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ABSTRACT

Explainable AI seeks to bring light to the decision-making processes of black-
box models. Traditional saliency-based methods, while highlighting influential
data segments, often lack semantic understanding. Recent advancements, such
as Concept Activation Vectors (CAVs) and Concept Bottleneck Models (CBMs),
offer concept-based explanations but necessitate human-defined concepts. How-
ever, human-annotated concepts are expensive to attain. This paper introduces the
Concept Bottleneck Surrogate Models (SurroCBM), a novel framework that aims
to explain the black-box models with automatically discovered concepts. Sur-
roCBM identifies shared and unique concepts across various black-box models
and employs an explainable surrogate model for post-hoc explanations. An effec-
tive training strategy using self-generated data is proposed to enhance explanation
quality continuously. Through extensive experiments, we demonstrate the efficacy
of SurroCBM in concept discovery and explanation, underscoring its potential in
advancing the field of explainable AI.

1 INTRODUCTION

Figure 1: An example of the problem in this pa-
per. The black-box classifier’s decisions can be
explained with a set of concepts, but they require
human labor to annotate and are often hard to at-
tain. We aim to explain the black-box model’s be-
havior with a set of concepts discovered by our-
selves.

Explainable AI aims to explain the decision-
making process of black-box models. A tradi-
tional approach to achieving this transparency
is through the use of saliency-based methods
which identify the most influential segments of
the input data that contribute significantly to
a model’s decision. Although saliency-based
methods highlight the important regions, they
do not necessarily offer a semantic understand-
ing. A recent stream of methods, concept-based
explanation, aims to use a set of concepts with
high-level human-understandable meanings to
explain model decisions. Kim et al. (2018) in-
troduced the Concept Activation Vectors (CAVs), vectors in the activation layer in the direction of
user-given concepts, and quantify their importance to the predictions to explain model decisions.
Koh et al. (2020) designed a type of self-explainable neural network, Concept Bottleneck Models
(CBMs), which first use the data to predict concept values, then predict the targets with concepts,
to make the decision-making process more transparent. However, both these two types of concept-
based explanation methods require human-defined concepts, which are costly to attain. Some re-
search focuses on post-hoc explanations with incomplete concepts. Yuksekgonul et al. (2022) pro-
posed a method to transfer annotated concepts from other datasets or leverage multimodal models to
attain concept annotations for post-hoc explanation. Moayeri et al. (2023) proposed to extract con-
cept activation vectors from text with CLIP model and use them for model explanations. However,
since they adopted the idea of borrowing concepts from other data, these works did not thoroughly
solve the problem of human labor for concept annotations.

In this work, our goal is to explain the black-box model decisions with automatically discovered con-
cepts, as shown in Fig. 1. Although some results on concept-based model explanation and concept
discovery has been encouraging, this task is still challenging due to the following reasons:
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Challenge 1: Bridging the Gap Between Concepts for Data and Post-hoc Explanations. There
is an inherent gap between the explainable concepts to underly the dataset and the related concepts to
explain the decision-making process of the black-box models. Existing work typically pays efforts
to one of two goals: (1) discovering concepts to explain a dataset, requiring the concepts to be
human-understandable, disentangled and fully cover each varying aspect of the dataset; (2) Using
given concepts to explain the decision-making processes of a classifier, requiring the concepts to
have information for the classification task. With different goals, the required concepts should have
different meanings. The different requirements to explain the data and classifiers bring a challenge
in discovering concepts that meet the post-hoc explanation requirements.

Challenge 2: Aligning the Shared Related Concepts for Multiple Classifiers. While the majority
of research focuses on identifying concepts to only explain the data Kim & Mnih (2018) or explain
a singular classifier O’Shaughnessy et al. (2020); Tran et al. (2022), real-world applications often
require predicting several aspects of the same data. The groups of concepts related to different tasks
are different. It is challenging to identify shared and unique concepts that underpin the decision-
making processes of multiple classifiers, especially during the concept discovery process.

Challenge 3: Ensuring High Fidelity of Surrogate Models. Surrogate model-based explanation
methods require high fidelity to mimic the black-box models to ensure accuracy. However, with
a limited training set, it is hard to fully mimic the output of the black-box models with surrogate
models. Moreover, the input of the surrogate model, defined by the discovered concepts, may not
cover all aspects of the original input data, making it more difficult to maintain fidelity.

To tackle these challenges, we introduce the Concept Bottleneck Surrogate Models (SurroCBM),
a surrogate model-based method to jointly solve the unsupervised concept discovery and post-hoc
explanation problem. Our model can discover the shared and unique concepts across different black-
box models on the same data. Our concept-based explainer first maps the data to concepts then
identifies the task-related concepts and predicts the black-box model output with a highly transparent
module. The contributions of this paper are summarized as follows:

• A novel framework for discovering identifiable and task-related concepts. Our pro-
posed method discovers identifiable concepts with relations to multiple classifiers by align-
ing the shared concepts and identifying the unique concepts of each prediction target.

• A concept-based post-hoc explainer for black-box model explanation. Our proposed
surrogate model first maps the data to concepts, then identifies a group of related concepts
and uses them to explain the model behaviors, providing a high explainability.

• A training strategy to increase the fidelity with generated data. In order to continuously
enhance the fidelity of the surrogate model, we propose a training strategy that generates
user-customizable and diversified additional data to train the model.

2 RELATED WORK

2.1 CONCEPT DISCOVERY

The unsupervised concept discovery problem aims to identify concepts without given concept la-
bels. Tradition works focus on the form of concepts as important vectors in the activation space
Kim & Mnih (2018). Later concept discovery methods aim to identify meaningful image segmen-
tations as concepts Ghorbani et al. (2019); Wang et al. (2023); Yao et al. (2022); Kamakshi et al.
(2021); Posada-Moreno et al. (2022), and use them to explain the model behaviors. Another type
of method is to use latent factors of generative models as concepts and conduct interventions to get
their semantical meanings O’Shaughnessy et al. (2020); Tran et al. (2022). Some more recent work
focuses on identifying text descriptions to explain the data and model decisions Yang et al. (2023);
Oikarinen et al. (2023); Moayeri et al. (2023).

2.2 CONCEPT-BASED EXPLANATION

Our method can be categorized as post-hoc explainability for deep learning models based on con-
cepts. The term concepts, there are various definitions, such as a direction in the activation space,
a prototypical activation vector, or a latent factor of a generative model. For example, a generative

2



Under review as a conference paper at ICLR 2024

model such as VAEs Kingma & Welling (2013) can provide a concept-based explanation as it learns
a latent representation that captures different aspects of the data. However, standard VAEs struggle
to disentangle latent concepts due to their lack of explicit mechanisms for separating intertwined
factors of variation, leading to overlapping or mixed representations in the latent space. Concept
Activation Vectors (CAVs) Kim et al. (2018) provide an interpretation of a neural net’s internal state
in terms of human-friendly concepts by viewing the high-dimensional internal state of a neural net
as an aid, not an obstacle. ConceptSHAP Yeh et al. (2020) infers a complete set of concepts that are
additionally encouraged to be interpretable by retraining the classifier with a prototypical concept
layer. O’Shaughnessy et al. (2020) generates causal post-hoc explanations of black-box classifiers
based on a learned low-dimensional representation of the data.

3 PROBLEM FORMULATION

In this work, we aim to explain the black-box classifiers with automatically identified concepts. We
aim to identify a set of concepts that have the ability to act as units of high-level features of data and
high-level reasoning for classifications on the data, and discover how the learned concepts combine
to explain black-box classifiers for the data.

More formally, given a dataset X and a set of black-box classifiers f = {f1, f2, ..., fky
}, each

mapping from X to a target Yi ∈ Y . Our goal is to (1) identify a set of concepts with the values
z = {z1, z2, ..., zkc

} ∈ Z ⊂ Rkc , where kc denotes the number of concepts, that can serve as
reasoning units of f ; and (2) find a mapping h : Z → Y that map the concept values to the black-
box model outputs with a more explainable inner structure, thus it can mimic the black-box model
behaviors and provide post-hoc explanations.

To achieve this goal, several challenges of the discovered concepts and the post-hoc explanation
process are identified as follows:

• Fidelity: To make the post-hoc explanations reliable, predictions derived from concepts via
the mapping h must closely mimic the behavior of the black-box models.

• Identifiability: To allow the identified concepts to explain new classifiers unseen in training,
the identified concepts should comprehensively cover the aspects of data. This requires that
the data can be recovered with its corresponding concept values.

• Explainability: To provide human-understandable explanations, the explanation process of
predicting the targets from identified concepts should be transparent and explainable.

4 CONCEPT BOTTLENECK SURROGATE MODELS

Overview. We devised a novel method, Concept Bottleneck Surrogate Models (SurroCBM), to
jointly discover the high-level concepts with our desired properties and use the discovered concepts
to explain the black-box models. The proposed framework is illustrated in Fig. 2. We first present
the model architecture and how the model can be used for local and global explanations in Sec. 4.1,
then we induce the training objective in Sec. 4.2 and present a procedure to continuously increase
the fidelity in Sec. 4.3.

4.1 PROPOSED MODEL

Specifically, we use a surrogate model f ′ to mimic the behaviors of the black-box model f , where
f and f ′ are both a set of classifiers. Inspired by traditional Concept Bottleneck Models, we divide
f ′ into two stages: a concept extractor eϕ to map the data to concept values z, and an explainable
mapping h to map the concept values z to the model output. To ensure identifiability, we add an
additional decoder gθ to map the concept values z back to the data x and minimize their difference.
The surrogate model is shown in Fig. 2 (a).

To further improve the explainability of the surrogate model f ′, we design an explainable interior
structure for the mapping h, which can identify shared and unique concepts required for each clas-
sification target, shown in Fig. 2 (b). This mechanism is implemented with a trainable binary mask
m ∈ {0, 1}kz×ky , named explanation mask. After the model is well trained, we expect the masked
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Figure 2: The illustration of our proposed framework. We use the surrogate models f ′ to mimic
the black-box models f ’s behaviors for post-hoc explanation. In the surrogate model, the data x
is first mapped to its concept values z with concept extractor eϕ, then the concept values z are
used to predict the model output with an explainable mapping h. The mapping h achieves a high
explanability by identifying the related concepts to each target and using a soft decision tree to
enhance the transparency.

concepts will keep only the ones with relationships to each classification target. The whole set of
concept values z is first masked with m with an element-wise product. Thus the input of the esti-
mators fγ will only contain a set of necessary concepts specific to each target. We use soft decision
trees to implement each fγ to enhance the explainability of the mapping from related concepts to
model outputs.

After the model is trained, the semantic meanings of these concepts are derived through interventions
within the generative process, serving as base units for explaining the decision-making process.
Below, we discuss the procedure for both global and local explanations.

Global explanation. Our method can provide global explanations by identifying the related con-
cepts for each prediction task. For a specific task fk, where k is the index of the task, the related
concepts can be identified by

zRk = {zj}mj,k=1 (1)

where zRk represents the related concepts of the task with the index k, and zj denotes the concept
variables (without specified values).

Local explanation. Our proposed method can also provide a local explanation of the decision-
making process of each data sample’s classification. This is achieved by first identifying the related
concepts using the global explanation method, and then extracting the values of the concepts with
the concept extractor. By feeding the combinations of concepts into the decision tree, which maps
concepts to predictions, we ensure transparency in the rules of every decision-making step and its
associated predictions for specific data.

Formally, our proposed surrogate model can bring light on the decision-making process of the data
sample x on the black-box model fk with 1) related concepts zRk = {zj}mj,k=1, 2) values of related
concepts: zRk = {eϕ(x)j}mj,k=1 and 3) a decision tree from related concepts to predictions: y =

fγk(z
R
k )

4.2 TRAINING OBJECTIVE

In order to optimize our proposed model, three criteria should be satisfied: (1) the decoded data
from concepts should be accurately recovered to match the original data, (2) the predictions from
the surrogate model should closely align with the predictions from the black-box model, and (3) the
mapping from concepts to predicted labels should be explainable. We derive three corresponding
loss terms for them, namely identifiability loss (LI ), fidelity loss (LF ) and explainability loss (LE).
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Then the objective can be written as

min
ϕ,θ,γ,m

LI(x;ϕ, θ)︸ ︷︷ ︸
Identifiability loss

+λ1 LF (x, f ;ϕ,m, γ)︸ ︷︷ ︸
Fidelity loss

+λ2 LE(x;ϕ,m, γ)︸ ︷︷ ︸
Explainablity loss

(2)

where LI , LE , and LF denote the corresponding terms for Identifiability loss, Explainability loss,
and Fidelity loss. ϕ, θ, γ,m are the weights of the corresponding model components.

4.2.1 FIDELITY AND IDENTIFIABILITY

Ensuring fidelity requires the output of the surrogate model should be close to the output of the
black-box model. So we can naturally use

LF (x, f ;ϕ,m, γ) = D(hm,γ(eϕ(x)), f(x)) (3)

whereD is a measure of distance between the black-box model output f(x) and the surrogate model
output hm,γ(eϕ(x)).

To ensure identifiability, we propose to model the generative process of how the concept values z
can be mapped back to the original data x. We denote the generative process as pθ(x|z). To infer z,
we use qϕ(z|x) with learnable weights ϕ to estimate the posterior distribution of p(z|x). To ensure
the data x can be recovered given concept values z, we maximize the variational lower bound on
the log-likelihood pθ,ϕ(x). Given the approximated posterior qϕ(z|x), which naturally matches the
objective of Variational Autoencoders. Thus the identifiability loss can be written as:

LI(x;ϕ, θ) = Eqϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)∥p(z)) (4)

where p(z) is the prior distribution of z, and DKL stands for the Kullback–Leibler divergence.

4.2.2 EXPLANABILITY

In order to improve the explainability of the surrogate model, we aim to enforce (1) the disentan-
glement of concepts, and (2) the explainability of the mapping from extracted concept values to the
model output. The details are introduced as follows.

Concept disentanglement. To enhance the explainability of the discovered concepts, one important
point is to ensure the disentanglement of each concept. To do this, we add a constraint to the
distribution of each concept value p(zi). Following Chen et al. (2018), we use the Total Correlation
(TC) term to enhance the disentanglement, which forces our model to find statistically independent
concepts in the data distribution.

Explainability of surrogate model. To enhance the explainability of the post-hoc explaining pro-
cess, we further decompose the mapping h (concept values to black-box model outputs) into two
steps: (1) Identifying the necessary concepts for each task, (2) predicting the black-box model out-
put with these necessary concepts, as shown in Fig. 2 (b). Since we explain each classifier by its
necessary concepts and the concept values, a better explanation will be a smaller number of concepts
required by each task. Hence, we can achieve this by ensuring the sparsity of the explanation mask.
With identified necessary concepts for each task, we implement the mapping from these concepts to
predictions as a type of self-explainable model, soft decision trees, which naturally gives rules for
predicting labels with the concept values. We add regularization to the soft decision trees to penalize
their complexity for better explainability.

More formally, we decompose h as h(z) = fγ(m · z), ∀z, where m is the explanation mask, and
fγ is implemented with soft decision trees, parameterized with γ. We enforce the sparsity of m by
penalizing ∥m∥2, where ∥ · ∥2 denotes the sum of the square values of the elements. We enforce the
explainability by penalizing C(γ), where C(·) is a measurement of the complexity of the trees. Then
the explainability loss can be written as a weighted sum of the penalty terms for total correlation,
sparsity of m and complexity of the decision trees, namely

LE(x;ϕ,m, γ) = DKL(q(z)∥
∏
j

q (zj))︸ ︷︷ ︸
Disentanglement of z

+λ3 ∥m∥2︸ ︷︷ ︸
Sparsity of m

+λ4 C(γ)︸ ︷︷ ︸
Simplicity of fγ

(5)
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where q(z) is the joint approximate posterior, which represents the joint distribution of z over the
dataset, and q(zi) is the marginal approximate posterior, which represents the marginal distribution
over the i−th concept. DKL denoted the Kullback–Leibler divergence, C(·) is a measurement of
the complexity of the trees, λ3 and λ4 are the weights of the corresponding terms.

Overall Objective: All the model components are trained jointly to ensure the discovered concepts
are learned with the guidance of both the data and the black-box models. The overall loss function
is written as

L(x, f ;ϕ, θ,m, γ) = LI(x;ϕ, θ) + λ1LF (x, f ;ϕ,m, γ) + λ2LE(x;ϕ,m, γ) (6)

where λ1 and λ2 are the weight hyper-parameters.

4.3 CONTINUOUSLY IMPROVING THE FIDELITY

The explanation gets more trustworthy when the
output of the surrogate model gets closer to the
output of the black-box model with the same in-
put. However, it is hard to fully mimic the activ-
ities of the black-box models due to limited ac-
cess to the black-box model’s architecture and
its training data. Fortunately, our framework
supports us to continuously increase fidelity by
generating user-customizable and diverse data
for training. To achieve this, we devised a strat-
egy to train the model as follows.
To increase the fidelity to mimic a given classi-
fier, we train the model with additional data that
is generated by the model itself. The concepts
used to general new data can be divided into two
groups: the concepts related to this classifier,
which can be specified with the user’s prefer-
ence for user-customizability; the concepts

Algorithm 1 Proposed Training Strategy
Require: Black-box classifier f
Require: Trained model parameters θ, ϕ,m, γ
Require: Number of samples of related con-

cepts nR

Require: Number of samples of unrelated con-
cepts nU

1: for i = 0 to nR do
2: Sample zR = {zj}mj,k=1

3: for j = 0 to nU do
4: Sample zU = {zj}mj,k=0

5: x← gθ(z
R ⊕ zU ).

6: Compute L with Eq. 6
7: Update θ, ϕ,m, γ with L
8: end for
9: end for

unrelated to the classifier, which can be perturbated by sampling from the prior distribution for data
diversity. Specifically, for the classifier fk on the k-th task, we divide the concepts z into two groups:
the set of related concepts zR = {zj}mj,k=1, and the set of unrelated concepts zU = {zj}mj,k=0.
We use the notation zR ⊕ zU to denote the operation of combining zR and zU to a whole set of
concepts z while keeping the correct indices. The iterative training process starts by sampling the
zR and perturbating zU for each zR. Then the data sample x can be generated with the decoder by
x = gθ(z

R ⊕ zU ). With the additional data, the overall objective can be continuously optimized by
minimizing L(gθ(zR ⊕ zU )) in Eq. 6.

So the overall objective in the additional training phase can be written as:

min
ϕ,θ,m,γ

Ep(zR)Ep(zU )L(gθ(zR ⊕ zU )) (7)

where p(zR) and p(zR) is the distribution of sampling the preferred concept values for generating
additional data, L is the overall objective in Eq. 6.

5 COMPOSITIONAL GENERALIZATION

Compositional generalization means the ability to recognize or generate novel combinations of
observed elementary concepts. One way to achieve compositional generalization is via freez-
ing the trained model weights while training some simple model weights to generalize to new
combinations Xu et al. (2022). Our proposed framework, which discovers a set of concepts
and identifies the related concepts for each task, can naturally be generalized to explain new
black-box classifiers that are unseen in the training phase but the related concepts are found,
with all trained model weights frozen, and only train the additional mask and estimators.
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Figure 3: Illustration of the composi-
tional generalization of our proposed
framework. Our model can be gener-
alized to new tasks with only training
the new parts of the explanation mask
m and the estimator for the new task.

Specifically, suppose the model has been well-trained
with kt training tasks f train = {f1, ..., ft}, and kc con-
cepts are found. We want to use the trained model to ex-
plain p unseen test tasks: f test = {ft+1, ..., ft+p}. The
optimization objective is the same with Eq. 4. The differ-
ence is that the existing trained weights can be fixed. The
only new parameters to train is the added part of the ex-
planation mask m, namely m:,t:t+p, and the new-added
estimators f test

γ = {fγt+1 , ..., fγt+p} with trainable pa-
rameters γtest = {γt+1, ..., γt+p}. The objective can be
written formally as:

minimize
m:,t+1:t+p,γtest

L(x, f test)

subject to ϕ, θ,m:,0:t, γ
train fixed

(8)

where x can be from both the training set or generated
with the model as discussed in Sec. 4.3, and L is the overall objective defined in Eq. 6.

6 EXPERIMENTS

In this section, we comprehensively evaluate our proposed method on both concept discovery and
post-hoc explanation with qualitative and quantitative results.

6.1 EXPERIMENT SETTINGS

Dataset. We evaluate our model on the MNIST Deng (2012) dataset and TripleMNIST dataset. For
MNIST, following Tran et al. (2022), we select the digits ’1, 4, 7, 9’ for MNIST dataset. In the
TripleMNIST dataset Sun (2019), each image is synthesized by combining three images from the
MNIST dataset, with a total of 1000 classes (numbers 000-999). We use 9 classes among them,
where each digit is either 0, 1, or 5. We use D1, D2, D3 to represent the first (left-most), second
(middle) and third (right-most) digits in the 3-digit number. We developed four black-box classifi-
cation tasks: f1 for predicting D1, f2 for the parity of the 3-digit number, f3 for whether D2 and
D3 are the same, f4 for the value of D1+D2+D3. The black-box tasks as given in Fig. 4 (a). We set
kc = 6 for this experiment.

6.2 QUALITATIVE EVALUATION

To qualitatively validate the effectiveness of our proposed method, we visualize the discovered con-
cepts in Sec. 6.2.1 and an example of post-hoc explanation on the TripleMNIST dataset to qualita-
tively

6.2.1 DISCOVERED CONCEPTS

To show the semantic meaning of each discovered concept, we conduct interventions on the value
of each concept and visualize the generated data. The visualization is shown in Fig. 4.

We visualized the generated data samples by interventions on each concept value in Fig. 4 (b).
The inherent semantic meaning of each concept can be attained by observing the variations of the
generated data samples. For instance, in the second line (marked with z1) of Fig. 4 (b), the observed
variation is the third digit (D3) varies from 0 to 5, then to 1. So the observed semantic meaning
of concept z1 is the value of D3. We listed the observed semantic meanings of each discovered
concept in Fig. 4 (c). The learned explanation mask m is shown in Fig. 4 (c), representing the
related concepts for each task. For instance, for task f2, z1 and z5 are optimized to 1, indicating the
concept z1 (D3) and z5 (D2) are related to this task (predicting whether D2=D3).

Results show that, guided by the four classification tasks, our model can discover a set of concepts
that have human-understandable semantic meanings while representing the foundational reasoning
behind the decisions of each classification task. Our model also successfully identifies the related
and unrelated concepts of each task.
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Figure 4: Experiments visualized on the TripleMNIST dataset. (a) The tasks used for guiding the
concept discovery. (b) Data samples generated through interventions on individual concepts. Each
row alters only the specific concept values indicated, while other concepts remain constant. (c)
Semantic interpretations of each discovered concept from variations during concept interventions.
(d) Learned explanation mask. For instance, for task f2, z1 and z5 are optimized to 1, indicating the
concept z1 (D3) and z5 (D2) are related to this task (predicting whether D2=D3).

Figure 5: Local explanation for the decision-making progress of three data samples on task f2 on
TripleMNIST dataset. (a) The learned decision tree fγ2 which maps z1 and z5 to y2. (b) We put the
generated images and decision boundaries of the decision tree in the same coordinate. The x-axis
represents z1 and the y-axis represents z5, both ranging from -3 to 3. The images are generated with
corresponding z1 and z5 according to their position in the coordinates. Each line gi = 0.5 denotes
the decision boundary pf node i. γ denotes the sigmoid function.

6.2.2 POST-HOC EXPLANATION

In this subsection, we qualitatively evaluate the post-hoc explanation by taking the explanations
on the task f2 for example. The learned concepts and their semantic meanings are the same as in
Sec. 6.2.1. The global explanation is shown in Fig. 4 (d). For this case, the learned explanation mask
successfully identifies the related concepts of f2 are z1 and z5.

The local explanation of three data samples as examples are shown in Fig. 5 (a). Generally, our
proposed method successfully mimics the black-box model’s behaviors by first extracting a small
number of related concepts, and providing the prediction rules using a simple and transparent model:
a decision tree. In the local explanation process, our proposed method first successfully extracts two
concepts z1 and z5, that are low-dimentional but enough to reason the decision, compared to the
high-dimension original data (82*82). Then the decision is made with a 4-layer decision tree with 8
nodes, and the decision rule of each node is known (for node i, the rule is whether γ(gi) < 0.5, and
gi is a linear function), yielding a transparent and explainable decision-making process.

In Fig 5 (b), we put the generated images and the decision boundaries of the decision tree in the
same coordinates to evaluate the validity of the rules of the decision tree. The results show that the
learned linear rules successfully recognize all three zones where f2 is true, corresponding to the three
cases that D2 is the same as D3, i.e., D2=D3=0, D2=D3=1, D2=D3=5. Interestingly, two positive
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Table 1: Quantitative results of post-hoc explanation on Triple-MNIST dataset.

Type Task #Concept Depth #Node Acc Acc-S

Test

f0 1 2 2 93.61 95.96
f1 1 2 2 93.93 95.32
f2 2 4 8 88.23 94.47
f3 3 5 27 51.61 73.20

Generalize f4 1 2 2 - 92.01
f5 3 4 9 - 67.02

(yellow) areas in the image’s center represent a unique situation where D2=D3=5. This highlights a
potential limitation of our approach: the soft decision tree might produce less-than-ideal rules due to
inconsistent initialization during its training. We leave this limitation to future work on soft decision
trees.6.3 QUANTITATIVE EVALUATION

6.3.1 FIDELITY AND EXPLANABILITY

Figure 6: The comparison of
data efficacy when using and
not using our proposed train-
ing strategy.

The evaluations of post-hoc explanations are in Table 1. It presents
metrics like recognized concepts (Concept), decision tree depth
(Depth), node number (Node), and black-box model accuracy
(Acc). Our method mimics black-box models with high fidelity us-
ing a transparent model. It translates high-dimensional input to low-
dimensional concepts with meaning, then predicts the output. The
prediction, via decision trees, is simple with small depth and node
numbers. This balance between accuracy and clarity highlights our
method’s effectiveness in machine learning. The accuracy for f3 is
lower due to its 10-class classification nature.

6.3.2 IMPROVEMENTS FROM ITERATIVE TRAINING

We assessed our training strategy’s effectiveness in fidelity improvement, data efficiency, and gener-
alizability. The ”Acc-S” column of Table.5 displays the accuracy for each task. Our method notably
boosts accuracy, especially for f3 with prior lower performance, proving its efficacy. In Fig.6, we
compare data efficacy on f1 to f4. Results indicate greater fidelity improvement with our strategy
when training data is limited.

6.3.3 INFORMATION FLOW

Figure 7: The information flow from
each concept to each task. (Left) Beta-
VAE(TC). (Right) our model.

To validity that the guidance of task lead to more mean-
ingful discovered concepts, we evaluate the mutual in-
formation from each concept to the tasks, calculated by
I(z; y) = Ez,y

[
log p(z,y)

p(z)p(y)

]
. We compare the result of

our model, with the backbone, beta-VAE(TC), which en-
courages the disentanglement of each latent factor. Re-
sults show that the guidance of classification tasks helps
us to find a group of concepts with additionally enforced
mutual information to the tasks.

7 CONCLUSION

In this work, we introduced the Concept Bottleneck Surrogate Models, a novel type of concept-
based explainer that can explain black-box classifiers with a set of self-discovered concepts. We
propose a training strategy to optimize the model with generated data. The proposed model has the
power of compositional generalization. We conducted comprehensive experiments to evaluate the
effectiveness of our proposed method.
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A APPENDIX

You may include other additional sections here.
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