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Figure 1. PhysRig is a differentiable physics-based skinning approach that models objects as soft-body volumes driven by embedded
driving points, enabling realistic deformations and capturing complex dynamics across diverse topologies and motions—from humanoids to
dinosaurs and flying creatures.

Abstract

Skinning and rigging are fundamental components in anima-
tion, articulated object reconstruction, motion transfer, and
4D generation. Existing approaches predominantly rely on
Linear Blend Skinning (LBS), due to its simplicity and differ-
entiability. However, LBS introduces artifacts such as volume
loss and unnatural deformations, and it fails to model elastic
materials like soft tissues, fur, and flexible appendages (e.g.,
elephant trunks, ears, and fatty tissues). In this work, we
propose PhysRig: a differentiable physics-based skinning
and rigging framework that overcomes these limitations by
embedding the rigid skeleton into a volumetric represen-
tation (e.g., a tetrahedral mesh), which is simulated as a
deformable soft-body structure driven by the animated skele-
ton. Our method leverages continuum mechanics and dis-
cretizes the object as particles embedded in an Eulerian
background grid to ensure differentiability with respect to
both material properties and skeletal motion. Additionally,
we introduce material prototypes, significantly reducing the
learning space while maintaining high expressiveness. To
evaluate our framework, we construct a comprehensive syn-
thetic dataset using meshes from Objaverse [4], The Amaz-
ing Animals Zoo [30], and MixaMo [1], covering diverse ob-
ject categories and motion patterns. Our method consistently

outperforms traditional LBS-based approaches, generating
more realistic and physically plausible results. Furthermore,
we demonstrate the applicability of our framework in the
pose transfer task highlighting its versatility for articulated
object modeling.

1. Introduction

Skinning and rigging are essential for animating articulated
objects and play a critical role in numerous applications,
including character animation, motion retargeting, 4D re-
construction, and generative modeling. Among existing ap-
proaches, Linear Blend Skinning (LBS) remains the dominant
method due to its efficiency and differentiability. However,
LBS suffers from severe limitations, including unnatural dis-
tortions (e.g., collapsing joints, candy-wrapper artifacts, and
volume shrinkage) and an inability to capture the behavior
of elastic materials. These artifacts become especially prob-
lematic when modeling characters with highly deformable
regions, such as an elephant’s trunk, a human’s soft tissue,
or flexible appendages.

To address these shortcomings, we introduce a differen-
tiable physics-based skinning and rigging framework that
models articulated object deformation as a volumetric simu-
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lation problem. Instead of directly mapping vertices to rigid
skeleton transformations, we embed the skeleton into a de-
formable soft-body volume (e.g., bounded by a set of Gaus-
sians and tetrahedral meshes), which is driven by skeletal
motion while respecting fundamental physical principles. In
particular, we leverage continuum mechanics and the mate-
rial point method to establish a fully differentiable deforma-
tion process, ensuring that both the material properties and
skeletal motion are incorporated in a physically consistent
manner. Unlike LBS, which applies simple linear blending,
our approach captures intricate material behaviors by mod-
eling stress-strain relationships and dynamic responses to
skeletal forces, allowing us to achieve more realistic and
physics-driven deformations.

A major challenge encountered with these physics-based
methods is a large number of material parameters and com-
plex particle interactions, which makes optimization chal-
lenging. To overcome this, we introduce material prototypes,
a vocabulary of primitives that can be combined to represent
all material properties, and span common deformation behav-
iors of articulated objects. This novel approach significantly
reduces the learning space while maintaining expressiveness.
It provides a structured way to interpolate material prop-
erties across different object types, enabling more efficient
learning while preserving the diversity of real-world material
responses.

Evaluating physics-based skinning models is challeng-
ing due to the lack of suitable benchmark datasets. Existing
datasets are primarily built via LBS-based deformations and
lack sufficient variation in material properties and deforma-
tion types. To address this gap, we construct a comprehensive
synthetic dataset incorporating meshes from Objaverse [4],
The Amazing Animals Zoo [30], and MixaMo [ ], covering a
diverse range of objects, motion patterns, and material prop-
erties. Using this dataset, we demonstrate that our method
outperforms LBS-based approaches, producing more real-
istic deformations across a variety of articulated objects.
Additionally, we showcase the effectiveness of our frame-
work in downstream tasks such as pose transfer and 4D
object generation, illustrating its broad applicability. Our key
contributions can be summarized as follows:

* A differentiable physics-based skinning/rigging frame-
work, leveraging continuum mechanics to enable realistic
and physically plausible deformations while remaining
differentiable.

* A novel material prototype formulation, which reduces
the learning complexity by introducing a structured inter-
polation approach while maintaining high material expres-
siveness.

* A novel synthetic dataset for evaluating physics-based
skinning models, demonstrating our framework’s superior-
ity over LBS-based approaches.

Our approach bridges the gap between physics-based sim-

ulation and differentiable learning, providing a powerful
tool for articulated object modeling in computer vision and
graphics. By introducing a differentiable physics-driven de-
formation process, our framework enables new opportunities
for more accurate, physically consistent skinning and rigging,
with broad implications for animation, motion generation,
and 4D modeling.

2. Related Work

Skinning in 4D Modeling and Animation. Skinning is
fundamental to 3D character animation, modeling surface
deformations induced by skeletal motion [22, 24]. Among
various techniques, Linear Blend Skinning (LBS) remains
the most widely used due to its simplicity and computational
efficiency [17].

LBS is integral to many vision tasks, including video-to-
3D reconstruction and avatar modeling. Parametric models
like SCAPE [2] and SMPL [21] rely on predefined skeletons
and skinning weights, limiting their adaptability. Neural im-
plicit approaches [6, 16, 25, 37-39, 42—44] improve general-
ization but still require precise skeletal information. In avatar
modeling, explicit methods [10, 33, 34, 40] optimize SMPL
parameters, whereas implicit ones [7, 15, 26, 27, 29, 31, 35]
leverage neural representations but face challenges in opti-
mization and topological consistency.

LBS has also been applied to pose transfer [18, 28], with
MagicPose4D [41] enabling cross-species motion. However,
these methods often require recalculating skeletons and skin-
ning weights for novel motions. Since LBS linearly blends
external skeletal motion, it fails to capture true internal de-
formations, prompting research into physically-based skin-
ning [5, 13, 14, 23]. While such methods better model volu-
metric changes, their non-differentiability limits integration
with deep learning. Our approach introduces a differentiable
physics-based skinning model, enabling efficient joint opti-
mization via gradient descent.

Physical 4D Generation. In multiphysics simulation, the
Material Point Method (MPM) [8, 11, 12] excels in handling
topology changes and frictional interactions across various
materials. Recent works [19, 32, 46] integrate MPM for
physically plausible motion but rely on manual parameter
tuning. Differentiable approaches [9, 20, 45] learn material
properties but are restricted to simple motions. To bridge
this gap, we propose PhysRig, a differentiable physics frame-
work that learns material parameters for articulated objects,
ensuring physical consistency across complex motions.

3. Method

In this paper, we introduce PhysRig, a differentiable physics-
based skinning framework for 3D object deformation, ap-
plicable to meshes, point clouds, and Gaussian representa-
tions. If the input is a mesh or a Gaussian representation,
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Figure 2. Overview of PhysRig. Given a 3D object, we first compute coarse skinning weights, which initialize embedded driving points
for local deformation control. These points, assigned velocities, are linked to an elastic 3D volume with material parameters governing
deformation. The differentiable physics-based skinning module generates natural deformations, optimizing velocities and material properties
via backward propagation. Finally, multi-view animations illustrate physically plausible shape deformations over time.

we first perform a filling operation to obtain a solid volume
in the form of a point cloud, and the total number of points
is N. As shown in Fig. 2, unlike traditional Linear Blend
Skinning (LBS), which applies a weighted sum of bone
transformations, PhysRig employs a differentiable physics
simulator (Sec.3.1) to model the 3D object as a volumetric
structure. Instead of directly manipulating vertex positions,
it embeds driving points within the volume to induce defor-
mation. PhysRig optimizes two key components to achieve
fine-grained control and produce the desired deformation:

* Material properties, including Young’s modulus £ € R”
and Poisson’s ratio v € R for P material prototypes.
The material properties of all N points are then computed
using a function based on the Mahalanobis distance be-
tween each point and the material prototypes (Sec. 3.2).
These properties govern elasticity and deformation behav-
ior, determining how internal forces propagate through the
structure.

+ Driving point velocities, v € R{*:3} representing the
motion of the internal skeletal structure parameterized by
transformations {to,...,tar},t; € SE(3), where M is
the number of virtual joints. These velocities v drive the
deformation, with [ = 8 set by default and the driving
points’ positions are initialized by coarse skinning weights
or uniform sampling (detailed in Sec. 3.3).

The driving points encode the skeletal motion, propagating

movement to the surrounding 3D volume, while the material

properties define how internal motion influences the object’s
outer surface. PhysRig can be formulated as:

X' = F(X,E,v,v, At), )

where X € R¥*3 denotes the initial point positions, and
At € R is the time step governing temporal evolution. The

function F computes the deformed positions X’ via a differ-
entiable physics simulation.

3.1. Physics-Based Simulation

To model object deformations under external interactions,
we simulate motion using the principles of continuum me-
chanics. Our approach represents objects as continuous vol-
umetric materials governed by conservation laws, enabling
differentiable physics-based deformation modeling.

3.1.1. Continuum Mechanics Formulation

We describe the motion of a deformable object using a time-
dependent mapping function ¢, which transforms material
coordinates X in the undeformed space 2y to world co-
ordinates x in the deformed space Q;: = ¢(X,t). The
evolution of ¢ is constrained by fundamental physical laws:

Conservation of Mass. The total mass within a material
region remains constant over time:

/p(:c,t)dw:/ pl¢(z,t),0) de, ()
Bt BY

where p(x, t) is the density field.
Conservation of Momentum. The motion of the object
is dictated by the balance of internal and external forces:

/ p(m,t)a(m,t)dm:/ a-ndm—i—/ ftde, (3)
B! oB! Bt

2
where a(x,t) = % represents acceleration, f de-
notes external forces, and o is the Cauchy stress tensor,
which encodes local deformation behavior.
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3.1.2. Material Model and Deformation Representation

To model elastic responses, we use a constitutive model relat-
ing the stress tensor o to the deformation gradient F' = 68—;;.
We adopt a Fixed Corotated hyperelastic material model,
which effectively captures nonlinear deformations while
maintaining stability.

The Cauchy stress tensor is derived from the strain energy
density function ¢ (F):

_ 1 %oy
7= G oF "

“

Following the Fixed Corotated model, the strain energy
function is given by:

d

U(E) = 1Y (o= 1 + S (det(F) ~ 17, ()

i=1

where o; are the singular values of F', and the material
parameters p and A are related to Young’s modulus E and
Poisson’s ratio v:

E Ev
TSI LA SR v s s S

3.1.3. Simulation via the Material Point Method

We employ the Material Point Method (MPM) [8] to solve
the governing equations efficiently. MPM discretizes the
object as particles embedded in an Eulerian background
grid, enabling robust handling of large deformations while
ensuring differentiability.

Particle-to-Grid (P2G) Transfer. At each simulation
step, per-particle mass and momentum are transferred to the
grid using B-spline interpolation:

miv; = Z N(z; — zp) [mpvp + (mpCp
b 5 )
4 e _

‘mmﬁwﬂﬁ%f4+ﬂ

where: m;, v; are the mass and velocity at grid node ¢,
N(z; — z,) is the interpolation kernel, C,, is the velocity
gradient at the particle, f; is the external force, V), is the
volume of the particle, which scales the contribution of the
stress force term. The stress-based force term, Vpg—}/’,Fg ,
represents the internal elastic forces exerted by the particle.
The factor V), ensures that the contribution is properly scaled
according to the physical size of the particle, preventing
instabilities when transferring forces to the grid.

Grid-to-Particle (G2P) Update. After computing veloc-
ity updates on the grid, the velocities are interpolated back
to particles, and positions are updated:

’U;Jrl = Z N(LL'Z — ZCp)’Ui, (E;Jrl = .’L'p + At’l};+1. (8)

Deformation Gradient Update. The velocity gradient
and deformation gradient are updated as:

4
VU;+1 =53 Z N(zi — 2p)vi(z; —2p)7,

)
F;Jrl =T+ AthiVN(fEi - xp)T)Fn

where: VU;H is the velocity gradient at particle p, describ-
ing how velocity varies locally. Fg“ is the updated defor-
mation gradient, tracking material deformation over time.
VN(z; — x,) is the spatial gradient of the interpolation
function, describing how interpolation weights change with
position. I is the identity matrix, ensuring that the defor-
mation gradient starts from an undeformed state. At is the
time step, controlling how much deformation accumulates
per iteration. By iterating these updates, MPM efficiently
captures complex material deformations while maintaining
differentiability.

Driving Points Gradient Update. Driving points influ-
ence the motion of specific object regions by modifying the
velocities of nearby grid nodes within their control region.
The velocity update for a driving point vg ; is determined by
the contributions from the affected grid nodes and is given
by:

1
vag ¢ v+ > Vi, (10)
¢l ieR.
where Vv, represents the velocity gradient at grid node ¢
within the control region R..

3.1.4. Optimization Strategy for Inverse Skinning

Inverse Skinning is the process of recovering underlying
motion parameters, such as material properties and driving
point velocities, from observed deformations of a 3D object.
Unlike traditional skinning methods (LBS), where defor-
mations are computed from transformations and skinning
weights, our inverse skinning aims to estimate the driving
point velocities v and material properties (Young’s modu-
lus F, Poisson’s ratio v) that best explain a given motion
sequence. This requires optimizing physical parameters to
minimize discrepancies between simulated and observed
motion.

Iteritively Optimization. To ensure stability, we adopt
an iterative training strategy. First, we initialize the positions
of the driving points and estimate their approximate veloci-
ties for each frame. We then alternate between the following
two optimization steps: (1) Material Parameter Optimiza-
tion: Fix the driving point velocities and update the material
parameters using all frames as a single batch. (2) Driving
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Humanoid Character Quadruped Animal
Method Michelle Ortiz Mutant Jellyman Kaya Leopard Mammoth Stego Krin
UR? CD) |UR? CD| |URtT CD||URY CD| |URt CD)|URt CD||UR? CD||URtT CDJ|UR?T CD|

LBS-1 282 1426 | 218 2993 | 2.02 2512 | 3.05 6.532
LBS-2 3.06 0891 | 293 2011 | 337 1438 | 325 4.130
LBS-3 332 0372 | 3.01 1472 | 347 0.801 | 3.66 3.811

242 2081 | 3.03 2413 | 254 1.782 | 3.07 0.682 | 3.03 0.561
297 1214 | 3.13 1328 | 2.8 0.891 | 3.64 0202 | 3.38 0.271
343 0408 | 321 0493 | 325 0346 | 3.83 0.103 | 347 0.048

Ours-init | 3.19  2.105 | 291 12.755 | 298 5977 | 343 14161 | 3.39 2.027 | 343 1.822 | 3.13 4991 | 351 1.664 | 3.63 0.844
Ours 47 0139 | 443 1375 | 461 0.527 | 434 1.214 48 0228 | 445 0.212 | 459 0127 | 45 0.085 | 44 0.032
Quadruped Animal Other Entities
Method Cow Raccoon T-rex Pterosaur Whale Angelfish Cobra Shark Ave.
UR? CD| |URt CD| |URt CD||UR? CD||URt CD||URtT CD||UR{ CD||UR?t CD||URT CDJ

LBS-1 251 1.351 | 229 1.243 | 288 5.861 | 2.54 6.722
LBS-2 3.0 1019 | 258 0.791 | 321 3.763 | 2.78 4512
LBS-3 299 0781 | 348 0342 | 325 0.687 | 3.05 1.082
Ours-init | 3.1  2.244 | 337 4737 | 3.17 6.574 | 297 9.522
Ours 424 0.187 | 463 0.198 | 4.66 0.588 | 449 0.653

277 0292 | 3.11 0.841 | 2.64
295 0.253 | 3.57
317 0.134 | 3.61
3.11 4561 | 3.81
456 0.132 | 432 0.021 | 4.76

2712 | 327 0.078 | 2.72 243
0.614 | 279 2133 | 359 0.046 | 3.12 1.56
0.209 | 3.01 0.607 | 3.81 0.031 | 335 0.73
0296 | 3.77 4.049 | 393 0.178 | 3.34 4.67
0372 | 434 0.016 | 452 037

Table 1. Comparison of different rigging methods for inverse skinning. UR 1 User Study Rate, CD |: Chamfer Distance. LBS-1, LBS-2,
and LBS-3 correspond to using RigNet [36], Pinocchio [3], and ground truth skinning weights, respectively, as initialization for jointly
optimizing skinning weights and bone transformation. PhysRig utilizes Pinocchio to obtain coarse skinning weights for initializing driving
points, and then iteratively learns material parameters and driving point velocities. Our dataset consists of 17 diverse objects among humans,
quadrupeds, and other entities, totaling 120 motion sequences. We report the average performance across all motions for objects with
multiple motions. The User Study setup is provided in the appendix Sec. A.4

Point Velocity Optimization: Fix the material parameters
and sequentially update the velocities of the driving points
for each frame. The optimization progresses frame by frame,
moving to the next frame once the loss falls below a prede-
fined threshold. These two steps are repeated iteratively until
either the overall loss falls below a set threshold or the total
number of iterations reaches the stopping criterion.

This strategy is designed to account for the differing re-
quirements of material parameters and velocity optimization.
Optimizing material parameters requires information accu-
mulated across multiple frames, as the material properties
influence the object’s global behavior over time. In contrast,
optimizing driving point velocities must be performed se-
quentially on a per-frame basis. Simultaneously optimizing
velocities across multiple frames is ineffective, as accurate
simulation of later frames is only meaningful if the preceding
frames have already been well-optimized.

3.2. Material Prototype

To efficiently represent material properties across an object’s
volume, we introduce material prototypes, each character-
ized by two learnable parameters: Young’s modulus and
Poisson’s ratio. The material properties at any point within
the volume are computed as a weighted sum of these proto-
types. The weights are determined using a function based
on the Mahalanobis distance between the query position
and the prototypes. Specifically, we define each material pro-
totype as a Gaussian ellipsoid, parameterized by its center
C € RP*3, orientation V € RF*3%3 and diagonal scale
A € RP*3xX3 where P denotes the number of prototypes.
The weight assignment follows:

Wy, p = softmaxyep(d(xn, Cp, Qp)) (11)

where d(x,, Cp, Q,) is the Mahalanobis distance, defined
as: d(xn, Cp, Qp) = (X5 — Cp) ' Qp(xn — Cp), Qp =
V;APVP. Here, x,, represents the coordinates of a query
point n, and the Mahalanobis distance function ensures that
weights are assigned based on the spatial relationship be-
tween the query position and the material prototypes. This
formulation enables an efficient and differentiable material
representation that generalizes across diverse volumetric
structures.

Compared to directly learning per-point material proper-
ties or employing a triplane-based function that maps spatial
coordinates to material parameters, our material prototype
representation offers a significantly more compact and effi-
cient parameterization. By leveraging a small set of proto-
types rather than densely modeling every point, we substan-
tially reduce the optimization space while maintaining high
expressiveness. Moreover, the prototype-based formulation
naturally enforces smooth material transitions, preventing
noisy or abrupt variations that are common in per-point learn-
ing approaches. This property aligns more closely with the
behavior of real-world materials, where material properties
exhibit gradual spatial variations rather than sharp disconti-
nuities.

3.3. Driving Point Initialization

Driving points are a crucial component of PhysRig, as effi-
ciently initializing their positions and velocities significantly
improves optimization efficiency. To achieve this, we pro-
pose a coarse-to-fine initialization strategy based on skinning
weights. We first obtain coarse skinning weights using ex-
isting rigging models such as Pinocchio [3] or RigNet [36],
which provide an approximate mapping between the object’s
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surface and skeletal structure. We then place driving points
at joint locations, which naturally reside at the boundaries
between adjacent parts.

3.3.1. Affinity-Based Seg via Spectral Clustering

Given per-vertex skinning weights W € RV <5 where N
is the number of vertices and B is the number of bones, we
construct an affinity matrix A to measure similarity between
vertices:

- (12)

2
A —exp (_ W — W ) |
where o controls the sensitivity of similarity measurement. A
larger o results in smoother clustering, while a smaller o cap-
tures finer-scale differences. Using A, we compute the graph
Laplacian: L = D — A,where D, ; = Zj A; ;. We obtain
a low-dimensional embedding by computing the k smallest
eigenvectors of L and apply k-means clustering to segment
the object into rigid regions, each assigned a cluster label
¢;. Note that k could be different with B. Since the coarse
skinning weights may not always meet our expectations, our
approach allows for flexible control over the number of parts
by adjusting k.

3.3.2. Locating Joint via Skinning Weight Variance

To extract joint locations, we analyze the segmentation out-
put to identify transition regions where adjacent rigid compo-
nents meet. A vertex ¢ is classified as a boundary vertex if:
¢; # ¢;, forsome j € N (i), where N (i) denotes the set
of neighboring vertices in the mesh. These boundary vertices
form the primary candidates for joint locations. To further
refine the detected joints, we analyze variance in skinning
weights at boundary vertices. Specifically, we define the joint

set J as: J = {z > (Wip — WN(i)yb)Q > T}, where
WN(i),b is the mean skinning weight of neighboring vertices
of ¢, and 7 is a threshold for detecting significant weight vari-

ations. This step ensures that only regions with meaningful
changes in skinning influences are selected as joints.

3.3.3. Driving Points Initialization

At each identified joint, we uniformly place [ driving points
to ensure fine-grained control over the deformation of nearby
volumetric regions. Each driving point’s initial velocity is
computed as the average velocity of its surrounding vol-

ume, ensuring a smooth and physically consistent initializa-

. Zz Vi
tion: v, = ‘ETA;’T, where N, represents the set of nearby

points influencing the driving point.

Although the coarse skinning weights obtained from pre-
existing models may not be highly accurate, they provide
a decent starting point. Our method refines these initial es-
timates (velocity) during optimization, ultimately yielding
more accurate motion parameters that adapt to the specific
material properties of the object.

RAA

Target Motion
§ O f &

Generated 4D Sequence

1
1
U

A/

Input image

Figure 3. PhysRig enables pose transfer for generated objects.

Michelle Leopard Angelfish Converge
URt CD| | URt CDJ | URT CDJ] | Iteration|
Mat Field 331 193 | 347 1.58 | 393 023 -
Per-point 315 231 | 361 177 | 373 025 -
w/o Locating | 4.31 0.186 | 423 0.358 | 3.97 0.031 8000
w/o Vel Init 4.08 0.183 | 4.03 0.301 | 4.17 0.029 5000
Prototypes: 25 - 0.147 - 0.229 - 0.023 2000
Prototypes: 100 | 4.7 0.139 | 445 0212 | 432 0.021 2500
Prototypes: 200 - 0.133 - 0.207 - 0.019 2500

Table 2. Ablation study on material prototypes vs. material field
vs. per-point for material representation, the impact of the number
of material prototypes, and the effect of driving point initialization,
including (i) joint localization and (ii) velocity initialization.

4. Experiments

In this section, we compare PhysRig with the traditional
neural Linear Blend Skinning (LBS) method on the inverse
skinning task, which serves as a fundamental component for
various applications such as 3D video reconstruction and
part decomposition. This comparison highlights PhysRig’s
strong capability in dynamic modeling and optimization for
articulated objects. To facilitate the evaluation, we introduce
a new dataset, which is constructed from existing datasets
(Objaverse, The Amazing Animals Zoo and Mixamo) and
includes entities with diverse structural variations. Addition-
ally, we generate a large amount of synthetic data using
PhysRig, enabling a more comprehensive analysis of its
optimization performance, particularly in learning material
properties and driving point velocities. For more details on
the dataset (Sec. A.1) and implementation (Sec. A.2), more
experimental (Sec. A.3) results, and video results please refer
to the supplementary materials.

4.1. Inverse Skinning Evaluation

We evaluate the effectiveness of our inverse skinning method
across a diverse set of humanoid characters, quadruped an-
imals, and other articulated entities. We compare against
traditional Linear Blend Skinning (LBS) baselines, includ-
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Figure 4. Animation results from the PhysRig approach. These results are obtained from the inverse skinning problem by optimizing
material properties and driving point velocities to minimize the deviation from the ground truth mesh sequence.

ing RigNet [36], Pinocchio [3], and ground truth skinning
weight initialization, as well as the results after driving points
initialization before optimization (Ours-init). The evaluation
metrics include User Study Rate (UR), which quantifies
perceptual quality based on user preferences, with scores
ranging from O to 5 (higher is better), and Chamfer Distance
(CD), which evaluates geometric fidelity.

Table 1 presents the results. Our method consistently out-
performs all baselines, achieving the highest UR scores and
the lowest CD across all evaluated categories. Notably, on
humanoid characters, our method achieves a UR of 4.7 on

Michelle and a UR of 4.8 on Kaya, surpassing all LBS-based
approaches. Similarly, for quadrupeds, our approach demon-
strates superior performance, particularly on the Leopard
(UR: 4.45, CD: 0.212) and Stego (UR: 4.5, CD: 0.085),
highlighting its robustness across diverse morphologies. Our
approach also generalizes well to other articulated entities,
such as the Angelfish (UR: 4.32, CD: 0.021) and Pterosaur
(UR: 4.49, CD: 0.653), showcasing its effectiveness beyond
conventional character rigging. These results indicate that
our inverse skinning formulation not only improves percep-
tual quality but also significantly reduces geometric error
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Ground-Truth Material

Optimized Material

Figure 5. Comparison of the learned material properties with ground truth using our method.

compared to existing baselines. For qualitative comparisons
and analysis, please refer to the appendix (Sec. A.3).

4.2. Ablation Study

We conduct an ablation study to analyze the impact of dif-
ferent components in our method, particularly focusing on
material representation and driving point initialization. The
results are summarized in Table 2.

Material Representation: We compare our prototype-
based material representation against material fields and per-
point assignments. The per-point approach leads to higher
geometric error (CD: 2.31 on Michelle, 1.77 on Leopard),
indicating that it struggles to find the optimal solution. The
material field (triplane) method also underperforms, demon-
strating increased Chamfer Distance across all test cases.
In contrast, our prototype-based representation significantly
reduces CD and achieves high UR scores.

Effect of Driving Point Initialization: Removing joint
localization (w/o Locating) results in increased CD values
(e.g., 0.186 on Michelle), requiring 8000 iterations for con-
vergence. Similarly, excluding velocity initialization (w/o
Vel Init) leads to a higher CD (0.183 on Michelle) and slower
convergence (5000 iterations). These findings suggest that
both joint localization and velocity initialization are crucial
for improving optimization efficiency and accuracy.

Effect of Material Prototype Count: We also investigate
the impact of the number of material prototypes. Reducing
the prototype count to 25 does not degrade performance and
instead accelerates convergence, achieving the fastest con-
vergence at 2000 iterations while maintaining competitive
accuracy (CD: 0.147 on Michelle). Increasing the prototype
count to 100 strikes a good balance between performance
and convergence time (UR: 4.7, CD: 0.139 on Michelle,
convergence: 2500 iterations). Further increasing the proto-
types to 200 yields a marginal improvement in CD (0.133 on
Michelle) but does not significantly affect UR, suggesting
diminishing returns.

Overall, these results demonstrate that our material pro-

totype representation, combined with joint localization and
velocity initialization, leads to improved inverse skinning
accuracy and faster optimization convergence.

4.3. Apply PhysRig for Pose Transfering

As shown in Figure 3, PhysRig enables pose transfer by tak-
ing a mesh sequence as input. Inspired by MagicPose4D [41],
we first extract the skeleton from the input mesh and align
it with the generated mesh. By transferring the bone an-
gles at each frame, we obtain the skeleton sequence for the
generated object. This allows us to compute joint veloci-
ties between consecutive frames, which serve as the driving
point velocities for deforming the generated mesh (volume).
Unlike traditional methods that rely on skinning weight,
PhysRig achieves more realistic deformations while signif-
icantly improving generalization, as it eliminates the need
for explicit skinning weight prediction.

5. Conclusion

We introduced PhysRig, a differentiable physics-based skin-
ning framework that addresses the limitations of Linear
Blend Skinning (LBS) by modeling deformations through
volumetric simulation. By embedding skeletons into a soft-
body representation and leveraging continuum mechanics,
our approach achieves realistic, physically plausible defor-
mations while remaining fully differentiable. To enhance effi-
ciency, we introduced material prototypes, reducing learning
complexity while maintaining expressiveness. Our evalua-
tion of a diverse synthetic dataset demonstrated superior per-
formance over traditional LBS-based methods. Additionally,
PhysRig enables applications such as pose transfer, motion
retargeting, and 4D generation, bridging the gap between
physics-based simulation and differentiable learning. Future
work includes integrating real-world priors and optimizing
for real-time applications, expanding PhysRig’s potential in
animation and simulation.
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