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Engaging Live Video Comments Generation
Anonymous Authors

Video Frame Comments

That Boy!

00:31:21

 Complement each other perfectly

00:31:21

00:31:22

00:31:23

00:31:23

00:31:24

Auto SendSubtitle: That Boy! That Girl!

That Girl!

Video Time

 A perfect match! 97

Why not exchange phone numbers? 84

Hahaha. 0

Like them in this time. 65

Interesting. 1

Due to different time line. 6

Figure 1: An example of live video comments generation. Our method aims to generate meaningful and engaging comments
(in purple italic) based on video frames, subtitles, and human-posted comments with "like" counts, rather than common
expressions such as "hahaha" or "interesting".

ABSTRACT
Automatic live commenting is increasingly acknowledged as a cru-
cial strategy for improving viewer interaction. However, current
methods overlook the significance of creating engaging comments.
Engaging comments can not only attract viewers’ widespread at-
tention, earning numerous "likes", but also further promote sub-
sequent social comment interactions. In this paper, we introduce
a novel framework for generating engaging live video comments,
aiming to resonate with viewers and enhance the viewing experi-
ence. Then, we design a Competitive Context Selection Strategy to
accelerate differential learning by constructing relatively attention
sample pairs with different levels of attractiveness. This approach
addresses the sample imbalance problem between highly-liked and
low-liked comments, as well as the relative attractiveness issue of
comments within video scenes. Moreover, we develop a Semantic
Gap Contrastive Loss to minimize the distance between generated
comments and higher-liked comments within the segment, while
also widening the gap with lower-liked or unliked comments. This
loss function helps the model to generate more engaging comments.
To support our proposed generation task, we construct a video com-
ment dataset with "like" information, containing 180,000 comments
and their "like" counts. Extensive experiments indicate that the
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comments generated by our method are highly engaging, more
fluent, natural, and diverse compared to baselines.

CCS CONCEPTS
• Computing methodologies→ Natural language generation;
Computer vision tasks.

KEYWORDS
Natural Language Generation, Social Media Processing, Other

1 INTRODUCTION
Online video platforms have emerged as the main sources for indi-
viduals to access entertainment and various forms of information
Live video comments, also referred to as "bullet screen comments",
have increasingly become a distinctive interactive feature on several
of these platforms. Unlike normal comments posted after watch-
ing a video, the distinguishing feature of live video comments is
that they often represent instantaneous reactions and feelings from
viewers at a specific timestamp or clip during a video. As shown
in Figure 1, the scrolling comments on the right side mainly in-
volve discussions among viewers about the scene at the 31st-minute
timestamp of the video, where the two characters are holding their
phones. Each "like" received after a comment indicates appreciation
from the audience. Some engaging comments stand out among
the many ones in the video clip, resonating with lots of viewers,
drawing most people’s attention, and consequently receiving many
"likes". These comments not only greatly enhance the viewing ex-
perience for users, but also stimulate further social interactions. As
a result, they can finally boost the video’s total views, user watch

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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time, and video popularity. However, existing video comment gener-
ation methods lack exploration into generating engaging comments
[11, 18, 20, 24].

Generating engaging live video comments faces numerous chal-
lenges, but we consider the following three aspects particularly
significant: (1) The factors that make a comment appealing are
diverse, and approval through likes is inherently subjective. A con-
cise summary of the plot, a well-written description, or an insight-
ful response to other comments can all attract viewers’ approval.
Therefore, it is challenging to conclusively determine what kind
of comments can consistently draw viewers’ attention and receive
considerable "likes". (2) There exist many general comments that
are attractive in specific scenarios. Among the many live video
comments, there exist many universal expressions that can attract
user interactions and "likes" when they appear in specific video
scenarios. For instance, "Looking forward to the next time" is a
commonly appreciated sentiment. However, learning solely from
these comments would compromise the applicability of the model
and its generative diversity. (3) Highly-liked comments are scarce.
Whether within specific sections or throughout the entire video,
highly-liked comments are limited in number. How to effectively
leverage this sparse highly-liked feedback along with numerous
barely-liked comments for generation is a key point of this paper.

To address the above challenges, we introduce a multimodal
generation framework to accomplish the novel task of creating
engaging live video comments. Firstly, we present a Competitive
Context Selection approach aimed at tackling the sample imbalance
issue between highly-liked and low-liked comments, as well as
addressing the relative attractiveness problem of comments within
video scenes. It constructs relatively attention sample pairs with
varying levels of attractiveness by utilizing the rare highly-liked
comments and numerous barely-liked comments in the video clips,
competitively determining the division of high and low context
based on normalized "likes" scores rather than an absolute fixed
threshold. Moreover, we design a Semantic Gap Contrastive Loss
that pulls generated comments closer to higher-liked contextual
comments and pushes them further from lower-liked ones. This
enables the model to learn how to generate highly engaging com-
ments in a given video scenario. To support this engaging comment
generation task, we construct a multimodal live video comment
dataset from the iQIYI1 video platform, containing over 180,000
comments, sub-scene video imagery, and subtitles strictly aligned
with the video timeline. Unlike previous methods, each comment
in our dataset includes actual "like" counts. We aim to leverage this
unique data to guide the model in producing natural, relevant, and
engaging comments.

Our main contributions are as follows:
• We propose a novel multimodal framework for high-quality
and engaging live video comments generation by utilizing
the "like" feedback from viewers.

• We develop a Competitive Contextual Selection Strategy
to tackle the sample imbalance issue and relative attractive-
ness problem of comments by constructing relative attention
sample pairs containing comments with different levels of
"likes".

1https://www.iqiyi.com/

• We propose a Semantic Gap Contrastive Loss that encour-
ages generated comments closer to higher-liked comments
while distancing them from lower-liked comments, aiming
for more engaging content generation.

• We construct a multimodal live video comments dataset
containing 180k comments accompanied by "like" counts.
Extensive experiments validate that our proposed approach
outperforms baselines, resulting in engaging, fluent, diverse
comments that align with the video clips.

2 RELATEDWORK
Multimodal Generation . Multimodal generation has become a
significant research area in artificial intelligence in recent years.
Relevant studies include image and video captioning[1, 4, 5, 17],
multimodal dialogue generation[2, 15], image and video question-
answering[7, 9, 23], and so forth. Video comment generation also
stands as an application of multimodal generation in online video
sites. Video commenting can be addressed as a downstream task
using classical multimodal pre-trained models.
Video Comments Generation. Existing works on video com-
ments generation primarily focus on producing fluent, anthropo-
morphic, and video content-congruent comments. Livebot [11]
stands out as a representative masterpiece and is the pioneer in
exploring automatic video commenting. It presents two effective
video comment generation models and establishes a large-scale
video comment dataset for crafting contextually consistent and
fluent live video comments. VideoIC [18] is another commend-
able bullet screen comment generation work, which incorporates
a time prediction sub-task to grasp the temporal relationship be-
tween multimodal information. Wu et al. introduces a keyword
position prediction module to predict the position of keywords and
the ending of the comment. These studies integrate multimodal
information, producing fluent and meaningful video comments.
However, these approaches overlook the role of comment engage-
ment in enhancing the viewers’ video-watching experience and
promoting social interaction within the video.

3 DATASET
To support the task of generating engaging live video comments, we
construct a large-scale dataset comprising over 180,276 comments,
78,909 image frames, 7,769 subtitles, and 7,769 audio records. Dis-
tinct from previous datasets in related works, each comment in our
dataset is annotated with a "like" count for engagement generation.

3.1 Data Processing
We collect a wealth of videos and relevant data, including live video
comments, subtitles, video timestamps, and audio information from
the online video site iQIYI. Then, we process the data in the follow-
ing steps: 1) Comment filtering: We first exclude comments with
sensitive or inappropriate content to avoid the model learning such
content. 2) Episode-based Sample Creation: We craft samples based
on subtitle start/end timestamps, considering platform transmission
delay and human response time. Each sample consists of subtitle
information extracted from images within the video clip, along
with surrounding comments. 3) "Like" Counts Normalization: The
significant disparities in the number of "likes" for the comments will
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Figure 2: The proposed engaging live video comment generation framework. It takes video frames, subtitles, and selected
contextual comments from the video segment as input, producing fluent and engaging comments. Competitive selection picks
comments with ‘likes’ differences, choosing higher-liked and lower-liked comments as contextual comments for differential
learning. L𝐻𝐶𝐿 and L𝐿𝐶𝐿 are employed respectively to narrow the gap with the higher-liked comments and widen the distance
from lower ones, bringing the target distribution closer to those relatively engaging comments.

Figure 3: Comment words distribution, "likes" count distri-
bution, and normalized "likes" scores distribution.

Table 1: Dataset Statistics of Proposed Comments.

Item Value Item Value
Comment 180,276 Train/Val/Test 8/1/1
Frame 78,909 Train Comment 144,220
Subtitle&Audio 7,769 Val Comment 18,028
Duration(mins) 618 Test Comment 18,028
Avg Words 8.76 Avg Likes 77.21
Comments/min 292 Avg Like Score 0.32

hinder model learning, so we normalize the "like" counts of all com-
ments to facilitate controlled processing. 4) Contextual Comment
Selection: Given the scarcity of highly-liked comments, we design a
competitive context selection strategy, randomly selecting pairs of
comments with normalized scores exceeding a certain value, rather
than strictly dividing by a fixed "like" count. 5) Privacy Measures:
For user safety, we remove any data potentially identifying the
users during processing.

3.2 Data Statics
Statistical information in proposed comments dataset is provided in
Table 1. In addition to the fundamental video details, we also record

the average number of "likes" and word count, among other things.
Figure 3 presents the distribution of word counts, distribution of
"like" counts, and distribution of "like" scores after normalization.
The long-tail distribution of "likes" signifies the rarity of highly-
liked and engaging comments. And after normalization, the data
distribution is more even and reasonable.

4 METHOD
4.1 Engaging Comments Task Definition
Our objective is to generate an engaging live video comment 𝑐𝑒 ,
with the generative model 𝐺 , based on the context video informa-
tion of a specific clip 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑡1,𝑡2 :

c𝑒 = G(Contextt1,t2 ). (1)

The context of the video clip is composed of multimodal video in-
formation between two video timestamps [𝑡1, 𝑡2], primarily includ-
ing video frames 𝑉𝑓 , subtitles 𝑇𝑠 , relatively higher-liked comments
𝐶ℎ , and lower ones 𝐶𝑙 :

Contextt1,t2 = {𝑉𝑓 ,𝑇𝑠 ,𝐶ℎ,𝐶𝑙 }. (2)

Within each clip, apart from the comments (𝐶ℎ , 𝐶𝑙 ) selected as
part of the conditional context, the remaining comments with high
"likes" are extracted to form an engaging reference set 𝑟 , intended
for evaluating the appeal of generated comments. It is noteworthy
that for each target comment, its higher-liked contextual comment,
as well as itself, is not included in the highly-liked reference set 𝑟 .

4.2 Engaging Generation Architecture
Figure 2 showcases our proposed framework, comprising five parts:
a textual encoder and a visual encoder for subtitle and image feature
extraction, a composite decoder to flexibly merge multimodal in-
formation and generate comments, a competitive context selection
module for differentiated learning, and semantic gap contrastive
losses for relative engagement control.
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The visual encoder, denoted as 𝐸𝑉 , accepts the video frame
image from a specified timestamp 𝑡𝑣 within a video clip [𝑡1, 𝑡2] to
extract video image features. We adopt the structure of ViT [3],
where the input video frame image 𝑣 𝑓 is first partitioned into a
patch sequence, and then processed through the encoder to obtain
the final frame image representation 𝑒𝑓 :

e𝑓 = EV (vf ). (3)

The text encoder takes subtitle information corresponding to the
video frame timestamps as input to extract the subtitle text feature
𝑒𝑠 . We directly employ the encoder 𝐸𝑇 of transformer [16]:

e𝑠 = ET (ts). (4)

Considering that both the context comments and the groundtruth
are typically live video comments consistent with the context, shar-
ing the same video subtitle context and having similar linguistic
structures, and there is a possibility of interaction or replies among
the comments, we concatenate them as the target to enhance the
model’s training and learning process. The decoder takes the target
comment concatenated with contextual comments as its input:

c = {chigh, clow, c∗}, (5)
where 𝑐ℎ𝑖𝑔ℎ and 𝑐𝑙𝑜𝑤 are randomly selected higher-liked and lower-
liked video comments from the same video clip ([𝑡1, 𝑡2]), used as
the context, and 𝑐∗ is the groundtruth. The previous output token
representation 𝑒𝑐𝑝𝑟𝑒 of the target comment is incorporated with
the video frame and video subtitle representations in the decoder.
The decoder employs a residual network structure for layer modal
feature fusion,

outc = Att (ecpre, ecpre, ecpre), (6)

outcf = Att (outc, ef , ef ) + 𝛾1𝑜𝑢𝑡𝑐 , (7)

outcft = Att (outcf , es, es) + 𝛾2𝑜𝑢𝑡𝑐 𝑓 , (8)
where 𝛾1, 𝛾2 ∈ [0, 1] are output weight coefficients from the pre-
vious layer. The output 𝑜𝑢𝑡𝑐 𝑓 𝑡 will be computed through the feed-
forward layer to achieve the representation of the current comment
token. During the test phase, contextual comments can be provided
to the model for the final generation.

4.3 Competitive Context Selection Strategy
When constructing the context for the target, we consider the fol-
lowing problems: 1) Highly-liked comments are scarce. As shown
in Figure 3, the number of likes for comments follows a long-tail
distribution. Even on popular video platforms, a large number of
comments may receive few or even no likes. Many scenarios, due to
the lack of highly-liked comments, will result in a sharp reduction
in training samples, further limiting the model’s learning perfor-
mance and applicability. 2) Engagement is relative. In comments
that scroll past in a short time within a clip, besides video and
subtitles, comments marked with high likes are more likely to at-
tract viewers’ attention. However, human attention is limited. In
every video clip, comments like clicking means competition for the
viewer’s limited attention. We aim to leverage this competitiveness,
holding that it isn’t solely between highly-liked and barely-liked
comments, but can also exist between two highly-liked ones.

Therefore, we introduced a competitive context construction
mechanism. For each comment 𝑐𝑖 , we first utilize the BOX-COX
transformation to normalize the number of likes of comments into
"like" scores 𝑠 , defined as:

𝑠 =

{
𝑦𝜆−1
𝜆

, 𝜆 ≠ 0
ln 𝑦, 𝜆 = 0

(9)

where 𝑦 denotes the "like" counts of comments. This transforma-
tion also helps to correct the distribution of the overall number
of likes, making the "like" data distribution more consistent with
the Gaussian distribution and more evenly distributed. For each
comment at timestamp 𝑡 , we first randomly select two samples
based on normalized like scores from [𝑡 − 5, 𝑡 + 5]. If the difference
between the normalized scores of the two samples is greater than
the threshold value 𝑑 , then the sample with the lower score is deter-
mined as a low-attention context sample 𝑐𝑙𝑜𝑤 , and the sample with
the high score is determined as the high-attention context sample
𝑐ℎ𝑖𝑔ℎ , defined as:

ccon = {(chigh, shigh), (clow, slow)}, (10)

𝑠ℎ𝑖𝑔ℎ − 𝑠𝑙𝑜𝑤 ≥ 𝑑, (11)
where 𝑑 is the score distance used to regulate the relative engage-
ment discrepancy and we set 𝑑 = 0.4 in this paper. 𝑠ℎ𝑖𝑔ℎ and 𝑠𝑙𝑜𝑤
represent the scores for the higher-liked and the lower-liked com-
ments.

4.4 Semantic Gap Contrastive Loss
The proposed model is trained by Maximum Likelihood Estimation
(MLE) to learn the probability distribution 𝑝𝜃 (𝑐) of generated com-
ments 𝑐 that alignwith every video clip context (𝑣 𝑓 , 𝑡𝑠 ), 𝜃 represents
the model parameters:

L𝑀𝐿𝐸 = − 1
|𝑐 |

|𝑐 |∑︁
𝑖=1

log 𝑝𝜃 (𝑤𝑖 |𝑐<𝑖 , 𝑣 𝑓 , 𝑡𝑠 ). (12)

𝑐 represents the union of the higher-liked comments, lower-liked
comments, and the groundtruth, all of which are contextually rele-
vant, denoted as:

𝑐 = {𝑤ℎ1 ,𝑤ℎ2 ...,𝑤11 ,𝑤𝑙2 ...,𝑤𝑔1 ,𝑤𝑔2 ...}. (13)

To enable the model to generate more engaging comments that
improve user experience and increase video social popularity, we
need to help the model learn to discern the difference between
higher-liked comments and lower-liked comments. SimCTG[14] is
an effective way to reduce token redundancy in sentences, but just
avoiding repetition with barely-liked comments at the token-level
is not enough to ensure comment engagement. Considering the
proposed engaging comment generation task, contrastive learning
should be applied to comments sharing the same video context.

Therefore, we introduce a Semantic Gap Contrastive Loss to
make the generated comments closer to higher-liked comments
and far away from lower-liked ones. Firstly, we utilize the proposed
Competitive Context Selection Strategy to construct positive and
negative samples. Then, we design a Higher-Liked Contrastive Loss
L𝐻𝐶𝐿 to narrow the semantic gap between the target comment
and the higher-liked comment:

L𝐻𝐶𝐿 = max {𝜌1 − 𝑠 (ℎ𝑡 , ℎℎ) − 𝑠 (ℎ𝑡 , ℎ𝑡 ) , 0} , (14)
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Figure 4: The final loss function: MLE Loss is responsible
for generation quality. The proposed Semantic Gap Con-
trastive Loss is employed for differentiated learning, driving
the model to generate more engaging comments.

where 𝑠 (·) denotes the cosine similarity between semantic repre-
sentations. ℎ𝑡 and ℎℎ are the semantic representations of the target
video comment and the higher-liked one respectively. The seman-
tic representation of the comment is obtained by averaging its
tokens’ hidden states. Correspondingly, we propose Lower-Liked
Contrastive Loss L𝐿𝐶𝐿 to enlarge the semantic distance between
the target and the lower-liked comment:

L𝐿𝐶𝐿 = max {𝜌2 + 𝑠 (ℎ𝑡 , ℎ𝑙 ) − 𝑠 (ℎ𝑡 , ℎ𝑡 ) , 0} , (15)

where ℎ𝑙 is the representation of lower-liked comments. Apart from
the above isolated loss L𝐻𝐶𝐿 and L𝐿𝐶𝐿 , we also proposed a Joint
Contrastive Loss L𝐽𝐶𝐿1 :

L𝐽𝐶𝐿1 = max
{
𝑔𝑎𝑝 𝑗 , 0

}
, (16)

𝑔𝑎𝑝 𝑗 = 𝜌3 + 𝑠 (ℎ𝑡 , ℎ𝑙 ) − 𝑠 (ℎ𝑡 , ℎℎ) − 𝑠 (ℎ𝑡 , ℎ𝑡 ) , (17)
Additionally, influenced by the classic contrastive learning loss, we
design another joint loss function L𝐽𝐶𝐿2 for exploration:

L𝐽𝐶𝐿2 = − log
𝑒𝑠 (ℎ𝑡 ,ℎ𝑡 )/𝜏 + 𝑒𝑠 (ℎ𝑡 ,ℎℎ )/𝜏

𝑒𝑠 (ℎ𝑡 ,ℎ𝑡 )/𝜏 + 𝑒𝑠 (ℎ𝑡 ,ℎℎ )/𝜏 + 𝑒𝑠 (ℎ𝑡 ,ℎ𝑙 )/𝜏
, (18)

where 𝜏 represent a hyperparameter.
Although higher engagement is the keypoint of our task, fluency

remains fundamental for comments. Therefore, our final losses for
the isolated and joint semantic gap (L𝐼𝑆𝐺 and L𝐽 𝑆𝐺 ) are denoted
as:

L𝐼𝑆𝐺 = L𝑀𝐿𝐸 + L𝐻𝐶𝐿 + L𝐿𝐶𝐿, (19)

L𝐽 𝑆𝐺 = L𝑀𝐿𝐸 + L𝐽𝐶𝐿 . (20)
As shown in Figure4, MLE pushes the model to closely align with

the groundtruth, avoiding context-independent and low-quality
outputs. The hidden state of each sentence is obtained by averaging
the hidden states of each token in the sentence. Then we apply
Semantic Gap Contrastive Loss to make the generation closer to
higher-liked comments and enlarge the distance between generated
comments and lower-liked comments.

5 EXPERIMENT
5.1 Implementation Detail
For the text encoder 𝐸𝑇 and the visual encoder 𝐸𝑉 , we utilize the
RoBERTa [10] model and ViT [3] structure to extract subtitle fea-
tures and video frames representations respectively. More detailed

Table 2: Hyperparameter settings of our model.

Hyperparameter Value
hidden state size 512

optimizer AdamW
batchsize 128

learning rate 3x10−4
modal weight 𝛾1, 𝛾2 0.11, 0.11
loss gap 𝜌1, 𝜌2, 𝜌3 1.5, 0.5, 1.6

settings of the encoders can be found in the pre-trained Chinese-
CLIP [22]. We employ PyTorch [13] and the transformers library
[19] to effectively implement the proposed engaging live video
comments generation framework. Hyperparameter settings are pre-
sented in Table 2. Four NVIDIA 3090 GPUs are used to train the
model for 3 days. 𝜏 = 0.05.

5.2 Baselines
We compare our engaging live video comments generation method
with the following methods:

• Livebot: An excellent method for live video comments gen-
eration, we employ its transformer version for generation.
[11]

• Livebot𝑐𝑙𝑖𝑝 : A joint approach utilizing CLIP to enhance text-
visual features extraction, can be viewed as an enhanced
version of Livebot.

• Cvt: A transformer visual encoder that retains the advan-
tages of convolutional networks, used for augmenting video
visual feature extraction. [21]

• Vilt: A classic visual-textual joint multi-modal model, per-
fectly fitting the proposed comment generation task. [6]

• Vilt𝑐𝑙𝑖𝑝 : ViLT merges features extracted by CLIP, constitut-
ing a strengthened version of ViLT from both textual and
visual modalities.

For fairness, all baselines and the proposed approach will employ
identical comments context and groundtruth.

5.3 Evaluation Metrics
We evaluated the models with the following automatic metrics:
(1) Engagement (B𝑟 , R𝑟 ). We first construct a reference set for
each sample for experimental metric calculation. For each video
segment, we collect 10 comments with relatively high likes, serving
as the high-attraction reference set. It is noteworthy that these
references have no overlap with the contextual comments and
groundtruth. We utilize BLEU[12] and Recall metrics to measure
the similarity in expression between the generated comments and
high-attraction references, represented by B𝑟 and R𝑟 scores respec-
tively. Semantic Engagement (Bs𝑟 ).We employ BertSim to assess
the semantic similarity between the generated comments and the
high-attraction reference set, thus measuring the proximity of the
generated comments to these highly-liked comments in terms of
meaning. (2) Perplexity (PPL). It is used to evaluate the fluency
of generated comments. (3) Quality (Bertscore[25]: P, R, F1).
The groundtruths selected during samples construction are also
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Table 3: Generation evaluation of ours compared with baselines. (↑: higher is better, ↓: lower is better).

Model Engagement Fluency Quality Diversity
B𝑟↑ R𝑟↑ Bs𝑟↑ PPL↓ P↑ R↑ F1↑ D1↑ D2↑ D3↑ D4↑

Livebot 26.19 18.27 69.39 2.38 55.53 55.56 55.48 1.59 22.29 48.80 64.18
Livebot𝑐𝑙𝑖𝑝 27.10 18.75 69.51 2.11 55.48 55.57 55.46 1.60 22.87 49.59 64.89
Cvt 25.68 17.52 69.42 2.48 55.37 55.47 55.36 1.55 22.03 48.34 63.61
Vilt 25.51 17.82 69.27 1.96 55.49 55.41 55.38 1.66 24.30 52.01 66.78
Vilt𝑐𝑙𝑖𝑝 24.98 16.98 69.34 2.45 55.33 55.35 55.28 1.57 23.04 50.26 65.35
Ours 41.48 33.01 70.39 1.49 57.47 57.41 57.38 1.68 24.68 52.90 68.35

Table 4: Ablation study of our method. Training with only L𝑀𝐿𝐸 means removing L𝐻𝐶𝐿 and L𝐿𝐶𝐿 in L𝐼𝑆𝐺 , ablating L𝐽𝐶𝐿1 in
L𝐽 𝑆𝐺1 , and removing L𝐽𝐶𝐿2 in L𝐽 𝑆𝐺2 .

Loss Engagement Fluency Quality Diversity
B𝑟↑ R𝑟↑ Bs𝑟↑ PPL↓ P↑ R↑ F1↑ D1↑ D2↑ D3↑ D4↑

L𝐼𝑆𝐺 41.48 33.01 70.39 1.49 57.47 57.41 57.38 1.68 24.68 52.9 68.35
L𝐽 𝑆𝐺1 39.91 31.16 70.38 1.65 57.13 57.05 57.03 1.65 23.86 51.82 67.80
L𝐽 𝑆𝐺2 26.24 18.07 69.43 2.08 55.56 55.55 55.49 1.62 23.68 51.26 66.98
L𝑀𝐿𝐸 39.48 30.49 70.24 1.64 57.10 56.92 56.94 1.68 24.11 52.34 68.61

comments with relatively higher likes. Besides being more engag-
ing, this implies that these comments are natural, of high quality,
and consistent with the video context. Therefore, we use precision,
recall, and f1-score of Bertsocre to evaluate the quality of the gener-
ated comments. (4) Diversity[8] (D1, D2, D3, D4).We use distinct
scores to measure the generation diversity.

5.4 Evaluation Results
Table 3 showcases the performance of the baseline and our proposed
method for generating live video comments. Our method excels in
engagement, fluency, quality, and diversity. The higher B𝑟 , R𝑟 scores
indicate that the comments generated by our model are closer to
the higher-liked comments in the expression. The Bertsim score
B𝑠𝑟 on the higher-liked reference set 𝑟 surpasses all baselines by
over 0.8, suggesting that our generated comments are semantically
closer to the higher-liked comments. Two possible explanations for
the lower-than-anticipated increase in semantic similarity scores
are: 1) Some comments with fewer likes may share similar meaning
with those having more likes, but for various reasons, they did not
receive a higher number of likes. 2) In the higher-liked reference
set, comments with an extremely high number of likes are rare, and
some comments with moderate likes show limited differences from
those with few or no likes. The lower PPL suggests that our gener-
ated comments are more fluent. A higher Berscore indicates that
our generated comments closely resemble the groundtruths, which
themselves are higher-liked comments. Our method performs bet-
ter in Distinct value than baselines, signifying its ability to produce
diverse comments. Additionally, apart from the high-attraction ref-
erence set, we also construct a low-attraction reference set for each
sample by collecting 10 lower-liked comments within the same

context. Then, we further visualize the relative engagement metric
results in Figure5. Relative engagement is the ratio of comparing
the generated comments with the high-attention reference set and
the low-attention reference set respectively after calculating the
BELU value.

5.5 Ablation Study
While the quality of video comments is influenced by the multi-
modal information of videos, modality research is not the focus of
this paper. We concentrate on leveraging the distinction between
highly-liked and less-liked comments for differential learning by
our proposed Semantic Gap Contrastive Loss. Table 4 presents the
results by various loss functions and pure MLE ablation. When we
training the model only by L𝑀𝐿𝐸 , it means that we perform abla-
tion experiments on our proposed contrastive losses L𝐼𝑆𝐺 , L𝐽 𝑆𝐺1 ,
and L𝐽 𝑆𝐺2 . Specifically, for L𝐼𝑆𝐺 , it means we removeL𝐻𝐶𝐿 and
L𝐿𝐶𝐿 . And for L𝐽 𝑆𝐺1 and L𝐽 𝑆𝐺2 , it means we ablate L𝐽𝐶𝐿1 and
L𝐽𝐶𝐿2 respectively.

From the results in the table, we can see that L𝐼𝑆𝐺 performs
best and removing the proposed L𝐻𝐶𝐿 and L𝐿𝐶𝐿 will Weaken the
performance of the model on various indicators. L𝐽 𝑆𝐺1 performs
better in Engagement and Quality values than only using MLE
Loss. It means that this joint semantic gap contrastive loss func-
tion L𝐽 𝑆𝐺1 has a certain effect on some indicators, but it does not
perform as well as L𝐼𝑆𝐺 . Surprisingly, L𝐽 𝑆𝐺2 influenced by the
classic contrastive learning loss design performs worse than MLE
Loss. MLE performs exceptionally well. The joint semantic gap
contrastive loss is relatively weaker but still maintain an advantage
over baseline methods.
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(a) Comparison with the classic method (b) Comparison with the different losses

Figure 5: Visual comparison of relative engagement on randomly sampled examples

Table 5: Human evaluation on the random test sets.

Fluency Relevance Human-Like Like Intent
Livebot 4.75 3.36 3.93 3.29
Ours 4.81 4.12 4.34 3.75
Human 4.92 4.27 4.56 3.93

5.6 Human Evaluation
Metrics. We evaluate the models using the following human met-
rics: 1) Fluency: assessing the fluency of live video comments.
2) Relevance: determining the relevance between comments and
video scene. 3) Human-Like: examining the probability that the
comments were sent by humans. 4) Like Intent: evaluating the
engagement of the comments to human. We randomly sampled
100 samples. We employ three individual annotators to score the
comments on a scale of [1, 5] across the four aspects.
Results. Table 5 displays the results from human evaluations, indi-
cating that our method outperforms the compared baselines and
approaches the performance of human-generated comments. It can
be observed that the baseline can generate fluent live video com-
ments, but the relevance and human-like scores are weak. As we
all know, even if the comments are fluent and general in nature,
they may also struggle to draw viewers’ attention and interaction if
they do not closely match the context of the video clip. Our model
achieves better performance in these four aspects than baselines
especially in Relevance, Human-Like, and Like Intent scores, which
means comments generated by our model are more appealing to
viewers.

5.7 Cross-Dataset Study
We conduct cross-dataset experiments to evaluate the generaliza-
tion performance of our proposed method. Training solely on a
single dataset might yield excellent performance due to overfitting
and learning ample contextual scenes. However, such amodel might
excel in specific video types but struggle to adapt to others. Apart

Table 6: Cross-dataset test results on two additional sub-
datasets without prior training.

Loss Engagement Fluency
B𝑟↑ R𝑟↑ Bs𝑟↑ PPL↓

Ours(𝑉1) 24.62 17.03 70.11 1.57
Ours(𝑉2) 25.24 17.21 69.37 1.57

Livebot(𝑉1) 23.13 16.64 69.07 2.39
Livebot(𝑉2) 23.24 16.05 68.98 2.40

from the dataset primarily used for training and testing in this
study, we also conduct untrained cross-dataset testing on two dis-
tinct datasets, V1 and V2, by randomly extracting 10k samples from
each. V1 comprises 140k comments, 64k images, and 5k subtitles,
while V1 consists of 241k comments, 111k images, and 11k subti-
tles. Table 6 presents the cross-dataset testing results without prior
training. The relatively stable PPL scores suggest that the model
can still generate fluent video comments. It is observed that the
best score decreases by roughly 15%, with a more significant drop
in the positive reference set and a slight decline in bertsim. It may
be because there are still some similar scenes between datasets, and
some general but potentially popular comments remain applicable.
However, for some sophisticated and interesting comments tailored
to new video clip contents (e.g., character names, specific terms,
character relationships), the model struggles to learn new expres-
sions without training, leading to a considerable disparity between
the highly-liked reference set and the two additional datasets. Addi-
tionally, we also report the performance of Livebot in cross-dataset
testing in Table 6. It is noticeable that Livebot’s Engagement score
does not drop much, but still remains less engaging compared to our
method. We believe this is mainly because when the model encoun-
ters unfamiliar scenes (including different frames, subtitles, and
comment contexts), it tends to generate more generic comments
that align with some of the generic comments found in highly
praised comments.
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Table 7: Generation speeds of different models. A generation
time of 0.1s indicates that the model can produce live video
comments based on video segments, allowing them to scroll
or fly across the screen instantly.

Models Livebot Livebot𝑐𝑙𝑖𝑝 Cvt
G-Speed(s) 0.087 0.089 0.090
Models Vilt Vilt𝑐𝑙𝑖𝑝 Ours

G-Speed(s) 0.099 0.092 0.122

CommentsVideo Frame

That Boy!

你说你能做成啥？
What do you think you can achieve?

Subtitle:  你每次见我第一句话

Every time you see me, 
the first thing you say is...

That Girl!
你都造成三回了？
You've done it three times!

又又又又又对不起啊？
Sorry again and again and again!

575

671

每天同一话。
It's the same thing you say every day.

2

Contextual Comment

Groundtruth

Generated Comment

我宝就是那条鱼？
My sweet is that fish.

Subtitle:  来鱼了来鱼了

The fish are coming! The 
fish are coming!

That Girl!
《等鱼上钩》
"Waiting for the Fish to Bite".

上来的可能不是鱼
What's coming up might not be a fish.

264

919

好位置。
Ideal Position.

0

Groundtruth

Generated Comment

Contextual Comment

Figure 6: Examples generated by our method.

5.8 Comment Generation Speed
For standard videos where comments are superimposed, the gen-
eration timing is not constrained; one can produce the comment
and then decide on a specific timestamp within the corresponding
video segment. However, when deploying real-time comment gen-
eration applications, generation speed is crucial, as it determines
the model’s ability to promptly respond to video clips and ongoing
comments. Table 7 lists the average generation time for each model,
and an approximate comment generation time of 0.1s is sufficient
to craft comments that match the video clip context. Although our
proposed model is slightly slower in generating comments com-
pared to previous models, the 0.122s per comment remains within
an acceptable range.

5.9 Case Study
Figure 6 displays some generated samples (in italic) on our proposed
video dataset. Through these examples, it can be observed that our
approach can not only generate natural, fluent, and contextually
relevant comments but also possesses a certain appeal. For instance,
the generated three "again" not only conveys repetition but also
reflects emotion in an interesting way. When compared to highly-
liked comments, the generated remain competitively engaging.

6 CONCLUSION
This paper presents a multimodal framework aiming to generate
engaging comments in live video contexts. We build a large-scale
multimodal dataset for live video comments where subtitles and
timestamps are perfectly synchronized with video timestamps, and
each comment is associated with its "likes" count information. Our
proposed Competitive Context Selection Strategy helps to construct
contrastive learning pairs with higher-liked and lower-liked com-
ments, mitigating the problem of "likes" data imbalance. Moreover,
we introduce several Semantic Gap Contrastive Losses to motivate
the model to create more appealing live video comments by nar-
rowing the semantic disparity between generated comments and
higher-liked comments and enlarging the distance with lower-liked
ones. Comprehensive experiments affirm the efficacy of our ap-
proach. In future work, we will explore the potential audience for
the most-liked comments, deepening our understanding of partici-
pation dynamics in live video interactions.

7 ETHICAL CONSIDERATIONS
While collecting comment data from online video platforms, we
observed that comments often contain metadata, including unique
platform account IDs. Although this information is considered
public according to platform guidelines, it involves aspects of indi-
vidual activity and personal privacy that require careful handling.
Therefore, for user safety, we remove all data involving private
information, keeping only the comment content and its associated
video segment timestamp. Additionally, we filter the dataset ini-
tially to exclude inappropriate comments. Moreover, It is worth
noting that, due to the strict comment moderation rules on existing
popular video social platforms, our model is supervised when auto-
matically posting comments. Therefore, our model will be properly
monitored and not spread inappropriate or harmful content on
social platforms.

8 LIMITATIONS
Although we have proposed an effective multimodal framework to
generate engaging live video comments in this paper, there are still
some limitations. Expanding and incorporating a broader range of
video types is essential. Highly-liked comments are often closely re-
lated to particular video segments, which may involve some special-
ized terms or domain-specific object recognition. Without adequate
training data or the integration of external knowledge, the expres-
sion capacity of the model would be severely limited. Our method
utilizes pre-trained Chinese CLIP to enhance feature extraction
from video frames and subtitles, but relying too heavily on CLIP’s
pre-training limits its versatility. Unlike previous comment genera-
tion works, we need to consider the quantity and distribution of
comments. The scarcity of highly-liked comments limits our ability
to collect data rapidly on a large scale. In addition to the dataset
used for training and testing, we are actively collecting data from
a wider range of video categories, having gathered an additional
500k comments spanning more video types. This expansion paves
the way for future research explorations.
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