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Abstract
Bulk RNA sequencing provides an averaged gene
expression profile of the numerous cells in a tis-
sue sample, obscuring critical information about
cellular heterogeneity. Computational deconvolu-
tion methods can estimate cell type proportions
in bulk samples, but current approaches can lack
precision in key scenarios due to simplistic statis-
tical assumptions, limited modeling of cell-type
heterogeneity and poor handling of rare popula-
tions. We present MixupVI, a deep generative
model that learns representations of single-cell
transcriptomic data and introduces a mixup-based
regularization to enable reference-free deconvolu-
tion of bulk samples. Our method creates a latent
representation with an additive property, where
the representation of a pseudobulk sample cor-
responds to the weighted sum of its constituent
cell types. We demonstrate how MixupVI en-
ables accurate estimation of cell type proportions
through benchmarking on pseudobulks simulated
from a large immune single-cell atlas. To support
reproducibility and foster progress in the field, we
also release PyDeconv, a Python library that im-
plements multiple state-of-the-art deconvolution
algorithms and provides a comprehensive bench-
mark on simulated pseudobulk datasets.

1. Introduction
The cellular composition of tissues plays a critical role in
their function, and alterations in this composition are asso-
ciated with various diseases including cancers (Li, 2017;
Rooney, 2015; Gentles & Newman, 2015; Mahmoud, 2011;
Li, 2016), cardiovascular diseases (Parker, 2020), and neu-
rodegenerative disorders (Lee, 2012; Poduri, 2012; Erickson,
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2010; Rivière, 2012). Bulk RNA sequencing (RNA-seq)
has been widely used to profile gene expression in tissue
samples (Cancer Genome Atlas Research Network, 2013;
Greenwood, 2020; GTEx Consortium, 2020), but this tech-
nology measures the average expression of all cells in a
sample, masking the heterogeneity of different cell types.
In contrast, single-cell RNA sequencing (scRNA-seq) pro-
vides gene expression profiles of individual cells, allowing
direct characterization of cellular heterogeneity. However,
scRNA-seq is more expensive, technically challenging, and
often limited in the number of samples that can be processed
compared to bulk RNA-seq.

Computational deconvolution methods aim to bridge this
gap by estimating cell type proportions in bulk RNA-seq
samples using reference profiles derived from single-cell
data (Cobos, 2020). Traditional approaches rely on linear
regression models that express bulk samples as linear combi-
nations of these reference profiles, often referred to as a sig-
nature matrix (Erdmann-Pham, 2021; Dong, 2021; Tsoucas,
2019; Newman, 2015). While these approaches have shown
promise, they face several limitations. In particular, they
often fail to account for the complex differences between
single-cell and bulk RNA-seq data, biological variations
within cell types or due to simplistic statistical assumptions
(e.g modeling transcriptomic data with additive Gaussian
noise).

Deep generative models have recently emerged as power-
ful tools for analyzing single-cell data (Donno, 2023; Cui
& Wang, 2024), enabling the learning of low-dimensional
representations that capture biological variation while ac-
counting for technical factors (Xu, 2021). Models such as
single-cell Variational Inference (scVI) have demonstrated
consistent performance in tasks such as clustering, batch
correction, and imputation of single-cell data (Lopez, 2018).
However, reconciling the expressive nature of these non-
linear deep generative models with the linearity constraints
imposed by the deconvolution problem remains a challenge.

To address this gap, we introduce MixupVI, a deep genera-
tive model for bulk RNA-seq deconvolution that leverages
single-cell representations. Our approach constrains the
latent space of a variational autoencoder to enforce an ad-
ditive property, where the representation of a bulk sample
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can be approximately expressed as a weighted sum of cell-
type specific latent representations. This enables accurate
estimation of cell type proportions in pseudobulk samples
while maintaining the benefits of deep generative modeling.

1.1. Conventional assumptions in deconvolution
approaches

Bulk transcriptomics deconvolution aims to estimate the
proportions of distinct cell types within a heterogeneous tis-
sue sample based on its aggregated gene expression profiles.
Traditional deconvolution methods build on Least Squares
approaches. These techniques rely on the critical assump-
tion of linearity, which states that the expression level of
each gene in a bulk sample is a linear combination of the
expression levels from the constituent cell types, weighted
by their proportions. Formally, let G denote the number of
genes and C the number of cell types in the deconvolution
setting. The gene expression profile of a bulk sample b can
be modeled as:

yb = Sp+ ϵ , (1)

where:

• yb ∈ NG is the observed bulk gene expression vector,

• S ∈ RG×C is the cell-type specific reference (signa-
ture) matrix,

• p ∈ RC is the vector of cell type proportions (with∑
c pc = 1),

• ϵ ∼ N (0, σ2IG) is Gaussian noise.

The assumption of linearity holds reasonably well in prac-
tice, especially when enough cells are present in a sample
and the deconvolution granularity and observed proportions
are appropriate. However, this assumption can break down
in key scenarios, leading to systematic biases in cell type
proportion estimates:

• Log-transformation is commonly used in transcrip-
tomics to stabilize variance and approximate Gaus-
sianity to rely on Least Squares approaches. However,
it distorts the linear relationships between mixed cell
populations in bulk data. This results in curved tra-
jectories in PCA space (Supplementary Figure S1),
leading to systematic errors in proportion estimates -
especially for intermediate mixtures. As a result, some
deconvolution methods advice to keep the data in lin-
ear space (Zhong & Liu, 2011; Newman, 2015). The
data thus no longer follows a Gaussian distribution
and instead typically exhibits over-dispersed negative
binomial behavior with prominent zero-inflation.

• Low abundance. When a cell type is barely present
within a sample, its gene expression signal may be too
weak or noisy to resemble the average profile captured
in the reference signature matrix.

• Low granularity. Broad cell type definitions - such
as grouping all lymphoid cells together - fail to cap-
ture intra-lineage heterogeneity. While CD4+ T cells,
CD8+ T cells and Natural Killer cells originate from
the common lymphoid progenitor, they exhibit distinct
gene expression profiles and unique markers (Hidalgo,
2008). Overlooking these differences can increase
variance and reduce deconvolution accuracy (Supple-
mentary Figure S2).

As a result, traditional linear deconvolution methods often
struggle to model the biological variability required for the
linearity assumption to hold across diverse samples and
contexts.

Even when the linearity assumption is valid, several practi-
cal challenges remain regarding the creation of the signature
matrix. Collinearity in the signature matrix can severely
hinder the stability of linear regression models, making the
system ill-conditioned. To mitigate this, one must carefully
select genes that are both informative and non-redundant,
often removing noisy or highly correlated genes. These con-
straints may lead to the exclusion of biologically relevant
genes (Wang, 2019). Furthermore, many linear methods
implicitly favor genes with higher mean expression, po-
tentially overlooking genes that are highly discriminatory
between cell types but expressed at lower levels (Nguyen,
2024; Tsoucas, 2019). This can limit the resolution and ac-
curacy of the deconvolution. As a result, while constructing
a robust and high-quality signature matrix is common prac-
tice, it may not always be sufficient due to these inherent
limitations.

1.2. A latent space approach to deconvolution

Our method directly addresses the core limitations of tra-
ditional deconvolution by embedding gene expression data
into a latent space designed to approximate ideal deconvolu-
tion properties:

• Gaussian-like latent structure.

• Linearity between cell-type specific profiles and mix-
tures of cells.

• Non-linear mappings that capture subtle, non-linear
gene - cell-type dependencies across diverse contexts
and retain informative signals from rare or noisy cell
types.

To achieve this, we leverage variational autoencoders
(VAEs) (Kingma, 2013) to learn a latent representation of
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gene expression that satisfies both statistical assumptions
and biological constraints. Building on single-cell deep
learning frameworks such as scVI, we introduce a critical
modification to enforce linearity in the latent space - a prop-
erty not naturally satisfied by standard VAEs.

The key novelty in our approach is the incorporation of a
mixup penalty (Beckham, 2019; Berthelot & Raffel, 2018;
Khan, 2022; Verma & Lamb, 2018) in the evidence lower
bound (ELBO) objective that explicitly optimizes the VAE
to jointly model single-cell profiles and their mixtures (pseu-
dobulks) in the latent space. This results in:

• A non-linear encoder that maps both individual cells
and mixtures (e.g., bulk RNA-seq, spatial transcrip-
tomics spots) into a shared Gaussian latent space.

• Linearly additive structure in the latent space, where
mixture representations reflect their underlying cell
type proportions.

• A shared decoder that accurately reconstructs both indi-
vidual and mixed expression profiles, while modeling
their distinct statistical characteristics - such as the
zero-inflation commonly observed in single-cell data
but not in mixtures.

By training on both single-cell data and systematically gen-
erated pseudobulk mixtures, our model learns to ”fill the
gaps” in the latent space, ensuring that mixtures fall pre-
cisely where linear interpolation would predict. This con-
trasts with standard VAE approaches that may learn efficient
representations of individual cells but provide no guarantees
about the behavior of mixtures in the latent space.

Our framework thus creates a unified representation where
the same latent variables can represent both individual cells
and mixtures of cells while preserving the critical property
of linear additivity. This enables robust and accurate decon-
volution across varying levels of cell type heterogeneity and
proportion.

2. The MixupVI probabilistic model
For a given single-cell i, scRNA-seq experiments output a
set of read counts representing the gene expression levels
across G genes. Let’s denote the gene expression profile
of a single-cell as xi ∈ NG. Similarly, for a bulk sample b,
bulk RNA-seq provides a gene expression profile yb ∈ NG.
We assume each cell i is annotated with a cell type label ci
from a set of C distinct cell types.

The key insight of our approach is that bulk samples can be
represented as a mixture of cells from different cell types,
and this mixture relationship should be preserved in the
latent space. To achieve this, we design a latent space with

an additive property: the representation of the sum of a set
of single-cells is approximately the sum of their individual
representations.

2.1. Generative model for single-cell transcriptomics

Building upon the scVI framework (Gayoso et al., 2022),
we first define a generative model for single-cell data:

zi ∼ N (0, Id) ,

xi|zi ∼ ZINB (µi = fθ(zi), πi = gθ(zi), ψg) ,

where zi ∈ Rd is a d-dimensional latent variable represent-
ing the cell state, Id is the d-dimensional identity matrix,
ZINB denotes the zero-inflated negative binomial distribu-
tion, and fθ, gθ are neural networks parameterized by θ,
which map the latent variable to the expected gene counts
µi and the expected dropout rate πi, respectively. ψg is a
gene-specific dispersion parameter, learned directly for each
gene and shared across cells. This formulation captures the
over-dispersed and zero-inflated nature of scRNA-seq data.

As with standard VAEs, the marginal likelihood p(xi) is
intractable, meaning we cannot directly compute the poste-
rior distribution pθ(zi|xi). Instead, we learn an approximate
posterior qφ(zi|xi) using variational inference (Kingma &
Welling, 2019), where φ denotes the parameters of an infer-
ence network. We then optimize the evidence lower bound
(ELBO) of log pθ(x1:N ) with respect to the variational pa-
rameters φ and the generative model parameters θ.

2.2. Mixup regularization: enforcing linearity in the
latent space

The key novelty in MixupVI is the introduction of a lin-
earity constraint in the latent space, called the mixup loss
(Carratino, 2020).

Given a batch of N cells and C cell types, let’s denote:

• xi as the i-th cell in the batch.

• zi as the latent representation of cell xi .

• ncpp defines the number of single-cells to aggregate
when generating a single pseudobulk sample. By ad-
justing this hyperparameter, one can flexibly simulate
different experimental resolutions: larger values mimic
bulk RNA-seq conditions, while smaller values emu-
late spot-based spatial transcriptomics where each spot
contains fewer cells. This allows for benchmarking
or modeling across a spectrum of transcriptomic data
types.

• β = (β1, ..., βC) as the proportions sampled from a
Dirichlet distribution over the C − 1 dimensional sim-
plex (i.e., non-negative values that sum to one). This
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Figure 1. Schematic overview for the MixupVI forward process. Pseudobulks are first created from the batch of single-cells by sampling
proportions independently from a Dirichlet distribution and sampling cell indices from the batch to match these proportions. Both
single-cells and pseudobulks are then passed to the VAE. Their latent representations are sampled from the encoder to compute the mixup
loss. Finally, the mixup loss is added to the ELBO.

sampling step enables the over-representation of rare
cell types, which are often under-represented in classi-
cal deconvolution methods due to their low abundance,
resulting in insufficient signal. The parametrization of
this Dirichlet distribution is detailed in Supplementary
Section B.

• I as the set of sampled cell indices for creating a pseu-
dobulk, determined by the proportions β and the num-
ber of cells per pseudobulk ncpp .

As depicted in Figure 1, the process involves:

• Sampling proportions β from a Dirichlet distribution.

• Sampling cell indices I from the batch to match the
determined proportions given by β and ncpp with |I| =
ncpp .

• Creating a pseudobulk xI as a linear combination of
the cells, by averaging the sampled cells:
xI =

∑
i∈I

1
|I|xi .

• Sampling the latent representations zi ∼ qφ(· | xi)
for each cell and zI ∼ qφ(· | xI) for the pseudobulk,
using the encoder of the model.

• We encourage the latent representation of this linear
combination to be close to the linear combination of
the individual latent representations with a L2 norm.
This L2 regularization is particularly meaningful in the
latent space, given that the data is modeled as following
a Gaussian distribution. Minimizing this penalty is thus
equivalent to maximizing the likelihood estimate of the
latent variables.

Definition 2.1. For one given collection of cell indices I,
the mixup loss can be formulated as follows:

Mix(θ, φ|xi∈I) = EzI∼qφ(·|xI),
zi∼qφ(·|xi)

∥∥∥∥∥zI − 1

|I|
∑
i∈I

zi

∥∥∥∥∥
2

.

Definition 2.2. To minimize the expected risk over the
pseudobulk distribution, we define the mixup loss for the
full batch of cells with:

Mix(θ, φ|x1, ..., xN ) = EI∼ppseudobulk
Mix(θ, φ|xi∈I) .
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Figure 2. Schematic overview for the cell type proportions inference with MixupVI. The single-cell training dataset is passed to MixupVI.
Aggregating the latent representation of the individual cells per cell type allows the creation of the latent signature matrix. The evaluation
pseudobulk is passed to MixupVI to infer its latent representation. Finally, the unknown proportions of the pseudobulk sample are inferred
with the non-negative least squares approach.

with ppseudobulk the distribution created from the multi-step
stochastic process described above. Collections of indices
are drawn according to this distribution. We approximate
the resulting expectation using Monte Carlo sampling:

Mix(θ, φ|x1, ..., xN ) ≈ 1

M

M∑
m=1

Mix(θ, φ|xi∈I(m)) ,

where I(1), . . . , I(M) are sampled i.i.d. following
ppseudobulk. This mixup loss term is added as a regular-
ization term to the ELBO:

L(θ, φ|x1, ..., xN ) = ELBO+Mix(θ, φ|x1, ..., xN ) . (2)

2.3. Cell type proportions inference

Given a pseudobulk sample yb, we model it as a mixture of
cell types with proportions pb = (p1b , ..., p

C
b ):

yb|zb ∼ NegativeBinomial (fθ(zb), ψg) ,

where zb the inferred latent state for sample b.

As depicted in Figure 2, we encode the bulk sample into the
latent space zb ∼ qφ(·|yb). We then estimate the cell type
proportions pb ∈ Rc by solving the following constrained
linear system (and then dividing the estimated coefficients
by their sum to get proportions summing up to 1):

{
zb =

∑C
c=1 p

c
bz

c

pcb ≥ 0
, (3)

where zc is the average latent representation for cell type
c obtained from the single-cell data. This average latent
representation serves as the equivalent of a signature matrix
in latent space — which we refer to as the latent signature
matrix. Unlike classical approaches, it bypasses the need to
manually curate a signature matrix, a process that is prone
to issues like collinearity and bias toward highly expressed
genes.
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3. Results
3.1. Datasets and pseudobulk simulation

Our analysis was conducted using the Cross-tissue immune
(CTI) single-cell dataset (Conde et al., 2022). This analysis
was performed on the immune compartment of 16 tissues
from 12 adult donors by single-cell RNA sequencing, cre-
ating a dataset of approximately 360,000 cells. For each
granularity, we divided the dataset between train and test
(50/50 split), using the train set to:

• Build signature matrices (Hao, 2021).
We performed differential expression analysis (DEA)
between cell types in the single-cell RNA-seq dataset
using a non-parametric Wilcoxon rank-sum test on
a gene-by-gene basis. Genes were tested only if ex-
pressed in at least 1% of cells in either group (cell
type of interest vs rest). Differentially expressed genes
were defined as those with an adjusted p-value below
0.05 and an absolute log fold change greater than 0.25.
Then, minimization of the condition number was con-
ducted using the kappa function. Values reported in the
signature matrix correspond to mean gene expression
of the significantly differentially expressed genes.

• Fit deep learning algorithms.
MixupVI as well as other deep baseline methods (Chen
& Wang, 2022; Menden, 2020) included in the bench-
mark are trained on this set of single-cells.

To ensure robust evaluation, we use the test set to create syn-
thetic pseudobulk datasets with two levels of difficulty de-
fined by cell type granularity (5 and 9 cell types). Pseudob-
ulk samples with known cell type proportions were gener-
ated by aggregating single-cells from the test set of the CTI
atlas, using proportions given by sampling from a Dirichlet
distribution as explained in Supplementary Section B. The
breakdown of the cell types for each granularity is shown
in Figure 3. We design two types of benchmarks. The first
keeps the number of cells per pseudobulk fixed at 100, inten-
tionally inducing under-representation of certain cell types.
This choice is motivated by our observation that using larger
pseudobulks (e.g., 200–300 cells or more) results in more
stable cell type proportions, making the deconvolution task
less challenging. The second benchmark varies the num-
ber of cells per pseudobulk from 10 to 1000, enabling a
comparison of methods across a range of resolution levels.

3.2. PyDeconv: a library for deconvolution methods
benchmarking

Our comparative analysis included linear methods: Ordi-
nary Least Squares (OLS), Non-Negative Least Squares
(NNLS), Robust Linear Regression (RLR), Nu-Support Vec-
tor Regression (NuSVR) which is the core algorithm of

Figure 3. UMAP plot of the embedded single-cell gene expression
profiles with scVI. For the 1st granularity level, the cell types
grouped are B cells, Dendritic cells, Mast cells, Monocytes &
Macrophages, T & Natural Killer cells. For the 2nd granularity
level, the cell types grouped are B cells, Plasma cells, Dendritic
cells, Mast cells, Monocytes, CD8 T cells, CD4 T cells, T regula-
tory cels, Natural Killer cells.

CIBERSORT (Newman, 2015), Weighted Non-Negative
Least Squares (WNNLS) and Dampened Weighted Least
Squares (DWLS) (Tsoucas, 2019). We also included two
deep learning methods: TAPE (Chen & Wang, 2022) and
Scaden (Menden, 2020). More information about the meth-
ods can be found in Supplementary Section C.

Current deconvolution methods are implemented in various
programming languages, leading to fragmented workflows.
While unified benchmarking is possible using solutions like
multi-container Docker pipelines (Nguyen, 2024), such se-
tups can add overhead and require additional maintenance.
To streamline this process, we introduce PyDeconv, a Python
package that reimplements a set of representative methods
along with a benchmarking pipeline using various pseudob-
ulk simulations. The aim of the package is to provide unified
support for all major deconvolution techniques found in the
literature, thereby simplifying benchmarking efforts and
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enhancing method robustness through an open-source and
standardized framework.

3.3. Linearity constraint validation

We first evaluated the effectiveness of our linearity con-
straint in the latent space. Using the CTI dataset, we trained
our model and compared it to the standard scVI model
(without the mixup linearity constraint). For validation, we
generated synthetic bulk samples (pseudobulks) by combin-
ing single-cells from a held out set, in proportions sampled
from a Dirichlet distribution and assessed how accurately
the models preserved these proportions in the latent space.

We monitored the Evidence Lower Bound (ELBO) on a held
out set to ensure that our linearity constraint did not com-
promise the model’s ability to reconstruct gene expression
profiles. To assess the impact of the mixup loss, we mea-
sured the Pearson correlation between pseudobulks of the
encoded single-cells and the encodings of the pseudobulks
created in the input space, that we call mixup correlation ρ
(Supplementary Section D). Additionally, we computed the
Pearson correlation between the estimated cell-type propor-
tions within the latent space and the ground truth proportions
for pseudobulk simulated from the held-out set, that we call
deconvolution correlation d (Supplementary Section D).

Both models exhibited comparable ELBO convergence pat-
terns during training (Supplementary Figure S3). The final
values of key metrics on the held out set are reported in
Table 1. During training, scVI showed a decrease in mixup
correlation ρ resulting in an average correlation of 0.32 on
the held out set. In contrast, MixupVI maintained a high
correlation during training resulting in an average of 0.94
on the held out set.

Furthermore, these correlations in the latent space trans-
late to deconvolution accuracy of synthetic pseudobulks
generated from the held out set. scVI demonstrated poor
deconvolution performance throughout training, while Mix-
upVI improved its deconvolution capabilities: by the end of
training, MixupVI achieved a deconvolution correlation d
close to 0.9, twice as much as scVI.

These results indicate that MixupVI maintains reconstruc-
tion quality while gaining the critical linearity property nec-
essary for accurate deconvolution.

3.4. Comprehensive benchmarking of deconvolution
methods

The metrics presented in this part are the deconvolution cor-
relation d and Mean-Squared Error (deconvolution MSE)
between the estimated cell-type proportions of each de-
convolution method and the ground truth proportions for
pseudobulk simulated from the held-out set (Supplementary
Section D).

Table 1. Monitoring of validation metrics: ELBO loss, Pearson
correlation between encoded pseudobulks in the latent space, Pear-
son correlation between ground truth and estimated proportions in
the latent space at the end of the training.

METRIC SCVI MIXUPVI

ELBO LOSS 641.16 641.37
MIXUP CORRELATION ρ 0.32 0.94
DECONVOLUTION CORRELATION d 0.45 0.88

First-level granularity (5 cell types)

At the coarse granularity level distinguishing major im-
mune cell compartments, MixupVI demonstrated competi-
tive performance with other best performing methods (RLR,
WNNLS, Scaden) with a median Pearson correlation of
0.973 (Figure 4.a.). Naive linear methods such as NNLS
and OLS, which do not incorporate weighting, tend to un-
derperform. This could be due to collinearity issues in the
signature matrix as well as the limitations discussed in the
introduction: broad cell type definitions often exhibit high
intra-cell type variability, causing the estimated cell type
profiles to deviate from those in the signature matrix. No-
tably, these methods show high Pearson correlation variabil-
ity and occasionally produced negative correlation values,
highlighting their instability for this task.

RLR and MixupVI also achieved the lowest MSE at 0.0011
and 0.0016 respectively, outperforming all other competing
methods.

Second-level granularity (9 cell types)

When the deconvolution task difficulty was increased to dis-
tinguish finer cell subtypes (including separation of CD4+

T cells, CD8+ T cells, T regulatory cells, and Natural Killer
cells), MixupVI maintained robust performance and low
variability, with a median correlation of 0.898 (Figure 4.b.).
This represented a marked improvement of at least 1 point
over all competing methods.

The MSE results further confirmed MixupVI’s advantage,
with a median error of 0.0018 compared to 0.0026 for Sca-
den and 0.0023 for DWLS. The performance gap between
MixupVI and other methods widened at this higher granular-
ity level, demonstrating our method’s particular advantage
in more challenging deconvolution scenarios.

Varying number of cells per pseudobulk

In addition to our primary benchmark results, we investi-
gated how deconvolution performance varies with the num-
ber of cells in each pseudobulk sample. This analysis pro-
vides important insights into method robustness across vary-
ing input data depths.
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a.

b.

c. d.

Figure 4. Deconvolution results. a. 1st granularity results. Pearson and MSE of predicted vs groundtruth proportions (400 pseudobulk
samples / 100 cells per pseudobulk). b. Same metrics for 2nd granularity. c. Trend of the deconvolution results with regards to the number
of cells samples for each pseudobulk simulation for the 1st granularity. The y-axis shows the average Pearson correlation and on the
x-axis number of cells per pseudobulk. d. Same metrics for 2nd granularity.
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At the first-level granularity (Figure 4.c.), besides OLS,
NNLS and TAPE, most deconvolution methods are compet-
itive, showing similar trends with increasing performance
across sample sizes, until it plateaus around 100 cells. In
higher sample size regime (> 250) Scaden outperforms
other competing methods, which is likely due to Scaden’s
higher default sample size of 500 used in the simulations dur-
ing training. In contrast, NNLS and OLS performs poorly
across sample sizes, highlighting the limitations of classi-
cal methods when cell type definitions are overly broad, as
averaging across heterogeneous populations can obscure
important expression differences and degrade deconvolution
accuracy.

At the second level of granularity (Figure 4.d.), MixupVI is
outperformed by weighted linear methods when the number
of cells is very low (< 25). However, for sample sizes be-
tween 25 and 200 cells, MixupVI consistently outperforms
all other methods, highlighting its robustness to input vari-
ability, data sparsity, and the under-representation of rare
cell types. Similarly to the 1st granularity experiments, we
also observe that the the performance of Scaden steadily
increases until outperforming other methods in the high
cell-count regime (> 250). These findings underscore Mix-
upVI’s robustness to input data diversity and sparsity — an
important advantage in real-world settings where high-depth
bulk RNA-seq data may be difficult to obtain or where only
limited samples are available. This robustness also suggests
a potential benefit for spatial transcriptomics deconvolution,
where each spot captures a limited number of cells. The
consistent performance advantage across varying granulari-
ties and sample sizes demonstrates the broad applicability
of our approach to diverse deconvolution scenarios.

4. Discussion
4.1. Impact of the latent size

MixupVI is designed to be easily adaptable to new datasets,
data modalities and levels of granularity. In Supplementary
Section E, detailed explanations of every benchmark, train-
ing procedure, and model hyperparameters are provided.
However, among the various model hyperparameters, the
latent space size is particularly crucial, requiring careful
tuning.

As shown in (1), the signature matrix used with
Non-Negative Least Squares (NNLS) is of size
(ngenes, ncell types). Similarly, in the case of Mix-
upVI, the latent signature matrix used with NNLS is
of size (nlatent size, ncell types). Thus, to avoid high-
dimensionality issues, the latent space size should be at
least higher than the number of cell types. Plus, it should be
chosen to remove noise or collinearity of gene expressions
that could impede fitting. Classical methods achieve this

by carefully constructing the signature matrix. MixupVI,
on the other hand, embeds gene expressions in the latent
space to reduce noise and collinearity. Finally, the latent
space should be sufficiently large to allow flexible shaping
of representations through complex non-linear mappings,
as the mixup loss introduces structural constraints that limit
representational freedom.

The impact of the latent size is apparent in Supplemen-
tary Figure S4, showing deconvolution correlation d and
deconvolution MSE during training, on synthetic pseudob-
ulks generated from the validation set. On the 9 cell types
granularity, the performance improves progressively with a
larger dimensionality for both metrics: a dimensionality of
30 yields improved performance compared to 20 and 10. We
also notice that performance plateaus with this parameter -
for instance when the latent space is increased to 100, the
MSE plateaus, and even worsens for the Pearson correlation.

4.2. Conclusion

We have presented MixupVI, a deep generative model that
learns probabilistic representations of single-cell RNA-seq
data with a linearity constraint enabling accurate deconvo-
lution of mixtures of cell types. By enforcing an additive
property in the latent space, our model effectively bridges
the gap between the expressivity of deep generative models
and the linearity requirements of deconvolution.

MixupVI offers several key advantages over existing decon-
volution methods. First, it constructs a latent Gaussian space
in which samples are naturally expressed as mixtures of con-
stituent cell types, aligning with the assumptions underly-
ing deconvolution. Second, it models biological variability
within cell types via its latent representation, enhancing
accuracy - especially when distinguishing closely related
types. Third, its probabilistic framework yields uncertainty
estimates for both cell type proportions and reconstructed
gene expression profiles, enabling more informed interpre-
tation. Finally, it eliminates the need for manually curated
reference profiles by learning a latent representation directly
from the data, avoiding common pitfalls of signature matrix
construction. Given its reliance on a latent space, however,
the dimensionality of this space becomes an important de-
sign choice that should be tailored to each deconvolution
task.

Future work will aim to extend MixupVI to accommodate
more complex and realistic settings. Modeling pseudobulks
with a small number of cells would enable its application to
spot-based spatial transcriptomics, while larger pseudobulks
make it suitable for bulk RNA-seq paired with flow cytome-
try. However, key technological differences between bulk,
single-cell, and spatial transcriptomics must be carefully
addressed to adapt MixupVI for real-world multi-omics in-
tegration and ensure meaningful cross-modality alignment.
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Software and Data
All the referenced methods, the pseudobulk simulations and
the benchmarking code were implemented in the python
library PyDeconv github.com/owkin/pydeconv .

The Cross-Tissue Immune atlas was dowloaded from cellx-
gene.
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A. Supplementary figures

Figure S1. PCA of mixed pseudobulks. With the Cross-tissue immune single-cell atlas (section 3.1), we construct pseudobulks composed
of varying proportions of cell types. The interpolation between mixtures is linear when the gene expression is not log-transformed (above
figure), while the interpolation between mixtures shows a curved trajectory when the gene expression is log-transformed (below figure).
The effect is more pronounced when combining dissimilar cell types, such as Mast and CD4T cells, compared to more similar ones like B
and Plasma cells.
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Figure S2. Using the Cross-tissue immune single-cell atlas (Section 3.1), we analyze the variability of lymphoid cells gene expression.
Due to shared functions and markers, CD8+ T cells were grouped with both CD4+ T (Wang, 2008) and NK cells (Rosenberg, 2017) in
the broader granularity. While CD4+ T and NK cells are mainly separated along PC1, they are both mixed with CD8+ T cells. This
highlights underlying similarities between CD4+ T and NK cells, but also sufficient differences that may introduce unwanted variability
in coarse cell type definitions.

Figure S3. Monitoring of the ELBO loss (left plot), Pearson correlation between encoded pseudobulks in the latent space (middle plot),
Pearson correlation between ground truth and estimated proportions in the latent space (right plot) during training.
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(a) Pearson correlation loss (b) Mean squared error loss

Figure S4. Example of latent space size tuning for the 9 cell types granularity. The deconvolution correlation d (a) and deconvolution MSE
(b) are computed at every batch of every epoch on the validation set. The error band is the standard deviation across 5 different seeds.
Intermediate latent sizes (between 30 to 100) are not shown for clarity.
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B. Dirichlet sampling
As explained in Section 2.2, we sample the pseudobulk cell type proportions from a Dirichlet distribution. This is a useful
sampling in the case of pseudobulk creation because it sums proportions to 1 and allows for over-representation of rare cell
types.

This Dirichlet distribution is the posterior of a Dirichlet-Multinomial conjugate model, assuming a non-informative prior
and a multinomial likelihood based on the observed cell counts. More precisely:

• We assume that (p1, ..., pC) to be the vector of multinomial parameters, thus the probabilities associated to every cell
type.

• We assume that this vector follows a Dirichlet prior to observing the batch of single-cells. More formally: (p1, ..., pC) ∼
Dirichlet(α1, ..., αC) .

• In this benchmark, we chose a non-informative prior distribution: α1 = ... = αC = 1. In that special case, the Dirichlet
distribution is actually a Uniform distribution. It is also possible to set this prior to match the belief one has over the
cell type proportions of the given tissue from which the single-cell data is drawn.

• Then, a batch of single-cell is drawn. So are the cell type proportions of this given batch: x1, ..., xC . Given these
observed cell type proportions, using the conjugate property of the Dirichlet and Multinomial distributions, we can
easily compute the posterior distribution of the vector of multinomial parameters:

(p1, ..., pC)|(x1, ..., xC) ∼ Dirichlet(α1 + x1, ..., αC + xC) .

C. Related work
As detailed in Section 3.2, we benchmarked MixupVI against a broad range of established deconvolution methods (Cobos,
2020), all provided as Python implementations in our open-source library PyDeconv. This includes both classical regression-
based techniques and deep learning models. Several of these methods were originally implemented in R, but have been
re-implemented with Python to ensure consistency and accessibility. Below is an overview of each method:

• Ordinary Least Squares (OLS)
A standard linear regression technique that estimates cell type proportions by minimizing the squared error between the
observed bulk expression and the weighted combination of reference cell-type profiles. While simple and fast, OLS
does not constrain predictions to be non-negative or sum to one, which can lead to biologically implausible results.

• Non-Negative Least Squares (NNLS)
An extension of linear regression that constrains all estimated cell type proportions to be non-negative. This makes
NNLS more realistic for compositional data like cell mixtures and has been widely used as a baseline in deconvolution
studies.

• Robust Linear Regression (RLR)
This method modifies standard regression by reducing the influence of outliers or highly variable genes. It improves
stability in the presence of noise or batch effects, which are common in real-world transcriptomic datasets.

• Weighted Non-Negative Least Squares (WNNLS)
W-NNLS improves upon NNLS by incorporating gene-specific weights based on their variance across cell types. This
prioritizes genes with higher discriminatory power, enhancing the robustness of proportion estimates.

• Dampened Weighted Least Squares (DWLS)
DWLS extends WNNLS by further iteratively adjusting the contribution of each gene through dampening weights,
reducing the impact of genes with extreme variance. This method is particularly effective for detecting rare cell
populations and managing noise in lowly expressed genes.

• Nu-Support Vector Regression (NuSVR)
This model is based on a linear kernel model using an extra regularization parameters nu which simultaneously controls
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the number of support vectors and the upper bound on the fraction of training errors. Compared to OLS, the SVR
model is robust against noise, can automatically select important genes from the signature matrix, and can account for
multicollinearity between cell types.

In addition to classical regression-based methods, we benchmarked two deep learning approaches that model complex
non-linear relationships in gene expression data:

• Tissue-Adaptive autoEncoder (TAPE)
TAPE leverages an autoencoder-based architecture trained on simulated bulk RNA-seq data to learn latent repre-
sentations that capture cell-type specific expression patterns. The training phase uses deep neural networks trained
on pseudobulk datasets derived from single-cell RNA-seq data. During inference, TAPE incorporates an adaptive
self-supervised step to perform domain adaptation, taking advantage of the autoencoder reconstruction capabilities to
better generalize to real bulk samples.

• Scaden
Scaden employs an ensemble of deep neural networks trained on simulated pseudobulk datasets derived from single-cell
RNA-seq data. As with most neural network approaches, its performance relies on access to a large and diverse dataset
in order to generalize well across different tissues.

D. Metrics
To evaluate the impact of the mixup loss and assess latent deconvolution performance, we compute three metrics: two based
on Pearson correlation and one based on mean squared error.

First, we measure the alignment between the encoding of a pseudobulk and the average of its constituent single-cell
encodings. For a given pseudobulk xI , let zI ∼ qφ(· | xI) denote its latent representation, and let z̄ = 1

|I|
∑

i∈I zi , with
zi ∼ qφ(· | xi), be the average of the encoded cells. The mixup correlation for one pseudobulk is then defined as:

ρ(zI , z̄) =

∑d
j=1(zI,j − z̄I)(z̄j − ¯̄z)√∑

j = 1d(zI, j − z̄I)2
√∑

j = 1d(z̄j − ¯̄z)2
.

Averaging this over M pseudobulks gives the average mixup correlation:

ρ =
1

M

M∑
m=1

ρ
(
z
(m)
I , z̄(m)

)
.

Second, to quantify (latent) deconvolution performance, we compare the predicted proportions β̂(m) ∈ RK with the true
proportions β(m) ∈ RK used to generate pseudobulk m. The Pearson correlation for one pseudobulk is:

ρ(β(m), β̂(m)) =

∑K
k=1(β

(m)
k − β̄(m))(β̂k(m) − ¯̂

β(m))√∑
k = 1K(β

(m)
k − β̄(m))2

√∑K
k=1(β̂

(m)
k − ¯̂

β(m))2
.

The overall performance across pseudobulks is denoted the deconvolution correlation d:

d =
1

M

M∑
m=1

ρ
(
β(m), β̂(m)

)
.

Third, we compute the mean squared error (MSE) between the predicted and true proportions:

deconvolution MSE =
1

M

M∑
m=1

1

K

K∑
k=1

(
β̂
(m)
k − β

(m)
k

)2

.
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E. Hyperparameters
Here we describe the parameters of typical benchmarking configs and hyperparemeters used and tuned to train MixupVI.

Deconvolution benchmark hyperparameters

• Deconvolution method.
The deconvolution methods to benchmark in this experiment, among MixupVI, NNLS, scVI, DestVI, TAPE, Scaden,
OLS, DWLS, RLR, NuSVR, WNNLS.

• Evaluation datasets.
The single-cell datasets to test for deconvolution, used to create pseudobulks. In this benchmark, the test set of the
Cross-tissue immune atlas was used.

• Training dataset.
The dataset to use to train methods requiring training (e.g. MixupVI). In this benchmark, the train set of the Cross-tissue
immune atlas was used.

• Granularities.
The granularities to benchmark. In this benchmark, a first granularity with 5 cell types and a second granularity with 9
cell types were tested.

• Signature matrices.
The signature matrices to use depending on the granularity. In this benchmark, signature matrices created with the
training dataset were used for each granularity.

• Number of evaluation pseudobulks.
The number of evaluation pseudobulks simulated for evaluation. In this benchmark, 400 pseudobulks were created.

• Number of cells per evaluation pseudobulk.
The number of cells constituting pseudobulk simulations. In this benchmark, a list ranging from 10 cells to 1000 cells
was used.

MixupVI model hyperparameters

All scvi-tools models hyperparameters

• Latent size.
As described in Section 4.1, this hyperparameter is crucial and should be carefully tuned depending on the granularity.
In the 1st granularity, we fixed it to 10, while on the 2nd granularity, it was fixed to 30.

• Number of input genes.
The number of input genes to keep in the training datasets for the methods needing training. This parameter is
common to all methods requiring training (e.g. MixupVI). It is tunable, as a trade-off needs to be found between
high-dimensionality, long training times and preserving cell type markers. In this benchmark, the 2500 most variable
genes were kept.

• Maximum number of epochs.
The maximum number of epochs to train the model on. In this benchmark, it was fixed to 100 epochs.

MixupVI training hyperparameters

• Batch size.
This will determine, in the mini-batch gradient optimization, the number of cells in a given batch. By extension, this is
the maximum number of cells a training pseudobulk can be composed of. In this benchmark, it was fixed to 2048.

• Train size. For the training dataset described in Section 3.1, this is the proportion kept for purely training, and by
extension, it sums up to 1 with the proportion kept for validation at every forward pass. In this benchmark, it was fixed
to 0.7.
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MixupVI model hyperparameters

• Number of pseudobulks.
The number of pseudobulks created in an ensembling fashion in a given single-cell batch to compute the mixup loss.
The more pseudobulks, the longer a run and the more demanding on GPU memory. In this benchmark, it was fixed to
100.

• Number of cells per pseudobulk.
The number of cells constituting the pseudobulks. By adjusting this hyperparameter, one can flexibly simulate different
experimental resolutions: larger values mimic bulk RNA-seq conditions, while smaller values emulate spot-based
spatial transcriptomics where each spot contains fewer cells, with a better modeling of the variance inside the latent
space. In this benchmark, it was fixed to 100.

• Size and number of hidden layers.
In the benchmark, one hidden layer was used, of size 512.

• Continuous and categorical covariates.
Although theoretically useful to mitigate batch issues, such as center or patient effects (if these effects are present in
the training set), they did not improve results in the benchmark, thus they were not used.

• Loss computation.
Whether to enforce the mixup loss within the latent space or the reconstructed space (or both). In the benchmark, it was
fixed to the latent space.

• Pseudobulk computation.
Whether to create the pseudobulks in the input space, or within the latent space, before passing them through the
encoder, or decoder. When the loss is computed in the latent space, only the pre-encoded pseudobulks can be computed.

• Signature type. Whether to compute the latent signature matrix used for deconvolution by using pre-encoded purified
cell type vectors and passing them through the encoder, or to sample them directly from the latent space. This
hyperparameter does not change the optimization of the model, as no deconvolution is done to optimize the model,
only to infer from it.

• Mixup penalty. It can either be a L2 loss between the pseudobulk of the sampled encoded cells and the sampled
encoded pseudobulk, or the Kullback-Leibler divergence between the distribution of the sampled encoded pseudobulk
and the pseudobulk of the sampled encoded cells. In this benchmark, as explained in Section 2.2, the L2 loss was used.

• Gene likelihood.
The distribution of the input data, used to compute the reconstruction loss part of the ELBO. In this benchmark, it was
fixed to Zero-inflated negative binomial (ZINB) for single-cells and Negative binomial (NB) for pseudobulks.

• Batch normalization.
Whether to add batch normalization inside the encoder or/and decoder for every batch of a forward pass. In this
benchmark, it was chosen to not use it neither in the encoder or the decoder.
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