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Abstract

Foundation models (FMs) have emerged as powerful pre-trained systems capable
of adapting to diverse downstream tasks, while continual learning (CL) aims to
enable models to sequentially acquire new knowledge without catastrophically
forgetting previous information. This paper examines the synergies between recent
advances in FMs and CL techniques. We review key FM capabilities relevant
to CL, analyze how FM architectures and training paradigms can enhance CL
methods, and explore integrated approaches combining FM and CL principles. Our
analysis suggests that FMs’ robust representations, transfer abilities, and adaptable
architectures offer promising avenues for advancing CL, while CL techniques can
enable FMs to continually expand their capabilities in dynamic environments.

1 Introduction

The rapid progress in foundation models (FMs) Bommasani et al. [2021] and continual learning (CL)
Parisi and Kanan [2019] has opened new possibilities for developing AI systems that can flexibly
acquire and retain knowledge over time. FMs, exemplified by models like BERT Devlin et al. [2019],
GPT-3 Brown et al. [2020], and CLIP Radford et al. [2021], demonstrate remarkable generalization
and few-shot learning abilities across diverse tasks. Concurrently, CL approaches aim to overcome
catastrophic forgetting McCloskey and Cohen [1989] when learning sequential tasks. This survey
paper delves into how recent FM advances can be leveraged to enhance CL techniques, examining
their complementary strengths and potential synergies.

2 Foundation Models for Continual Learning

2.1 Parameter-Efficient Fine-Tuning Techniques

The immense scale of FMs, while beneficial for performance, presents challenges for continual
adaptation. Updating all parameters for each new task is computationally expensive and prone to
overfitting. Parameter-efficient fine-tuning (PEFT) techniques have emerged to address this by selec-
tively updating only a small subset of parameters while keeping the majority frozen, thus mitigating
catastrophic forgetting by preserving pre-trained knowledge Houlsby et al. [2019]. Adapters are
a prominent example of PEFT, introducing small bottleneck layers within the model to capture
task-specific information. AdapterHub Pfeiffer et al. [2020] provides a framework for adapting
Transformers by dynamically "stitching-in" pre-trained adapters. LoRA (Low-Rank Adaptation)
Hu et al. [2021] offers another efficient approach by leveraging low-rank updates, demonstrating its
effectiveness in various continual learning scenarios Wistuba et al. [2023]. Prefix Tuning modifies the
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Figure 1: Overview of Foundation Models for Continual Learning

input embeddings to guide the model’s behavior on different tasks. Selective parameter fine-tuning
methods aim to identify crucial parameters for updating based on task relevance or gradient informa-
tion, mitigating negative transfer and promoting knowledge retention Wang et al. [2024b], Zhang
et al. [2023], Li et al. [2024]. These PEFT techniques offer promising avenues for adapting FMs
to new tasks while striking a balance between retaining pre-trained knowledge and acquiring new
information.

2.2 Continual Pre-Training and Adaptation

Continually updating FMs with new data can further enhance their adaptability in CL. Continual
pre-training involves incrementally updating FM knowledge with new data, enabling them to retain
general capabilities while incorporating novel information Gupta et al. [2023], Ke et al. [2022],
Li and yi Lee [2024], Çağatay Yıldız et al. [2024]. Domain-Adaptive Pre-training focuses on
adapting FMs to specific domains by pre-training on domain-specific data, further enhancing their
performance on downstream tasks within that domain Shi et al. [2024], Jin et al. [2022]. Continual fine-
tuning leverages continual learning techniques during the fine-tuning stage, mitigating catastrophic
forgetting while adapting to new tasks. COMFORT Li and Jha [2024] proposes a continual fine-tuning
framework for foundation models targeted at consumer healthcare, leveraging parameter-efficient
fine-tuning methods such as LoRA. Instruction tuning empowers models to follow natural language
instructions, enabling them to perform new tasks by understanding instructions rather than relying
solely on labeled examples Scialom et al. [2022], Wang et al. [2023c], Wu et al. [2024]. Latent
replay offers a memory-efficient approach to mitigating forgetting by storing and replaying compact
representations of past experiences in the latent space, proving particularly beneficial in scenarios
where data privacy is a concern Ostapenko et al. [2022]. These techniques allow FMs to evolve and
adapt to changing data distributions, bridging the gap between pre-training and continual learning.

2.3 Knowledge Distillation and Transfer

Knowledge distillation leverages the knowledge acquired by a teacher model to guide the training of
a student model. In CL, knowledge distillation plays a crucial role in transferring knowledge from a
model trained on previous tasks to a model trained on a new task, mitigating catastrophic forgetting Yu
et al. [2024b], Cai et al. [2023], Chen et al. [2023]. Wisdom of Committee Liu et al. [2024b] proposes
a novel distillation approach where a teaching committee comprising both foundation model teachers
and complementary teachers guides the student model, achieving enhanced performance in knowledge
transfer. Prototype-based distillation extends knowledge distillation by distilling knowledge from
previously learned class prototypes to guide the learning of new classes, enabling efficient knowledge
transfer in class-incremental learning scenarios Asadi et al. [2023], Wang et al. [2023a], Li et al.
[2022]. This approach, combined with memory replay techniques like Move-to-Data Poursanidis
et al. [2020], further improves knowledge retention and transfer. By transferring knowledge between
models, these techniques enhance knowledge retention and facilitate efficient learning of new tasks
without requiring access to past training data.
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2.4 Scalable and Modular Architectures

Scalable and modular architectures are essential for enabling continual learning with FMs. Dynamic
token expansion in transformer architectures allows for task-specific adaptation by dynamically
expanding special tokens, enabling models to learn new tasks without significantly increasing the
parameter count Douillard et al. [2021]. Mixture-of-Experts (MoE) architectures, where different
experts specialize in different aspects of the input data, can be leveraged to enhance continual learning
by selectively activating and updating experts for different tasks Yu et al. [2024a], Luo et al. [2024].
Modular adapters, which are small task-specific modules inserted into the pre-trained model, offer a
flexible and parameter-efficient approach to continual learning by dynamically adding and composing
modules for new tasks Roy et al. [2024], Wang et al. [2024c,a], Khan et al. [2022], Wang et al.
[2024d]. Interference-free knowledge integration focuses on minimizing interference between tasks
by ensuring that the knowledge acquired for new tasks does not disrupt the knowledge acquired
for previous tasks, promoting robust knowledge retention and transfer Tang et al. [2024]. These
architectures offer promising avenues for building CL systems that can efficiently adapt to new tasks
while retaining previously acquired knowledge.

3 Continual Learning Paradigms with Foundation Models

3.1 Zero-Shot and Few-Shot Learning in Continual Contexts

Zero-shot and few-shot learning play crucial roles in enabling continual learning in scenarios where
labeled data is limited. Zero-shot learning leverages semantic information about classes, such as class
attributes or textual descriptions, to recognize unseen classes without any labeled examples Yu et al.
[2024b], Zheng et al. [2023b], Wei et al. [2020, 2021], Yi and Elhoseiny [2021]. MetaZSCIL Wu
et al. [2023] introduces a meta-learning approach for generalized zero-shot class incremental learning,
enabling models to incrementally learn unseen classes without training samples. Few-shot learning
aims to learn new classes from a very limited number of labeled examples, often by leveraging meta-
learning techniques or by adapting pre-trained models using parameter-efficient fine-tuning methods
Roy et al. [2024], Hu et al. [2023], Hung et al. [2019], Zhou et al. [2022], Ke et al. [2022]. Multimodal
Parameter-Efficient Few-Shot Class Incremental Learning D’Alessandro et al. [2023] proposes CPE-
CLIP, a method that leverages the knowledge acquired by CLIP to improve performance and prevent
forgetting in FSCIL. MetaFSCIL Chi et al. [2022] employs a meta-learning approach for few-shot
class incremental learning, demonstrating significant performance improvements on benchmark
datasets. By effectively leveraging limited labeled data, these techniques facilitate continual learning
in realistic scenarios where new classes emerge over time and labeled data may be scarce.

3.2 Instruction and Prompt Tuning

Instruction and prompt tuning provide powerful mechanisms for adapting FMs to new tasks in
continual learning, enabling models to learn new skills without extensive parameter updates. Prompt-
based continual learning employs prompts, which are small learnable parameters, to guide the model’s
behavior on different tasks Ahrens et al. [2023], Hu et al. [2023], Gao et al. [2024], Khan et al. [2023],
Wang et al. [2021]. These prompts can be dynamically selected or updated based on the task, allowing
for flexible adaptation while retaining pre-trained knowledge. DualPrompt Wang et al. [2022] presents
a novel approach to attach complementary prompts to a pre-trained model, achieving state-of-the-art
performance in continual learning without rehearsal. Dynamic prompting extends this approach
by allowing prompts to evolve over time, further enhancing the model’s adaptability to new tasks
Gao et al. [2024]. By effectively leveraging the pre-trained knowledge embedded in FMs and by
introducing a succinct memory system through prompts, these techniques enable efficient continual
adaptation while mitigating catastrophic forgetting.

4 Theoretical and Empirical Foundations

Understanding the empirical and theoretical foundations of continual learning with FMs is vital
for developing robust and effective CL systems. Empirical evaluations on various benchmarks
provide valuable insights into the effectiveness of different CL methods, aiding in identifying the
strengths and weaknesses of various approaches Zheng et al. [2023a], Li and Jha [2024], Ermiş et al.
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[2022], Chitale et al. [2023], Wu et al. [2022]. Latent replay has demonstrated its effectiveness in
mitigating forgetting by preserving a compact representation of past experiences Ostapenko et al.
[2022]. Hierarchical task decomposition, where complex tasks are broken down into simpler sub-
tasks, is a promising direction for enhancing continual learning by promoting knowledge transfer
and minimizing interference between tasks Wang et al. [2023b]. Mode connectivity, referring to the
existence of low-loss valleys connecting different local minima in the loss landscape, provides insights
into the relationship between different learned tasks and can be leveraged to improve knowledge
transfer and reduce forgetting Ren et al. [2024]. The Neural Tangent Kernel (NTK) offers a promising
theoretical tool for analyzing the training dynamics of neural networks, providing valuable insights
into the interplay between feature representation, task orthogonality, and generalization in continual
learning scenarios Liu et al. [2024a]. These theoretical and empirical foundations pave the way for
designing more effective and robust CL systems.

5 Open Challenges and Future Directions

Despite the promising synergies between FMs and CL, several challenges remain and demand further
investigation. Scalability and efficiency are crucial for handling a vast number of tasks and large
datasets, requiring innovative solutions to manage computational resources and training time Mehta
et al. [2021], Çağatay Yıldız et al. [2024], Ermiş et al. [2022]. Mitigating negative transfer, where
learning a new task hinders performance on previous ones, necessitates careful consideration of task
relationships and the development of strategies to minimize interference Ke et al. [2022], Adel [2024].
Comprehensive evaluation protocols are essential for rigorously comparing methods, taking into
account factors like forgetting, transfer learning ability, sample efficiency, and computational cost
Li and Jha [2024], Zheng et al. [2023a]. Ethical considerations, including data bias, fairness, and
responsible use, are increasingly important as FMs and CL technologies continue to advance Shi et al.
[2024]. Addressing these challenges will pave the way for the development and deployment of more
robust, efficient, and ethical continual learning systems powered by foundation models.

6 Conclusion

This paper explored how recent advances in foundation models can enhance continual learning
techniques. We highlighted the potential of FMs’ robust representations, transfer capabilities, and
adaptable architectures to address key CL challenges. Integrated approaches combining FM and
CL paradigms offer promising directions for developing more flexible and capable AI systems. As
research in both fields progresses, the convergence of FM and CL principles may lead to significant
breakthroughs in building AI systems that can continually learn and adapt in dynamic environments.
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Investigating continual pretraining in large language models: Insights and implications, 2024.

8


	Introduction
	Foundation Models for Continual Learning
	Parameter-Efficient Fine-Tuning Techniques
	Continual Pre-Training and Adaptation
	Knowledge Distillation and Transfer
	Scalable and Modular Architectures

	Continual Learning Paradigms with Foundation Models
	Zero-Shot and Few-Shot Learning in Continual Contexts
	Instruction and Prompt Tuning

	Theoretical and Empirical Foundations
	Open Challenges and Future Directions
	Conclusion

