the dynamics of εt matches GD of 1-D function f(α) = 1

4 ((α + σ1)2 − σ2
1)2 with

learning rate η′ = 1
σ2
1

+ β > 2
f ′′(0) = 1

σ2
1

. The proof concludes with 1-D convergence analysis of

f(x) = 1
4 (x2 − µ)2 as shown in Theorem 2. �

Remark. Theorem 7 assumes GD starts from any point in an ε-ball near the minima, except
u>1 ∆X1v1 6= 0. Note that this exception is with Lebesgue measure zero and, even if it is un-
fortunately satisfied, GD still has a chance to reach u>1 ∆Xtv1 6= 0 after several steps due to some
higher-order small noise. Then, this assumption could be relaxed as ‖∆X1‖ 6= 0.

B ADDITIONAL EXPERIMENTS

B.1 2-D FUNCTION

As discussed in the Section A.1, on the function f(x, y) = 1
2 (xy − 1)2, we estimate that |x − y|

decays to 0 when η ∈ (1, 1.5), as shown in Figure 4. Since it achieves a perfect balance, the two
parameters follows convergence of the corresponding 1-D function f(x) = 1

4 (x2 − 1)2. As shown in
Figure 4, xy with η = 1.05 converges to a period-2 orbit, as stated in the 1-D discussion of Theorem 2
while xy with η = 1.25 converges to a period-4 orbit, which is out of our range in the theorem. But
still it falls into the range for balance in Theorem 5.

B.2 HIGH DIMENSION AND MNIST

We perform two experiments in relatively higher dimension settings. We are to show two observations
that coincides with our discussions in the low dimension:

Observation 1: GD beyond EoS drives to flatter minima.

Observation 2: GD beyond EoS is in a similar style with the low dimension.

B.2.1 2-LAYER HIGH-DIM HOMOGENEOUS RELU NNS WITH PLANTED TEACHER NEURONS

We conduct a synthetic experiment in the high-dimension teacher-student framework. The teacher
network is in the form of

y|x := fteacher(x; θ̃) =

16∑
i=1

ReLU(e>i x), (22)
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Figure 4: Running GD on f(x, y) = 1
2 (xy − 1)2 with learning rate η = 1.05 (top) and η = 1.25

(bottom). When η = 1.05, it converges to a period-2 orbit. When η = 1.25, it converges to a period-4
orbit. In both cases, |x− y| decays sharply.

where x ∈ R16 and ei is the i-th vector in the standard basis of R16. The student and the loss are in
forms of

f(x; θ) =

16∑
i=1

vi · ReLU(w>i x), (23)

L(θ; θ̃) =
1

m

16∑
i

(f(x; θ)− y|xi)2
. (24)

Apparently, the global minimum manifold contains the following setM as (w.l.o.g., ignoring any
permutation)

M = {(vi, wi)16
i=1 | ∀i ∈ [16], wi = ki · ei, vi =

1

ki
, ki > 0}. (25)

However, different choices of {ki}16
i=1 induce different extents of sharpness around each minima.

Our aim is to show that GD with a large learning rate beyond the edge of stability drives to the
flattest minima from sharper minima.

Initialization. We initialize all student neurons directionally aligned with the teachers as wi ‖ ei
but choose various ki, as ki = 1 + 0.0625(i− 1). Obviously, such a choice of {ki}16

i=1 is not at the
flattest minima, due to the isotropy of teacher neurons. Also we add small noise to wi to make the
training start closely (but not exactly) from a sharp minima, as

wi = ki · (ei + 0.01ε), ε ∼ N (0, I). (26)

Data. We uniformly sample 10000 data points from the unit sphere S15.

Training. We run gradient descent with two learning rates η1 = 0.5, η2 = 2.6. Later we will show
with experiments that the EoS threshold of learning rate is around 2.5, so η2 is beyond the edge of
stability. GD with these two learning rates starts from the same initialization for 100 epochs. Then
we extend another 20 epochs with learning rate decay to 0.5 from 2.6 for the learning-rate case.

Results. All results are provided in Figure 5. Both Figure 5 (a, b) present the gap between these
two trajectories, where GD with a small learning rate stays around the sharp minima, while that with
a larger one drives to flatter minima. Then GD stably oscillates around the flatter minima.
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Meanwhile, from Figure 5 (b), when we decrease the learning rate from 2.6 to 0.5 after 100 epochs,
GD converges to a nearby minima which is significantly flatter, compared with that of lr=0.5.

Figure 5 (c) provides a more detailed view of ‖wi‖vi for all 16 neurons. All neurons with lr=0.5 stay at

the original ratio k2
i . But those with lr=2.6 all converge to the same ratio around k2 = ‖w‖

v = 1.21,
as shown in Figure 5 (d). We compute the relationship between the sharpness of global minima in
M and different choices of k, as shown in Figure 5 (e, f). Actually, k2 = 1.21 is the best choice of
{ki}16

i=1 such that the minima is the flattest.

Therefore, we have shown that, in such a setting of high-dimension teacher-student network, GD
beyond the edge of stability drives to the flattest minima.
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Figure 5: Result of 2-layer 16-neuron teacher-student experiment.

B.2.2 3, 4, 5-LAYER NON-HOMOGENEOUS MLPS ON MNIST

We conduct an experiment on real data to show that our finding in the low-dimension setting in
Theorem 1 is possible to generalize to high-dimensional setting. More precisely, our goals are to
show, when GD is beyond EoS,

1. the oscillation direction (gradient) aligns with the top eigenvector of Hessian.

2. the 1D function at the cross-section of oscillation direction and high-dim loss landscape
satisfies the conditions in Theorem 1.

Network, dataset and training. We run 3, 4, 5-layer ReLU MLPs on MNIST LeCun et al. (1998).
The networks have 16 neurons in each layer. To make it easier to compute high-order derivatives, we
simplify the dataset by 1) only using 2000 images from class 0 and 1, and 2) only using significant
input channels where the standard deviation over the dataset is at least 110, which makes the network
input dimension as 79. We train the networks using MSE loss subjected to GD with large learning
rates η = 0.5, 0.4, 0.35 and a small rate η = 0.1 (for 3-layer). Note that the larger ones are beyond
EoS.
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Definition 3 (line search minima). Consider a function f , learning rate η and a point x ∈ domain(f).
We call x̃ as the line search minima of x if

x̃ = x− c∗ · η∇f(x), (27)
c∗ = argminc∈[0,1] f (x− c · η∇f(x)) . (28)

The line search minima x̃ can interpreted as the lowest point on the 1D function induced by the
gradient at x. If GD is beyond EoS, x̃ stays in the valley below the oscillation of x.

Results. All results are presented in Figure 6, 7 and 8.

Take the 3-layer as an example. From Figure 6 (a, b), GD is beyond EoS during epochs 10-14 and
21-60. For these epochs, cosine similarity between the top Hessian eigenvector v1 and the gradient is
pretty close to 1, as shown in Figure 6 (c), which verifies our goal 1.

In Figure 6 (d), we compute 3[f (3)]2 − f (2)f (4) at line search minima along training, which is
required to be positive in Theorem 1 to allow stable oscillation. Then it turns out most points have
3[f (3)]2 − f (2)f (4) > 0 except a few points, all of which are not in the EoS regime, and these few
exceptional points might be due to approximation error to compute the fourth-order derivative since
their negativity is quite small. This verifies our goal 2.

Both the above arguments are the same in the cases of 4 and 5 layers as shown in Figure 7 and 8.
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Figure 6: Result of 3-layer ReLU MLPs on MNIST. Both (c) and (d) are for learning rate as 0.5.
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Figure 7: Result of 4-layer ReLU MLPs on MNIST.
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Figure 8: Result of 5-layer ReLU MLPs on MNIST.
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C PROOF OF THEOREM 1

Theorem 8 (Restatement of Theorem 1). Consider any 1-D differentiable function f(x) around a
local minima x̄, satisfying (i) f (3)(x̄) 6= 0, and (ii) 3[f (3)]2 − f ′′f (4) > 0 at x̄. Then, there exists
ε with sufficiently small |ε| and ε · f (3) > 0 such that: for any point x0 between x̄ and x̄− ε, there
exists a learning rate η such that the update rule Fη of GD satisfies Fη(Fη(x0)) = x0, and

2

f ′′(x̄)
< η <

2

f ′′(x̄)− ε · f (3)(x̄)
.

Proof. For simplicity, we assume f (3)(x̄) > 0. Imagine a starting point x0 = x̄− ε, ε > 0. We omit
f ′(x̄), f ′′(x̄), f (3)(x̄), f (4)(x̄) as f ′, f ′′, f (3), f (4). After running two steps of gradient descent, we
have

x0 = x̄− ε,

f ′(x0) = f ′ − f ′′ε+
1

2
f (3)ε2 − 1

6
f (4)ε3 +O(ε4)

= −f ′′ε+
1

2
f (3)ε2 − 1

6
f (4)ε3 +O(ε4),

x1 = x0 − ηf ′(x0) = x̄− ε− η
(
− f ′′ε+

1

2
f (3)ε2 − 1

6
f (4)ε3

)
+O(ε4),

f ′(x1) = f ′′ · (x1 − x̄) +
1

2
f (3) · (x1 − x̄)2 +

1

6
f (4) · (x1 − x̄)3 +O(ε4),

x2 = x1 − ηf ′(x1),

x2 − x0

η
= −

(
−f ′′ε+

1

2
f (3)ε2 − 1

6
f (4)ε3

)
− f ′′ ·

(
−ε− η

(
− f ′′ε+

1

2
f (3)ε2 − 1

6
f (4)ε3

))
− 1

2
f (3)

(
−ε− η

(
− f ′′ε+

1

2
f (3)ε2 − 1

6
f (4)ε3

))2

− 1

6
f (4) · (−ε− η(−f ′′ε))3

+O(ε4)

= (2f ′′ − ηf ′′f ′′) ε+

(
−1

2
f (3) +

1

2
ηf ′′f (3) − 1

2
f (3)(−1 + ηf ′′)2

)
ε2

+

(
1

6
f (4) − 1

6
ηf ′′f (4) +

1

2
(−1 + ηf ′′)ηf (3)f (3) − 1

6
(−1 + ηf ′′)3f (4)

)
ε3 +O(ε4).

When η = 2
f ′′ , it holds

x2 − x0

η
=

(
1

2
ηf (3)f (3) − 1

3
f (4)

)
ε3 +O(ε4), (29)

which would be positive if 1
2ηf

(3)f (3) − 1
3f

(4) = 1
3f ′′ (3[f (3)]2 − f ′′f (4)) > 0 and |ε| is sufficiently

small.

When η = 2
f ′′−ε·f(3) then ηf ′′ = 2 + 2 f

(3)

f ′′ ε+O(ε2), it holds

x2 − x0

η
= −2f (3)ε2 +

(
−1

2
f (3) + f (3) − 1

2
f (3)

)
ε2 +O(ε3) = −2f (3)ε2 +O(ε3), (30)

which is negative when |ε| is sufficiently small.

Therefore, there exists a learning rate η ∈ ( 2
f ′′ ,

2
f ′′−ε·f(3) ) such that x2 = x0 due to the continuity of

(x2 − x0) with respect to η.

The above proof can be generalized to the case of x0 = x̄− ε′ with ε′ ∈ (0, ε] and the learning rate is
still bounded as η ∈ ( 2

f ′′ ,
2

f ′′−ε·f(3) ).

D PROOF OF LEMMA 1

Lemma 4 (Restatement of Lemma 1). Consider any 1-D differentiable function f(x) around a local
minima x̄, satisfying that the lowest order non-zero derivative (except the f ′′) at x̄ is f (k)(x̄) with
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k ≥ 4. Then, there exists ε with sufficiently small |ε| such that: for any point x0 between x̄ and x̄− ε,
and

1. if k is odd and ε · f (k)(x̄) > 0, f (k+1)(x̄) < 0, then there exists η ∈ ( 2
f ′′ ,

2
f ′′−f(k)εk−2 ),

2. if k is even and f (k)(x̄) < 0, then there exists η ∈ ( 2
f ′′ ,

2
f ′′+f(k)εk−2 ),

such that: the update rule Fη of GD satisfies Fη(Fη(x0)) = x0.

Proof. (1) If k is odd, assuming f (k) > 0 for simplicity, we have
x0 = x̄− ε,

f ′(x0) = −f ′′ε+
1

(k − 1)!
f (k)εk−1 − 1

k!
f (k+1)εk +O(εk+1),

x1 = x0 − ηf ′(x0) = x̄− ε+ ηf ′′ε− 1

(k − 1)!
ηf (k)εk−1 +

1

k!
ηf (k+1)εk +O(εk+1),

f ′(x1) = f ′′ · (x1 − x̄) +
1

(k − 1)!
f (k) · (x1 − x̄)k−1 +

1

k!
f (k+1) · (x1 − x̄)k +O(εk+1),

x2 − x0

η
=
x1 − ηf ′(x1)− x0

η
= −f ′(x0)− f ′(x1)

= (2f ′′ − ηf ′′f ′′) ε

+

(
− 1

(k − 1)!
f (k) +

1

(k − 1)!
ηf ′′f (k) − 1

(k − 1)!
f (k) · (−1 + ηf ′′)k−1

)
εk−1

+

(
1

k!
fk+1 − 1

k!
ηf ′′f (k+1) − 1

k!
f (k+1) · (−1 + ηf ′′)k

)
εk +O(εk+1)

When η = 2
f ′′ , it holds

x2 − x0

η
= − 2

k!
f (k+1)εk +O(εk+1). (31)

When η = 2
f ′′−f(k)εk−2 then ηf ′′ = 2 + 2 f

(k)

f ′′ ε
k−2 +O(ε2k−4), then it holds

x2 − x0

η
= −2f (k)εk−1 +O(εk). (32)

Since k is odd and ε · f (k)(x̄) > 0, f (k+1)(x̄) < 0, the above two estimations of x2−x0/η have one
positive and one negative exactly. Therefore, due to the continuity of x2 − x0 wrt η, there exists a
learning rate η ∈ ( 2

f ′′ ,
2

f ′′−f(k)εk−2 ) such that x2 = x0.

The above proof can be generalized to any x0 between x̄ and x̄− ε with the same bound for η.

(2) If k is even, we have
x0 = x̄− ε,

f ′(x0) = −f ′′ε− 1

(k − 1)!
f (k)εk−1 +O(εk),

x1 = x0 − ηf ′(x0) = x̄− ε+ ηf ′′ε+
1

(k − 1)!
ηf (k)εk−1 +O(εk),

f ′(x1) = f ′′ · (x1 − x̄) +
1

(k − 1)!
f (k) · (x1 − x̄)k−1 +O(εk),

x2 − x0

η
=
x1 − ηf ′(x1)− x0

η
= −f ′(x0)− f ′(x1)

= (2f ′′ − ηf ′′f ′′) ε

+

(
1

(k − 1)!
f (k) − 1

(k − 1)!
ηf ′′f (k) − 1

(k − 1)!
(−1 + ηf ′′)k−1

)
εk−1 +O(εk).
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When η = 2
f ′′ , it holds

x2 − x0

η
= − 2

(k − 1)!
f (k)εk−1 +O(εk).

When η = 2
f ′′+c·f(k)εk−2 with c > 0 as some constant implying ηf ′′ = 2(1−c f

(k)

f ′′ ε
k−2)+O(ε2k−4),

then it holds

x2 − x0

η
= 2

(
c− 1

(k − 1)!

)
f (k)εk−1 +O(εk),

where we then set c = 1.

Hence, the above two estimations of x2−x0/η have one positive and one negative with sufficiently small
|ε|. Therefore, due to the continuity of x2 − x0, there exists a learning rate η ∈ ( 2

f ′′ ,
2

f ′′+f(k)εk−2 )

such that x2 = x0.

The above proof can be generalized to any x0 between x̄ and x̄− ε with the same bound for η.

Corollary 1. f(x) = sin(x) allows stable oscillation around its local minima x̄.

Proof. Its lowest order nonzero derivative (expect f ′′) is f (4)x̄ = sin(x̄) = −1 < 0 and the order 4
is even. Then Lemma 1 gives the result.

E PROOF OF LEMMA 2

Lemma 5 (Restatement of Lemma 2). Consider a 1-D function g(x) , and define the loss function f
as f(x) = (g(x) − y)2. Assuming (i) g′ is not zero when g(x̄) = y, (ii) g′(x̄)g(3)(x̄) < 6[g′′(x̄)]2,
then it satisfies the condition in Theorem 1 or Lemma 1 to allow period-2 stable oscillation around x̄.

Proof. From the definition, we have

f ′′(x) = 2[g(x)− y]g′′(x) + 2[g′(x)]2, (33)

f (3)(x) = 2[g(x)− y]g(3)(x) + 6g′′(x)g′(x), (34)

f (4)(x) = 2[g(x)− y]g(4)(x) + 6g′′(x)g′′(x) + 8g′(x)g(3)(x). (35)

Then at the global minima where g(x) = y, we have f ′′(x) = 2[g′(x)]2 and f (3)(x) = 6g′′(x)g′(x).
If we assume y is not a trivial value for g(x), which means g′(x) 6= 0 at the minima, and g is not
linear around the minima (implies g′′ 6= 0), then f satisfies f (3)(x̄) 6= 0 in Theorem 1. Meanwhile,
we need 3f (3)f (3) − f ′′f (4) > 0 as in Theorem 1, hence it requires

1

2g′(x)g′(x)
36g′′(x)g′′(x)g′(x)g′(x)− 1

3

(
6g′′(x)g′′(x) + 8g′(x)g(3)(x)

)
> 0 (36)

6g′′(x)g′′(x) > g′(x)g(3)(x). (37)

The remaining case is, if g′(x) 6= 0 and g′′ = 0 at the minima, it satisfies the condition for Lemma 1
with k = 4, because f (3) = 0 and f (4) < 0 due to (35, 37)

Corollary 2. f(x) = (x2 − 1)2 allows stable oscillation around the local minima x̄ = 1.

Proof. With g(x) = x2, it has g′(1) = 2 6= 0, g′′(1) = 2 6= 0. All higher order derivatives of g are
zero. Then Lemma 2 gives the result.

Corollary 3. f(x) = (sin(x)− y)2 allows stable oscillation around the local minima x̄ = arcsin(y)
with y ∈ (−1, 1).

Proof. With g(x) = sin(x), it has g′(x̄) = cos(x̄) 6= 0, g(3)(x̄) = − cos(x̄). We have g(3)(x̄) is
bounded as g′g(3) − 6[g′′]2 = − cos2(x̄)− 6 sin2(x̄) < 0. Then Lemma 2 gives the result.
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Corollary 4. f(x) = (tanh(x) − y)2 allows stable oscillation around the local minima x̄ =
tanh−1(y) with y ∈ (−1, 1).

Proof. With g(x) = tanh(x), it has g′(x̄) = sech2(x̄) 6= 0, and g(3)(x̄) = −2sech4(x̄) +
4sech2(x̄) tanh2(x̄) is bounded as

g′g(3) − 6[g′′]2 = −2sech6 + 4sech4 tanh2−24sech4 tanh2 = −2sech6 − 20sech4 tanh2 < 0.

Then Lemma 2 gives the result.

Corollary 5. f(x) = (xα − y)2 (with k ∈ Z, k ≥ 2) allows stable oscillation around the local
minima x̄ = y1/α except y = 0.

Proof. With g(x) = xα, it has g′(x̄) = αxα−1, g′′(x̄) = α(α − 1)xα−2, g(3)(x̄) = α(α − 1)(α −
2)xα−3. Then we have g′g(3)− 6[g′′]2 = α2(α− 1)(−5α+ 4)x2α−4 < 0. Then Lemma 2 gives the
result.

Corollary 6. f(x) = (exp(x) − y)2 allows stable oscillation around the local minima x̄ = log y
for y > 0.

Proof. With g(x) = expx, it has g′(x̄) = g′′(x̄) = g(3)(x̄) = exp(x̄). Then we have g′g(3) −
6[g′′]2 < 0. Then Lemma 2 gives the result.

Corollary 7. f(x) = (log(x)− y)2 allows stable oscillation around the local minima x̄ = exp y.

Proof. With g(x) = logx, it has g′(x̄) = 1
x̄ , g
′′(x̄) = − 1

x̄2 , g
(3)(x̄) = − 2

x̄3 . Then we have
g′g(3) − 6[g′′]2 < 0. Then Lemma 2 gives the result.

Corollary 8. f(x) = ( 1
1+exp(−x) − y)2 allows stable oscillation around the local minima x̄ =

sigmoid−1(y) for y ∈ (0, 1).

Proof. With g(x) = 1
1+exp(−x) , it has g′(x̄) = exp(−x)

(exp(−x)+1)2 , g
′′(x̄) = − exp(x)(exp(x)−1)

(exp(x)+1)3 , g(3)(x̄) =
exp(x)(−4 exp(x)+exp(2x)+1)

(exp(x)+1)4 . Then we have g′g(3)−6[g′′]2 ∝ −4 exp(x)+exp(2x)+1−6(exp(x)−
1)2 < 0. Then Lemma 2 gives the result.

Proposition 4 (Restatement of Prop 1). Consider two functions f, g. Assume both f(x), g(y) at
x = x̄, y = f(x̄) satisfies the conditions in Lemma 2 to allow stable oscillations. Then g(f(x))
allows stable oscillation around x = x̄.

Proof. Denote F (x) , g(f(x)). Then we have

F ′(x) = g′(f(x))f ′(x),

F ′′(x) = g′′(f(x))[f ′(x)]2 + g′(f(x))f ′′(x),

F (3)(x) = g(3)(f(x))[f ′(x)]3 + 3g′′(f(x))f ′(x)f ′′(x) + g′(f(x))f (3)(x).

Thus, omitting all variables x̄ and f(x̄) in the derivatives, it holds

F ′(x̄)F (3)(x̄)− 6[F ′′(x̄)]2 = g′f ′
(
g(3)(f ′)3 + 3g′′f ′f ′′ + g′f (3)

)
− 6

(
g′′(f ′)2 + g′f ′′

)2
≤ −9g′g′′(f ′)2f ′′,

where the inequality is due to all conditions in Lemma 2. So the only problem is whether we can
achieve g′g′′f ′′ > 0. The good news is that, even if it holds g′g′′f ′′ < 0, we can still find functions
to re-represent g(f(x)) as ĝ(f̂(x)) such that ĝ′ĝ′′f̂ ′′ < 0 and all other conditions in Lemma 2 are
satisfied by ĝ, f̂ .
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For g′g′′f ′′ < 0, construct ĝ(y) , g(−y), f̂(x) , −f(x). In this sense, it holds ĝ(f̂(x̄)) = g(f(x̄)).
It is easy to verify that both ĝ, f̂ at y = −f(x̄), x = x̄ satisfy the conditions in Lemma 2, because

ĝ′(y) = −g′(−y) = −g′(f(x̄)), ĝ′′(y) = g′′(−y) = g′′(f(x̄)), ĝ(3)(y) = −g(3)(−y) = −g(3)(f(x̄)),

f̂ ′(x̄) = −f ′(x̄), f̂ ′′(x̄) = −f ′′(x̄), f̂ (3)(y) = −f (3)(x̄).

Then, it has ĝ′(y)ĝ′′(y)f̂ ′′(x) = −g′g′′f ′′ > 0 at y = −f(x̄), x = x̄. Therefore, we have
F ′(x̄)F (3)(x̄)− 6[F ′′(x̄)]2 < 0 and Lemma 2 gives the result.

F PROOF OF THEOREM 2

Theorem 9 (Restatement of Theorem 2). For f(x) = 1
4 (x2 − µ)2, consider GD with η = K · 1

µ

where 1 < K <
√

4.5− 1 ≈ 1.121, and initialized on any point 0 < x0 <
√
µ. Then it converges

to an orbit of period 2, except for a measure-zero initialization where it converges to
√
µ. More

precisely, the period-2 orbit are the solutions x = δ1 ∈ (0,
√
µ), x = δ2 ∈ (

√
µ, 2
√
µ) of solving δ

in

η =
1

δ2
(√

µ
δ2 −

3
4 + 1

2

) . (38)

Proof. Assume the 2-period orbit is (x̄0, x̄1), which means

x̄1 = x̄0 − η · f ′(x̄0) = x̄0 + η · (µ− x̄2
0)x̄0,

x̄0 = x̄1 − η · f ′(x̄1) = x̄1 + η · (µ− x̄2
1)x̄1.

First, we show the existence and uniqueness of such an orbit when K ∈ (1, 1.5] via solving a
high-order equation, some roots of which can be eliminated. Then, we conduct an analysis of global
convergence by defining a special interval I . GD starting from any point following our assumption
will enter I in some steps, and any point in I will back to this interval after two steps of iteration.
Finally, any point in I will converge to the orbit (x̄0, x̄1).

Before diving into the proof, we briefly show it always holds x > 0 under our assumption. If
xt−1 > 0 and xt ≤ 0, the GD rule reveals η(µ−x2

t−1) ≤ −1 which implies x2
t−1 ≥ µ+ 1

η . However,

the maximum of x + η(µ − x2)x on x ∈ (0,
√
µ+ 1

η ) is achieved when x2 = 1
3 (µ + 1

η ) so the

maximum value is
√

1
3 (µ+ 1

η )( 2
3 + 2

3ηµ) ≤ 1.4
√

1
3 (µ+ 1

η ) <
√
µ+ 1

η . As a result, it always
holds x > 0.

Part I. Existence and uniqueness of (x̄0, x̄1).

In this part, we simply denote both x̄0, x̄1 as x0. This means x0 in all formulas in this part can be
interpreted as x̄0 and x̄1. Then the GD update rule tells, for the orbit in two steps,

x0 7→ x1 := x0 + η(µ− x2
0)x0,

x1 7→ x0 = x1 + η(µ− x2
1)x1,

which means

0 = η(µ− x2
0)x0 + η

(
µ−

(
x0 + η(µ− x2

0)x0

)2) (
x0 + η(µ− x2

0)x0

)
,

0 = µ− x2
0 +

(
µ−

(
x0 + η(µ− x2

0)x0

)2) (
1 + η(µ− x2

0)
)
.

Denote z := 1 + η(µ− x2
0), it is equivalent to

0 = µ− x2
0 + (µ− z2x2

0)z = (z + 1)(−x2
0z

2 + x2
0z + µ− x2

0)

= (z + 1)

(
−x2

0(z − 1

2
)2 + µ− 3

4
x2

0

)
.
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If z + 1 = 0, it means x1 = −x0 which is however out of the range of our discussion on the x > 0
domain. So we require −x2

0(z − 1
2 )2 + µ − 3

4x
2
0 = 0. To ensure the existence of solutions z, it is

natural to require

µ− 3

4
x2

0 ≥ 0.

Then, the solutions are

z =
1

2
±

√
µ

x2
0

− 3

4
.

However, z = 1
2 −

√
µ
x2
0
− 3

4 can be ruled out. If it holds, η(µ− x2
0) = z − 1 < − 1

2 which means

x2
0 > µ + 1

2η . Since we restrict ηµ ∈ (1, 1.121], it tells x2
0 > µ(1 + 1

1.242 ) contradicting with
µ ≥ 3

4x
2
0.

Hence, z = 1
2 +

√
µ
x2
0
− 3

4 is the only reasonable solution, which is saying

η(µ− x2
0) = −1

2
+

√
µ

x2
0

− 3

4
.

Given a certain η, the above expression is a third-order equation of x2
0 to solve. Apparently x2

0 = µ
is one trivial solution, since for any learning rate, the gradient descent stays at the global minimum.
Then the two other solutions are exactly the orbit (x̄0, x̄1), if the equation does have three different
roots. This also guarantees the uniqueness of such an orbit.

Assuming x2
0 6= µ, the above expression can be reformulated as

η =
1

x2
0

(√
µ
x2
0
− 3

4 + 1
2

) . (39)

One necessary condition for existence is µ ≥ 3
4x

2
0. Note that here x0 can be both x̄0, x̄1, one of which

is larger than
√
µ. For simplicity, we assume x̄0 <

√
µ < x̄1. Since η from Eq(39) is increasing with

x2
0 when µ < x2

0, let x2
0 = 4

3µ and achieve the upper bound as

ηµ ≤ 3

2
, (40)

which is satisfied by our assumption 1 < ηµ <
√

4.5− 1 ≈ 1.121.

Therefore, we have shown the existence and uniqueness of a period-2 orbit.

Part II. Global convergence to (x̄0, x̄1).

The proof structure is as follows:

1. There exists a special interval I := [xs,
√
µ) such that any point in I will back to this interval

surely after two steps of gradient descent. And x̄0 ∈ I .

2. Initialized from any point in I , the gradient descent process will converge to x̄0 (every two
steps of GD).

3. Initialized from any point between 0 and
√
µ, the gradient descent process will fall into I in

some steps.

(II.1) Consider a function Fη(x) = x+ η(µ− x2)x performing one step of gradient descent. Since

F ′η(x) = 1 + ηµ− 3ηx2, we have F ′η(x) > 0 for 0 < x2 < 1
3

(
µ+ 1

η

)
and F ′η(x) < 0 otherwise.

It is obvious that the threshold has x2
s := 1

3

(
µ+ 1

η

)
< µ. In the other words, for any point on the

right of xs, GD returns a point in a decreasing manner.
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To prove anything further, we would like to restrict x̄0 ≥ xs, which is

x̄2
0 ≥

1

3

(
µ+

1

η

)
=

1

3

(
µ+ x̄2

0

(√
µ

x̄2
0

− 3

4
+

1

2

))
.

Solving this inequality tells

x̄2
0 ≥

3 +
√

2

7
µ. (41)

Consequently, by applying Eq(39), we have

ηµ ≤
√

4.5− 1 ≈ 1.121. (42)

With the above discussion of xs, we are able to define the special internal I := [xs,
√
µ). From the

definition of Fη , consider a function representing two steps of gradient descent F 2
η (x) := Fη(Fη(x)).

From previous discussion, we know F 2
η (x̄0) = x̄0. What about F 2

η (xs)?

It turns out F 2
η (xs) > xs: we have Fη(xs) = xs(1 + ηµ− ηx2

s) = xs · 2
3 (1 + ηµ) and, furthermore,

F 2
η (xs) = Fη(xs · 23 (1+ηµ)) = xs · 23 (1+ηµ)·

(
1 + ηµ− 4

27 (1 + ηµ)3
)
. Then we get F 2

η (xs) > xs
because

2

3
(1 + ηµ) ·

(
1 + ηµ− 4

27
(1 + ηµ)3

)
> 1 if ηµ ∈ (1,

√
4.5− 1). (43)

Combining the following facts, i) F 2
η (x) − x is continous wrt x, ii) F 2

η (xs) − xs > 0, and iii)
F 2
η (x̄0)− x̄0 = 0 is the only zero point on x ∈ [xs, x̄0], we can conclude that

F 2
η (x) > x, ∀x ∈ [xs, x̄0). (44)

Meanwhile, we can prove F 2
η (x) < x for any x ∈ (x̄0,

√
µ). Since F 2

η (µ)− µ = 0 and F 2
η (x̄0)−

x̄0 = 0 are the only two zero cases, we only need to show ∃ x̂ ∈ (x̄0,
√
µ), such that F 2

η (x̂) <

x̂. We compute the derivative of F 2
η (x) − x at x2 = µ, which is d

dxF
2
η (x) − x|x2=µ = −1 +

F ′(F (x))F ′(x)|x2=µ = −1 + [F ′(
√
µ)]2 = −1 + (1 − 2ηµ)2 > 0. Then combining it with

F 2
η (x̄0) = x̄0, there exists a point x̂ ∈ (x̄0,

√
µ) that is very close to

√
µ such that F 2

η (x̂) < x̂.
Hence, we can conclude that

F 2
η (x) < x, ∀x ∈ (x̄0,

√
µ). (45)

Since Fη(·) is decreasing on [xs,∞) and Fη(x) > xs for x ∈ [xs,
√
µ], it is fair to say F 2

η (x)

is increasing on x ∈ [xs,
√
µ]. Hence, we have F 2

η (x) ≤ F 2
η (x̄0) = x̄0, ∀x ∈ [xs, x̄0]. And

F 2
η (x) ≥ F 2

η (x̄0) = x̄0, ∀x(x̄0,
√
µ)

Combining the above results, we have

F 2
η (x) ∈ (x, x̄0], ∀x ∈ [xs, x̄0), (46)

F 2
η (x) ∈ [x̄0, x), ∀x ∈ (x̄0,

√
µ). (47)

(II.2) A consequence of Exp(46, 47) is that any point in I will converge to x̄0 with even steps of
gradient descent. For simplicity, we provide the proof for x ∈ [xs, x̄0).

Denote a0 ∈ [xs, x̄0) and an := F 2
η (an−1), n ≥ 1. The series {ai}i≥0 satisfies

x̄0 ≥ an+1 > an > a0. (48)

Since the series is bounded and strictly increasing, it is converging. Assume it is converging to a. If
a < x̄0, then

x̄0 ≥ F 2
η (a) > a > F 2

η (an).
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Since F 2
η (·) is continuous, so ∃ δ > 0, such that, when |x− a| < δ, we have

|F 2
η (x)− F 2

η (a)| < F 2
η (a)− a. (49)

Since a is the limit, so ∃ N > 0, such that, when n > N , 0 < a− F 2
η (an) < δ. So, combining with

Exp(49), we have
|F 2
η (F 2

η (an))− F 2
η (a)| < F 2

η (a)− a.

But LHS = F 2
η (a)− an+2 > F 2

η (a)− a, so we reach a contradiction.

Hence, we have {ai} converges to x̄0.

(II.3) Obviously, any initialization in (0,
√
µ) will have gradient descent run into (i) the interval I , or

(ii) the interval on the right of
√
µ, i.e., (

√
µ,∞). The first case is exactly our target.

Now consider the second case. From the definition of xs in part III.1, we know Fη(xs) =
maxx∈[0,

√
µ] Fη(x). So it is fair to say this case is xn ∈ (

√
µ, Fη(xs)]. Then the next step will go

into the interval I , because

Fη(xn) ≥ Fη(Fη(xs)) = F 2
η (xs) > xs,

where the first inequality is from the decreasing property of Fη(·) and the second inequality is due to
F 2
η (x) > x on x ∈ [xs, x̄0).

G PROOF OF THEOREM 5

Theorem 10 (Restatement of Theorem 5). For f(x, y) = 1
2 (xy − µ)

2, consider GD with learning
rate η = K · 1

µ . Assume both x and y are always positive during the whole process {xi, yi}i≥0. In
this process, denote a series of all points with xy > µ as P = {(xi, yi)|xiyi > µ}. Then |x − y|
decays to 0 in P , for any 1 < K < 1.5.

Proof. Consider the current step is at (xt, yt) with xtyt > µ. After two steps of gradient descent, we
have

xt+1 = xt + η(µ− xtyt)yt (50)
yt+1 = yt + η(µ− xtyt)xt (51)
xt+2 = xt+1 + η(µ− xt+1yt+1)yt+1 (52)
yt+2 = yt+1 + η(µ− xt+1yt+1)xt+1, (53)

with which we have the difference evolve as

yt+1 − xt+1 = (yt − xt) (1− η (µ− xtyt)) (54)
yt+2 − xt+2 = (yt+1 − xt+1) (1− η (µ− xt+1yt+1)) . (55)

Meanwhile, we have

xt+1yt+1 = xtyt + η (µ− xtyt)
(
x2
t + y2

t

)
+ η2 (µ− xtyt)2

xtyt

= xtyt (1 + η (µ− xtyt))2
+ η (µ− xtyt) (xt − yt)2 (56)

Note that the second term in Eq(56) vanishes when x and y are balanced. When they are not balanced,
if xtyt > µ, it holds xt+1yt+1 < xtyt (1 + η (µ− xtyt))2. Incorporating this inequality into Eq(54,
55) and assuming yt − xt > 0, it holds

yt+2 − xt+2 < (yt − xt) (1− η (µ− xtyt))
(

1− η
(
µ− xtyt (1 + η (µ− xtyt))2

))
. (57)

To show that |x− y| is decaying as in the theorem, we are to show

1. yt+2 − xt+2 < yt − xt

2. yt+2 − xt+2 > −(yt − xt)
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Note that, although xtyt > µ, it is not sure to have xt+2yt+2 > µ. However, for any 0 < xiyi < µ
and K < 2, we have

|xi+1 − yi+1|
|xi − yi|

= |1− η (µ− xiyi)| < 1, (58)

which is saying |x − y| decays until it reaches xy > µ. So it is enough to prove the above two
inequalities, whether or not xt+2yt+2 > µ.

Part I. To show yt+2 − xt+2 < yt − xt
Since we wish to have yt+2 − xt+2 < yt − xt, it is sufficient to require

(1− η (µ− xtyt))
(

1− η
(
µ− xtyt (1 + η (µ− xtyt))2

))
< 1. (59)

Since we assume xt+1, yt+1 > 0, Eq (50, 51) tells η (µ− xtyt) > −min{xtyt ,
yt
xt
}, which is

equivalent to 1− η (µ− xtyt) < 1 + min{xtyt ,
yt
xt
}.

(I.1) If η(µ− xt+1yt+1) ≥ 1
2

Then we have 1− η(µ− xt+1yt+1) ≤ 1
2 . As a result,

yt+2 − xt+2

yt − xt
= (1− η (µ− xtyt)) (1− η (µ− xt+1yt+1)) <

(
1 + min{xt

yt
,
yt
xt
}
)
× 1

2
(60)

=
1

2
+

1

2
min{xt

yt
,
yt
xt
} (61)

(I.2) If η(µ− xt+1yt+1) < 1
2 and xt+1yt+1 ≤ x2

s = 1
3

(
µ+ 1

η

)
The second condition reveals

yt+2 − xt+2

yt+1 − xt+1
= 1− η (µ− xt+1yt+1) ≤ 1− η

(
µ− 1

3

(
µ+

1

η

))
=

4

3
− 2

3
K. (62)

The first condition is equivalent to xt+1yt+1 > µ− 1
2η . Since the second term in Eq(56) is negative,

we have

xtyt (1 + η (µ− xtyt))2
> µ− 1

2η
, (63)

with which we would like to find an upper bound of xtyt.

Denoting b = xtyt, consider a function q(b) = b (1 + η (µ− b))2. Obviously q(µ) = µ. Its
derivative is q′(b) = (1 + ηµ− ηb) (1 + ηµ− 3ηb) < 0 on the domain of our interest. If we can
show an (negative) upper bound for the derivative as q′(b) < −1 on a proper domain, then it is fair to
say that, from Exp(63), xtyt < µ+ 1

2η . Then we have

yt+1 − xt+1

yt − xt
= 1− η(µ− xtyt) < 1− η

(
µ−

(
µ− 1

2η

))
=

3

2
. (64)

Then, combining Exp(64, 62), it tells

yt+2 − xt+2

yt − xt
< 2−K. (65)

The remaining is to show q′(b) < −1 on a proper domain. We have q′(b) = (1 +ηµ−2ηb)2− (ηb)2,
which is equal to 1 − 2ηµ < −1 when b = µ. Meanwhile, the derivative of q′(b) is q′′(b) =
−2η(ηb+ (1 + ηµ− 2ηb)) = −2η(1 + ηµ− ηb), which is negative when b < µ+ 1

η . As a result, it
always holds q′(b) < −1 when b < µ+ 1

η .
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(I.3) If xt+1yt+1 ≥ x2
s

Denoting again b = xtyt, the above inequality in is saying, with b > µ,

p(b) = (1− η (µ− b))
(

1− η
(
µ− b (1 + η (µ− b))2

))
< 1. (66)

After expanding p(·), we have

p(b)− 1 = η (µ− b)
(
−2 + η (µ− b) + 2ηb− η2b (µ− b)− η3b (µ− b)2

)
.

Apparently p(µ) = 1. So it is necessary to investigate whether p′(b) < 0 on b > µ, as

p′(b) = 2− 2ηb+ (µ− b)
(
η2 (1 + η (µ− b)) (−µ+ 3b) + η3b (µ− b)

)
.

Since ηb > 1 and b > µ, it is enough to require

(1 + η (µ− b)) (−µ+ 3b) + ηb (µ− b) > 0

(1 + η(µ− b))(−µ+ b) + ηb(µ− b) + 2b(1 + η(µ− b)) > 0.

It suffices to show

η(µ− b) + 2(1 + η(µ− b)) = 2 + 3η(µ− b) > 0. (67)

Since xt+1yt+1 ≥ x2
s = 1

3

(
µ+ 1

η

)
, it holds

b (1 + η(µ− b))2 ≥ 1

3

(
µ+

1

η

)

2 + 3η(µ− b) ≥

√√√√3
(
µ+ 1

η

)
b

− 1 > 0,

where the last inequality holds because: if b ≥ 3
(
µ+ 1

η

)
, then 1+η(µ−b) ≤ −2ηµ−2 < 0, which

contradicts with the assumption that both xt+1, yt+1 are positive. As a result, the above argument
gives

yt+2 − xt+2

yt − xt
< p(b) < 1− 2(K − 1)(b− µ). (68)

Part II. To show yt+2 − xt+2 > −(yt − xt)
Since xtyt > µ, we have 1− η(µ− xtyt) > 1. Combining with 1− η(µ− xtyt) < 2, it holds

yt+1 − xt+1

yt − xt
= 1− η(µ− xtyt) ∈ (1, 2).

So the remaining is to have yt+2−xt+2

yt+1−xt+1
> −0.5. Actually it is 1−η(µ−xt+1yt+1) ≥ 1−ηµ = 1−K.

Therefore, we have

yt+2 − xt+2

yt − xt
> −1 + (3− 2K), (69)

as required.

Part III. To show yt − xt converges to 0

From Exp (61, 65, 68, 69), we have for points in P , |y−x| is a monotone strictly decreasing sequence
lower bounded by 0. Hence it is convergent. Actually it converges to 0. If not, assuming it converges
to ε > 0, the next point will have the difference as ε̃ < ε as well as all following points. Hence, the
contradiction gives the convergence to 0.
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H PROOF OF LEMMA 3

Lemma 6 (Restatement of Lemma 3). In the setting of Theorem 5, denote the initialization as
m = |y0−x0|√

µ and x0y0 > µ. Then, during the whole process, both x and y will always stay positive,

denoting p = 4

(m+
√
m2+4)

2 and q = (1 + p)2, if

max

{
η(x0y0 − µ),

4

27
(1 +K)

3
+

(
2

3
K2 − 1

3
K +

qK2

2(K + 1)
m2

)
qm2 −K

}
< p.

Proof. Considering xtyt > µ, one step of gradient descent returns

xt+1 = xt + η(µ− xtyt)yt
yt+1 = yt + η(µ− xtyt)xt.

To have both xt+1 > 0, yt+1 > 0, it suffices to have

η(xtyt − µ) < min

{
yt
xt
,
xt
yt

}
. (70)

This inequality will be the main target we need to resolve in this proof.

First, we are to show

min

{
y0

x0
,
x0

y0

}
>

4(
m+

√
m2 + 4

)2 .
With the difference fixed as m = (y0 − x0)/

√
µ, assuming y0 > x0, we have m/y0 = (1 −

x0/y0)/
√
µ. if x0y0 increases, both x0 and y0 increase then m/y0 decreases, which means x0/y0

increases. As a result, we have

min

{
y0

x0
,
x0

y0

}
> min

{
y0

x0
,
x0

y0

} ∣∣∣∣∣
x0y0=µ

=
4(

m+
√
m2 + 4

)2 .
Therefore, at initialization, to have positive x1 and y1, it is enough to require

η(x0y0 − µ) <
4(

m+
√
m2 + 4

)2 , r.
From Theorem 5, it is guaranteed that |xt−yt| < |x0−y0| with t ≥ 2 until it reaches xtyt > µ, with
which r is still a good lower bound for min{yt/xt, xt/yt}. So what remains to show is it satisfies
η(xtyt − µ) < r for the next first time xtyt > µ. If this holds, we can always iteratively show, for
any xtyt > µ along gradient descent,

η(xtyt − µ) < r < min

{
yt
xt
,
xt
yt

}
.

Note that r itself is independent of xtyt and all the history, so it is ideal to compute a uniform upper
bound of η(xtyt − µ) with any pair of (xt−1, yt−1) satisfying xt−1yt−1 < µ. Actually it is possible,
since we have |xt−1 − yt−1| bounded as in Theorem 5.

Assume xiyi > µ and it satisfies the condition of η(xiyi − µ) < r and |xi − yi| < |x0 − y0|. As in
(54), we have

xi+1 − yi+1

xi − yi
= 1− η (µ− xiyi) ∈ (1, 1 + r). (71)

Hence, it suffices to get the maximum value of g(z), with z ∈ (0, µ), as

g(z) = z (1 + η(µ− z))2
+ η(µ− z)(1 + r)2(x0 − y0)2, (72)
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which is from (56). Denote z̄ = argmax g(z). Obviously z̄ < 1
3 (µ+ 1

η ) , zb, because the first term
of g(z) achieves maximum at z = 1

3 (µ+ 1
η ) and the second term is in a decreasing manner with z.

Then let’s take the derivative of g(z) as

g′(z) = (1 + η(µ− z)) (1 + ηµ− 3ηz)− η(1 + r)2(x0 − y0)2

= (1 + η(µ− z))
(

1 + ηµ− 3ηz − η(1 + r)2(x0 − y0)2

1 + η(µ− z)

)
,

where the first term is always positive, so we have

1 + ηµ− 3ηz̄ − η(1 + r)2(x0 − y0)2

1 + η(µ− z̄)
= 0, (73)

which means

z̄ =
1

3η

(
1 + ηµ− η(1 + r)2(x0 − y0)2

1 + η(µ− z̄)

)
(74)

>
1

3η

(
1 + ηµ− η(1 + r)2(x0 − y0)2

1 + η(µ− 1
3 (µ+ 1

η ))

)
(75)

=
1

3

(
µ+

1

η
− 3(1 + r)2

2(η + 1)
(x0 − y0)2

)
(76)

, zs, (77)

where the inequality is from z̄ < 1
3 (µ+ 1

η ). As a result, it is safe to say

g(z) ≤ z (1 + η(µ− z))2

∣∣∣∣
z=zb

+ η(µ− z)(1 + r)2(x0 − y0)2

∣∣∣∣
z=zs

(78)

=
4

27
(1 + ηµ)3 · 1

η
+ η(1 + r)2

(
2

3
µ− 1

3η
+

2

ηµ+ 1
(x0 − y0)2

)
(x0 − y0)2, (79)

with which we are able to compute max η(g(z)− µ), which is exactly the final result.

I PROOF OF THEOREM 3

Theorem 11 (Restatement of Theorem 3). In the above setting, consider a teacher neuron w̃ = [1, 0]

and set the learning rate η = Kd with K ∈ (1, 1.1]. Initialize the student as
∥∥w(0)

∥∥ = v(0) , ε ∈
(0, 0.10] and 〈w(0), w̃〉 ≥ 0. Then, for t ≥ T1 + 4, w(t)

y decays as

w(t)
y < 0.1 · (1− 0.030K)t−T1−4, T1 ≤

⌈
log2.56

1.35

πβ2

⌉
, β =

(
1 +

1.1

π

)
ε.
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Proof. We restate the update rules as

∆v(t) := v(t+1) − v(t) = Kw(t)
x

[
(−v(t)w(t)

x + 1)− v(t)w(t)
y

w
(t)
y

w
(t)
x

− 1

π

(
arctan

(
w

(t)
y

w
(t)
x

)
− w

(t)
y

w
(t)
x

)]
,

= Kw(t)
x

[
(−v(t)w(t)

x + 1)− 1

π

(
arctan

(
w

(t)
y

w
(t)
x

)
− w

(t)
x w

(t)
y∥∥w(t)
∥∥2

)]

+K
(w

(t)
y )2

v(t)

(
−(v(t))2 +

v(t)w
(t)
y

π
∥∥w(t)

∥∥2

)
(80)

∆w(t)
x := w(t+1)

x − w(t)
x = Kv(t)

[
(−v(t)w(t)

x + 1)− 1

π

(
arctan

(
w

(t)
y

w
(t)
x

)
− w

(t)
x w

(t)
y∥∥w(t)
∥∥2

)]
,

(81)

∆w(t)
y = w(t)

y ·K

(
−(v(t))2 +

v(t)w
(t)
y

π
∥∥w(t)

∥∥2

)
, (82)

w(t+1)
y =

∣∣∣w(t)
y + ∆w(t)

y

∣∣∣ . (83)

For simplicity, we will omit all superscripts of time t unless clarification is necessary. From (83), if
the target is to show wy decaying with a linear rate, it suffices to bound the factor term in (82) (by a
considerable margin) as

−2 < K

(
−v2 +

vwy

π ‖w‖2

)
< 0. (84)

The technical part is the second inequality of (84). If v, wx > 0, it is equivalent to

vwx >
wxwy

π ‖w‖2
=

wxwy
π(w2

x + w2
y)
,

where the RHS is smaller than or equal to 1
2π . Hence, 1

2π is a special threshold with which we will
frequently compare vwx. Another important variable to control is v − wx that reveals how the two
layers are balanced. If it is too large, for the iteration v(t+1)w

(t+1)
x may explode as shown in the 2-D

case.

The main idea of our proof is that

• Stage 1 with vwx ≤ wxwy
π‖w‖2 : in this stage, wy grows but it grows in a smaller rate than that

of v and wx. Therefore, since we have an upper bound for vwx to stay in this stage, we
are able to compute the upper bound of #iterations to finish this stage, which is T1 in the
theorem. At the end of this stage, both of v−wx and wy are bounded under our assumption
of initialization.

• Stage 2 with vwx >
wxwy
π‖w‖2 : in this stage, wy decreases. Since our range of a large learning

rate is relatively narrow (1 < K ≤ 1.1), we are able to compute bounds of vwx, v−wx and
wy . After eight iterations, it falls into (and stays in) a bounded basin of these three terms, in
which wy decays at least in a linear rate.

Stage 1.
We are to show that, in the last iteration of this stage, there are three facts: 1) vwx ≤ 1

2π , 2)
v − wx ∈ [−0.017, 0.17], and 3) wy ≤ 0.44.

At initialization, we assume v(0) =
∥∥w(0)

∥∥. Denote α0 = arctan(w
(0)
y /w

(0)
x ) ∈ [0, π/2]. So for

next iteration we have

w(1)
y = v(0)

(
1 +K

(
−(v(0))2 +

1

π
sinα0

))
, (85)

w(1)
x = v(0)

[
cosα0 +K

(
1− (v(0))2 cosα0 +

cosα0 sinα0 − α0

π

)]
. (86)
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Apparently w(1)
y increases with α0 increasing. And

∂α0
w(1)
x = v(0)

[
− sinα0 +K

(
(v(0))2 sinα0 +

− sin2 α0 + cos2 α0 − 1

π

)]
= v(0)

[
− sinα0 +K

((
(v(0))2 − sinα0

π

)
sinα0 +

− sin2 α0

π

)]
.

Since in stage 1 it holds ∆wy > 0 which means −(v(0))2 + 1
π sinα0 > 0 in (85). So it follows

∂α0
w

(1)
x ≤ 0. Combining the above arguments, we have

w(1)
x ≥ w(1)

x |α0=π
2

=
K

2
v(0),

w(1)
y ≤ w(1)

y |α0=π
2

=

(
1 +

K

π
−K(v(0))2

)
v(0) ≤

(
1 +

K

π

)
v(0),

w
(1)
y

w
(1)
x

≤
2 + 2K

π

K
≤ 2.7.

Regarding v
wy

, it has v(0) ≥ w(0)
y at initialization due to v(0) =

∥∥w(0)
∥∥. From (80, 81, 82), we have

v∆v = wx∆wx + wy∆wy. So it holds v∆v ≥ y∆y. Meanwhile, ∆wy
v = K(−vwy +

w2
y

π‖w‖2 ) ∈

[0, Kπ ]. From Lemma 7, given v(t) ≥ w
(t)
y and ∆wy

v ∈ [0, 1] for any t in this stage, it always holds
v(t+1) ≥ w(t+1)

y .

Therefore, it is fair to say

v(1)w
(1)
x

(w
(1)
y )2

≥ 1

2.7
.

Additionally, to bound the term vwy/ ‖w‖2 in ∆wy , we would like to show it always has vwy ≤ ‖w‖2.
At initialization, it naturally holds. Then, for the every next iteration, given it holds in the last iteration,
we have

(v + ∆v)(wy + ∆wy)− [(wx + ∆wx)2 + (wy + ∆wy)2]

= (v +
wx∆wx + wy∆wy

v
)(wy + ∆wy)− [(wx + ∆wx)2 + (wy + ∆wy)2]

= vwy + v∆wy + wx∆wx(
wy
v

+
∆wy
v

) + (wy∆wy + (∆wy)2)
wy
v
− [(wx + ∆wx)2 + (wy + ∆wy)2]

≤ vwy + v∆wy + wy∆wy
wy
v
− (w2

x + w2
y + 2wy∆wy + (∆wx)2)

≤ v∆wy + wy∆wy
wy
v
− 2wy∆wy − (∆wx)2

= v∆wy(1− wy
v

)2 − (∆wx)2

≤ v∆wy − (∆wx)2

where the first equality uses v∆v = wx∆wx + wy∆wy , the first inequality uses the proven v ≥ wy
and v ≥ ∆wy, the second inequality uses the assumption vwy ≤ ‖w‖2. Now we are to show
v∆wy − (∆wx)2 ≤ 0. We have

v∆wy − (∆wx)2 ≤ Kv2
w2
y

π ‖w‖2
−K2v2

(
1− 1

2π
− γ(t)

)2

,

γ(t) =
1

π

(
arctan

(
w

(t)
y

w
(t)
x

)
− w

(t)
x w

(t)
y∥∥w(t)
∥∥2

)
.
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Since we have proven w(1)
y /w

(1)
x ≤ 2.7, it is easy to check that

1

π

(
1 + (w

(1)
x

w
(1)
y

)2

) ≤ (1− 1

2π
− γ(1))2.

As a result, v∆wy − (∆wx)2 ≤ 0 at time 1. Furthermore, by checking each term, v∆wy − (∆wx)2

decreases with wy/wx decreasing. We will soon show that wy/wx itself decreases, by showing the
growth ratio of wx is larger than that of wy .

Our target lower bound of the growth ratio of wx is that

∆wx
wx

≥ 1− 1

π
− γ, (87)

which is larger than the growth ratio ofwy bounded by 1
π due to v∆wy < ‖w‖2. So it suffices to show

Kv/wx ≥ 1. Assuming Kv/wx ≥ 1 for the current step, we need to show Kv(t+1)/w
(t+1)
x ≥ 1

also holds for the next step. Let’s denote

A(t) = K

[
(−v(t)w(t)

x + 1)− 1

π

(
arctan

(
w

(t)
y

w
(t)
x

)
− w

(t)
x w

(t)
y∥∥w(t)
∥∥2

)]
. (88)

Then

(v + ∆v)− 1

K
(wx + ∆wx) ≥ v +Awx −

wx
K
− Av

K

= (v − wx
K

)(1−KA) + v(K − 1

K
)A. (89)

If KA ≤ 1, since K > 1 and A > 0, we have (89) as positive, which is what we need. If KA > 1,
then

(89) ≥ (v − wx
K

)(1−K2) + v(K − 1

K
)A

= ((−K +A)v + wx) (K − 1

K
),

where the first inequality is due to A ≤ K and the assumption of Kv(t)/w
(t)
x ≥ 1. Then it suffices

to show (−K + A)v + wx ≥ (−K + 1
K )v + wx ≥ 0. Note that −K + 1/K ∈ (−0.2, 0] when

K ∈ (1, 1.1]. It is easy to verify that v(1) ≤ 5w
(1)
x . Then, for the next step, we need to show

v(t+1) ≤ 5w
(t+1)
x given v(t) ≤ 5w(t+1). To prove this, we are to bound v − wx, as

v(t+1) − w(t+1)
x = (1−A)(v − w) +K

w2
y

v
(−v2 +

vwy

π ‖w‖2
)

≤ 0.4(v − w) +Kwy
w2
y

π ‖w‖2
≤ 0.4(v − w) +

Kwy
π

, (90)

where the first inequality is due to, when wy/wx ≤ 2.7,

A = K

[
−v(t)w(t)

x +
1

π

w
(t)
x w

(t)
y∥∥w(t)
∥∥2

]
+K

[
1− 1

π
arctan

(
w

(t)
y

w
(t)
x

)]

≥ K

[
1− 1

π
arctan

(
w

(t)
y

w
(t)
x

)]
≥ 0.6.

We will later show that v(t+1) − w(t+1) ≥ −0.1(v(t) − w(t)). Combining this with (90), it is safe to
say

v(t+1) − w(t+1) ≤ 0.4(v − w) +
Kwy
π
≤ 0.4× 4w +

K × 5w

π
≤ 4w,

35



Under review as a conference paper at ICLR 2023

where the second inequality is due to v ≤ 5w and v ≥ wy. Since w(t+1) ≥ w(t) (due to A > 0) in
this stage, we have v(t+1) ≤ 5w

(t+1)
x .

Combining the above discussion, we have prove (87). Obviously, when wy/wx ≤ 2.7, RHS of (87)
is at least 0.55, larger than 1.1/π, which is the upper bound of the ∆wy/wy. As a result, wy/wx
keeps decreasing.

The next step is to show the growing ratio of vwx is much larger than that of wy. From (81, 82), it
holds

v(t+1)w(t+1)
x = (v + ∆v)(wx + ∆wx) ≥ vwx +KA(v2 + w2

x) +K2A2vwx

≥ vwx(1 +A)2,

where the first inequality is due to ∆wy ≥ 0. It follows v(t+1)w
(t+1)
x /v(t)w

(t)
x ≥ 1.62 = 2.56.

So far, we have shown the following facts: under the defined initialization at time 0, starting from
time 1, we have

1. vwx ≤ 1/2π.

2. ∆wx/wx + 1 ≥ 1.55.

3. ∆wy/wy + 1 ≤ 1 +K/π.

4. wy/wx ≤ 2.7 and keeps decreasing.

5. v(t+1)w
(t+1)
x /v(t)w

(t)
x ≥ 2.56.

6. v ≥ wy .

7. v∆wy < (∆wx)2.

Now we are to use the above facts to bound vwx, wy and v − wx to the end of stage 1.

For vwx, in previous discussion, we have shown that vwx ≤ 1
2π . Actually, there is another special

value
wxwy

π(w2
x + w2

y)
= 0.104 when wy/wx = 2.7. (91)

This value is slightly larger than 1/4π. Hence, we would like to split the analysis into three parts: in
the first step of stage 2,

1. vwx ≥ 1
2π .

2. 1
4π ≤ vwx <

1
2π .

3. vwx < 1
4π .

Note that, although we are discussing the stage 1 in this section, investigating the lower bound of the
first step in stage 2 helps calculate the number of iterations in stage 1. Furthermore, it helps bound
several variables in stage 1.

Case (I). If vwx ≥ 1
2π in first step of stage 2:

Since we have prove v(1)w(1)
x

(w
(1)
y )2

≥ 1/2.7 and v(t+1)w
(t+1)
x /v(t)w

(t)
x ≥ 2.56, the number of iterations

for vwx to reach 1/2π is at most

T1 ≤

⌈
log2.56

1
2π

(w
(1)
y )2/2.7

⌉
. (92)

36



Under review as a conference paper at ICLR 2023

Meanwhile, starting from time 1, the growth ratio of wy is

(wy + ∆wy)/wy ≤ 1 +K(−v2 + 1/π) ≤ 1 + 1.1/π − (v(1))2 ≤ 1 + 1.1/π − (w(1)
y )2, (93)

where the first inequality is due to vwy ≤ ‖w‖2, the second is due to K > 1 and the third is from
v ≥ wy . Therefore, combining with (92), we can bound wy in the end of stage 1 as

wy ≤
(

1 + 1.1/π − (w(1)
y )2

)⌈log2.56

1
2π

(w
(1)
y )2/2.7

⌉
. (94)

Since it initializes as
∥∥w(0)

∥∥ ≤ 0.1, we have w(1)
y ≤ 0.1(1 + 1.1/π) = 0.135. Then, it can be

verified that, when w(1)
y ∈ (0, 0.135], it holds

wy ≤ 0.44. (95)

The next is to bound v − wx. Combining the update rules of v and wx in (80, 81), we have

∆(v − wx) := (v(t+1) − w(t+1)
x )− (v(t) − w(t)

x )

= K(v − wx)

(
vwx − 1 +

arctan(wy/wx)− wxwy
‖w‖2

π

)
+K

w2
y

v
(−v2 +

vwy

π ‖w‖2
).

(96)

Note that

−1 ≤ vwx − 1 +
arctan(wy/wx)− wxwy

‖w‖2

π
≤ −1 +

arctan(wy/wx)

π
, (97)

where the left is due to vwx > 0 and , the right is from ∆wy ≥ 0. When wy/wx ≤ 2.7, the RHS
follows −1 +

arctan(wy/wx)
π ≤ −0.6. So combining both sides tells

1 +K

(
vwx − 1 +

arctan(wy/wx)− wxwy
‖w‖2

π

)
∈ [−K + 1, 0.4] ⊂ [−0.1, 0.4]. (98)

Since ∆wy ≥ 0, we have 0 ≤ K
w2
y

v (−v2 +
vwy
π‖w‖2 ) ≤ K

π wy
w2
y

‖w‖2 . Note that at initialization

w
(0)
x ≤ v(0). Then it is easy to verify that

−0.01 ≤ −0.1(v(0) − w(0)) ≤ v(1) − w(1) ≤ (1 +
K

π
− K

2
)v(0) ≤ 0.082. (99)

Because the coefficient on the positive side in (98) is larger than 0.4 > 0.1, it is appropriate to upper
bound the v − wx as

v − wx ≤ max

{
0.082, 0.082 · 0.4T +

T∑
t=1

0.4t−1K

π
w(t)
y

(w
(t)
y )2∥∥w(t)
∥∥2

}

≤ max

0.082, 0.082 · 0.4T +

T∑
t=1

0.4t−1K

π
w(t)
y

1

1 + 1
2.7

(
1.55

1+K/π

)2(t−1)


≤ max

0.082, 0.082 · 0.4T +

T∑
t=1

0.4t−1 1.1 · 4.4
π

1

1 + 1
2.7

(
1.55

1+1.1/π

)2(t−1)

 ,

where the second inequality is from the different growth ratios of wx and wy . Note that here we take
all T ≥ 1 and pick the largest value of RHS to bound wy . It turns out

v − wx ≤ 0.17. (100)
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Furthermore, to lower bound v − wx, since obviously |v − wx| ≤ 0.17, it follows

v − wx ≥ −0.1 · |v − wx|max ≥ −0.017. (101)

Case (II). If 1
4π ≤ vwx <

1
2π in first step of stage 2:

Similar to the discussion in Case (I), we are able to compute the number of iterations for vwx to
reach 1/4π. It is at most

T1 ≤ dlog2.56

1
4π

(w
(1)
y )2/2.7

e. (102)

Accordingly, wy is bounded as

wy ≤
(

1 + 1.1/π − (w(1)
y )2

)dlog2.56

1
4π

(w
(1)
y )2/2.7

e
≤ 0.37. (103)

For simplicity, we just keep the bounds for v − wx as in Case (I), as

v − wx ∈ [−0.017, 0.17]. (104)

Case (III). If vwx < 1
4π in first step of stage 2:

From the condition, we know vwx <
1

4π as well in the last step of stage 1. Since ∆wy > 0 in stage
1, it tells

1

π

wxwy

‖w‖2
< vwx ≤

1

4π
, (105)

which means

max{wx
wy

,
wy
wx
} ≥ 2 +

√
3. (106)

Since 2 +
√

3 > 2.7, if wy/wx ≥ 2 +
√

3, then for time 1, (v(1), w
(1)
x , w

(1)
y ) is already in the stage

2. However, it is not possible because
∥∥w(0)

∥∥ = v(0) ≤ 0.1, which means v(1)w
(1)
x can not reach

1
π

2.7
1+2.72 .

Therefore, the only possible is wx
wy
≥ 2 +

√
3. In this case, we are able to bound wy as

wy ≤ (2−
√

3)wx ≤ (2−
√

3)

(√
1

4π
+ 0.00852 + 0.0085

)
≤ 0.078, (107)

where the second inequality is due to vwx ≤ 1
4π and v − wx ≥ −0.017. Note that here we still use

the bound of v − wx from Case (I), although it is loose somehow but it is enough for our analysis.

We leave the analysis of the bound of number of iterations to the end of this section.

Stage 2.
In the case (I) of stage 1, where the first step in stage 2 is with vwx ≥ 1

2π , it has v − wx ∈
[−0.017, 0.17] and wy ≤ 0.44. In the case (II), where the first step of stage 2 is with vwx ∈ [ 1

4π ,
1

2π ],
it has v − wx ∈ [−0.017, 0.17] and wy ≤ 0.37. In the case (III), where the first step of stage 2 is
with vwx ∈ [ 1

4π ,
1

2π ], it has v − wx ∈ [−0.017, 0.17] and wy ≤ 0.078.
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To upper bound vwx in the first step of stage 2, there are two candidates. One is from the case (I),

v(t+1)w(t+1)
x = vwx

1 +K(1− vwx −
arctan(

wy
wx

)− wy/wx
1+(wy/wx)2

π
)

2

+K
wxw

2
y

v

(
−v2 +

vwy

π ‖w‖2

)

+K(v − wx)2

1 +K(1− vwx −
arctan(

wy
wx

)− wy/wx
1+(wy/wx)2

π
)


≤ vwx (1 +K(1− vwx))

2
+K

wxw
2
y

wx

(
−vwx +

wxwy

π ‖w‖2

)
+K(v − wx)2 (1 +K(1− vwx))

≤ 1

2π

(
1 + 1.1(1− 1

2π
)

)2

+ 1.1 · 0.442

(
− 1

4π
+

1

2π

)
+ 1.1 · 0.172

(
1 + 1.1(1− 1

2π
)

)
≤ 0.668, (108)

where we use vwx ≥ 1/4π, x/(1 + x2) ≤ 0.5 for any x.

One is from the case (II),

v(t+1)w(t+1)
x ≤ vwx (1 +K(1− vwx))

2
+K

wxw
2
y

wx

(
−vwx +

wxwy

π ‖w‖2

)
+K(v − wx)2 (1 +K(1− vwx))

≤ 1

4π

(
1 + 1.1(1− 1

4π
)

)2

+ 1.1 · 0.372

(
1

2π

)
+ 1.1 · 0.172

(
1 + 1.1(1− 1

4π
)

)
≤ 0.48, (109)

where we use vwx ≤ 1/4π, x/(1 + x2) ≤ 0.5 for any x.

Therefore, we can see that, in the first step of stage 2,

vwx ≤ 0.668. (110)

Next we are going to show how the iteration goes in the stage 2. In Case (I), there are three facts:

1. wy ≤ 0.44.

2. v − wx ∈ [−0.017, 0.17].

3. vwx ∈ [ 1
2π , 0.668].

Similarly, in Case (II), there are three facts as well:

1. wy ≤ 0.37.

2. v − wx ∈ [−0.017, 0.17].

3. vwx ∈ [ 1
4π ,

1
2π ].

The main idea is to find a basin that any iteration with the above properties (i.e., in the interval) will
converge to and then stay in. The method is to iteratively compute the ranges of the variables for
several steps, thanks to the narrow range of K. Before explicitly computing the ranges, let’s write
down the computing method, depending on whether or not vwx ≥ 1.

Consider any iteration with vwx ∈ [m1,m2], v − wx ∈ [d1, d2], wy ≤ e, we compute the bounds of
v(t+1)w

(t+1)
x , v(t+1) − w(t+1)

x , w
(t+1)
y in the following process (naturally assuming d1 < 0 < d2)

1. If m1 ≥ 1:
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(a) Compute wx ≥
√
m1 + (d2/2)2 − d2/2 , f .

(b) Compute wy
wx
≤ e/f , g.

(c) Compute
arctan(wy/wx)−wxwy

‖w‖2

π ≤ arctan(g)−g/(1+g2)
π , h.

(d) Compute v(t+1)w
(t+1)
x ≥ m2(1 + 1.1(1 − m2 − h))2 + 1.1(1 − m2 −

h) max{|d1|, |d2|}2 − 1.1e2m2. This is from

v(t+1)w(t+1)
x ≥ vwx (1 +K(1− vwx − h))

2
+K

wxw
2
y

v

(
−v2 +

vwy

π ‖w‖2

)
+K(v − wx)2 (1 +K(1− vwx − h))

≥ vwx (1 +K(1− vwx − h))
2 −Kw2

y · vwx
+K(v − wx)2 (1 +K(1− vwx − h)) .

(e) Compute v(t+1)w
(t+1)
x ≤ m1(1 + 1.0(1 −m1))2. This is due to x(1 + K(1 − x))2

decreases with x increasing when x ≥ 1.

(f) Compute v(t+1) − w(t+1)
x ∈ [d1(1 + 1.1(m2 − 1 + h)− 1.1e2 · (

√
m2 + (d2/2)2 +

d2/2)), d2(1 + 1.1(m2 − 1 + h))]. This is due to

∆v −∆wx = K(v − wx)

(
vwx − 1 +

1

π
(arctan(α)− wxwy

‖w‖2
)

)
+K

w2
y

v

(
−v2 +

vwy

π ‖w‖2

)
,

where vwx ≥ 1, the last term is between −Kvw2
y and 0.

(g) Compute w(t+1)
y ≤ e ·max{|j1|, |j2|}, where

j1 = 1 + 1.1

√
m1 + (d2/2)2 + d2/2√
m1 + (d2/2)2 − d2/2

· (−m2), (111)

j2 = 1 + 1.0

√
m1 + (d1/2)2 − d1/2√
m1 + (d1/2)2 + d1/2

· (−m1 +
1

2π
). (112)

This is due to
∆wy
wy

= K
v

wx
(−vwx +

1

π

wxwy

‖w‖2
),

then we would like to have the smallest value as j1 − 1 and the largest value as j2 − 1.
Since wy is always non-negative, taking the maximum absolute value gives the upper
bound.

2. If m2 < 1:

(a) Compute wx ≥
√
m1 + (d2/2)2 − d2/2 , f .

(b) Compute wy
wx
≤ e/f , g.

(c) Compute
arctan(wy/wx)−wxwy

‖w‖2

π ≤ arctan(g)−g/(1+g2)
π , h.

(d) Compute v(t+1)w
(t+1)
x ≥ minx∈[m1,m2] x(1 + 1.0(1− x− h))2− 1.1e2x. Compared

with the case of m1 ≥ 1, we drop the term 1.1(1−m2 − h) max{|d1|, |d2|}2 because
it is possible to have v − wx = 0 in some iterations.

(e) Compute v(t+1)w
(t+1)
x ≤ maxx∈[m1,m2] x(1 + 1.1(1 − x))2 + 1.1(1 −

x) max{|d1|, |d2|}2. Compared with the case of m1 ≥ 1, we add a term depend-
ing on the |v − wx|max because it enlarges vwx in the in-balanced case.

(f) Compute v(t+1) − w(t+1)
x ∈ [d1(1 + 1.1(m2 − 1 + h)− 1.1e2 · (

√
m2 + (d2/2)2 +

d2/2)), d2(1 + 1.1(m2 − 1 + h))]. In fact, a rigorous left bound should include more
terms to select a minimum from. Here it is simple because it keeps 1 +K(m1−1) ≥ 0
in the following computing, so we do not need to worry about the flipping sign of d1

and d2.
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(g) Compute w(t+1)
y ≤ e ·max{|j1|, |j2|}, where j1, j2 are the same with those in the case

of m1 ≥ 1.

Therefore, with the above process, we are able to brutally compute the ranges of
v(t+1)w

(t+1)
x , v(t+1) − w(t+1)

x , w
(t+1)
y from the current ranges. Note that this process plays a role of

building a mapping from one interval to another interval, which covers all points from the source
interval. However, it is loose to some extent because gradient descent is a mapping from a point to
another point. The advantage of such a loose method is feasibility of obtaining bounds while losing
tightness. To achieve tightness, later we will also include some wisdom in a point-to-point style.

Also note that, a nice way to combine tightness and efficiency in this method is to split and to merge
intervals when necessary.

For Case (I):

Now we are to compute the ranges starting from the interval where I = {wy ≤ 0.44, v − wx ∈
[−0.017, 0.17], vwx ∈ [ 1

2π , 0.668]}. First, we split it into three intervals:

1. I1 = {wy ≤ 0.44, v − wx ∈ [−0.017, 0.17], vwx ∈ [0.213, 0.4]}.

2. I2 = {wy ≤ 0.44, v − wx ∈ [−0.017, 0.17], vwx ∈ [0.4, 0.668]}.

3. I30 = {wy ≤ 0.44, v − wx ∈ [−0.017, 0.17], vwx ∈ [ 1
2π , 0.213]}.

Then, following the above method with splitting and merging intervals, we have

1. Starting from I1,

(a) Step 1: I1 mapps to I3 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈
[0.55, 1.12131]}.

(b) Step 2: Splitting I3, we have
i. I4 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [0.55, 0.8]}.

ii. I5 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [0.8, 0.9]}.
iii. I6 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [0.9, 1.0]}.
iv. I7 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [1.0, 1.12131]}.
Then, we have

i. I4 mapps to
I8 = {wy ≤ 0.214, v − wx ∈ [−0.309, 0.0545], vwx ∈ [0.942, 1.25786]}.

ii. I5 mapps to
I9 = {wy ≤ 0.0966, v − wx ∈ [−0.335, 0.0613], vwx ∈ [0.880, 1.19649]}.

iii. I6 mapps to
I10 = {wy ≤ 0.0756, v − wx ∈ [−0.362, 0.068], vwx ∈ [0.777894, 1.11178]}.

iv. I7 mapps to
I11 = {wy ≤ 0.134, v − wx ∈ [−0.394, 0.0782], vwx ∈ [0.595, 1]}.

(c) Step 3: Splitting and merging I8, I9, I10, I11, we have
i. I12 = {wy ≤ 0.134, v − wx ∈ [−0.394, 0.078], vwx ∈ [0.595, 0.777]}.

ii. I13 = {wy ≤ 0.214, v − wx ∈ [−0.394, 0.078], vwx ∈ [0.777, 1]}.
iii. I14 = {wy ≤ 0.214, v − wx ∈ [−0.362, 0.068], vwx ∈ [1, 1.11178]}.
iv. I15 = {wy ≤ 0.214, v − wx ∈ [−0.309, 0.061], vwx ∈ [1.11178, 1.25786]}.
Then, we have

i. I12 mapps to
I16 = {wy ≤ 0.0372, v − wx ∈ [−0.317, 0.061], vwx ∈ [1.14493, 1.31246]}.

ii. I13 mapps to
I17 = {wy ≤ 0.0432, v − wx ∈ [−0.448, 0.078], vwx ∈ [0.943633, 1.24393]}.

iii. I14 mapps to
I18 = {wy ≤ 0.0662, v − wx ∈ [−0.462, 0.077], vwx ∈ [0.77846, 1]}.

iv. I15 mapps to
I20 = {wy ≤ 0.0998, v − wx ∈ [−0.456, 0.0785], vwx ∈ [0.550, 0.878]}.
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2. Starting from I2,

(a) Step 1: I2 mapps to I21 = {wy ≤ 0.332, v − wx ∈ [−0.205, 0.114], vwx ∈
[0.864, 1.25894]}

(b) Step 2: Splitting I21, we have
i. I22 = {wy ≤ 0.332, v − wx ∈ [−0.205, 0.114], vwx ∈ [0.864, 1]}.

ii. I23 = {wy ≤ 0.332, v − wx ∈ [−0.205, 0.114], vwx ∈ [1, 1.125894]}.
Then, we have

i. I22 mapps to
I24 = {wy ≤ 0.081, v − wx ∈ [−0.336, 0.114], vwx ∈ [0.858, 1.14813]}.

ii. I23 mapps to
I25 = {wy ≤ 0.184, v − wx ∈ [−0.409, 0.148], vwx ∈ [0.463, 1]}.

(c) Step 3: Splitting and merging I24, I25, we have
i. I26 = {wy ≤ 0.184, v − wx ∈ [−0.409, 0.148], vwx ∈ [0.463, 1]}.

ii. I27 = {wy ≤ 0.081, v − wx ∈ [−0.336, 0.114], vwx ∈ [1, 1.14813]}.
Then, we have

i. I26 mapps to
I28 = {wy ≤ 0.083, v − wx ∈ [−0.452, 0.148], vwx ∈ [0.952783, 1.31778]}.

ii. I27 mapps to
I29 = {wy ≤ 0.034, v − wx ∈ [−0.399, 0.133], vwx ∈ [0.777, 1]}.

3. Starting from I30,

(a) Step 1: I30 mapps to I31 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈
[0.422, 0.767]}

(b) Step 2: Splitting I31, we have
i. I32 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈ [0.422, 0.5]}.

ii. I33 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈ [0.5, 0.6]}.
iii. I34 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈ [0.6, 0.767]}.
Then, we have

i. I32 mapps to
I35 = {wy ≤ 0.301, v − wx ∈ [−0.218, 0.0185], vwx ∈ [0.901, 1.20971]}.

ii. I33 mapps to
I36 = {wy ≤ 0.262, v − wx ∈ [−0.245, 0.023], vwx ∈ [0.96322, 1.25093]}.

iii. I34 mapps to
I37 = {wy ≤ 0.213, v − wx ∈ [−0.288, 0.029], vwx ∈ [0.947, 1.25345]}.

(c) Step 3: Splitting and merging I35, I36, I37, we have
i. I38 = {wy ≤ 0.301, v − wx ∈ [−0.288, 0.029], vwx ∈ [0.901, 1]}.

ii. I39 = {wy ≤ 0.301, v − wx ∈ [−0.288, 0.029], vwx ∈ [1, 1.1]}.
iii. I40 = {wy ≤ 0.301, v − wx ∈ [−0.288, 0.029], vwx ∈ [1.1, 1.25093]}.
iv. I41 = {wy ≤ 0.262, v − wx ∈ [−0.245, 0.029], vwx ∈ [1.25093, 1.25345]}.
Then, we have

i. I38 mapps to
I42 = {wy ≤ 0.0404, v − wx ∈ [−0.392, 0.029], vwx ∈ [0.888, 1.11696]}.

ii. I39 mapps to
I43 = {wy ≤ 0.0740, v − wx ∈ [−0.428, 0.033], vwx ∈ [0.741, 1]}.

iii. I40 mapps to
I44 = {wy ≤ 0.125, v − wx ∈ [−0.482, 0.038], vwx ∈ [0.497, 0.891]}.

iv. I41 mapps to
I45 = {wy ≤ 0.109, v − wx ∈ [−0.400, 0.038], vwx ∈ [0.534, 0.702]}.

(d) Step 4: Splitting and merging I42, I43, I44, I45, we have
i. I46 = {wy ≤ 0.125, v − wx ∈ [−0.482, 0.038], vwx ∈ [0.497, 0.891]}.

ii. I47 = {wy ≤ 0.074, v − wx ∈ [−0.428, 0.033], vwx ∈ [0.891, 1]}.
iii. I48 = {wy ≤ 0.041, v − wx ∈ [−0.40, 0.029], vwx ∈ [1, 1.11696]}.
Then, we have
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i. I46 mapps to
I49 = {wy ≤ 0.0424, v − wx ∈ [−0.442, 0.034], vwx ∈ [1.07853, 1.34708]}.

ii. I47 mapps to
I50 = {wy ≤ 0.0110, v − wx ∈ [−0.435, 0.033], vwx ∈ [0.993, 1.13943]}.

iii. I48 mapps to
I51 = {wy ≤ 0.0109, v − wx ∈ [−0.454, 0.033], vwx ∈ [0.497, 0.891]}.

For Case (II):

Now we are to compute the ranges starting from the interval where I = {wy ≤ 0.37, v − wx ∈
[−0.017, 0.17], vwx ∈ [ 1

4π ,
1

2π ]}. First, we denote it as

1. I52 = {wy ≤ 0.37, v − wx ∈ [−0.017, 0.17], vwx ∈ [ 1
4π ,

1
2π ].

Then, following the above method with splitting and merging intervals, we have

1. Starting from I52,

(a) Step 1: I52 mapps to I53 = {wy ≤ 0.37, v − wx ∈ [−0.079, 0.0271], vwx ∈
[0.222, 0.616]}.

(b) Step 2: I53 mapps to I54 = {wy ≤ 0.343, v − wx ∈ [−0.171, 0.017], vwx ∈
[0.621, 1.24894]}.

(c) Step 3: Splitting I54, we have
i. I55 = {wy ≤ 0.343, v − wx ∈ [−0.171, 0.017], vwx ∈ [0.621, 1}.

ii. I56 = {wy ≤ 0.343, v − wx ∈ [−0.171, 0.017], vwx ∈ [1, 1.24894]}.
Then, we have

i. I55 mapps to
I57 = {wy ≤ 0.150, v − wx ∈ [−0.305, 0.017], vwx ∈ [0.840, 1.25908]}.

ii. I56 mapps to
I58 = {wy ≤ 0.137, v − wx ∈ [−0.367, 0.022], vwx ∈ [0.472, 1]}.

(d) Step 4: Splitting and merging I57, I58, we have
i.

ii. I59 = {wy ≤ 0.150, v − wx ∈ [−0.367, 0.022], vwx ∈ [0.472, 1}.
iii.
iv. I60 = {wy ≤ 0.150, v − wx ∈ [−0.305, 0.017], vwx ∈ [1, 1.25908}.
Then, we have

i. I59 mapps to
I61 = {wy ≤ 0.0705, v − wx ∈ [−0.393, 0.022], vwx ∈ [0.971, 1.304]}.

ii. I60 mapps to
I62 = {wy ≤ 0.0613, v − wx ∈ [−0.421, 0.0219], vwx ∈ [0.583, 1]}.

For both Cases (I, II):

From I16−20, I28, I29, I49−51, I61, I62, we can see that it has fallen into an interval If = {wy <
0.1, v − wx ∈ [−0.462, 0.148], vwx ∈ [0.497, 1.34078]}. Something special here is that wy has
been much smaller than wx. More broadly, let’s define an interval Is generated by Ig = {wy =
0, v − wx ∈ [−0.464, 0.148], vwx ∈ [1, 1.5]}. Here “generated” means

Is =
⋃
T≥t

{(v(T ), w(T )
x , w(T )

y )|(v(t)
t , w(t)

x , w(t)
y ) ∈ Ig}. (113)

Then each element (v, wx, wy) ∈ Is has the following properties:

1. wy = 0.

2. vwx ∈ [0.181, 1.5].

3. If vwx ≤ 1, then v − wx ∈ [−0.735, 0.23]. If vwx > 1, then v − wx ∈ [−0.474, 0.148].
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The first property is obvious. The third can be proven as follows: for each element (v, wx, wy) ∈ Ig ,
it has v(t+1) − w(t+1)

x = (v − wx) (1 +K(vwx − 1)), where the ratio 1 + K(vwx − 1) ∈ [1, 1 +
1.1(1.5 − 1)] when vwx ∈ [1, 1.5]. Furthermore, in the proven 2-D case, we have shown that “if

vwx > 1 with some mild conditions, then v(t+2)−w(t+2)
x

v−wx ∈ (−1, 1)”. Actually it can be tighter as
v(t+2)−w(t+2)

x

v−wx ∈ (−0.2, 1) because here K ≤ 1.1 while the original bound is for K ≤ 1.5. The
condition of bounded |v − wx| can also be verified, the purpose of which is to keep v, wx always
positive. Then the bound [−0.2, 1] will tell v − wx ∈ [−0.474, 0.148] on vwx ≥ 1, because

0.148

0.474
> 0.2,

0.474

0.148
> 0.2.

For the second property, the left bound can be verified as

min
x∈[1,1.5]

x(1 + 1.1(1− x))2 + 1.1(1− x) · 0.4742 =

(
x(1 + 1.1(1− x))2 + 1.1(1− x) · 0.4742

)∣∣∣∣
x=1.5

≥ 0.181.

The right bound can be verified as
max
x∈[0,1]

x(1 + 1.1(1− x))2 + 1.1(1− x) ∗ 0.7352 < 1.5.

After proving these three properties, we would like to bound how far If is away from Is. More
precisely, the distance is measured by wy . We are going to show wy decays exponentially.

Remind the update rules in (80, 81). Denote γ = 1
π (arctan(α)− wxwy

‖w‖2 ) again and δ = K
w2
y

v (−v2 +
vwy
π‖w‖2 ), then it is

∆v = Kwx(−vwx + 1)−Kwxγ + δ, (114)
∆wx = Kv(−vwx + 1)−Kvγ, (115)

δ ∈ [−Kvw2
y, 0]. (116)

Note that both γ and δ are very small, so we are to show their effects separately, which is enough to
be a good approximation.

Consider an iteration where v(t)w
(t)
x > 1 and the corresponding γ(t). Let’s denote v(t+1), w

(t+1)
x

as the next parameters with no corruption from γ(t). Similarly, we denote v̂(t+1), ŵx
(t+1) are

corrupted with γ(t). From the 2-D analysis, we know

v(t+2) − w(t+2)
x

v(t) − w(t)
x

= (1 +K(v(t)w(t)
x − 1))(1 +K(v(t+1)w(t+1)

x − 1)) < 1. (117)

We would like to show, with a small γ(t) and ignoring δ,

v̂(t+2) − ŵx(t+2)

v(t) − w(t)
x

= (1 +K(v(t)w(t)
x − 1 + γ(t)))(1 +K(v̂(t+1)ŵx

(t+1) − 1 + γ(t+1))) / 1,

(118)

where γ(t+1) is in time (t + 1) accordingly. The difference of LHS of the above two expressions
turns out to be
(118)− (117) = Kγ(t)(1 +K(v(t+1)w(t+1)

x − 1))

+ (1 +K(v(t)w(t)
x − 1))K(v̂(t+1)ŵx

(t+1) − v(t+1)w(t+1)
x + γ(t+1)) +O(γ2)

= Kγ(t)(1 +K(v(t+1)w(t+1)
x − 1))

+K(1 +K(v(t)w(t)
x − 1))(−K(v(t))2γ(t) −K(w(t)

x )2γ(t) + γ(t+1)) +O(γ2)

≤ Kγ(t)

(
1 + (1 +K(v(t)w(t)

x − 1))
(
−K(v(t))2 −K(w(t)

x )2 +
γ(t+1)

γ(t)

))
+O(γ2)

≤ Kγ(t)

(
1 + (1 +K(v(t)w(t)

x − 1))
(
− 2Kv(t)w(t)

x +
γ(t+1)

γ(t)

))
+O(γ2).

(119)
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Since ∆wx
wx

= K v
wx

(−vwx + 1− γ), we have

w
(t+1)
x

w
(t)
x

= 1 +K
v(t)

w
(t)
x

(−v(t)w(t)
x + 1− γ(t)) < 1. (120)

Also we have

γ(t+1)

γ(t)
=

arctan(
w(t+1)
y

w
(t+1)
x

)− w(t+1)
x w(t+1)

y

‖w(t+1)‖2

arctan(
w

(t)
y

w
(t)
x

)− w
(t)
x w

(t)
y

‖w(t)‖2
. (121)

Since w(t+1)
y ≤ w(t)

y and

arctan(mx)− mx
1+m2x2

arctan(x)− x
1+x2

≤ m3, for any m > 0, x > 0, (122)

we have

γ(t+1)

γ(t)
≤ 1(

1 +K v(t)

w
(t)
x

(−v(t)w
(t)
x + 1− γ(t))

)3 . (123)

For general vwx ∈ (1, 1.5], (123) holds as

γ(t+1)

γ(t)
/

1

(1 + 1.1
√

1+0.0742+0.074√
1+0.0742−0.074

(−1.5 + 1))3
≤ 22. (124)

Since 1 +K(v(t)w
(t)
x − 1) ≤ 1 + 1.1 ∗ 0.5 = 1.55, it is fair to say

(118)− (117) / Kγ(t)(1 + 1.55 ∗ (−2 + 22)) +O(γ2) = 35.2γ(t) +O(γ2). (125)

Actually γ(t) is bounded by

w
(t)
y

w
(t)
x

≤ 0.099√
1 + 0.0742 − 0.074

= 0.1066, (126)

γ(t) ≤
arctan(x)− x

1+x2

π
≤ 2.6× 10−4. (127)

As a result,

(118)− (117) / 0.0084. (128)

Note that this small value is very easy to cover in (117), requiring

1− v(t+2) − w(t+2)
x

v(t) − w(t)
x

≥ 0.0084, (129)

except when vwx is pretty close to 1. When vwx −→ 1, from the analysis of 2-D case, (derived from
the case of xt+1yt+1 ≥ x2

s)

1− v(t+2) − w(t+2)
x

v(t) − w(t)
x

≥ (2K − 2)(v(t)w(t)
x − 1). (130)

For (118)− (117), denote a function p(x) as

p(x) = 1 + (1 +Kx)

−2K(x+ 1) +
1(

1 +K v
wx

(−x)
)3

 , (131)
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where x = v(t)w
(t)
x − 1 in (119, 123). It is obvious that p(0) = 1 + (−2K + 1) < 0. When x is

small, it turns out

p(x) = −2K + 2 +K

(
−2K − 1 + 3

v(t)

w
(t)
x

)
x+O(x2) (132)

As a result, (118)− (117) < 0 when vwx− 1 = o(K− 1). What if vwx− 1 = Ω(K− 1)? Actually,
we can get a better bound by a more care analysis, as

(118)− (117)

Kγ(t)
≤ 1 + (1 +K(v(t)w(t)

x − 1))
(
−K(v(t))2 −K(w(t)

x )2 +
γ(t+1)

γ(t)

)
+K

[
v(t)w(t)

x (1 +K(1− v(t)w(t)
x ))2 − 1

]
, (133)

where the last term is due to v(t+1)w
(t+1)
x ≤ v(t)w

(t)
x (1+K(1−v(t)w

(t)
x ))2. Hence, with this bound,

by expanding the last term, (132) becomes

p(x) = −2K + 2 +K

(
−2K − 1 + 3

v(t)

w
(t)
x

)
x+K(1− 2K)x+O(x2) (134)

= −2K + 2 +K

(
−4K + 3

v(t)

w
(t)
x

)
x+O(x2), (135)

which is definitely negative because

v(t)

w
(t)
x

≤
√

1 + 0.0742 + 0.074√
1 + 0.0742 − 0.074

< 1.16 <
4

3
. (136)

Meanwhile, we are to prove the δ in (114) will not make Ĩs make v − wx < −0.474 starting
from v − wx ≥ −0.462. First, in the region of {vwx ∈ [1, 1.5], v − wx ≤ 0.148}, we have
Kvw2

y ≤ 1.1 · (
√

1.5 + 0.0742 + 0.074) ∗ 0.12 ≤ 0.0144. Also note that in this region with
v − wx ≥ −0.462, we have

w
(t+1)
y

wy
≤ 1−

√
1 + 0.2312 − 0.231√
1 + 0.2312 + 0.231

= 0.37. (137)

Hence Kv(w
(t)
y )2 + Kv(w

(t+1)
y )2 ≤ 0.0144 ∗ (1 + 0.372) = 0.0164. Since |v(t+2) − w(t+2)| <

|v(t) − w(t)| if there is no δ, we shall see that there is no need to discuss the case of v − wx ≥
−0.462 + 0.0164 = −0.4456 because it still holds v(t+1) −w(t+1)

x > −0.462. When v(t) −w(t)
x ∈

[−0.462,−0.4456], we shall see that in (59), after adding the term of δ in v,

v(t+2) − w(t+2)
x

v(t) − w(t)
x

≤ 1− (1 +K(vwx − 1)) ·Kwxδ, (138)

which means the absolute value of v − wx decays at least by a margin depending on δ. After
multiplying the current difference v(t) − w(t)

x on both side, it gives

(v(t+2) − w(t+2)
x )− (v(t) − w(t)

x ) ≥ v(t)w(t)
x w(t)

x δ. (139)

Note that here v(t+2) − w(t+2)
x does not include δ(t) and δ(t+1). As stated above, we have δ(t+1)

δ(t)
≤

0.372 ≤ 0.16 due to the decay of wy. So it is safe to say δ(t) + δ(t+1) ≥ 1.16δ(t). Combining with
the above inequality, it gives

(v(t+2) − w(t+2)
x )− (v(t) − w(t)

x ) + δ(t) + δ(t+1) ≥ (v(t)w(t)
x w(t)

x + 1.16)δ(t), (140)

where

v(t)w(t)
x w(t)

x + 1.16 ≤ vwx · (
√
vwx + (

0.4456

2
)2 − 0.4456

2
) + 1.16 ≤ 0.6. (141)
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Furthermore, from our previous discussion, w(t+2)
y < w

(t+2)
y gives that the sum of (140) is bounded

by
0.6

1− 0.16
δ(t) ≥ 0.6

1− 0.16
· (−0.0144) ≥ −0.0103. (142)

Since−0.474− (−0.462) < −0.0103, we shall see that the term of δ cannot drive v−wx < −0.472.
Note that (140) shall include a factor (< 1) in front of δ(t), but we have ignored it to show a more
aggressive bound.

Therefore, we are able to say an Interval Îs generated by If also has the following properties: for
each element (v, wx, wy) ∈ Îs,

1. vwx ∈ [0.181, 1.5].

2. If vwx ≤ 1, then v − wx ∈ [−0.735, 0.23]. If vwx > 1, then v − wx ∈ [−0.472, 0.148].

Then the decreasing ratio of ∆wy/wy is bounded by

∆wy
wy

= K
v

wx

(
−vwx +

1

π

wxwy

‖w‖2

)
(143)

∈
[
−1.1(

√
1.5 + 0.0742 + 0.074)2,−0.030K

]
(144)

= [−1.87,−0.030K]. (145)
Hence, wy decays with a linear ratio of 0.97 (or 1− 0.030K) at most for Cases (I, II) in stage 2.

For Case (III), in the first step of stage 2, it already has wy ≤ 0.078 and v − wx ∈ [−0.017, 0.17].
So surely it will also converge to Is.

Here we present the time analysis for Case (III) of both stages. The number of iterations in the first
stage is apparently similar to that of case (I, II), as

T1 ≤ log2.56

⌈
2.7ψ

β2

⌉
, (146)

where ψ < 1
4π is the value of vwx in the first step of stage 2. In stage 2, since our target is to find

how many steps are necessary to get vwx ≥ 0.181, so it is

v(t+1)w(t+1)
x ≥ v(t)w(t)

x

1− 0.181 + 1−
arctan(2−

√
3)− 2−

√
3

1+(2−
√

3)2

π
− 1.1w2

y

 (147)

≥ 3.28v(t)w(t)
x . (148)

where obviously it still holds wy
wx
≤ 2−

√
3 and w2

y < 0.12 in stage 2. Since 3.28 > 2.56, we have
the total number of steps to have vwx > 0.181 bounded as⌈

log2.56

2.7ψ

β2

⌉
+

⌈
log3.28

0.181

ψ

⌉
≤
⌈

log2.56

0.675

πβ2

⌉
+

⌈
log3.28

0.181
1

4π

⌉
+ 2

≤
⌈

log2.56

0.675

πβ2

⌉
+ 3

<

⌈
log2.56

1.35

πβ2

⌉
+ 4,

which is not beyond the bound for Cases (I, II).

J PROOF OF MATRIX FACTORIZATION

Consider a two-layer matrix factorization problem, parameterized by learnable weights X ∈ Rm×p,
Y ∈ Rp×q , and the target matrix is C ∈ Rm×q . The loss L is defined as

L(X,Y) =
1

2
‖XY −C‖2F . (149)
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Obviously {X,Y : XY = C} forms a minimum manifold. Focusing on this manifold, our targets
are: 1) to prove our condition for stable oscillation on 1D functions holds at the minimum of L for
any setting of dimensions, and 2) to prove a convergence result with initialization close to a minimum
beyond the edge of stability for the symmetric case Y = X>.

J.1 ASYMMETRIC CASE: 1D FUNCTION AT THE MINIMA

Before looking into the theorem, we would like to clarify the definition of the loss Hessian. Inherently,
we squeeze X,Y into a vector θ = vec(X,Y) ∈ Rmp+pq, which vectorizes the concatnation. As a
result, we are able to represent the loss Hessian w.r.t. θ as a matrix in R(mp+pq)×(mp+pq). Meanwhile,
the support of the loss landscape is in Rmp+pq . In the following theorem, we are to show the leading
eigenvector ∆ , vec(∆X,∆Y) ∈ Rmp+pq of the loss Hessian. Since the cross section of the loss
landscape and ∆ forms a 1D function f∆, we would also show the stable-oscillation condition on 1D
function holds at the minima of f∆.
Theorem 12. For a matrix factorization problem, assume XY = C. Consider SVD of both
matrices as X =

∑min{m,p}
i=1 σx,iux,iv

>
x,i and Y =

∑min{p,q}
i=1 σy,iuy,iv

>
y,i, where both groups of

σ·,i’s are in descending order and both top singular values σx,1 and σy,1 are unique. Also assume
v>x,1uy,1 6= 0. Then the leading eigenvector of the loss Hessian is ∆ = vec(C1ux,1u

>
y,1, C2vx,1v

>
y,1)

with C1 =
σy,1√

σ2
x,1+σ2

y,1

, C2 =
σx,1√

σ2
x,1+σ2

y,1

. Denote f∆ as the 1D function at the cross section of the

loss landscape and the line following the direction of ∆ passing vec(∆X,∆Y). Then, at the minima
of f∆, it satisfies

3[f
(3)
∆ ]2 − f (2)

∆ f
(4)
∆ > 0. (150)

Proof. To obtain the direction of the leading Hessian eigenvector at parameters (X,Y), consider a
small deviation of the parameters as (X+∆X,Y+∆Y). With XY = C, evaluate the loss function
as

L(X + ∆X,Y + ∆Y) =
1

2
‖∆XY + X∆Y + ∆X∆Y‖2F . (151)

Expand these terms and split them by orders of ∆X,∆Y as follows:

Θ(‖∆X‖2 + ‖∆Y‖2) :
1

2
‖∆XY + X∆Y‖2F , (152)

Θ(‖∆X‖3 + ‖∆Y‖3) : 〈∆XY + X∆Y,∆X∆Y〉, (153)

Θ(‖∆X‖4 + ‖∆Y‖4) :
1

2
‖∆X∆Y‖2F . (154)

From the second-order terms, the leading eigenvector of∇2L is the solution of

vec(∆X,∆Y) = arg max
‖∆X‖2F+‖∆Y‖2F=1

‖∆XY + X∆Y‖2F . (155)

Since both the top singular values of X,Y are unique, the solution shall have both ∆X,∆Y of rank
1. Actually the solution is (here for simplicity we eliminate the sign of both)

∆X =
σy,1√

σ2
x,1 + σ2

y,1

ux,1u
>
y,1, ∆Y =

σx,1√
σ2
x,1 + σ2

y,1

vx,1v
>
y,1. (156)

Equipped with the top eigenvector of Hessian, vec(∆X,∆Y), we consider the 1-D function f∆

generated by the cross-section of the loss landscape and the eigenvector, passing the minima (X,Y).
Define the function as

f∆(µ) = L(X + µ∆X,Y + µ∆Y), µ ∈ R. (157)

Then, around µ = 0, we have

f∆(µ) =
1

2
‖∆XY + X∆Y‖2F · µ

2 + 〈∆XY + X∆Y,∆X∆Y〉 · µ3 +
1

2
‖∆X∆Y‖2F · µ

4.

(158)
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Therefore, the several order derivatives of f∆(µ) at µ = 0 can be obtained from Taylor expansion as

f
(2)
∆ (0) = ‖∆XY + X∆Y‖2F , (159)

f
(3)
∆ (0) = 6〈∆XY + X∆Y,∆X∆Y〉, (160)

f
(4)
∆ (0) = 12 ‖∆X∆Y‖2F . (161)

Then we compute the condition of stable oscillation of 1-D function as[
3[f

(3)
∆ ]2 − f (2)

∆ f
(4)
∆

]
(0) = 108〈∆XY + X∆Y,∆X∆Y〉2 − 12 ‖∆XY + X∆Y‖2F ‖∆X∆Y‖2F

(162)

= 96 ‖∆XY + X∆Y‖2F ‖∆X∆Y‖2F > 0, (163)

because all of ∆XY,X∆Y,∆X∆Y are parallel to ux,1v>y,1 and v>x,1uy,1 6= 0.

J.2 SYMMETRIC CASE: CONVERGENCE ANALYSIS AROUND THE MINIMA

In this section, we focus on the symmetric case of matrix factorization where Y = X>. Accordingly,
we rescale the loss function as L(X,Y) = 1

4

∥∥XX> −C
∥∥2

F
. Denote the target as C = X0X

>
0 ,

and assume we are around the minima X1 = X0 + ∆X1 with small ‖∆X1‖. Consider SVD as
X0 =

∑min{m,p}
i=1 σiuiv

>
i , σ1u1v

>
1 + X̃0. Then the EoS-learning-rate threshold at X = X0 is

η = 1
σ2
1

. Therefore, we are to show the convergence initializing from X1 = X0 + ∆X1 with learning

rate η = 1
σ2
1

+ β with β > 0.

Theorem 13. Consider the above symmetric matrix factorization with learning rate η = 1
σ2
1

+ β.

Assume 0 < βσ2
1 <
√

4.5− 1 ≈ 1.121 and ησ2
2 < 1. The initialization is around the minimum, as

X1 = X0 + ∆X1, with the deviation satisfying u>1 ∆X1v1 6= 0 and ‖∆X1‖ ≤ ε bounded by a small
value. Then GD would converge to a period-2 orbit γη by a small margin in O(ε), as

Xt → γη + ∆X, ‖∆X‖ = O(ε), (164)

γη = (X0 + δ1σ1u1v
>
1 ,X0 + δ2σ1u1v

>
1 ), (165)

where δ1 ∈ (0, 1), δ2 ∈ (−1, 0) are the two solutions of

1 + βσ2
1 =

1

(δ + 1)2
(√

1
(δ+1)2

− 3
4 + 1

2

) . (166)

Proof. The update rule of gradient descent gives

Xt+1 = Xt − η
(
XtX

>
t −X0X

>
0

)
Xt. (167)

Denoting ∆Xt = Xt −X0, the update rule is equivalent to

∆Xt+1 = ∆Xt − η
(
∆XtX

>
0 + X0∆X>t + ∆Xt∆X>t

)
(X0 + ∆Xt) (168)

Consider a decomposition of ∆Xt = εtũtv
>
1 + ∆̃Xt where ∆̃Xtv1 = 0 and ‖ũt‖ = 1. We also

control the sign of ũt by claiming 〈ũt, u1〉 > 0. Then, the update rule is again equivalent to

∆Xt+1 = εtũtv
>
1 + ∆̃Xt − η

[(
εtũtv

>
1 + ∆̃Xt

)
X>0 + X0

(
εtũtv

>
1 + ∆̃Xt

)>
+ (169)

(
εtũtv

>
1 + ∆̃Xt

)(
εtũtv

>
1 + ∆̃Xt

)> ](
X0 + εtũtv

>
1 + ∆̃Xt

)
.

(170)
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After expanding X0 = σ1u1v
>
1 + X̃0 and projecting ∆Xt+1 onto v1, we have

∆Xt+1v1 = εtũt − η

[
σ2

1εtũt + σ1ε
2
t ũtu

>
1 ũ+ ε3t ũt + σ2

1εtu1ũ
>
t u1 + σ1ε

2
tu1 + σ1ε

2
t ũtũ

>
t u1

(171)

+σ1∆̃Xt∆̃Xt

>
u1 + σ1X̃0∆̃Xt

>
u1 + εt∆̃XtX̃0

>
ũt + εt∆̃Xt∆̃Xt

>
ũt + εtX̃0∆̃Xt

>
ũt

]
.

(172)

Phase I: ũt gets close to u1 sharply from a random direction

For now, let’s assume
∥∥∥∆̃Xt

∥∥∥ stays small (which we will show later), then ignoring high-order small
values gives

εt+1ũt+1 = εtũt − η
(
σ2

1εtũt + σ2
1εtu1ũ

>
t u1 + σ1X̃0∆̃Xt

>
u1

)
+O(ε2),

(173)

〈εt+1ũt+1, u1〉 = (1− 2ησ2
1)〈εtũt, u1〉+O(ε2) = (−1− βσ2

1)〈εtũt, u1〉+O(ε2),
(174)

mt+1 , εt+1ũt+1 − 〈εt+1ũt+1, u1〉u1 = (1− ησ2
1)(εtũt − 〈εtũt, u1〉u1)− ησ1X̃0∆̃Xt

>
u1 +O(ε2),

(175)

where (174) is the projection of ∆Xt+1 onto u1v
>
1 , and (175) is the orthogonal-to-u1 component of

∆Xt+1v1. Meanwhile, we have the following iteration of ∆̃Xt following the update rule,

∆̃Xt+1 = ∆̃Xt − η

[
σ1εtũtu

>
1 ∆̃Xt + ∆̃XtX̃0

>
X̃0 + ∆̃XtX̃0

>
∆̃Xt + σ1εtu1ũ

>
t X̃0 (176)

+σ1εtu1ũ
>
t ∆̃Xt + X̃0∆̃Xt

>
X̃0 + X̃0∆̃Xt

>
∆̃Xt + ε2t ũtũ

>
t X̃0 (177)

+ε2t ũtũ
>
t ∆̃Xt + ∆̃Xt∆̃Xt

>
X̃0 + ∆̃Xt∆̃Xt

>
∆̃Xt

]
. (178)

Ignoring higher-order small values, it is

∆̃Xt+1 = ∆̃Xt − η
(
σ1εtu1ũ

>
t X̃0 + ∆̃XtX̃0

>
X̃0 + X̃0∆̃Xt

>
X̃0

)
+O(ε2). (179)

Now we are to verify two facts:

1. The orthogonal-to-u1 component of ∆Xtv1, denoted as mt, stays small. Then combining
the exponential growth of parallel-to-u1 component in (174) gives 〈ũt, u1〉 → 1 quickly.

2.
∥∥∥∆̃Xt

∥∥∥ stays small.

First is the bound of ‖mt‖. From (175), we have mt+1 = (1− ησ2
1)mt − ησ1X̃0∆̃Xt

>
u1 +O(ε2).

Combining with (179) and noticing u>1 X̃0 = 0, it holds

mt+1 ≈ (1− ησ2
1)mt − ησ1X̃0∆̃Xt

>
u1 (180)

σ1X̃0∆̃Xt+1

>
u1 ≈ σ1X̃0∆̃Xt

>
u1 − ησ1

(
σ1εtX̃0X̃0

>
ũt + X̃0X̃0

>
X̃0∆̃Xt

>
u1

)
(181)

=
(
I− ηX̃0X̃0

>)
σ1X̃0∆̃Xt

>
u1 − ησ2

1εtX̃0X̃0

>
ũt. (182)
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Furthermore, we have εtX̃0

>
ũt = X̃0

>
mt due to X̃0

>
u1 = 0, so (182) can be rewritten as

σ1X̃0∆̃Xt+1

>
u1 ≈

(
I− ηX̃0X̃0

>)
σ1X̃0∆̃Xt

>
u1 − ησ2

1X̃0X̃0

>
mt. (183)

Combining (180, 183) gives a form of mt+1 as a combination of all previous terms as

mt+1 ≈ (1− ησ2
1)mt +

t∑
i=1

η2σ2
1

(
I− ηX̃0X̃0

>)i−1

X̃0X̃0

>
mt−i. (184)

Since our goal is to verify that ‖mt‖ is bounded, pick any eigenvector vp of X̃0X̃0

>
with associated

eigenvalue λp. Then we have

〈mt+1, vp〉 = (1− ησ2
1)〈mt, vp〉+

t∑
i=1

η2σ2
1v
>
p

(
I− ηX̃0X̃0

>)i−1

X̃0X̃0

>
mt−i (185)

= (1− ησ2
1)〈mt, vp〉+ η2σ2

1

t∑
i=1

(1− ηλp)i−1λp〈mt−i, vp〉. (186)

Obviously 〈mt+1, vp〉 shall converge to a series with exponential growth. Assume the ratio as
〈mt+1, vp〉/〈mt, vp〉 = r.The above equation is equivalent to

r = −βσ2
1 + η2σ2

1

t∑
i=1

(1− ηλp)i−1λpr
−i = −βσ2

1 +
η2σ2

1λp/r

1− (1− ηλp)/r
(187)

= −βσ2
1 +

η2σ2
1λp

r − 1 + ηλp
. (188)

The solutions for this equation are r = 1 or r = 1 − ηλp − ησ2
1 , both of which are in [−1, 1]

once λp ≤ (1− βσ2
1)/η. Hence, it is safe to say 〈mt+1, vp〉 is bounded as non-increasing. In fact,

|〈mt+1, vp〉| is bounded by |〈m0, vp〉| because |〈m1, vp〉| < |〈m0, vp〉| due to the scaling factor

βσ2
1 < 1. Therefore, after picking any eigenvector vp of X̃0X̃0

>
, we can conclude ‖mt‖ ≤ ‖m0‖ ≤

|ε0|. A further result is that |〈m1, vp〉| ∝ λp. Notice that

〈mt+1, vp〉+ βσ2
1〈mt, vp〉 = η2σ2

1

t∑
i=1

(1− ηλp)i−1λp〈mt−i, vp〉, (189)

where RHS is a constant due to the proven non-increasing |〈mt, vp〉|. But this constant is proportional
to λp because 〈m2, vp〉 + βσ2

1〈m1, vp〉 = ησ2
1λp〈m0, vp〉 ∝ λp and all further iterations follow a

similar factor. Therefore, we have |〈m1, vp〉| ∝ λp.

Now let’s show
∥∥∥∆̃Xt

∥∥∥ stays small. Consider u>1 ∆̃Xt, (179) gives

u>1 ∆̃Xt+1 = u>1 ∆̃Xt

(
I− ηX̃0

>
X̃0

)
− ησ1m

>
t X̃0 (190)

=

t∑
i=1

−ησ1m
>
t−i+1X̃0

(
I− ηX̃0

>
X̃0

)i−1

, (191)

so the norm is bounded as, for some σ of singular value of X̃0,∥∥∥u>1 ∆̃Xt+1

∥∥∥ ≤ ησ1|ε0|
σ

1− (1− ησ2)
Cσ2 = |ε0|σ1Cσ, (192)

where Cσ2 are from the previous discussion of |〈m1, vp〉| ∝ λp, which follows σ =
√
λp. Hence, it

is fair to say
∥∥∥u>1 ∆̃Xt

∥∥∥ stays small.

51



Under review as a conference paper at ICLR 2023

Meanwhile, the residual component of ∆̃Xt that is orthogonal to u1 on the left, denoted as ∆̃Xt,⊥,
iterates following

˜∆Xt+1,⊥ = ∆̃Xt,⊥ − η
(

∆̃Xt,⊥X̃0

>
X̃0 + X̃0∆̃Xt,⊥

>
X̃0

)
(193)

˜∆Xt+1,⊥X̃0

>
+ X̃0

˜∆Xt+1,⊥
>

= ∆̃Xt,⊥X̃0

>
+ X̃0∆̃Xt,⊥

>
− η

[
∆̃Xt,⊥X̃0

>
X̃0X̃0

>
(194)

+ X̃0∆̃Xt,⊥
>
X̃0X̃0

>
+ X̃0X̃0

>
∆̃Xt,⊥X̃0

>
+ X̃0X̃0

>
X̃0∆̃Xt,⊥

>
]

(195)

=

(
∆̃Xt,⊥X̃0

>
+ X̃0∆̃Xt,⊥

>
)(

0.5I− ηX̃0X̃0

>)
(196)

+
(

0.5I− ηX̃0X̃0

>)(
∆̃Xt,⊥X̃0

>
+ X̃0∆̃Xt,⊥

>
)
.

(197)

As a result, due to
∥∥∥X̃0X̃0

>∥∥∥ ≤ σ2
2 < 1/η, the following norm is recursively bounded as∥∥∥∥ ˜∆Xt+1,⊥X̃0

>
+ X̃0

˜∆Xt+1,⊥
>
∥∥∥∥ ≤ ∥∥∥∥∆̃Xt,⊥X̃0

>
+ X̃0∆̃Xt,⊥

>
∥∥∥∥ . (198)

Since ˜∆Xt+1,⊥ is a polynomial of X̃0 and its transpose, the above bound tells that
∥∥∥ ˜∆Xt+1,⊥

∥∥∥ does
not grow, which means ∥∥∥ ˜∆Xt+1,⊥

∥∥∥ ≤ ∥∥∥∆̃Xt,⊥

∥∥∥ . (199)

Combining (192, 199), we can conclude that
∥∥∥∆̃Xt

∥∥∥ stays small.

After proving that bothmt and
∥∥∥∆̃Xt

∥∥∥ stay small, from (174), the only term growing fast is 〈εtũt, u1〉
exponentially, which means the projection of , ũt onto u1 is also growing sharply.

Phase II: after ũ1 ‖ u1 approximately

In the first phase, 〈εtũt, u1〉 grows exponentially with all other components in ∆̃Xt keeping small.
The consequences of such a growth are

1. ũ1 gets close to u1 in direction, with the cosine similarity between them growing like
cos(arctan(exp(t))), where t is a time variable starting from some constant.

2. while ũt is a unit vector, the growth of 〈εtũt, u1〉 makes εt grow sharply as well. In the
phase I, the proof is strongly dependent of the assumption that εt is small. But in the phase
II, εt is not small any more.

We would like to assume that the second consequence comes later than the first one, which is feasible
once we make the initialization smaller. Then, we would like to verify the dynamics of 〈εtũt, u1〉
when εt is relatively large.

After keeping higher-order terms of εt in (172) and considering u>1 ũt ≈ 1, we have

〈εt+1ũt, u1〉 = 〈εtũt, u1〉 − η
(
σ2

1εt + σ1ε
2
t + ε3t + σ2

1εt + σ1ε
2
t + σ1ε

2
t + εtu

>
1 ∆̃XtX̃0

>
ũt

)
(200)

= 〈εtũt, u1〉 − η
(

2σ2
1εt + 3σ1ε

2
t + ε3t + εtu

>
1 ∆̃XtX̃0

>
ũt

)
. (201)
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We are to show that u>1 ∆̃XtX̃0

>
ũt is small, so that 〈εt+1ũt, u1〉 is a function approximately of only

η, εt, σ1.

After re-introducing higher-order terms around (178), we have

∆̃Xt+1 = ∆̃Xt − η
(
σ1εtu1ũ

>
1 X̃0 + ∆̃XtX̃0

>
X̃0 + X̃0∆̃Xt

>
X̃0 + ε2t ũtũ

>
t X̃0

)
(202)

= ∆̃Xt − η
(
σ1εtu1ũ

>
1 X̃0 + ∆̃XtX̃0

>
X̃0 + X̃0∆̃Xt

>
X̃0 +

(
mtm

>
t + εtu1m

>
t

)
X̃0

)
.

(203)
Then, it holds

u>1 ∆̃XtX̃0

>
ũt = u>1 ∆̃Xt−1X̃0

>
mt (204)

= u>1 ∆̃Xt−1X̃0

> (
I− ηX̃0X̃0

>)
mt−1 − η(σ1 + εt)m

>
t X̃0X̃0

>
mt (205)

≤ u>1 ∆̃Xt−1X̃0

>
mt−1 + η(σ1 + εt)m

>
t X̃0X̃0

>
mt. (206)

So we have to ensure that ‖mt‖ keeps small. To obtain this, we start to re-write the update of mt by
mt = εtũt − 〈εtũt, u1〉u1, which is

mt =
(
1− η(σ2 + ε2t )

)
mt−1 − ησ1X̃0∆̃Xt−1

>
u1 (207)

− ηX̃0∆̃Xt−1

>
mt−1 − η

(
I− u1u

>
1

)
∆̃Xt−1X̃0

>
mt−1. (208)

Compared with (180), the above equation has two differences, the first is the coefficient of mt−1

being
(
1− η(σ2 + ε2t )

)
instead of

(
1− ησ2

)
, and the second is additional two terms in (208). Let’s

first discuss the second difference. Actually these two terms somehow act as the coefficient as well,
so if

∥∥∥X̃0

∥∥∥� 1 then it is safe to neglect them and only consider
(
1− ησ2

)
. To show this, we again

look into the stability of
∥∥∥u>∆̃Xt+1

∥∥∥ and
∥∥∥ ˜∆Xt+1,⊥

∥∥∥. We have

u>1 ∆̃Xt+1 = u>1 ∆̃Xt

(
I− ηX̃0

>
X̃0

)
− η(σ1 + εt)m

>
t X̃0 (209)

˜∆Xt+1,⊥ = ∆̃Xt,⊥ − η
(

∆̃Xt,⊥X̃0

>
X̃0 + X̃0∆̃Xt,⊥

>
X̃0

)
, (210)

where the first line simply differs from (191) with the coefficient as η(σ1 + εt) instead of ησ1 and
the second is the same as (193). Therefore, following the same arguments in the phase I, if both of
‖mt−1‖ ,

∥∥∥∆̃Xt

∥∥∥ = O(ε) are small, we have the following step they are still in O(ε).

Therefore, we have the dynamics of εt as
〈εt+1ũt, u1〉 = εt+1 = εt − η

(
2σ2

1εt + 3σ1ε
2
t + ε3t

)
, (211)

which corresponds to the update rule of gradient descent on a 1D function f(ε) =

1
4

(
(ε+ σ1)

2 − σ2
1

)2

with learning rate η. Since f ′′(0) = 2σ2
1 , the learning rate η = 1

σ2
1

+ β > 2
2σ2

1

by a margin βσ2
1 . Since for 1D function f(x) = 1

4 (x2 − µ)2 with learning rate η, it converges to the
two positive solutions, ε, in (39)

η =
1

x2
(√

µ
x2 − 3

4 + 1
2

) . (212)

Therefore, for 1D function f(ε) = 1
4

(
(ε+ σ1)

2 − σ2
1

)2

with learning rate η, it converges to the
solutions (one in (−σ1, 0), one in (0, σ2)) of

1 + βσ2
1 =

1

( ε
σ1

+ 1)2

(√
1(

ε
σ1

+1
)2 − 3

4 + 1
2

) . (213)

Along with the above argument of stability
∥∥∥∆̃Xt

∥∥∥ = O(ε), it concludes that the trajectory converge
to the above solution with deviation upper-bounded by O(ε).
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J.3 QUASI-SYMMETRIC CASE: WALK TOWARDS FLATTEST MINIMA

Theorem 14 (Restatement of Theorem 4). Consider the above quasi-symmetric matrix factor-
ization with learning rate η = 1

σ2
1

+ β. Assume 0 < βσ2
1 <

√
4.5 − 1 ≈ 1.121. Consider

a minimum (Y0 = αX0,Z0 = 1/αX0), α > 0. The initialization is around the minimum, as
Y1 = Y0 + ∆Y1,Z1 = Z0 + ∆Z1, with the deviations satisfying u>1 ∆Y1v1 6= 0, u>1 ∆Z1v1 6= 0
and ‖∆Y1‖ , ‖∆Z1‖ ≤ ε. The second largest singular value of X0 needs to satisfy

max

{
η
σ2

1

α2

(
1 + α4σ

2
2

σ2
1

)
, ησ2

1α
2

(
1 +

σ2
2

α4σ2
1

)}
≤ 2. (214)

Then GD would converge to a period-2 orbit γη approximately with error inO(ε), formally written as

(Yt,Zt)→ γη + (∆Y,∆Z), ‖∆Y‖ , ‖∆Z‖ = O(ε), (215)

γη =

{(
Y0 + (ρi − α)σ1u1v

>
1 ,Z0 + (ρi − 1/α)σ1u1v

>
1

)}
, (i = 1, 2) (216)

where ρ1 ∈ (1, 2), ρ2 ∈ (0, 1) are the two solutions of solving ρ in

1 + βσ2
1 =

1

ρ2
(√

1
ρ2 −

3
4 + 1

2

) . (217)

Proof. The update rule of gradient descent gives (for t ≥ 1)

Yt+1 = Yt − η
(
YtZ

>
t −X0X

>
0

)
Zt, (218)

Yt+1 = Zt − η
(
ZtY

>
t −X0X

>
0

)
Yt. (219)

Denoting ∆Yt = Yt −Y0,∆Zt = Zt − Z0, for t ≥ 1, the update rule is equivalent to

∆Yt+1 = ∆Yt − η
(
∆YtZ

>
0 + Y0∆Z>t + ∆Yt∆Z>t

)
(Z0 + ∆Zt) , (220)

∆Zt+1 = ∆Zt − η
(
∆ZtY

>
0 + Z0∆Y>t + ∆Zt∆Y>t

)
(Y0 + ∆Yt) . (221)

Consider the decompositions ∆Yt = εy,tũy,tv
>
1 +∆̃Yt,∆Zt = εz,tũz,tv

>
1 +∆̃Zt where we assume

∆̃Ytv1 = 0, ∆̃Ztv1 = 0, ‖ũy,t‖ = 1, ‖ũz,t‖ = 1. We also control the sign of ũy,t, ũz,t by claiming
〈ũy,t, u1〉 > 0, 〈ũz,t, u1〉 > 0. Then, the update rule is again equivalent to

∆Yt+1 = εy,tũy,tv
>
1 + ∆̃Yt − η

[(
εy,tũy,tv

>
1 + ∆̃Yt

)
Z>0 + Y0

(
εz,tũz,tv

>
1 + ∆̃Zt

)>
+

(222)(
εy,tũy,tv

>
1 + ∆̃Yt

)(
εz,tũz,tv

>
1 + ∆̃Zt

)> ]
(Z0 + εz,tũz,tv

>
1 + ∆̃Zt),

(223)

∆Zt+1 = εz,tũz,tv
>
1 + ∆̃Zt − η

[(
εz,tũz,tv

>
1 + ∆̃Zt

)
Y>0 + Z0

(
εy,tũy,tv

>
1 + ∆̃Yt

)>
+

(224)(
εy,tũy,tv

>
1 + ∆̃Yt

)(
εz,tũz,tv

>
1 + ∆̃Zt

)> ]
(Y0 + εy,tũy,tv

>
1 + ∆̃Yt).

(225)

Phase I: ũy,t and ũz,t get close to u1 sharply from random directions

Decompose the three matrices at the around-initialization minimum X0 = σ1u1v
>
1 + X̃0,Y0 =

ασ1u1v
>
1 + Ỹ0,Z0 = 1

ασ1u1v
>
1 + Z̃0. Obviously they satisfy X̃0 = 1

αỸ0 = αZ̃0. For now, let’s
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assume
∥∥∥∆̃Yt

∥∥∥ ,∥∥∥∆̃Zt

∥∥∥ stay small, then ignoring high-order small values gives

εy,t+1ũy,t+1 = ∆Yt+1v1 = εy,tũy,t − η
(
εy,tũy,t

σ2
1

α2
+
σ1

α
Ỹ0∆̃Zt

>
u1 + εz,tσ

2
1u1ũ

>
z,tu1

)
,

(226)

εz,t+1ũz,t+1 = ∆Zt+1v1 = εz,tũz,t − η
(
εz,tũz,tσ

2
1α

2 + σ1αZ̃0∆̃Yt

>
u1 + εy,tσ

2
1u1ũ

>
y,tu1

)
,

(227)

then we have

Py,t+1 , 〈εy,t+1ũy,t+1, u1〉 =

(
1− η σ

2
1

α2

)
Py,t − ησ2

1Pz,t, (228)

Pz,t+1 , 〈εz,t+1ũz,t+1, u1〉 =

(
1− η σ

2
1

α2

)
Pz,t − ησ2

1Py,t. (229)

From the above two, we would like to find a lower bound of Py,t, Pz,t. Note that

Pz,t+1 − α2Py,t+1 = Pz,t − α2Py,t , k, (230)

Py,t+1 =

(
1− η σ

2
1

α2

)
Py,t − ησ2

1

(
α2Py,t + k

)
=

(
1− ησ2

1α
2 − η σ

2
1

α2

)
Py,t − ησ2

1 · k. (231)

Since 1 − ησ2
1α

2 − η σ
2
1

α2 ≤ 1 − 2ησ2
1 < −1, we can see |Py,t| is growing exponentially with the

ratio of 2ησ2
1 − 1 at least. Meanwhile, with Pz,t − α2Py,t fixed along time, it holds |Pz,t| is growing

exponentially with the same ratio as well.

Now let’s see how other things stay small when Py,t and Pz,t are the only two terms growing
exponentially. If that holds, we can conclude that ũy,t and ũz,t get close to u1 sharply from random
directions. Similar to the discussion of the symmetric case, we have two remaining components as
follows (which are wished to be bounded)

my,t+1 , εy,t+1ũy,t+1 − 〈εy,t+1ũy,t+1, u1〉u1 =

(
1− η σ

2
1

α2

)
my,t − η

σ1

α
Ỹ0∆̃Zt

>
u1 (232)

mz,t+1 , εz,t+1ũz,t+1 − 〈εz,t+1ũz,t+1, u1〉u1 =
(
1− ησ2

1α
2
)
mz,t − ησ1αZ̃0∆̃Yt

>
u1 (233)

u>1 ∆̃Yt+1 = u>1 ∆̃Yt − η
(
u>1 ∆̃ZtỸ0

>
Ỹ0 + σ1m

>
y,tX̃0

)
(234)

u>1 ∆̃Zt+1 = u>1 ∆̃Zt − η
(
u>1 ∆̃YtZ̃0

>
Z̃0 + σ1m

>
z,tX̃0

)
(235)

Take any eigenvector vp of X̃0X̃0

>
with associated eigenvalue σ2

p with σp > 0. Then the above
system can be written as

〈my,t+1, vp〉 =

(
1− η σ

2
1

α2

)
〈my,t, vp〉 − ησ1σp〈u>1 ∆̃Zt, vp〉 (236)

〈mz,t+1, vp〉 =
(
1− ησ2

1α
2
)
〈mz,t, vp〉 − ησ1σp〈u>1 ∆̃Yt, vp〉 (237)

〈u>1 ∆̃Yt+1, vp〉 = 〈u>1 ∆̃Yt, vp〉 − η
(
σ2
pα

2〈u>1 ∆̃Zt, vp〉+ σ1σp〈my,t, vp〉
)

(238)

〈u>1 ∆̃Zt+1, vp〉 = 〈u>1 ∆̃Zt, vp〉 − η

(
σ2
p

α2
〈u>1 ∆̃Yt+1, vp〉+ σ1σp〈mz,t+1, vp〉

)
(239)

Then the above system can be re-written as matrix A ∈ R4×4,
which maps from (〈my,t, vp〉, 〈mz,t, vp〉, 〈u>1 ∆̃Yt, vp〉, 〈u>1 ∆̃Zt, vp〉) to

(〈my,t+1, vp〉, 〈mz,t+1, vp〉, 〈u>1 ∆̃Yt+1, vp〉, 〈u>1 ∆̃Zt+1, vp〉). The explicit form of A is
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A =


1− η σ

2
1

α2 0 0 −ησ1σp
0 1− ησ2

1α
2 −ησ1σp 0

−ησ1σp 0 1 −ηα2σ2
p

0 −ησ1σp −η σ
2
p

α2 1

 (240)

= I− η σ
2
1

α2

 1
0

α2 σp
σ1

0

 [1 0 0
σp
σ1
α2
]
− ησ2

1α
2

 0
1
0
σp
σ1α2

 [0 1
σp
σ1α2 0

]
(241)

, I−B. (242)

So we have a rank-2 matrix B with all elements as non-negative. Our target is to show An is bounded
with n→∞. Hence, we require the spectral norm ‖B‖ ≤ 2 by Lemma 8, which gives

max

{
η
σ2

1

α2

(
1 + α4

σ2
p

σ2
1

)
, ησ2

1α
2

(
1 +

σ2
p

α4σ2
1

)}
≤ 2. (243)

Therefore, this gives an upper bound for σ2, as

max

{
η
σ2

1

α2

(
1 + α4σ

2
2

σ2
1

)
, ησ2

1α
2

(
1 +

σ2
2

α4σ2
1

)}
≤ 2. (244)

Hence, with the above discussion, we have shown ‖my,t‖ , ‖mz,t‖ ,
∥∥∥u>1 ∆̃Yt

∥∥∥ ,∥∥∥u>1 ∆̃Zt

∥∥∥ stay

small in this phase. Meanwhile, the residual components of ∆̃Yt, ∆̃Zt that are orthogonal to u1 on
the left, denoted as ∆̃Yt,⊥, ∆̃Zt,⊥, iterate following

˜∆Yt+1,⊥ = ∆̃Yt,⊥ − η
(

∆̃Zt,⊥Ỹ0

>
Ỹ0 + Z̃0∆̃Yt,⊥

>
Ỹ0

)
, (245)

˜∆Zt+1,⊥ = ∆̃Zt,⊥ − η
(

∆̃Yt,⊥Z̃0

>
Z̃0 + Ỹ0∆̃Zt,⊥

>
Z̃0

)
. (246)

Then we have

Mt+1 , ˜∆Yt+1,⊥X̃0

>
+ X̃0

˜∆Yt+1,⊥
>

+ α2( ˜∆Zt+1,⊥X̃0

>
+ X̃0

˜∆Zt+1,⊥
>

) (247)

= ∆̃Yt,⊥X̃0

>
+ X̃0∆̃Yt,⊥

>
+ α2∆̃Zt,⊥X̃0

>
+ α2X̃0∆̃Zt,⊥

>
(248)

− η∆̃Zt,⊥Ỹ0

>
Ỹ0X̃0

>
− ηX̃0Ỹ0

>
Ỹ0∆̃Zt,⊥

>
− ηX̃0∆̃Yt,⊥

>
X̃0X̃0

>
(249)

− ηX̃0X̃0

>
∆̃Yt,⊥X̃0

>
− ηα2∆̃Yt,⊥Z̃0

>
Z̃0X̃0

>
− ηα2X̃0Z̃0

>
Z̃0∆̃Yt,⊥

>
(250)

− ηα2X̃0∆̃Zt,⊥
>
X̃0X̃0

>
− ηα2X̃0X̃0

>
∆̃Zt,⊥X̃0

>
(251)

= ∆̃Yt,⊥X̃0

>
+ X̃0∆̃Yt,⊥

>
+ α2∆̃Zt,⊥X̃0

>
+ α2X̃0∆̃Zt,⊥

>
(252)

− ηα2∆̃Zt,⊥X̃0

>
X̃0X̃0

>
− ηα2X̃0X̃0

>
X̃0∆̃Zt,⊥

>
− ηX̃0∆̃Yt,⊥

>
X̃0X̃0

>
(253)

− ηX̃0X̃0

>
∆̃Yt,⊥X̃0

>
− η∆̃Yt,⊥X̃0

>
X̃0X̃0

>
− ηX̃0X̃0

>
X̃0∆̃Yt,⊥

>
(254)

− ηα2X̃0∆̃Zt,⊥
>
X̃0X̃0

>
− ηα2X̃0X̃0

>
∆̃Zt,⊥X̃0

>
(255)

= Mt

(
0.5I− ηX̃0X̃0

>)
+
(

0.5I− ηX̃0X̃0

>)
Mt. (256)

Then, by reorganizing terms, ‖Mt+1‖ can be well bounded as ‖Mt+1‖ ≤ ‖Mt‖.
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Similarly, we need to the bound the norm of the following term

Nt+1 , −( ˜∆Yt+1,⊥X̃0

>
+ X̃0

˜∆Yt+1,⊥
>

) + α2( ˜∆Zt+1,⊥X̃0

>
+ X̃0

˜∆Zt+1,⊥
>

) (257)

= −∆̃Yt,⊥X̃0

>
− X̃0∆̃Yt,⊥

>
+ α2∆̃Zt,⊥X̃0

>
+ α2X̃0∆̃Zt,⊥

>
(258)

+ ηα2∆̃Zt,⊥X̃0

>
X̃0X̃0

>
+ ηα2X̃0X̃0

>
X̃0∆̃Zt,⊥

>
+ ηX̃0∆̃Yt,⊥

>
X̃0X̃0

>
(259)

+ ηX̃0X̃0

>
∆̃Yt,⊥X̃0

>
− η∆̃Yt,⊥X̃0

>
X̃0X̃0

>
− ηX̃0X̃0

>
X̃0∆̃Yt,⊥

>
(260)

− ηα2X̃0∆̃Zt,⊥
>
X̃0X̃0

>
− ηα2X̃0X̃0

>
∆̃Zt,⊥X̃0

>
(261)

= α2 ˜∆Zt+1,⊥X̃0

> (
I− ηX̃0X̃0

>)
+
(
−ηX̃0X̃0

>)
α2 ˜∆Zt+1,⊥X̃0

>
(262)

+ α2X̃0
˜∆Zt+1,⊥

> (
−ηX̃0X̃0

>)
+
(
I− ηX̃0X̃0

>)
α2X̃0

˜∆Zt+1,⊥
>

(263)

− ˜∆Yt+1,⊥X̃0

> (
I− ηX̃0X̃0

>)
−
(
−ηX̃0X̃0

>) ˜∆Yt+1,⊥X̃0

>
(264)

− X̃0
˜∆Yt+1,⊥

> (
−ηX̃0X̃0

>)
+
(
I− ηX̃0X̃0

>)
X̃0

˜∆Yt+1,⊥
>
. (265)

Regarding the above equation, there are several key observations:

(a) Nt is symmetric.

(b) For any eigenvector v of X̃0X̃0

>
, we have v>Nt+1v = v>Ntv.

(c) For any distinct eigenvectors vp, vq of X̃0X̃0

>
, we have v>p Nt+1vq + v>q Nt+1vp =

v>p Ntvq + v>q Ntvp.

Combining these three observations, we have v>Nt+1v = v>Ntv for any v with v decomposed as a

linear combination of the eigenvectors of X̃0X̃0

>
. Therefore, it is fair to say ‖Nt+1‖ = ‖Nt‖.

So combining ‖Mt+1‖ ≤ ‖Mt‖ and ‖Nt+1‖ = ‖Nt‖ tells that both ‖ ˜∆Yt+1,⊥X̃0

>
+

X̃0
˜∆Yt+1,⊥

>
‖ , ‖ ˜∆Zt+1,⊥X̃0

>
+ X̃0

˜∆Zt+1,⊥
>
‖ stay small, which tells

∥∥∥∆̃Yt,⊥

∥∥∥ ,∥∥∥∆̃Zt,⊥

∥∥∥
also stay small.

Therefore, we can conclude that both
∥∥∥∆̃Yt

∥∥∥ ,∥∥∥∆̃Zt

∥∥∥ stay small.

After proving that all of ‖my,t‖ , ‖mz,t‖ ,
∥∥∥∆̃Yt

∥∥∥ ,∥∥∥∆̃Zt

∥∥∥ stay small, from (174), the only terms
growing fast are 〈εtũy,t, u1〉, 〈εtũz,t, u1〉 exponentially, which means the projections of ũy,t, ũz,t
onto u1 is also growing sharply.

Phase II: after ũy, ũz ‖ u1 approximately

Following the same spirit of everything in the symmetric case, we re-introduce higher-order terms, as

∆Yt+1v1 , εy,t+1ũy,t = εy,tũy,t − η
[
εy,tũy,t

σ2
1

α2
+ εy,tεz,tũy,t

σ1

α
(266)

+σ2
1εz,tu1 + ασ1ε

2
z,tu1 +

σ

α
εy,tεz,tũy,t + εy,tε

2
z,tũy,t.

]
, (267)

εy,t+1 = 〈εy,t+1ũy,t+1, u1〉 = 〈εy,tũy,t, u1〉 − η
[
σ2

1

α2
εy,t + 2

σ1

α
εy,tεz,t + σ2

1εz,t + σ1αε
2
z,t + εy,tε

2
z,t

]
,

(268)

εz,t+1 = 〈εz,t+1ũz,t+1, u1〉 = 〈εz,tũz,t, u1〉 − η
[
σ2

1α
2εz,t + 2σ1αεy,tεz,t + σ2

1εy,t +
σ1

α
ε2y,t + ε2y,tεz,t

]
.

(269)
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Then we have

σ1α+ εy,t+1 = σ1α+ εy,t − η
(σ1

α
+ εz,t

)(σ1

α
εy,t + εy,tεz,t + σ1αεz,t

)
(270)

σ1

α
+ εz,t+1 =

σ1

α
+ εz,t − η (σ1α+ εy,t)

(σ1

α
εy,t + εy,tεz,t + σ1αεz,t

)
. (271)

Note that the shared factor
(
σ1

α εy,t + εy,tεz,t + σ1αεz,t
)

= (σ1α+ εy,t)
(
σ1

α + εz,t
)
− σ2

1 . Hence,
the above system is equivalent to

y = y − η(yz − σ2
1)z, (272)

z = z − η(yz − σ2)y. (273)

Furthermore, this is equivalent to f(y, z) = 1
2 (yz − 1)2 with learning rate η′ = 1 + βσ2

1 . Therefore,
from Theorem 5, we know y, z will converge to the same values, which make the problem with
the same solution of 1D functions. Fortunately, it follows the solution for (39). In summary, after
straightforward computation, it converges to

(Yt,Zt)→ γη + (∆Y,∆Z), ‖∆Y‖ , ‖∆Z‖ = O(ε), (274)

γη =

{(
Y0 + (ρi − α)σ1u1v

>
1 ,Z0 + (ρi − 1/α)σ1u1v

>
1

)}
, (i = 1, 2) (275)

where ρ1 ∈ (1, 2), ρ2 ∈ (0, 1) are the two solutions of solving ρ in

1 + βσ2
1 =

1

ρ2
(√

1
ρ2 −

3
4 + 1

2

) . (276)

Note that ‖∆Y‖ , ‖∆Z‖ = O(ε) can achieved by the already presented discussion in Phase I, and
here we omit similar discussion for Phase II, very close to the symmetric case.

K USEFUL LEMMAS

Lemma 7. Assume a ·∆a ≥ b ·∆b and a ≥ b. All of a, b,∆a,∆b are positive. If ∆b ≤ a, then
a+ ∆a ≥ b+ ∆b.

Proof. (a+ ∆a)− (b+ ∆b) ≥ a+ b∆b
a − b−∆b = (∆b

a − 1)(b− a) ≥ 0.

Lemma 8. In (242), if we have ‖B‖ ≤ 2 and with σ2 < σ1, then At is bounded entry-wise, for any
t ≥ 1.

Proof. Denote u1 = 1
z1

[
1, 0, α2 σp

σ1
, 0
]>
, u2 = 1

z2

[
0, 1, 0,

σp
σ1α2

]>
, v1 = 1

z3

[
1, 0, 0,

σp
σ1
α2
]>
,

v2 = 1
z4

[
0, 1,

σp
σ1α2 , 0

]>
, where z1, z2, z3, z4 are positive normalization terms to ensure ‖ui‖ =

1, ‖vi‖ = 1 for i = 1, 2. Then A can be re-written as

A = I− η σ
2
1

α2

(
1 +

(
α2σp
σ1

)2
)
u1v
>
1 − ησ2

1α
2

(
1 +

(
σp
σ1α2

)2
)
u2v
>
2 . (277)

Let’s denote a1 = η
σ2
1

α2

(
1 +

(
α2 σp

σ1

)2
)
, a2 = ησ2

1α
2

(
1 +

(
σp
σ1α2

)2
)

. Obviously, for any t ≥ 1,

the t-th power of A, can be represented as

At = I + k
(t)
1 u1v

>
1 + k

(t)
2 u2v

>
2 + k

(t)
3 u1v

>
2 + k

(t)
4 u2v

>
1 , (278)

and the update rule of k(t)
i ’s is

k
(t+1)
1 = k

(t)
1 (1− a1v

>
1 u1)− k(t)

3 a1v
>
2 u1 − a1,

k
(t+1)
2 = k

(t)
2 (1− a2v

>
2 u2)− k(t)

4 a2v
>
1 u2 − a2,

k
(t+1)
3 = k

(t)
3 (1− a2v

>
2 u2)− k(t)

1 a2v
>
1 u2,

k
(t+1)
4 = k

(t)
4 (1− a1v

>
1 u1)− k(t)

2 a1v
>
2 u1.
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Since At is bounded ∀ t if and only if k(t)
i is bounded for any t ≥ 1, we only need to show the below

matrix C with ‖C‖spectral < 1, with C defined as

C =


1− a1v

>
1 u1 0 −a1v

>
2 u1 0

0 1− a2v
>
2 u2 0 −a2v

>
1 u2

−a2v
>
1 u2 0 1− a2v

>
2 u2 0

0 −a1v
>
2 u1 0 1− a1v

>
1 u1

 , (279)

where

v>1 u1 =
1√

1 +
(
σp
σ1
α2
)2
√

1 +
(
σp
σ1
α2
)2
, v>2 u1 =

(
σp
σ1

)2

√
1 +

(
σp
σ1
α2
)2
√

1 +
(

σp
σ1α2

)2
, (280)

v>2 u2 =
1√

1 +
(

σp
σ1α2

)2
√

1 +
(

σp
σ1α2

)2
, v>1 u2 =

(
σp
σ1

)2

√
1 +

(
σp
σ1
α2
)2
√

1 +
(

σp
σ1α2

)2
. (281)

To obtain ‖C‖2 < 1, we only need to compute ‖Ci,:‖ < 1 for i ∈ [4]. Taking i = 1 as an example,
we have

‖C1,:‖2 = (1− a1v
>
1 u1)2 + (a2v

>
2 u1)2 =

(
1− η σ

2
1

α2

)2

+

η σ2
p

α2

√
1 +

(
σp
σ1
α2
)2

√
1 +

(
σp
σ1α2

)2


2

. (282)

If α < 1, the above RHS < (1 − η
σ2
1

α2 )2 + (η
σ2
p

α2 )2 < 1 where the second inequality is due to

σ2
p ≤ σ2

2 < σ2
1 . If α ≥ 1, the condition of a1 ≤ 2 (from ‖B‖ ≤ 2) gives σ2

p ≤
2/η−σ2

1/α
2

α2 , which is

further σ4
p <

2/η−σ2
1/α

2

α2 σ2
1 due to σ2

p < σ2
1 . As a result, it holds ησ4

1 − 2α2σ2
1 + ησ4

pα
4 < 0, which

means (1− ησ2
1/α

2)2 + (ησ2
p)2 < 1. Noting the above RHS≤ (1− ησ2

1/α
2)2 + (ησ2

p/α
2 · α2)2 =

(1− ησ2
1/α

2)2 + (ησ2
p)2 when α ≥ 1, it finishes the proof.

L ILLUSTRATION OF PERIOD-2 AND PERIOD-4 ORBITS

In the proof of local convergence to the period-2 orbit in (??), we give a bound of learning rate as√
5− 1 ≈ 1.236. Local convergence is guaranteed if the learning rate is smaller than it. Conversely,

if the learning rate is larger than it, although the period-2 orbit still exists, GD starting from a point
infinitesimally close to the orbit still escapes from it. This is when GD converges to a higher-order
orbit.

Figure 9 precisely shows the effectiveness of such a bound where GD converges to the period-2 orbit
when η = 1.235 <

√
5− 1 and a period-4 orbit when η = 1.237 >

√
5− 1.

M DISCUSSIONS

First, we provide a general roadmap of our theoretical results in Section M.1, as illustrated in Figure 10.
Then, in Section M.2 we discuss three implications from our current low-dimensional settings to
more complicated models for future understanding of EoS in pratical NNs, where low-dimension
theorems are enhanced with high-dim experiments.

M.1 CONNECTIONS BETWEEN THEORETICAL RESULTS

In this section, we discuss the connections between our presented theoretical results, as illustrated in
Figure 10.

Theorem 1 and Lemma 1 present (local) intrinsic geometric properties for a 1-D function to allow
stable oscillations. Such properties provide us the 1-D function f(x) = (µ− x2)2 and, furthermore,
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Figure 9: The convergent orbits of GD on f(x) = 1
4 (x2 − 1)2 with learning rate=1.05, 1.235 and

1.237. The first two smaller learning rates drive to period-2 orbits while the last one goes to an
period-4 orbit. The significant bound between period-2 and period-4 is predicted by our proof in (??),
as
√

5− 1 ≈ 1.236.

Local Geometry (Thm. 1)

High-order LG (Lem. 1) 1-D case (Thm. 2) LG for MF (Thm. 6)

(g(x)− y)2 (Lem. 2) 2-D case (Prop. 3) Balancing effect (Thm. 5)

Composition rule of g (Prop 1) Single-neuron (Prop. 2) Quasi-sym MF (Thm. 4)

wy → 0 (Thm. 3)

Figure 10: Connections between our presented theoretical results. The arrows stand for “implies”.
LG stands for Local Geometry. MF stands for Matrix Factorization.

we generalize the local property to a global convergence result in Theorem 2. Then we are to
generalize the 1-D analysis to cases of i) multi-parameter, ii) nonlinear and iii) high-dimension.

(a) Multi-parameter. Compared with 1-D f(x) = (µ − x2)2, the 2-D function f(x, y) =
(µ− xy)2 can be viewed as the simplest setting of two-layer models. We prove that the 2-D
case converges to the region of x = y in Theorem 5 in Appendix A.1, which means it shares
the same convergence as the 1-D model. Also, x = y means its sharpness is the flattest.

(b) Nonlinear. We extend the 2-D model to a two-layer single-neuron ReLU model in Section 5.
Although the student neuron can be initialized far from the direction of the teacher neuron,
we prove the student neuron converges to the correct direction (as wy → 0) in Theorem 3.
Then the problem degenerates to the above 2-D analysis, which means it shares the same
convergence with the 2-D, where (v, wx) corresponds to (x, y) in 2-D.

(c) High-dimension. We extend the 2-D model to quasi-symmetric matrix factorization in
Section 6. Although the parameters are initialized near a sharp minima, GD still walks
towards the flattest minima, as shown in Theorem 4. At convergence, the top singular values
of Y,Z are the same, following the 2-D analysis. So the singular values are in the same
period-2 orbit as the 1-D case.

Meanwhile, from Theorem 1 and Lemma 1, we prove a condition for base models g in regression
tasks to allow stable oscillation in Lemma 2. Furthermore, we provide a composition rule of two base
models to find a more complicated model that allows stable oscillation in Prop 1.
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M.2 IMPLICATIONS FROM LOW-DIMENSION TO HIGH-DIMENSION

We would like to emphasize that, although our current simple settings are a little far from practical
NNs, it still helps understand the ability of GD at large LRs to discover flat minima in three steps
as follows. We include more experiments in Appendix B.2 to present the following hopes for
complicated networks:

(a) By Theorem 1, especially its second condition, we wish to discover an intrinsic geometric
property around local minima of more complicated models. The key is to investigate the
1-D function at the cross-section of the leading eigenvector and the loss landscape.

u Theoretical: we prove the 1-D condition holds at any minima for non-trivial matrix
factorization, shown as Theorem 6 in Appendix A.2.

] Empirical: we show the 1-D condition holds around minima of 3,4,5-layer ReLU MLPs
on MNIST, shown in Figure 6(d), 7(d), 8(d) in Appendix B.2.2.

(b) With the above intrinsic geometric property, the next question is whether the training
trajectory utilizes this property.

u Theoretical: in the case of quasi-symmetric matrix factorization, we prove that the
training trajectory follows the leading eigenvector of the Hessian (i.e. the leading
component of X0) in Theorem 4, where the only top components of weights are
changing in ω(ε).

] Empirical: for MLPs on MNIST, we show the almost perfect alignment of the gradient
and the top Hessian eigenvector in Figure 6(c), 7(c), 8(c).

(c) The final implication is the implicit bias of EoS after such oscillation. It turns out GD is
driven to flatter minima from sharper minima. In the 1-D case, obviously there is nothing
about implicit bias since the only thing GD is doing is to approximate the target value.
However, an implicit bias from the oscillation appears starting from the 2-D case.

u Theoretical 1: in the 2-D case in Theorem 5, we prove the two learnable parameters
x, y will converge to the same values after oscillations of their product xy. Actually in
the minimum manifold, smaller |x− y| means a flatter minimizer.

u Theoretical 2: in the single-neuron ReLU network in Theorem 3 and Prop 2, we show
the model degenerates to the 2-D case since wy → 0. The 2-D argument tells that this
nonlinear model also walks towards the balanced situation, verified with experiments
in Figure 2.

u Theoretical 3: in the quasi-symmetric MF in Theorem 4, although the initialization is
around a sharp minima, GD is still driven towards the flattest minima where σmax(Y) =
σmax(Z).

] Empirical 1: for 2-layer 16-neuron ReLU network in a student-teacher setting, it turns
out learning rate decay after beyond-EoS oscillations drives the model very close to the
flattest minima, as shown in Figure 5 and in Appendix B.2.1.

] Empirical 2: for 3,4,5-layer MLPs on MNIST, larger learning rate drives to a flatter
minima, as shown in Figure 6(b).

N CONCLUSIONS

In this work, we investigate gradient descent with a large step size that crosses the threshold of local
stability. In the low dimensional setting, we provide conditions on high-order derivatives that allow
stable oscillation around local minima. For a two-layer single-neuron ReLU network, we prove
its convergence to align with the teacher neuron under population loss. For matrix factorization,
we prove that the necessary 1-D condition holds around any minima. Furthermore, we conduct an
analysis of GD in symmetric matrix factorization, which converges to a period-2 orbit aligned with
the 1-D convergence. Moreover, we generalize the analysis to quasi-symmetric cases where GD
walks towards the flattest minimiser although initialized near sharp ones. A further discussion is
provided in Appendix M.

While these are encouraging results that contribute to the growing understanding of gradient descent
beyond the Edge of Stability, our analysis suffers from important limitations that require further work.
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An important item for future work is therefore to extend it to general dimensions with nonlinearity,
which will enable the analysis of empirical landscapes as well as multiple neurons. Next, the
understanding of the implicit bias of GD in the large-learning rate regime won’t be complete without
integrating the noise, either in the classic SGD sense or in the labels, as done in Damian et al. (2021);
Li et al. (2021).
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