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Abstract

Live-cell imaging technology enables detailed spatio-temporal characterization of1

living cells at single-cell resolution, which is critical for advancing research across2

the life sciences, from biomedical applications to bioprocessing. High-throughput3

setups with tens to hundreds of parallel cell cultivations offer the potential for robust4

and reproducible insights. However, these insights are hidden within hundreds of5

GBs of time-lapse imaging data recorded per experiment. Recent advances in state-6

of-the-art deep learning methods for cell segmentation and tracking now enable7

the automated analysis of such data volumes, offering unprecedented opportunities8

to study single-cell dynamics systematically. The next key challenge, however,9

lies in integrating these powerful tools into accessible, flexible, and user-friendly10

workflows that support routine application in biological research. In this work,11

we present acia-workflows a platform that combines three key components:12

(1) the automated live-cell imaging analysis (acia) Python library for modular13

design of image analysis pipelines supporting eight deep learning segmentation14

and tracking approaches, (2) the design of workflows that assemble the sequential15

image analysis pipeline, software dependencies, documentation, and visualizations16

into a single Jupyter Notebook leading to accessible, reproducible and scalable17

analysis workflows, (3) a collection of application workflows that demonstrate the18

analysis and customization capabilities in real-world applications. In particular,19

we present a subset of three application workflows investigating various types of20

microfluidic live-cell imaging experiments ranging from growth rate comparisons21

to a precise, minute-resolution quantitative analysis of the response dynamics22

of individual cells to changing oxygen conditions. Our extensive collection of23

more than ten application workflows is open source and publicly available at24

https://github.com/JuBiotech/acia-workflows.25

1 Introduction26

Live-cell imaging is at the forefront of investigating the dynamic behavior of living cells across27

space and time, fostering our understanding of cancer treatment Alieva et al. [2023], protein secre-28

tion Shirasaki et al. [2014], Raphael et al. [2013], diseases Weissmann and Brandt [2008], Campbell29

and Hope [2008], single-cell heterogeneity Preedy et al. [2024], Huang et al. [2024], and biofilm30

formation Drescher et al. [2014], Hartmann et al. [2019]. Combining automated live-cell imaging31

with disposable, high-throughput microfluidic devices (MLCI) enables the simultaneous recording of32

hundreds of independently developing cell populations within a single experimental run at constant33

or time-varying conditions, unlocking high-throughput screenings.34
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Figure 1: Five-step MLCI analysis pipeline (A), implemented in modular components of the acia
library (B) utilizing SOTA methods and existing Python libraries. These steps are implemented se-
quentially within a single Jupyter Notebook, fusing code, documentation, software dependencies, and
visualizations into a single workflow (C). This workflow is automatically scaled to high-throughput
experiments with numerous time-lapse recordings to gain quantitative insights (D). Our workflow
collection (E) showcases the importance of the six key capabilities: accessibility, customizability,
modularity, scalability, shareability, and reproducibility (ACMS2R).

The key to the power of MLCI lies in extracting single-cell information from time-lapse data and35

analyzing the spatio-temporal development of cells and their populations. However, these single-cell36

measurements are hidden within the imaging data and must be extracted from tens to hundreds of37

gigabytes of time-lapse data. This extraction requires highly automated image analysis pipelines38

(Figure 1A).39

In recent years, numerous analysis pipelines have been developed that demonstrate the enormous40

potential of automated image analysis in combination with deep-learning segmentation and track-41

ing O’Connor et al. [2022], Berg et al. [2019], Stirling et al. [2021], Stylianidou et al. [2016], Lo et al.42

[2024], Ouyang et al. [2019], Luik et al. [2024]. However, these pipelines are usually centered around43

a specific segmentation or tracking approach, or are plugin-based and require extensive programming44

to establish a complete image analysis pipeline making them challenging to use in a daily practice45

and across multi-disciplinary research teams.46

2 Analysis workflows47

Based on our experience of deploying MLCI image analysis pipelines, we have identified the six most48

important capabilities for such image analysis pipelines: accessibility, customizability, modularity,49

scalability, shareability, and reproducibility (ACMS2R).50

To overcome the limitations of existing pipelines in addressing the six key capabilities, we present51

acia-workflows - a time-lapse analysis platform that integrates SOTA tools into ACMS2R work-52
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Figure 2: Scaling MLCI analysis to multiple time-lapses. (A) shows cell count (CC), total cell
area (TCA), and total single-cell area (TSCA) development (top to bottom) for five C. glutamicum
replicates. The growth rate distribution for all three measures is shown at the bottom. Measurements
for the replicates are shown in different colors. (B) shows the C. glutamicum co-culture TSCA
development (top) and exponential growth rate quantification based on TSCA (bottom) for eight
replicates for mVenus (blue) and E2-Crimson (red) labeled strains. (C) shows the single-cell area
development (top) and instantaneous growth rates (bottom) of E. coli in aerobic (green) and anaerobic
phase (red) for five replicates and 30 individual cells.

flows. To achieve this, acia-workflows combines three complementary components: First, the53

acia Python library implements the modular time-lapse analysis pipeline (Figure 1B). Second, a54

workflow concept that enables the integration of code, documentation, and visualizations into a single55

traceable document (Figure 1C), and third, an open-source collection of application workflows that56

demonstrates the six key capabilities. In particular, acia-workflows deals with image data loading,57

integrates eight plug-and-play segmentation and tracking methods, extracts important single-cell58

features such as cell size or heritage, and provides extensive visualization, including videos and inter-59

active lineages. The deployment of these workflows in Jupyter Notebooks facilitates the combination60

of documentation, coding, and visualization into one traceable and reproducible document and lowers61

the entry barrier for new users.62

3 Results63

To demonstrate the capabilities of acia-workflows and its impact for deep-learning-based single-64

cell analysis, we present three exemplary case studies: (A) Quantifying population growth rates,65

(B) performing co-culture characterization, and (C) measuring single-cell responses to changes in66

cultivation conditions (Figure 2). In these case studies, we present methods for computing cell growth67

rates from time-lapse videos, demonstrate how to measure and compare growth rates in co-cultures,68

and measure the speed and homogeneity of adaptation of E. coli to alternating oxygen conditions.69

We leverage the scalability of our workflows to apply them to multiple time-lapse videos, gaining70

more robust insights without manual code changes. To emphasize accessibility, sharability, and71

reproducibility, the workflows are available open-source, along with a comprehensive set of over 1072

application workflows. These can be reproduced with GPU acceleration directly in the web browser73

using Google Colab.74

Publishing the acia-workflows platform with its collection of application workflows, we have75

lowered the entry barrier of MLCI analysis while showing customizability and reproducibility for high-76

throughput analyses. Thus, acia-workflows represents an important step toward democratizing77

image analysis workflows in live-cell imaging, unlocking the potential of single-cell insights for life78

scientists and data scientists alike.79
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4 Potential Negative Societal Impact129

This paper provides open-source tools for biomedical and biotechnological research. Thus, potential130

harm can arise from general misuse of biomedical and biotechnological technologies.131
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