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Figure 1. PhysRig is a differentiable physics-based skinning approach that models objects as soft-body volumes driven by embedded
driving points, enabling realistic deformations and capturing complex dynamics across diverse topologies and motions—from humanoids to
dinosaurs and flying creatures.

Abstract

Skinning and rigging are fundamental components in anima-001
tion, articulated object reconstruction, motion transfer, and002
4D generation. Existing approaches predominantly rely on003
Linear Blend Skinning (LBS), due to its simplicity and differ-004
entiability. However, LBS introduces artifacts such as volume005
loss and unnatural deformations, and it fails to model elastic006
materials like soft tissues, fur, and flexible appendages (e.g.,007
elephant trunks, ears, and fatty tissues). In this work, we008
propose PhysRig: a differentiable physics-based skinning009
and rigging framework that overcomes these limitations by010
embedding the rigid skeleton into a volumetric represen-011
tation (e.g., a tetrahedral mesh), which is simulated as a012
deformable soft-body structure driven by the animated skele-013
ton. Our method leverages continuum mechanics and dis-014
cretizes the object as particles embedded in an Eulerian015
background grid to ensure differentiability with respect to016
both material properties and skeletal motion. Additionally,017
we introduce material prototypes, significantly reducing the018
learning space while maintaining high expressiveness. To019
evaluate our framework, we construct a comprehensive syn-020
thetic dataset using meshes from Objaverse [4], The Amaz-021
ing Animals Zoo [30], and MixaMo [1], covering diverse ob-022
ject categories and motion patterns. Our method consistently023

outperforms traditional LBS-based approaches, generating 024
more realistic and physically plausible results. Furthermore, 025
we demonstrate the applicability of our framework in the 026
pose transfer task highlighting its versatility for articulated 027
object modeling. 028

1. Introduction 029

Skinning and rigging are essential for animating articulated 030
objects and play a critical role in numerous applications, 031
including character animation, motion retargeting, 4D re- 032
construction, and generative modeling. Among existing ap- 033
proaches, Linear Blend Skinning (LBS) remains the dominant 034
method due to its efficiency and differentiability. However, 035
LBS suffers from severe limitations, including unnatural dis- 036
tortions (e.g., collapsing joints, candy-wrapper artifacts, and 037
volume shrinkage) and an inability to capture the behavior 038
of elastic materials. These artifacts become especially prob- 039
lematic when modeling characters with highly deformable 040
regions, such as an elephant’s trunk, a human’s soft tissue, 041
or flexible appendages. 042

To address these shortcomings, we introduce a differen- 043
tiable physics-based skinning and rigging framework that 044
models articulated object deformation as a volumetric simu- 045
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lation problem. Instead of directly mapping vertices to rigid046
skeleton transformations, we embed the skeleton into a de-047
formable soft-body volume (e.g., bounded by a set of Gaus-048
sians and tetrahedral meshes), which is driven by skeletal049
motion while respecting fundamental physical principles. In050
particular, we leverage continuum mechanics and the mate-051
rial point method to establish a fully differentiable deforma-052
tion process, ensuring that both the material properties and053
skeletal motion are incorporated in a physically consistent054
manner. Unlike LBS, which applies simple linear blending,055
our approach captures intricate material behaviors by mod-056
eling stress-strain relationships and dynamic responses to057
skeletal forces, allowing us to achieve more realistic and058
physics-driven deformations.059

A major challenge encountered with these physics-based060
methods is a large number of material parameters and com-061
plex particle interactions, which makes optimization chal-062
lenging. To overcome this, we introduce material prototypes,063
a vocabulary of primitives that can be combined to represent064
all material properties, and span common deformation behav-065
iors of articulated objects. This novel approach significantly066
reduces the learning space while maintaining expressiveness.067
It provides a structured way to interpolate material prop-068
erties across different object types, enabling more efficient069
learning while preserving the diversity of real-world material070
responses.071

Evaluating physics-based skinning models is challeng-072
ing due to the lack of suitable benchmark datasets. Existing073
datasets are primarily built via LBS-based deformations and074
lack sufficient variation in material properties and deforma-075
tion types. To address this gap, we construct a comprehensive076
synthetic dataset incorporating meshes from Objaverse [4],077
The Amazing Animals Zoo [30], and MixaMo [1], covering a078
diverse range of objects, motion patterns, and material prop-079
erties. Using this dataset, we demonstrate that our method080
outperforms LBS-based approaches, producing more real-081
istic deformations across a variety of articulated objects.082
Additionally, we showcase the effectiveness of our frame-083
work in downstream tasks such as pose transfer and 4D084
object generation, illustrating its broad applicability. Our key085
contributions can be summarized as follows:086

• A differentiable physics-based skinning/rigging frame-087
work, leveraging continuum mechanics to enable realistic088
and physically plausible deformations while remaining089
differentiable.090

• A novel material prototype formulation, which reduces091
the learning complexity by introducing a structured inter-092
polation approach while maintaining high material expres-093
siveness.094

• A novel synthetic dataset for evaluating physics-based095
skinning models, demonstrating our framework’s superior-096
ity over LBS-based approaches.097

Our approach bridges the gap between physics-based sim-098

ulation and differentiable learning, providing a powerful 099
tool for articulated object modeling in computer vision and 100
graphics. By introducing a differentiable physics-driven de- 101
formation process, our framework enables new opportunities 102
for more accurate, physically consistent skinning and rigging, 103
with broad implications for animation, motion generation, 104
and 4D modeling. 105

2. Related Work 106

Skinning in 4D Modeling and Animation. Skinning is 107
fundamental to 3D character animation, modeling surface 108
deformations induced by skeletal motion [22, 24]. Among 109
various techniques, Linear Blend Skinning (LBS) remains 110
the most widely used due to its simplicity and computational 111
efficiency [17]. 112

LBS is integral to many vision tasks, including video-to- 113
3D reconstruction and avatar modeling. Parametric models 114
like SCAPE [2] and SMPL [21] rely on predefined skeletons 115
and skinning weights, limiting their adaptability. Neural im- 116
plicit approaches [6, 16, 25, 37–39, 42–44] improve general- 117
ization but still require precise skeletal information. In avatar 118
modeling, explicit methods [10, 33, 34, 40] optimize SMPL 119
parameters, whereas implicit ones [7, 15, 26, 27, 29, 31, 35] 120
leverage neural representations but face challenges in opti- 121
mization and topological consistency. 122

LBS has also been applied to pose transfer [18, 28], with 123
MagicPose4D [41] enabling cross-species motion. However, 124
these methods often require recalculating skeletons and skin- 125
ning weights for novel motions. Since LBS linearly blends 126
external skeletal motion, it fails to capture true internal de- 127
formations, prompting research into physically-based skin- 128
ning [5, 13, 14, 23]. While such methods better model volu- 129
metric changes, their non-differentiability limits integration 130
with deep learning. Our approach introduces a differentiable 131
physics-based skinning model, enabling efficient joint opti- 132
mization via gradient descent. 133

Physical 4D Generation. In multiphysics simulation, the 134
Material Point Method (MPM) [8, 11, 12] excels in handling 135
topology changes and frictional interactions across various 136
materials. Recent works [19, 32, 46] integrate MPM for 137
physically plausible motion but rely on manual parameter 138
tuning. Differentiable approaches [9, 20, 45] learn material 139
properties but are restricted to simple motions. To bridge 140
this gap, we propose PhysRig, a differentiable physics frame- 141
work that learns material parameters for articulated objects, 142
ensuring physical consistency across complex motions. 143

3. Method 144

In this paper, we introduce PhysRig, a differentiable physics- 145
based skinning framework for 3D object deformation, ap- 146
plicable to meshes, point clouds, and Gaussian representa- 147
tions. If the input is a mesh or a Gaussian representation, 148
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Figure 2. Overview of PhysRig. Given a 3D object, we first compute coarse skinning weights, which initialize embedded driving points
for local deformation control. These points, assigned velocities, are linked to an elastic 3D volume with material parameters governing
deformation. The differentiable physics-based skinning module generates natural deformations, optimizing velocities and material properties
via backward propagation. Finally, multi-view animations illustrate physically plausible shape deformations over time.

we first perform a filling operation to obtain a solid volume149
in the form of a point cloud, and the total number of points150
is N . As shown in Fig. 2, unlike traditional Linear Blend151
Skinning (LBS), which applies a weighted sum of bone152
transformations, PhysRig employs a differentiable physics153
simulator (Sec.3.1) to model the 3D object as a volumetric154
structure. Instead of directly manipulating vertex positions,155
it embeds driving points within the volume to induce defor-156
mation. PhysRig optimizes two key components to achieve157
fine-grained control and produce the desired deformation:158

• Material properties, including Young’s modulusE ∈ RP159
and Poisson’s ratio ν ∈ RP for P material prototypes.160
The material properties of all N points are then computed161
using a function based on the Mahalanobis distance be-162
tween each point and the material prototypes (Sec. 3.2).163
These properties govern elasticity and deformation behav-164
ior, determining how internal forces propagate through the165
structure.166

• Driving point velocities, v ∈ R{l∗M,3}, representing the167
motion of the internal skeletal structure parameterized by168
transformations {t0, ..., tM}, ti ∈ SE(3), where M is169
the number of virtual joints. These velocities v drive the170
deformation, with l = 8 set by default and the driving171
points’ positions are initialized by coarse skinning weights172
or uniform sampling (detailed in Sec. 3.3).173

The driving points encode the skeletal motion, propagating174
movement to the surrounding 3D volume, while the material175
properties define how internal motion influences the object’s176
outer surface. PhysRig can be formulated as:177

X′ = F(X, E, ν, v,∆t), (1)178

where X ∈ RN×3 denotes the initial point positions, and179
∆t ∈ R is the time step governing temporal evolution. The180

function F computes the deformed positions X′ via a differ- 181
entiable physics simulation. 182

3.1. Physics-Based Simulation 183

To model object deformations under external interactions, 184
we simulate motion using the principles of continuum me- 185
chanics. Our approach represents objects as continuous vol- 186
umetric materials governed by conservation laws, enabling 187
differentiable physics-based deformation modeling. 188

3.1.1. Continuum Mechanics Formulation 189

We describe the motion of a deformable object using a time- 190
dependent mapping function ϕ, which transforms material 191
coordinates X in the undeformed space Ω0 to world co- 192
ordinates x in the deformed space Ωt: x = ϕ(X, t). The 193
evolution of ϕ is constrained by fundamental physical laws: 194

Conservation of Mass. The total mass within a material 195
region remains constant over time: 196∫

Bt
ϵ

ρ(x, t) dx =

∫
B0

ϵ

ρ(ϕ−1(x, t), 0) dx, (2) 197

where ρ(x, t) is the density field. 198

Conservation of Momentum. The motion of the object 199
is dictated by the balance of internal and external forces: 200

∫
Bt

ϵ

ρ(x, t)a(x, t) dx =

∫
∂Bt

ϵ

σ ·n dx+

∫
Bt

ϵ

f ext dx, (3) 201

where a(x, t) = ∂2ϕ
∂t2 represents acceleration, f ext de- 202

notes external forces, and σ is the Cauchy stress tensor, 203
which encodes local deformation behavior. 204
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3.1.2. Material Model and Deformation Representation205

To model elastic responses, we use a constitutive model relat-206
ing the stress tensor σ to the deformation gradient F = ∂ϕ

∂X .207
We adopt a Fixed Corotated hyperelastic material model,208
which effectively captures nonlinear deformations while209
maintaining stability.210

The Cauchy stress tensor is derived from the strain energy211
density function ψ(F ):212

σ =
1

det(F )

∂ψ

∂F
FT . (4)213

Following the Fixed Corotated model, the strain energy214
function is given by:215

ψ(F ) = µ

d∑
i=1

(σi − 1)2 +
λ

2
(det(F )− 1)2, (5)216

where σi are the singular values of F , and the material217
parameters µ and λ are related to Young’s modulus E and218
Poisson’s ratio ν:219

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (6)220

3.1.3. Simulation via the Material Point Method221

We employ the Material Point Method (MPM) [8] to solve222
the governing equations efficiently. MPM discretizes the223
object as particles embedded in an Eulerian background224
grid, enabling robust handling of large deformations while225
ensuring differentiability.226

Particle-to-Grid (P2G) Transfer. At each simulation227
step, per-particle mass and momentum are transferred to the228
grid using B-spline interpolation:229

mivi =
∑
p

N(xi − xp)
[
mpvp +

(
mpCp

− 4

∆x2∆t
Vp
∂ψ

∂F
FTp

)
(xi − xp)

]
+ fi.

(7)230

where: mi, vi are the mass and velocity at grid node i,231
N(xi − xp) is the interpolation kernel, Cp is the velocity232
gradient at the particle, fi is the external force, Vp is the233
volume of the particle, which scales the contribution of the234
stress force term. The stress-based force term, Vp ∂ψ∂F F

T
p ,235

represents the internal elastic forces exerted by the particle.236
The factor Vp ensures that the contribution is properly scaled237
according to the physical size of the particle, preventing238
instabilities when transferring forces to the grid.239

Grid-to-Particle (G2P) Update. After computing veloc-240
ity updates on the grid, the velocities are interpolated back241
to particles, and positions are updated:242

vt+1
p =

∑
i

N(xi − xp)vi, xt+1
p = xp +∆tvt+1

p . (8) 243

Deformation Gradient Update. The velocity gradient 244
and deformation gradient are updated as: 245

∇vt+1
p =

4

∆x2

∑
i

N(xi − xp)vi(xi − xp)T ,

F t+1
p = (I +∆t

∑
i

vi∇N(xi − xp)T )Fp.
(9) 246

where:∇vt+1
p is the velocity gradient at particle p, describ- 247

ing how velocity varies locally. F t+1
p is the updated defor- 248

mation gradient, tracking material deformation over time. 249
∇N(xi − xp) is the spatial gradient of the interpolation 250
function, describing how interpolation weights change with 251
position. I is the identity matrix, ensuring that the defor- 252
mation gradient starts from an undeformed state. ∆t is the 253
time step, controlling how much deformation accumulates 254
per iteration. By iterating these updates, MPM efficiently 255
captures complex material deformations while maintaining 256
differentiability. 257

Driving Points Gradient Update. Driving points influ- 258
ence the motion of specific object regions by modifying the 259
velocities of nearby grid nodes within their control region. 260
The velocity update for a driving point vd,j is determined by 261
the contributions from the affected grid nodes and is given 262
by: 263

vd,j ← vd,j +
1

|Rc|
∑
i∈Rc

∇vi, (10) 264

where ∇vi represents the velocity gradient at grid node i 265
within the control region Rc. 266

3.1.4. Optimization Strategy for Inverse Skinning 267

Inverse Skinning is the process of recovering underlying 268
motion parameters, such as material properties and driving 269
point velocities, from observed deformations of a 3D object. 270
Unlike traditional skinning methods (LBS), where defor- 271
mations are computed from transformations and skinning 272
weights, our inverse skinning aims to estimate the driving 273
point velocities v and material properties (Young’s modu- 274
lus E, Poisson’s ratio ν) that best explain a given motion 275
sequence. This requires optimizing physical parameters to 276
minimize discrepancies between simulated and observed 277
motion. 278

Iteritively Optimization. To ensure stability, we adopt 279
an iterative training strategy. First, we initialize the positions 280
of the driving points and estimate their approximate veloci- 281
ties for each frame. We then alternate between the following 282
two optimization steps: (1) Material Parameter Optimiza- 283
tion: Fix the driving point velocities and update the material 284
parameters using all frames as a single batch. (2) Driving 285
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Method
Humanoid Character Quadruped Animal

Michelle Ortiz Mutant Jellyman Kaya Leopard Mammoth Stego Krin
UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓

LBS-1 2.82 1.426 2.18 2.993 2.02 2.512 3.05 6.532 2.42 2.081 3.03 2.413 2.54 1.782 3.07 0.682 3.03 0.561
LBS-2 3.06 0.891 2.93 2.011 3.37 1.438 3.25 4.130 2.97 1.214 3.13 1.328 2.8 0.891 3.64 0.202 3.38 0.271
LBS-3 3.32 0.372 3.01 1.472 3.47 0.801 3.66 3.811 3.43 0.408 3.21 0.493 3.25 0.346 3.83 0.103 3.47 0.048

Ours-init 3.19 2.105 2.91 12.755 2.98 5.977 3.43 14.161 3.39 2.027 3.43 1.822 3.13 4.991 3.51 1.664 3.63 0.844
Ours 4.7 0.139 4.43 1.375 4.61 0.527 4.34 1.214 4.8 0.228 4.45 0.212 4.59 0.127 4.5 0.085 4.4 0.032

Method
Quadruped Animal Other Entities

Cow Raccoon T-rex Pterosaur Whale Angelfish Cobra Shark Ave.
UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓ UR ↑ CD ↓

LBS-1 2.51 1.351 2.29 1.243 2.88 5.861 2.54 6.722 2.77 0.292 3.11 0.841 2.64 2.712 3.27 0.078 2.72 2.43
LBS-2 3.0 1.019 2.58 0.791 3.21 3.763 2.78 4.512 2.95 0.253 3.57 0.614 2.79 2.133 3.59 0.046 3.12 1.56
LBS-3 2.99 0.781 3.48 0.342 3.25 0.687 3.05 1.082 3.17 0.134 3.61 0.209 3.01 0.607 3.81 0.031 3.35 0.73

Ours-init 3.1 2.244 3.37 4.737 3.17 6.574 2.97 9.522 3.11 4.561 3.81 0.296 3.77 4.049 3.93 0.178 3.34 4.67
Ours 4.24 0.187 4.63 0.198 4.66 0.588 4.49 0.653 4.56 0.132 4.32 0.021 4.76 0.372 4.34 0.016 4.52 0.37

Table 1. Comparison of different rigging methods for inverse skinning. UR ↑: User Study Rate, CD ↓: Chamfer Distance. LBS-1, LBS-2,
and LBS-3 correspond to using RigNet [36], Pinocchio [3], and ground truth skinning weights, respectively, as initialization for jointly
optimizing skinning weights and bone transformation. PhysRig utilizes Pinocchio to obtain coarse skinning weights for initializing driving
points, and then iteratively learns material parameters and driving point velocities. Our dataset consists of 17 diverse objects among humans,
quadrupeds, and other entities, totaling 120 motion sequences. We report the average performance across all motions for objects with
multiple motions. The User Study setup is provided in the appendix Sec. A.4

Point Velocity Optimization: Fix the material parameters286
and sequentially update the velocities of the driving points287
for each frame. The optimization progresses frame by frame,288
moving to the next frame once the loss falls below a prede-289
fined threshold. These two steps are repeated iteratively until290
either the overall loss falls below a set threshold or the total291
number of iterations reaches the stopping criterion.292

This strategy is designed to account for the differing re-293
quirements of material parameters and velocity optimization.294
Optimizing material parameters requires information accu-295
mulated across multiple frames, as the material properties296
influence the object’s global behavior over time. In contrast,297
optimizing driving point velocities must be performed se-298
quentially on a per-frame basis. Simultaneously optimizing299
velocities across multiple frames is ineffective, as accurate300
simulation of later frames is only meaningful if the preceding301
frames have already been well-optimized.302

3.2. Material Prototype303

To efficiently represent material properties across an object’s304
volume, we introduce material prototypes, each character-305
ized by two learnable parameters: Young’s modulus and306
Poisson’s ratio. The material properties at any point within307
the volume are computed as a weighted sum of these proto-308
types. The weights are determined using a function based309
on the Mahalanobis distance between the query position310
and the prototypes. Specifically, we define each material pro-311
totype as a Gaussian ellipsoid, parameterized by its center312
C ∈ RP×3, orientation V ∈ RP×3×3, and diagonal scale313
Λ ∈ RP×3×3, where P denotes the number of prototypes.314
The weight assignment follows:315

Wn,p = softmaxp∈P (d(xn,Cp,Qp)) (11)316

where d(xn,Cp,Qp) is the Mahalanobis distance, defined 317
as: d(xn,Cp,Qp) = (xn − Cp)

TQp(xn − Cp), Qp = 318
VT
pΛpVp. Here, xn represents the coordinates of a query 319

point n, and the Mahalanobis distance function ensures that 320
weights are assigned based on the spatial relationship be- 321
tween the query position and the material prototypes. This 322
formulation enables an efficient and differentiable material 323
representation that generalizes across diverse volumetric 324
structures. 325

Compared to directly learning per-point material proper- 326
ties or employing a triplane-based function that maps spatial 327
coordinates to material parameters, our material prototype 328
representation offers a significantly more compact and effi- 329
cient parameterization. By leveraging a small set of proto- 330
types rather than densely modeling every point, we substan- 331
tially reduce the optimization space while maintaining high 332
expressiveness. Moreover, the prototype-based formulation 333
naturally enforces smooth material transitions, preventing 334
noisy or abrupt variations that are common in per-point learn- 335
ing approaches. This property aligns more closely with the 336
behavior of real-world materials, where material properties 337
exhibit gradual spatial variations rather than sharp disconti- 338
nuities. 339

3.3. Driving Point Initialization 340

Driving points are a crucial component of PhysRig, as effi- 341
ciently initializing their positions and velocities significantly 342
improves optimization efficiency. To achieve this, we pro- 343
pose a coarse-to-fine initialization strategy based on skinning 344
weights. We first obtain coarse skinning weights using ex- 345
isting rigging models such as Pinocchio [3] or RigNet [36], 346
which provide an approximate mapping between the object’s 347
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surface and skeletal structure. We then place driving points348
at joint locations, which naturally reside at the boundaries349
between adjacent parts.350

3.3.1. Affinity-Based Seg via Spectral Clustering351

Given per-vertex skinning weights W ∈ RN×B , where N352
is the number of vertices and B is the number of bones, we353
construct an affinity matrix A to measure similarity between354
vertices:355

Ai,j = exp

(
−∥Wi −Wj∥2

σ2

)
, (12)356

where σ controls the sensitivity of similarity measurement. A357
larger σ results in smoother clustering, while a smaller σ cap-358
tures finer-scale differences. Using A, we compute the graph359
Laplacian: L = D−A,where Di,i =

∑
j Ai,j . We obtain360

a low-dimensional embedding by computing the k smallest361
eigenvectors of L and apply k-means clustering to segment362
the object into rigid regions, each assigned a cluster label363
ci. Note that k could be different with B. Since the coarse364
skinning weights may not always meet our expectations, our365
approach allows for flexible control over the number of parts366
by adjusting k.367

3.3.2. Locating Joint via Skinning Weight Variance368

To extract joint locations, we analyze the segmentation out-369
put to identify transition regions where adjacent rigid compo-370
nents meet. A vertex i is classified as a boundary vertex if:371
ci ̸= cj , for some j ∈ N (i), where N (i) denotes the set372
of neighboring vertices in the mesh. These boundary vertices373
form the primary candidates for joint locations. To further374
refine the detected joints, we analyze variance in skinning375
weights at boundary vertices. Specifically, we define the joint376

set J as: J =
{
i |

∑
b

(
Wi,b − W̄N (i),b

)2
> τ

}
, where377

W̄N (i),b is the mean skinning weight of neighboring vertices378
of i, and τ is a threshold for detecting significant weight vari-379
ations. This step ensures that only regions with meaningful380
changes in skinning influences are selected as joints.381

3.3.3. Driving Points Initialization382

At each identified joint, we uniformly place l driving points383
to ensure fine-grained control over the deformation of nearby384
volumetric regions. Each driving point’s initial velocity is385
computed as the average velocity of its surrounding vol-386
ume, ensuring a smooth and physically consistent initializa-387

tion: vp =
∑

i∈Np
vi

|Np| , where Np represents the set of nearby388

points influencing the driving point.389
Although the coarse skinning weights obtained from pre-390

existing models may not be highly accurate, they provide391
a decent starting point. Our method refines these initial es-392
timates (velocity) during optimization, ultimately yielding393
more accurate motion parameters that adapt to the specific394
material properties of the object.395

Figure 3. PhysRig enables pose transfer for generated objects.

Michelle Leopard Angelfish Converge
Iteration↓UR↑ CD↓ UR↑ CD↓ UR↑ CD↓

Mat Field 3.31 1.93 3.47 1.58 3.93 0.23 -
Per-point 3.15 2.31 3.61 1.77 3.73 0.25 -

w/o Locating 4.31 0.186 4.23 0.358 3.97 0.031 8000
w/o Vel Init 4.08 0.183 4.03 0.301 4.17 0.029 5000

Prototypes: 25 - 0.147 - 0.229 - 0.023 2000
Prototypes: 100 4.7 0.139 4.45 0.212 4.32 0.021 2500
Prototypes: 200 - 0.133 - 0.207 - 0.019 2500

Table 2. Ablation study on material prototypes vs. material field
vs. per-point for material representation, the impact of the number
of material prototypes, and the effect of driving point initialization,
including (i) joint localization and (ii) velocity initialization.

4. Experiments 396

In this section, we compare PhysRig with the traditional 397
neural Linear Blend Skinning (LBS) method on the inverse 398
skinning task, which serves as a fundamental component for 399
various applications such as 3D video reconstruction and 400
part decomposition. This comparison highlights PhysRig’s 401
strong capability in dynamic modeling and optimization for 402
articulated objects. To facilitate the evaluation, we introduce 403
a new dataset, which is constructed from existing datasets 404
(Objaverse, The Amazing Animals Zoo and Mixamo) and 405
includes entities with diverse structural variations. Addition- 406
ally, we generate a large amount of synthetic data using 407
PhysRig, enabling a more comprehensive analysis of its 408
optimization performance, particularly in learning material 409
properties and driving point velocities. For more details on 410
the dataset (Sec. A.1) and implementation (Sec. A.2), more 411
experimental (Sec. A.3) results, and video results please refer 412
to the supplementary materials. 413

4.1. Inverse Skinning Evaluation 414

We evaluate the effectiveness of our inverse skinning method 415
across a diverse set of humanoid characters, quadruped an- 416
imals, and other articulated entities. We compare against 417
traditional Linear Blend Skinning (LBS) baselines, includ- 418
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Figure 4. Animation results from the PhysRig approach. These results are obtained from the inverse skinning problem by optimizing
material properties and driving point velocities to minimize the deviation from the ground truth mesh sequence.

ing RigNet [36], Pinocchio [3], and ground truth skinning419
weight initialization, as well as the results after driving points420
initialization before optimization (Ours-init). The evaluation421
metrics include User Study Rate (UR), which quantifies422
perceptual quality based on user preferences, with scores423
ranging from 0 to 5 (higher is better), and Chamfer Distance424
(CD), which evaluates geometric fidelity.425

Table 1 presents the results. Our method consistently out-426
performs all baselines, achieving the highest UR scores and427
the lowest CD across all evaluated categories. Notably, on428
humanoid characters, our method achieves a UR of 4.7 on429

Michelle and a UR of 4.8 on Kaya, surpassing all LBS-based 430
approaches. Similarly, for quadrupeds, our approach demon- 431
strates superior performance, particularly on the Leopard 432
(UR: 4.45, CD: 0.212) and Stego (UR: 4.5, CD: 0.085), 433
highlighting its robustness across diverse morphologies. Our 434
approach also generalizes well to other articulated entities, 435
such as the Angelfish (UR: 4.32, CD: 0.021) and Pterosaur 436
(UR: 4.49, CD: 0.653), showcasing its effectiveness beyond 437
conventional character rigging. These results indicate that 438
our inverse skinning formulation not only improves percep- 439
tual quality but also significantly reduces geometric error 440
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Figure 5. Comparison of the learned material properties with ground truth using our method.

compared to existing baselines. For qualitative comparisons441
and analysis, please refer to the appendix (Sec. A.3).442

4.2. Ablation Study443

We conduct an ablation study to analyze the impact of dif-444
ferent components in our method, particularly focusing on445
material representation and driving point initialization. The446
results are summarized in Table 2.447

Material Representation: We compare our prototype-448
based material representation against material fields and per-449
point assignments. The per-point approach leads to higher450
geometric error (CD: 2.31 on Michelle, 1.77 on Leopard),451
indicating that it struggles to find the optimal solution. The452
material field (triplane) method also underperforms, demon-453
strating increased Chamfer Distance across all test cases.454
In contrast, our prototype-based representation significantly455
reduces CD and achieves high UR scores.456

Effect of Driving Point Initialization: Removing joint457
localization (w/o Locating) results in increased CD values458
(e.g., 0.186 on Michelle), requiring 8000 iterations for con-459
vergence. Similarly, excluding velocity initialization (w/o460
Vel Init) leads to a higher CD (0.183 on Michelle) and slower461
convergence (5000 iterations). These findings suggest that462
both joint localization and velocity initialization are crucial463
for improving optimization efficiency and accuracy.464

Effect of Material Prototype Count: We also investigate465
the impact of the number of material prototypes. Reducing466
the prototype count to 25 does not degrade performance and467
instead accelerates convergence, achieving the fastest con-468
vergence at 2000 iterations while maintaining competitive469
accuracy (CD: 0.147 on Michelle). Increasing the prototype470
count to 100 strikes a good balance between performance471
and convergence time (UR: 4.7, CD: 0.139 on Michelle,472
convergence: 2500 iterations). Further increasing the proto-473
types to 200 yields a marginal improvement in CD (0.133 on474
Michelle) but does not significantly affect UR, suggesting475
diminishing returns.476

Overall, these results demonstrate that our material pro-477

totype representation, combined with joint localization and 478
velocity initialization, leads to improved inverse skinning 479
accuracy and faster optimization convergence. 480

4.3. Apply PhysRig for Pose Transfering 481

As shown in Figure 3, PhysRig enables pose transfer by tak- 482
ing a mesh sequence as input. Inspired by MagicPose4D [41], 483
we first extract the skeleton from the input mesh and align 484
it with the generated mesh. By transferring the bone an- 485
gles at each frame, we obtain the skeleton sequence for the 486
generated object. This allows us to compute joint veloci- 487
ties between consecutive frames, which serve as the driving 488
point velocities for deforming the generated mesh (volume). 489
Unlike traditional methods that rely on skinning weight, 490
PhysRig achieves more realistic deformations while signif- 491
icantly improving generalization, as it eliminates the need 492
for explicit skinning weight prediction. 493

5. Conclusion 494

We introduced PhysRig, a differentiable physics-based skin- 495
ning framework that addresses the limitations of Linear 496
Blend Skinning (LBS) by modeling deformations through 497
volumetric simulation. By embedding skeletons into a soft- 498
body representation and leveraging continuum mechanics, 499
our approach achieves realistic, physically plausible defor- 500
mations while remaining fully differentiable. To enhance effi- 501
ciency, we introduced material prototypes, reducing learning 502
complexity while maintaining expressiveness. Our evalua- 503
tion of a diverse synthetic dataset demonstrated superior per- 504
formance over traditional LBS-based methods. Additionally, 505
PhysRig enables applications such as pose transfer, motion 506
retargeting, and 4D generation, bridging the gap between 507
physics-based simulation and differentiable learning. Future 508
work includes integrating real-world priors and optimizing 509
for real-time applications, expanding PhysRig’s potential in 510
animation and simulation. 511
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[3] Ilya Baran and Jovan Popović. Automatic rigging and anima-518
tion of 3d characters. 26(3):72–es, 2007. 5, 7519

[4] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo,520
Oscar Michel, Aditya Kusupati, Alan Fan, Christian Laforte,521
Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A522
universe of 10m+ 3d objects. Advances in Neural Information523
Processing Systems, 36:35799–35813, 2023. 1, 2524

[5] Nico Galoppo, Miguel A Otaduy, Serhat Tekin, Markus Gross,525
and Ming C Lin. Soft articulated characters with fast contact526
handling. In Computer Graphics Forum, pages 243–253.527
Wiley Online Library, 2007. 2528

[6] Simon Giebenhain, Tobias Kirschstein, Markos Georgopou-529
los, Martin Rünz, Lourdes Agapito, and Matthias Nießner.530
Learning neural parametric head models. In Proc. IEEE Conf.531
on Computer Vision and Pattern Recognition (CVPR), 2023.532
2533

[7] Shoukang Hu, Tao Hu, and Ziwei Liu. Gauhuman: Articu-534
lated gaussian splatting from monocular human videos. In535
Proceedings of the IEEE/CVF conference on computer vision536
and pattern recognition, pages 20418–20431, 2024. 2537

[8] Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, An-538
dre Pradhana, and Chenfanfu Jiang. A moving least squares539
material point method with displacement discontinuity and540
two-way rigid body coupling. ACM Transactions on Graphics541
(TOG), 37(4):1–14, 2018. 2, 4542

[9] Tianyu Huang, Haoze Zhang, Yihan Zeng, Zhilu Zhang, Hui543
Li, Wangmeng Zuo, and Rynson WH Lau. Dreamphysics:544
Learning physical properties of dynamic 3d gaussians with545
video diffusion priors. arXiv preprint arXiv:2406.01476,546
2024. 2547

[10] Boyi Jiang, Yang Hong, Hujun Bao, and Juyong Zhang. Self-548
recon: Self reconstruction your digital avatar from monocular549
video. In Proceedings of the IEEE/CVF Conference on Com-550
puter Vision and Pattern Recognition, pages 5605–5615, 2022.551
2552

[11] Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph553
Teran, and Alexey Stomakhin. The affine particle-in-cell554
method. ACM Transactions on Graphics (TOG), 34(4):1–10,555
2015. 2556

[12] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey557
Stomakhin, and Andrew Selle. The material point method558
for simulating continuum materials. In Acm siggraph 2016559
courses, pages 1–52. 2016. 2560

[13] Junggon Kim and Nancy S Pollard. Fast simulation of561
skeleton-driven deformable body characters. ACM Trans-562
actions on Graphics (TOG), 30(5):1–19, 2011. 2563

[14] Theodore Kim and Doug L James. Physics-based charac-564
ter skinning using multi-domain subspace deformations. In565
Proceedings of the 2011 ACM SIGGRAPH/eurographics sym-566
posium on computer animation, pages 63–72, 2011. 2567

[15] Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel, 568
Oncel Tuzel, and Anurag Ranjan. Hugs: Human gaussian 569
splats. In Proceedings of the IEEE/CVF conference on com- 570
puter vision and pattern recognition, pages 505–515, 2024. 571
2 572

[16] Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and 573
Kostas Daniilidis. Gart: Gaussian articulated template models. 574
In Proceedings of the IEEE/CVF conference on computer 575
vision and pattern recognition, pages 19876–19887, 2024. 2 576

[17] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space 577
deformation: a unified approach to shape interpolation and 578
skeleton-driven deformation. In Proceedings of the 27th 579
Annual Conference on Computer Graphics and Interactive 580
Techniques, page 165–172, USA, 2000. ACM Press/Addison- 581
Wesley Publishing Co. 2 582

[18] Zhouyingcheng Liao, Jimei Yang, Jun Saito, Gerard Pons- 583
Moll, and Yang Zhou. Skeleton-free pose transfer for stylized 584
3d characters. In European Conference on Computer Vision, 585
pages 640–656. Springer, 2022. 2 586

[19] Jiajing Lin, Zhenzhong Wang, Shu Jiang, Yongjie Hou, and 587
Min Jiang. Phys4dgen: A physics-driven framework for con- 588
trollable and efficient 4d content generation from a single 589
image. arXiv preprint arXiv:2411.16800, 2024. 2 590

[20] Fangfu Liu, Hanyang Wang, Shunyu Yao, Shengjun Zhang, 591
Jie Zhou, and Yueqi Duan. Physics3d: Learning physical 592
properties of 3d gaussians via video diffusion. arXiv preprint 593
arXiv:2406.04338, 2024. 2 594

[21] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard 595
Pons-Moll, and Michael J. Black. Smpl: a skinned multi- 596
person linear model. ACM Trans. Graph., 34(6), 2015. 2 597

[22] N. Magnenat-Thalmann and D. Thalmann. Complex models 598
for animating synthetic actors. IEEE Computer Graphics and 599
Applications, 11(5):32–44, 1991. 2 600

[23] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Em- 601
pey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 602
Efficient elasticity for character skinning with contact and 603
collisions. In ACM SIGGRAPH 2011 papers, pages 1–12. 604
2011. 2 605

[24] Alex Mohr and Michael Gleicher. Building efficient, accurate 606
character skins from examples. ACM Trans. Graph., 22(3): 607
562–568, 2003. 2 608
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