
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM-FE: AUTOMATED FEATURE ENGINEERING FOR
TABULAR DATA WITH LLMS AS EVOLUTIONARY OPTI-
MIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated feature engineering plays a critical role in improving predictive model
performance for tabular learning tasks. Traditional automated feature engineering
methods are limited by their reliance on pre-defined transformations within fixed,
manually designed search spaces, often neglecting domain knowledge. Recent
advances using Large Language Models (LLMs) have enabled the integration
of domain knowledge into the feature engineering process. However, existing
LLM-based approaches use direct prompting or rely solely on validation scores
for feature selection, failing to leverage insights from prior feature discovery
experiments or establish meaningful reasoning between feature generation and
data-driven performance. To address these challenges, we propose LLM-FE, a
novel framework that combines evolutionary search with the domain knowledge
and reasoning capabilities of LLMs to automatically discover effective features for
tabular learning tasks. LLM-FE formulates feature engineering as a program search
problem, where LLMs propose new feature transformation programs iteratively, and
data-driven feedback guides the search process. Our results demonstrate that LLM-
FE consistently outperforms state-of-the-art baselines, showcasing generalizability
across diverse models, tasks, and datasets.
Code: https://anonymous.4open.science/r/LLM-FE-5525

1 INTRODUCTION

Feature engineering, the process of transforming raw data into meaningful features for machine
learning models, is crucial for improving predictive performance, particularly when working with
tabular data Domingos (2012). In many tabular prediction tasks, well-designed features have been
shown to significantly enhance the performance of tree-based models, often outperforming deep
learning models that rely on learned representations Grinsztajn et al. (2022). However, data-centric
tasks such as feature engineering are one of the most time-consuming and resource-intensive processes
in the tabular learning workflow Anaconda; Hollmann et al. (2024), as they require experts and
data scientists to explore many possible combinations in the vast combinatorial space of feature
transformations. Classical feature engineering methods Kanter & Veeramachaneni (2015); Khurana
et al. (2016; 2018); Horn et al. (2020); Zhang et al. (2023) construct extensive search spaces of
feature processing operations, relying on various search and optimization techniques to identify
the most effective features. However, these search spaces are mostly constrained by predefined,
manually designed transformations and often fail to incorporate domain knowledge Zhang et al.
(2023). Domain knowledge can serve as an invaluable prior for identifying these transformations,
leading to reduced complexity and more interpretable and effective features Hollmann et al. (2024).

Recently, Large Language Models (LLMs) have emerged as a powerful solution to this challenge,
offering access to extensive embedded domain knowledge that can be leveraged for feature engineer-
ing. While recent approaches have demonstrated promising results in incorporating this knowledge
into automated feature discovery, current LLM-based methods Hollmann et al. (2024); Han et al.
(2024) rely predominantly on direct prompting mechanisms or validation scores to guide the feature
generation process. These approaches do not leverage insights from prior feature discovery experi-
ments, thereby falling short of establishing meaningful reasoning between feature generation and
data-driven performance.

1

https://anonymous.4open.science/r/LLM-FE-5525

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 29 33.2 20.66 11.0

… … … … …

m 23 26.9

1 29 33.2 20.66 11.0

… … … … …

m 23 26.9

1 29 33.2 20.66 11.0

… … … … …

M 23 26.9

Prompt

Instruction: <role and instruction>
Task Description: <task description>
Feature Description:
- <feature> : <feature description>
Data Samples: <examples>

Evaluation Function
def evaluate (data, ML model) → score
 import sklearn
 …
 …

 return score

Demonstration
def modify_features_v0 (data_in) → data_out
<sample code>
def modify_features_v1 (data_in) → data_out
<code to complete>

LLMOriginal Data
and Metadata

.

.

.

#1

#2

#3

#n

(a) New Feature Generation

(c) Feature Evaluation

(b) Feature Engineering

glucose insulin age bmi

1 89 94 29 33.2

… … … … …

m 148 0 23 26.9

glucose age bmi insulin_
resistance

age_
bmi

1 89 29 33.2 20.66 11.0

… … … … … …

m 148 23 26.9 0.00 45.1

ML Prediction Model
Island 2

Score:
0.8034

Score:
0.8247

Score:
0.7964

Score:
0.6902

Score:
0.7865

Score:
0.8155

.

.

.

(d) Experience
Management

Store in Long-term
Memory

In-Context
Examples

Island 1

Train a prediction model on the new
dataset and get the validation score

Generate new feature
transformation hypothesis

as a Python program

…

Island k
or

Sample from Memory

def modify_features (df_in):

“““

Thought1: Insulin resistance is a well-known

risk factor for diabetes

Feature 1:

inuslin_resistance=glucose*insulin/405

….

….

”””

 # Create a copy

 df_out = df_in.copy()

 # Find Insulin resistance

df_out[`insulin_resistance`] =

(df_in[`glucose`]*df_in[`insulin`])/405

df_out.drop(columns=[`insulin`], inplace=True)

 # Find Age_BMI

 df_out[`age_bmi`] = df_in[`age`]*df_in[`bmi`]

 return df_out

.

.

.

.

.

.

.

.

.

Figure 1: Overview of the LLM-FE Framework. For a given dataset, LLM-FE follows
these steps: (a) New Feature Generation, where an LLM generates feature transformation
hypotheses as programs for a given tabular dataset; (b) Feature Engineering, where the
feature transformation program is applied to the underlying dataset, resulting in a modified
dataset; (c) Feature Evaluation, where the modified dataset with the new features is eval-
uated using a prediction model; (d) Experience Management, which maintains a buffer of
high-scoring programs that act as in-context samples for LLM’s iterative refinement prompt.
The features generated by LLM-FE are interpretable, using LLM’s domain knowledge.

To address these limitations, we propose LLM-FE, a novel framework integrating the capabilities
of LLMs with tabular prediction models and evolutionary search to facilitate effective feature
optimization. As shown in Figure 1, LLM-FE follows an iterative process to generate and evaluate the
hypothesis of the feature transformation, using the performance of the tabular prediction model as a
reward to enhance the generation of effective features. Starting from an initial feature transformation
program, LLM-FE leverages the LLMs’ embedded domain knowledge by incorporating task-specific
details, feature descriptions, and a subset of data samples to generate new feature discovery programs
(Figure 1(a)). At each iteration, LLM acts as a knowledge-guided evolutionary optimizer, which
mutates examples of previously successful feature transformation programs to generate new effective
features Meyerson et al. (2024). The newly proposed features are then integrated with the original
dataset to yield an augmented dataset (Figure 1(b)). The prediction model’s performance is evaluated
on a held-out validation set derived from the augmented dataset (Figure 1(c)), provides data-driven
feedback that, combined with a dynamic memory of previously explored feature transformation
programs (Figure 1(d)), guides the LLM to refine its feature generation iteratively.

Table 1: Comparison of existing feature engineering
methods.

Method Domain Feedback Complex Multi-Feature
Knowledge Driven Features Refinement

AutoFeat Horn et al. (2020) ✗ ✗ ✓ ✗

OpenFE Zhang et al. (2023) ✗ ✗ ✓ ✗

FeatLLM Han et al. (2024) ✓ ✗ ✗ ✗

CAAFE Hollmann et al. (2024) ✓ ✓ ✗ ✗

OCTree Nam et al. (2024) ✓ ✓ ✗ ✗

LLM-FE ✓ ✓ ✓ ✓

Table 1 compares LLM-FE to several state-
of-the-art classical and LLM-based fea-
ture engineering methods. Traditional
methods lack adaptability and deeper con-
textual understanding, while LLM-based
methods generate simple features Küken
et al. (2024) or use feedback to iteratively
refine only a single rule. In contrast,
LLM-FE supports all four aspects by lever-
aging LLM-based domain knowledge and
feedback-driven optimization to generalize
well across table prediction tasks. We evaluate LLM-FE with GPT-3.5-Turbo OpenAI (2023)
and Llama-3.1-8B-Instruct Dubey et al. (2024) backbones on classification and regression
tasks across diverse tabular datasets. LLM-FE consistently outperforms the state-of-the-art feature en-
gineering methods, identifying contextually relevant features that improve downstream performance.
In particular, we observe improvements with tabular models like XGBoost Chen & Guestrin (2016),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

TabPFN Hollmann et al. (2022), and MLP Gorishniy et al. (2021). Our analysis also highlights the
importance of evolutionary search in achieving effective results. The major contributions of this work
can be summarized as.
• We introduce LLM-FE, a novel framework that casts feature engineering as an LLM-guided
evolutionary optimization problem, integrating domain knowledge, data-driven evaluation, and
long-term memory for iterative refinement.
• Our experimental results demonstrate the effectiveness of LLM-FE, showcasing its ability to
outperform state-of-the-art baselines, demonstrating generalizability across different predictors and
LLM backbones.
• Through a comprehensive ablation study, we highlight the critical role of domain knowledge,
evolutionary search, data-driven feedback, and data samples in guiding the LLM to efficiently explore
the feature space and discover impactful features more effectively.

2 RELATED WORKS

Feature Engineering. Feature engineering involves creating meaningful features from raw data
to improve predictive performance Hollmann et al. (2024). The growing complexity of datasets has
driven the automation of feature engineering to reduce manual effort and optimize feature discovery.
Traditional automated feature engineering methods include tree-based exploration, transformation
enumeration, and learning-based methods Khurana et al. (2016); Kanter & Veeramachaneni (2015);
Nargesian et al. (2017); Zhang et al. (2023). These traditional approaches often fail to leverage
domain knowledge for feature discovery, making LLMs well-suited for such tabular prediction tasks
due to their prior contextual domain understanding.
LLMs and Optimization. Advances in LLMs have shown that they can adapt to novel tasks
via prompt engineering and in-context learning without retraining Brown et al. (2020); Wei et al.
(2022). Yet, their outputs can be inconsistent or factually incorrect Madaan et al. (2024); Zhu et al.
(2023), motivating research into mechanisms that refine or stabilize generations. A growing body of
work has explored coupling LLMs with evaluators in iterative or evolutionary frameworks, where
feedback, mutation, and crossover guide solution search Lehman et al. (2023); Wu et al. (2024);
Meyerson et al. (2024). This paradigm has yielded progress in prompt optimization Yang et al. (2024);
Guo et al. (2023), neural architecture search Zheng et al. (2023); Chen et al. (2024), mathematical
heuristic discovery Romera-Paredes et al. (2024), and symbolic regression Shojaee et al. (2024).
Building on this trajectory, our LLM-FE framework operationalizes LLMs as evolutionary optimizers,
combining their rich prior knowledge with systematic, data-driven refinement to discover compact
and high-performing features.
LLMs for Tabular Learning. The application of LLMs to structured data has typically relied on
converting tables into textual representations Dinh et al. (2022); Hegselmann et al. (2023); Wang et al.
(2023), or tailoring tokenization and pre-training strategies for tabular robustness Yan et al. (2024).
For tabular prediction specifically, LLMs have been employed in fine-tuning and few-shot in-context
paradigms Hegselmann et al. (2023); Nam et al. (2023), as well as in direct feature engineering.
For example, FeatLLM Han et al. (2024) generates binary rules, while CAAFE Hollmann et al.
(2024) exploits task descriptions to generate contextual features, and OCTree Nam et al. (2024)
iteratively improves features through decision tree reasoning. However, these approaches often rely
on incremental refinement of a single candidate. In contrast, LLM-FE maintains a diverse pool
of promising programs and employs evolutionary search to efficiently traverse the feature space,
leveraging mutation and crossover to uncover interpretable and data-driven transformations. This
design enables the discovery of features that are not only predictive but also aligned with human
interpretability, bridging the gap between domain-informed reasoning and optimization.

3 LLM-FE APPROACH

3.1 PROBLEM FORMULATION

A tabular dataset D comprises N rows (or instances), each characterized by d columns (or features).
Each data instance xi is a d-dimensional feature vector with feature names denoted by C = {cj}dj=1.
The dataset is accompanied by metadata M, which contains feature descriptions and task-specific
information. For supervised learning tasks, each instance xi is associated with a corresponding
label yi, where yi ∈ {0, 1, ...,K} for classification tasks with K classes, and yi ∈ R for regression

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

tasks. Given a labeled tabular dataset D = (xi, yi)
N
i=1 and prediction model f to map from the input

feature space X to its corresponding label space Y , the feature engineering objective is to determine
an optimal feature transformation T , which enhances the performance of a predictive model when
trained on the transformed input space. Formally, the feature engineering task can be defined as:

max
T

E(f∗(T (Xval)),Yval) (1)

subject to:

f∗ = argmin
f

Lf (f(T (Xtr)),Ytr) (2)

where (Xtr,Ytr) and (Xval,Yval) are the sub-training set and validation set, respectively, that is
derived from the training data (Xtrain,Ytrain). The feature transformation T generated by the LLM
πθ and defined as T = πθ(Xtrain), meaning the transformation is learned from the training data
by the LLM. The predictive model f∗ is then trained on the transformed training data T (Xtrain)
to minimize loss. Consequently, the bilevel optimization problem seeks to identify the feature
transformations T that maximize the performance E on T (Xval) while minimizing the loss function
on the transformed training data, thereby efficiently exploring the potential feature space.

3.2 FEATURE GENERATION

Figure 1(a) illustrates the feature generation step that uses an LLM to create multiple new feature
transformation programs, leveraging the model’s prior knowledge, reasoning, and in-context learning
abilities to effectively explore the feature space.

3.2.1 INPUT PROMPT

To facilitate the creation of effective and contextually relevant feature discovery programs, we develop
a structured prompting methodology. The prompt is designed to provide comprehensive data-specific
information, an initial feature transformation program for the evolution starting point, an evaluation
function, and a well-defined output format (see Appendix D.2 for more details). Our input prompts p
are composed of the following key elements:

Instruction. The LLM is assigned the task of finding the most relevant features to help solve the
given task. The task emphasizes using the LLM’s prior knowledge of the dataset’s domain to generate
features. The LLM is explicitly instructed to generate novel features and provide clear step-by-step
reasoning for their relevance to the prediction task. Moreover, since LLMs tend to generate simple
features, we specifically instruct the LLM to generate complex features.

Dataset Specification. After providing the instructions, we provide LLM with the dataset-specific
information from the metadata M. This information encompasses a detailed description of the
intended downstream task, along with the feature names C and their corresponding descriptions. In
addition, we provide a limited number of representative samples from the tabular dataset. To improve
the effective interpretation of the data, we adopt the serialization approach used in previous works
(Dinh et al., 2022; Hegselmann et al., 2023; Han et al., 2024). We serialized the data samples as
follows:

Serialize(xi, yi, C) = ‘If c1 is x1
i , ..., cd is xd

i . Then Result is yi’ (3)

By providing dataset-specific details, we guide the language model to focus on the most contextually
pertinent features that directly support the dataset and task objective.

Evaluation Function. The evaluation function, incorporated into the prompt, guides the language
model to generate feature transformation programs that align with performance objectives. These
programs augment the original dataset with new features, which are assessed on the basis of a
prediction model’s performance when trained on the augmented data. The model’s evaluation score
on the augmented validation set serves as an indicator of feature quality. By including the evaluation
function in the prompt, the LLM generates programs that are inherently aligned with the desired
performance criteria.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In-Context Demonstration. Specifically, we sample the k highest-performing demonstrations
from previous iterations, enabling the LLM to build on successful outputs. The iterative interaction
between the LLM’s generative outputs and the evaluator’s feedback, informed by these examples,
facilitates a systematic refinement process. With each iteration, the LLM progressively improves its
outputs by leveraging patterns and insights identified in previous successful demonstrations.

3.2.2 FEATURE SAMPLING

At each iteration t, we construct the prompt pt by sampling the previous iteration as input to the LLM
πθ, resulting in the output T1, . . . , Tb = πθ(pt) representing a set of b sampled programs. To promote
diversity and maintain a balance between exploration (creativity) and exploitation (prior knowledge),
we employ stochastic temperature-based sampling. Each of the sampled feature transforms (Ti)
is executed before evaluation to discard error-prone programs. This ensures that only valid and
executable feature transformation programs are considered further in the optimization pipeline.
In addition, to ensure computational efficiency, a maximum execution time threshold is enforced,
discarding any programs that exceed it.

3.3 DATA-DRIVEN EVALUATION

As illustrated in Figure 1(b), we use the generated features to augment the original dataset with the
newly derived features. Similar to (Hollmann et al., 2024; Nam et al., 2024), our feature evaluation
process comprises two stages: (i) model training on the augmented dataset, and (ii) performance
assessment for feature quality (Figure 1(c)). We fit a tabular predictive model f∗, to the transformed
training set T (Xtr), by minimizing the loss Lf as shown in Eq.1. Subsequently, we evaluated the
LLM-generated feature transformations T by evaluating the model’s performance on the augmented
validation set T (Xval) (see Eqs. 1 and 2). As explained in Section 3.1, the objective is to find optimal
features that maximize the performance E , i.e., accuracy for classification and error metrics for
regression.

3.4 EXPERIENCE MANAGEMENT

Algorithm 1 LLM-FE
Require: LLM πθ , Dataset D, MetadataM, Iter-

ations T , Model f , Metric E
1: P0 ← BufferInit()
2: T ∗, s∗ ← null,−∞
3: p← UpdatePrompt(D,M)
4: for t = 1 to T−1 do
5: pt ← p+ Pt−1.topk()
6: {Tj}bj=1 ← πθ(pt)
7: for j = 1 to b do
8: sj ← FeatureScore(f, Tj ,D, E)
9: if sj > s∗ then

10: T ∗, s∗ ← Tj , sj
11: end if
12: Pt ← UpdateBuffer(Pt−1, Tj , sj)
13: end for
14: end for
15: return T ∗, s∗

To promote diverse feature discovery and avoid stag-
nation in local optima, LLM-FE employs evolution-
ary multi-population experience management (Fig-
ure 1(d)) to store feature discovery programs in a
dedicated database. Then, it uses samples from this
database to construct in-context examples for LLM,
facilitating the generation of novel features. This
step consists of two components: (i) multi-population
memory to maintain a long-term memory buffer, and
(ii) sampling from this memory buffer to construct
in-context example demonstrations. After evaluating
the feature transforms in iteration t, we store the pair
of feature transforms and score (T , s) in the popula-
tion buffer Pt to iteratively refine the search process.
To effectively evolve a population of programs, we
adopt a multi-population model inspired by the ‘is-
land’ model employed by (Cranmer, 2023; Shojaee
et al., 2024; Romera-Paredes et al., 2024). The pro-
gram population is divided into m independent islands, each evolving separately and initialized
with a copy of the user’s initial example (see Figure 12(d)). This enables parallel exploration of
the feature space, mitigating the risk of suboptimal solutions. At each iteration t, we select one
of the m islands and sample programs from the memory buffer to update the prompt with new
in-context examples. The newly generated feature samples b are evaluated, and if their scores sj
exceed the current best score, the feature score pair (Tj , sj) is added to the same island from which
the in-context examples were sampled. To preserve diversity and ensure that programs with different
performance characteristics are maintained in the buffer, we cluster programs within islands based
on their signature, defined by their scores. To build refinement prompts, we follow the sampling
process from (Romera-Paredes et al., 2024), first sampling one of the m available islands, followed

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

by sampling the k programs from the selected island to create k-shot in-context examples for the
LLM. Cluster selection prefers high-scoring programs and follows Boltzmann sampling (De La Maza
& Tidor, 1992) with a score-based probability of choosing a cluster i: Pi =

exp(si/τc)∑
i exp(si/τc)

, where si
denotes the mean score of the i-th cluster and τc is the temperature parameter. The sampled feature
transformation programs from the memory buffer are then included in the prompt as examples to
guide LLM toward successful feature transformations—incurring negligible computational overhead.
Refer to Appendix B.4 for more details. Algorithm 1 presents the pseudocode of LLM-FE. We begin
with the initialization of a memory buffer BufferInit, incorporating an initial population that
contains a simple feature transform. This initialization serves as the starting point for the evolutionary
search for feature transformation programs to be evolved in the subsequent steps. At each iteration
t, the function topk is used to sample k in-context examples from the population of the previous
iteration Pt−1 to update the prompt. Subsequently, we prompt the LLM using this updated prompt to
sample b new programs. The sampled programs are then evaluated using FeatureScore, which
represents the Data-Driven Evaluation (Section 3.3). After T iterations, the best-scoring program
T ∗ from Pt and its score s∗ are returned as the optimal solution found for the problem. LLM-FE
employs an iterative search to enhance programs, harnessing the LLM’s capabilities. Learning from
the evolving pool of experiences in its buffer, the LLM steers the search toward effective solutions.

4 EXPERIMENTAL SETUP

We evaluated LLM-FE on a range of tabular datasets, encompassing classification and regression
tasks. Our experimental analysis included quantitative comparisons with baselines and detailed
ablation studies. Specifically, we assessed our approach using three known tabular predictive models
with distinct architectures: (1) XGBoost, a tree-based model Chen & Guestrin (2016), (2) MLP, a
neural model Gorishniy et al. (2021), and (3) TabPFN Hollmann et al. (2022), a transformer-based
foundation model Vaswani (2017). The results highlight LLM-FE’s capability to generate effective
features that consistently enhance the performance of different prediction models across datasets.

4.1 DATASETS

We followed Hollmann et al. (2024) to select datasets from previous feature engineering works
like Han et al. (2024); Hollmann et al. (2024); Zhang et al. (2023) that include descriptive feature
information. Our analysis contains 16 classification and 10 regression datasets, each containing mixed
categorical and numerical features. We also include 8 large-scale, high-dimensional classification
datasets to ensure comprehensive evaluation. These datasets were sourced from established machine
learning repositories, including OpenML Vanschoren et al. (2014); Feurer et al. (2021), UCI Machine
Learning Repository Asuncion et al. (2007), and Kaggle. Each dataset is accompanied by metadata,
which includes a natural language description of the prediction task and descriptive feature names.
We partitioned each dataset into train and test sets using an 80-20 split. Following Hollmann et al.
(2024), we evaluated all methods over five iterations, each time using a distinct random seed and
train-test splits. For more details, check Appendix C.

4.2 BASELINES

We evaluated LLM-FE against state-of-the-art feature engineering approaches, including
OpenFE Zhang et al. (2023) and AutoFeat Horn et al. (2020), as well as LLM-based methods
CAAFE Hollmann et al. (2024), FeatLLM Han et al. (2024) and OCTree Nam et al. (2024). We
used XGBoost as the default tabular data prediction model in comparison with baselines and em-
ployed GPT-3.5-Turbo as the default LLM backbone for all LLM-based methods. To ensure a
fair comparison, all LLM-based baselines were configured to query the LLM backbone for a total
of 20 samples until they converged to their best performance. Appendix D.1 contains additional
implementation details.

4.3 LLM-FE CONFIGURATION

In our experiments, we utilized GPT-3.5-Turbo and Llama-3.1-8B-Instruct as backbone
LLMs, with a sampling temperature parameter of t = 0.8 and the number of islands set to m = 3. At
each iteration, the LLM generated b = 3 feature transformation programs per prompt in Python. To
ensure consistency with baselines, LLM-FE was also configured with a total of 20 LLM samples for
each experiment. Finally, we sampled the top m (where m denotes the number of islands) feature
discovery programs based on their respective validation scores and reported the final prediction
through an ensemble. More implementation details are provided in Appendix D.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.4 RESULTS AND DISCUSSION

In Table 2, we compare LLM-FE against various feature engineering baselines across 19 classification
datasets. The results demonstrate that LLM-FE consistently enhances predictive performance from
the base model (using raw data). LLM-FE also obtains the lowest mean rank (best performance) at
a lower computational cost (see Appendix B.4), showing better effectiveness in enhancing feature
discovery compared to other leading baselines. To further evaluate the effectiveness of LLM-FE, we
perform experiments on 10 regression datasets using the same evaluation settings employed for the
classification datasets. Due to the lack of regression data implementations in the available codebases
for LLM-based baselines, in Table 3, we restrict our comparison to only non-LLM methods (OpenFE
and AutoFeat), which have been previously validated on regression tasks. The results indicate
that LLM-FE outperforms all baseline methods, achieving the lowest mean rank and consistently
improving across all datasets. We provide additional analyses in Appendix A, including the effect of
hyperparameter optimization on LLM-FE and evaluations with alternative predictive models such
as CatBoost and Logistic Regression. We further study the transferability and generalizability of
discovered features across different LLM backbones, showing that LLM-FE remains robust and
effective under varied modeling and architectural choices.

Table 2: Performance of XGBoost on Classification Datasets using various Feature Engineering
(FE) Methods, evaluated using accuracy (higher values indicate better performance). We report the
mean values and standard deviation across five splits. ✗ : denotes execution time of greater than 12
hours or failure due to execution errors. bold: indicates the best performance. underline: indicates
the second-best performance. ‘n’: indicates the number of samples; ‘p’: indicates the number of
features.

Dataset n p Base Classical FE Methods LLM-based FE Methods LLM-FE
AutoFeat OpenFE CAAFE FeatLLM OCTree

adult 48.8k 14 0.873 ± 0.002 ✗ 0.873 ± 0.002 0.872 ± 0.002 0.842 ± 0.003 0.870 ± 0.002 0.874 ± 0.003

arrhythmia 452 279 0.657 ± 0.019 ✗ ✗ ✗ ✗ ✗ 0.659 ± 0.018

bank-marketing 45.2k 16 0.906 ± 0.003 ✗ 0.908 ± 0.002 0.907 ± 0.002 0.907 ± 0.002 0.900 ± 0.002 0.907 ± 0.002

breast-w 699 9 0.956 ± 0.012 0.956 ± 0.019 0.956 ± 0.014 0.960 ± 0.009 0.967 ± 0.015 0.969 ± 0.009 0.970 ± 0.009

blood-transfusion 748 4 0.742 ± 0.012 0.738 ± 0.014 0.747 ± 0.025 0.749 ± 0.017 0.771 ± 0.016 0.755 ± 0.026 0.751 ± 0.036

car 1728 6 0.995 ± 0.003 0.998 ± 0.003 0.998 ± 0.003 0.999 ± 0.001 0.808 ± 0.037 0.995 ± 0.004 0.999 ± 0.001

cdc diabetes 253k 21 0.849 ± 0.001 ✗ 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001 0.849 ± 0.001

cmc 1473 9 0.528 ± 0.029 0.505 ± 0.015 0.517 ± 0.007 0.524 ± 0.016 0.479 ± 0.015 0.525 ± 0.027 0.531 ± 0.015

communities 1.9k 103 0.706 ± 0.016 ✗ 0.704 ± 0.009 0.707 ± 0.013 0.593 ± 0.012 0.708 ± 0.016 0.711 ± 0.012

covtype 581k 54 0.870 ± 0.001 ✗ 0.885 ± 0.007 0.872 ± 0.003 0.554 ± 0.001 0.832 ± 0.002 0.882 ± 0.003

credit-g 1000 20 0.751 ± 0.019 0.757 ± 0.017 0.758 ± 0.017 0.751 ± 0.020 0.707 ± 0.034 0.753 ± 0.021 0.766 ± 0.015

eucalyptus 736 19 0.655 ± 0.024 0.664 ± 0.028 0.663 ± 0.033 0.679 ± 0.024 ✗ 0.658 ± 0.041 0.668 ± 0.027

heart 918 11 0.858 ± 0.013 0.857 ± 0.021 0.854 ± 0.020 0.849 ± 0.023 0.865 ± 0.030 0.852 ± 0.022 0.866 ± 0.021

myocardial 1.7k 111 0.784 ± 0.023 ✗ 0.787 ± 0.026 0.789 ± 0.023 0.778 ± 0.023 0.787 ± 0.031 0.789 ± 0.023

pc1 1109 21 0.931 ± 0.004 0.931 ± 0.014 0.931 ± 0.009 0.929 ± 0.005 0.933 ± 0.007 0.934 ± 0.007 0.935 ± 0.006

vehicle 846 18 0.754 ± 0.016 0.788 ± 0.018 0.785 ± 0.008 0.771 ± 0.019 0.744 ± 0.035 0.753 ± 0.036 0.761 ± 0.027

Mean Rank 4.26 4.89 3.26 3.31 4.94 3.84 1.47

Table 3: Performance of XGBoost on Regression Datasets using various Feature Engineering
(FE) Methods, evaluated using normalized root mean square error (N-RMSE) (lower values indicate
better performance). We report the mean and standard deviation across five splits. bold: indicates the
best performance. underline: indicates the second-best performance. ‘n’: indicates the number of
samples; ‘p’: indicates the number of features.

Dataset n p Base Classical FE Methods LLM-FE
AutoFeat OpenFE

airfoil_self_noise 1503 6 0.013 ± 0.001 0.012 ± 0.001 0.013 ± 0.001 0.011 ± 0.001
bike 17389 11 0.216 ± 0.005 0.223 ± 0.006 0.216 ± 0.007 0.207 ± 0.006
cpu_small 8192 10 0.034 ± 0.003 0.034 ± 0.002 0.034 ± 0.002 0.033 ± 0.003
crab 3893 8 0.234 ± 0.009 0.228 ± 0.008 0.224 ± 0.001 0.223 ± 0.013
diamonds 53940 9 0.139 ± 0.002 0.140 ± 0.004 0.137 ± 0.002 0.134 ± 0.002
forest-fires 517 13 1.469 ± 0.080 1.468 ± 0.086 1.448 ± 0.113 1.417 ± 0.083
housing 20640 9 0.234 ± 0.009 0.231 ± 0.013 0.224 ± 0.005 0.218 ± 0.009
insurance 1338 7 0.397 ± 0.020 0.384 ± 0.024 0.383 ± 0.022 0.381 ± 0.028
plasma_retinol 315 13 0.390 ± 0.032 0.411 ± 0.036 0.392 ± 0.032 0.388 ± 0.033
wine 4898 10 0.110 ± 0.001 0.109 ± 0.001 0.108 ± 0.001 0.105 ± 0.001

Mean Rank 3.40 3.10 2.20 1.00

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 ANALYSIS

5.1 GENERALIZABILITY ANALYSIS

Table 4: Performance improvement by LLM-FE
using different prediction models and LLM back-
bones. We report the aggregated values for accu-
racy on classification tasks and normalized root mean
square error on regression tasks. All results represent
the mean and standard deviation computed across five
splits. bold: indicates the best performance. TabPFN∗

evaluations are conducted using only 10,000 samples
due to its limited processing capacity.

Method LLM Classification ↑ Regression ↓

XGBoost

Base – 0.820 ± 0.020 0.324 ± 0.016

LLM-FE
Llama 3.1-8B 0.832 ± 0.021 0.310 ± 0.022

GPT-3.5 Turbo 0.840 ± 0.022 0.306 ± 0.015

MLP

Base – 0.745 ± 0.034 0.871 ± 0.027

LLM-FE
Llama 3.1-8B 0.768 ± 0.032 0.794 ± 0.016

GPT-3.5 Turbo 0.791 ± 0.029 0.631 ± 0.043

TabPFN∗

Base – 0.852 ± 0.028 0.289 ± 0.016

LLM-FE
Llama 3.1-8B 0.856 ± 0.017 0.288 ± 0.016

GPT-3.5 Turbo 0.863 ± 0.018 0.286 ± 0.015

To evaluate the generalizability of the LLM-FE,
we examine its performance across multiple tab-
ular prediction models and various LLM back-
bones. Specifically, we employ two LLM
backbones, Llama-3.1-8B-Instruct and
GPT-3.5-Turbo, in conjunction with three dis-
tinct tabular prediction models: XGBoost Chen
& Guestrin (2016), a widely-used tree-based al-
gorithm for tabular tasks; Multilayer Perceptron
(MLP), a simple yet common deep-learning archi-
tecture tailored to tabular datasets Gorishniy et al.
(2021); and TabPFN Hollmann et al. (2022), a
recent transformer-based foundation model specif-
ically designed for tabular data. Table 4 summa-
rizes our findings, demonstrating that LLM-FE
effectively identifies features that enhance the per-
formance of various prediction models and LLM
backbones across different tasks. Notably, the re-
sults indicate that features generated by LLM-FE
using either LLM backbone consistently improve
base model prediction performance compared to
scenarios without any feature engineering.

5.2 ABLATION STUDY

Classification Datasets0.55

0.60

0.65

0.70

Ac
cu

ra
cy

0.687

0.644

0.626

0.587

LLM-FE
w/o Data Examples

w/o Domain Knowledge
w/o Evolutionary Refinement

Figure 2: Aggregated ablation study results
across classification datasets, showcasing the
impact of individual components on LLM-FE’s
performance: (a) Data Examples, (b) Domain
Knowledge, and (c) Evolutionary Refinement.
Values are normalized with respect to the base
LLM-FE model to facilitate fair comparison
across conditions.

We perform an ablation study on the classifica-
tion datasets (<10,000 samples) listed in Table 2
to assess the contribution of each component in
LLM-FE. Figure 2 illustrates the impact of indi-
vidual components on overall performance, using
XGBoost and GPT-3.5-Turbo. We report the
accuracy aggregated and normalized over all the
datasets. In the ‘w/o Domain Knowledge’ setting,
dataset and task-specific details are removed from
the prompt and feature names are anonymized
with generic placeholders such as C1, C2,. . . , Cn.
In this way, we remove any semantic meaning that
could provide contextual insights about the prob-
lem. Without domain knowledge, the performance
significantly drops to 0.626, underscoring its crit-
ical role in generating meaningful features. The
‘w/o Evolutionary Refinement’ setting) also leads
to the greatest decline in performance (0.587), em-
phasizing the importance of iterative data-driven
feedback in addition to domain knowledge for re-
fining feature transforms. Lastly, the results show
that ‘w/o Data Examples’ variant leads to only a
slight performance drop, as LLMs might struggle
to comprehend the nuances and patterns within
the data samples. LLM-FE benefits significantly
from each component, leading to an improvement.

5.3 IMPACT OF DOMAIN KNOWLEDGE AND EVOLUTIONARY REFINEMENT

Figure 5 illustrates the qualitative benefits of incorporating domain knowledge into feature engineering.
In this example, two approaches are contrasted: one without domain knowledge (Figure 5(a)), and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.730

0.735

0.740

0.745

Ac
cu

ra
cy

Model Performance

Base LLM-FE w/o domain knowledge LLM-FE

Figure 3: Quantitative impact of domain
knowledge on model accuracy. Using do-
main knowledge boosts performance com-
pared to both the base model and LLM-FE
without domain knowledge.

0 5 10 15 20
Iterations

0.750

0.755

0.760

0.765

Ac
cu

ra
cy

Validation Accuracy
LLM-FE w/o Evolutionary Refinement LLM-FE

Figure 4: Performance Trajectory Analy-
sis. for LLM-FE w/o evolutionary refinement
and LLM-FE. LLM-FE demonstrates a better
trajectory, highlighting the advantage of evo-
lutionary refinement.

 def modify_features(df_input) -> pd.DataFrame:
 """

 Thought 1: Insulin levels in conjunction with Glucose levels can provide
insights into the metabolic state.

 Feature 1: insulin_glucose_ratio |

 insulin_glucose_ratio = Insulin / Glucose
 Thought 2: BMI can be an indicator of potential diabetes risk, especially

when combined with age.
 Feature 2: bmi_age_ratio | bmi_age_ratio = BMI / Age
 """
 df_output = df_input.copy()

 # Calculate Insulin divided by Glucose
 df_output['insulin_glucose_ratio'] = df_output['Insulin'] /

 df_output['Glucose']
 # Calculate BMI divided by Age
 df_output['bmi_age_ratio'] = df_output['BMI'] / df_output['Age']

 return df_output

(b) LLM-FE(a) Feature Engineering without domain knowledge

 def modify_features(df_input) -> pd.DataFrame:
 """
 Introducing a new feature 'C10' as the square root of the
 product of 'C1' and 'C3' to capture a non-linear relationship
 between these variables.
 Additionally, dropping less informative feature 'C2'.
 """
 df_output = df_input.copy()

 df_output['C10'] = np.sqrt(df_output['C1'] * df_output['C3'])
 df_output.drop('C2', axis=1, inplace=True)

 return df_output

Figure 5: Qualitative Analysis on Impact of Domain Knowledge. illustrating how LLM-FE (b)
utilizes domain knowledge to create meaningful features with descriptions , in contrast to feature

engineering without domain insights (a) leading to uninterpretable outputs.

LLM-FE guided by domain-specific insights through an LLM-based feature engineering (Figure 5(b)).
The domain-agnostic variant creates arbitrary transformations, such as combining features C1 and C3
using a square root of their product and dropping feature C2 without clear justification. In contrast,
LLM-FE leverages its embedded knowledge to derive interpretable and clinically meaningful features.
Figure 3 presents a quantitative comparison of model performance on the same dataset, showing
that LLM-FE with domain knowledge achieves the highest accuracy, outperforming both the base
model and LLM-FE without domain knowledge. Figure 4 illustrates the validation accuracy trajectory
of LLM-FE with and without evolutionary refinement across 20 iterations. The variant without
refinement shows early improvement but quickly plateaus, indicating convergence to a local optimum.
In contrast, LLM-FE continues to improve across iterations, achieving higher accuracy overall. This
comparison highlights the effectiveness of evolutionary refinement in enhancing performance by
enabling the model to escape local optima and optimize more effectively. Further analyses on feature
interpretability, bias and memorization, and computational efficiency are provided in Appendix B.

6 CONCLUSION

In this work, we introduce a novel framework LLM-FE that leverages LLMs as evolutionary opti-
mizers to discover new features for tabular prediction tasks. By combining LLM-driven hypothesis
generation with data-driven feedback and evolutionary search, LLM-FE effectively automates the fea-
ture engineering process. Through comprehensive experiments on diverse tabular learning tasks, we
demonstrate that LLM-FE consistently outperforms state-of-the-art baselines, delivering substantial
improvements in predictive performance across various tabular prediction models. Future work could
explore integrating more powerful or domain-specific language models to enhance the relevance and
quality of generated features for domain-specific problems. Moreover, our framework could extend
beyond feature engineering to other stages of the tabular learning and data-centric pipeline, such as
data augmentation, automated data cleaning (including imputation and outlier detection), and model
tuning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Anaconda. https://www.anaconda.com/state-of-data-science-2020.

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

Sebastian Bordt, Harsha Nori, Vanessa Rodrigues, Besmira Nushi, and Rich Caruana. Elephants
never forget: Memorization and learning of tabular data in large language models. arXiv preprint
arXiv:2404.06209, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Angelica Chen, David Dohan, and David So. Evoprompting: language models for code-level neural
architecture search. Advances in Neural Information Processing Systems, 36, 2024.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Michael De La Maza and Bruce Tidor. Increased flexibility in genetic algorithms: The use of
variable boltzmann selective pressure to control propagation. In Computer Science and Operations
Research, pp. 425–440. Elsevier, 1992.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for
non-language machine learning tasks. Advances in Neural Information Processing Systems, 35:
11763–11784, 2022.

Pedro Domingos. A few useful things to know about machine learning. Communications of the ACM,
55(10):78–87, 2012.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Matthias Feurer, Jan N Van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi,
Andreas Müller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible python api
for openml. Journal of Machine Learning Research, 22(100):1–5, 2021.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
automatically engineer features for few-shot tabular learning. arXiv preprint arXiv:2404.09491,
2024.

10

https://www.anaconda.com/state-of-data-science-2020

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp. 5549–5581. PMLR, 2023.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,
2022.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36, 2024.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated
feature engineering and selection. In Machine Learning and Knowledge Discovery in Databases:
International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part I, pp. 111–120. Springer, 2020.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analytics
(DSAA), pp. 1–10. IEEE, 2015.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-
mated feature engineering for supervised learning. In 2016 IEEE 16th international conference on
data mining workshops (ICDMW), pp. 1304–1307. IEEE, 2016.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive modeling
using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Jaris Küken, Lennart Purucker, and Frank Hutter. Large language models engineer too many simple
features for tabular data. arXiv preprint arXiv:2410.17787, 2024.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331–366.
Springer, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover,
and Joel Lehman. Language model crossover: Variation through few-shot prompting. ACM
Transactions on Evolutionary Learning, 4(4):1–40, 2024.

Jaehyun Nam, Jihoon Tack, Kyungmin Lee, Hankook Lee, and Jinwoo Shin. Stunt: Few-shot tabular
learning with self-generated tasks from unlabeled tables. arXiv preprint arXiv:2303.00918, 2023.

Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin.
Optimized feature generation for tabular data via llms with decision tree reasoning. arXiv preprint
arXiv:2406.08527, 2024.

Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.
Learning feature engineering for classification. In Ijcai, volume 17, pp. 2529–2535, 2017.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models. arXiv preprint
arXiv:2404.18400, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Zifeng Wang, Chufan Gao, Cao Xiao, and Jimeng Sun. Anypredict: Foundation model for tabular
prediction. CoRR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation in
the era of large language model: Survey and roadmap. arXiv preprint arXiv:2401.10034, 2024.

Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Z Chen, Jimeng Sun, Jian Wu, and
Jintai Chen. Making pre-trained language models great on tabular prediction. arXiv preprint
arXiv:2403.01841, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
03409.

Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao,
and Li Jian. Openfe: automated feature generation with expert-level performance. In International
Conference on Machine Learning, pp. 41880–41901. PMLR, 2023.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and Hanjun
Dai. Large language models can learn rules. arXiv preprint arXiv:2310.07064, 2023.

A ADDITIONAL RESULTS

A.1 LLM-FE AND HYPERPARAMETER OPTIMIZATION (HPO)

To assess the impact of hyperparameter optimization (HPO) on LLM-FE, we conduct experiments
with XGBoost and Multilayer Perceptron (MLP) models across five classification datasets where
baseline models achieve accuracies below 0.8. We adopt the hyperparameter search spaces detailed
in Table 6 (XGBoost) and Table 7 (MLP), following prior work Grinsztajn et al. (2022); Gorishniy
et al. (2021). Optimization is performed with Optuna Akiba et al. (2019), using 400 trials with
random sampling across multiple dataset splits. All MLP models are trained for up to 100 epochs
with early stopping, retaining the checkpoint that achieves the best validation score. As summarized
in Table 5, HPO consistently improves performance across all datasets for the Base model. Crucially,
our proposed method LLM-FE delivers further gains even after HPO, highlighting that while HPO
provides meaningful improvements, LLM-FE offers complementary and substantial enhancements
that are independent of hyperparameter tuning.

Table 5: Comparison of classification accuracy across datasets using Base and LLM-FE models,
evaluated under (a) without hyperparameter optimization (HPO) and (b) with HPO. Results are
reported for both XGBoost and MLP.

Dataset
XGBoost MLP

w/o HPO w/ HPO w/o HPO w/ HPO

Base LLM-FE Base LLM-FE Base LLM-FE Base LLM-FE

eucalyptus 0.655 ± 0.024 0.668 ± 0.027 0.659 ± 0.022 0.678 ± 0.020 0.655 ± 0.024 0.668 ± 0.027 0.501 ± 0.041 0.506 ± 0.028

credit-g 0.751 ± 0.019 0.766 ± 0.025 0.761 ± 0.022 0.784 ± 0.017 0.558 ± 0.144 0.633 ± 0.101 0.689 ± 0.032 0.693 ± 0.028

cmc 0.528 ± 0.030 0.531 ± 0.015 0.554 ± 0.026 0.578 ± 0.021 0.559 ± 0.020 0.566 ± 0.020 0.572 ± 0.024 0.567 ± 0.027

blood-transfusion 0.674 ± 0.017 0.782 ± 0.017 0.777 ± 0.021 0.805 ± 0.009 0.674 ± 0.071 0.782 ± 0.017 0.616 ± 0.182 0.705 ± 0.078

vehicle 0.754 ± 0.016 0.761 ± 0.027 0.776 ± 0.035 0.801 ± 0.033 0.583 ± 0.062 0.673 ± 0.043 0.637 ± 0.095 0.694 ± 0.039

12

https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: XGBoost hyperparameters space.
Parameter Distribution
Max depth UniformInt [1, 11]
Num estimators UniformInt [100, 6100, 200]
Min child weight LogUniformInt [1, 1e2]
Subsample Uniform [0.5, 1]
Learning rate LogUniform [1e-5, 0.7]
Col sample by level Uniform [0.5, 1]
Col sample by tree Uniform [0.5, 1]
Gamma LogUniform [1e-8, 7]
Lambda LogUniform [1, 4]
Alpha LogUniform [1e-8, 1e2]

Table 7: MLP hyperparameters space.
Parameter Distribution
Num layers UniformInt [1, 8]
Layer size UniformInt [16, 1024]
Dropout Uniform [0, 0.5]
Learning rate LogUniform [1e-5, 1e-2]
Category embedding size UniformInt [64, 512]
Learning rate scheduler {True, False}
Batch size {256, 512, 1024}

A.2 TRANSFERABILITY OF GENERATED FEATURES

While traditional approaches typically use the same model for both feature generation and inference,
we demonstrate that the features generated by one model can be utilized by other models. Following
Nam et al. (2024), we use XGBoost, a computationally efficient decision tree-based model, to
generate features to be used by more complex architectures for inference. As demonstrated in Table
8, XGBoost-generated features show an improvement in the performance of MLP and TabPFN over
their base versions. This cross-architecture performance improvement suggests that the generated
features capture meaningful data characteristics that are valuable across different modeling paradigms.

Table 8: Comparative analysis of LLM-FE using feature transfer. We use XGBoost to perform feature
engineering and apply these features to MLP and TabPFN (indicated as LLM-FE XGB). We report the accuracy
for classification tasks and the normalized root mean square error for regression tasks. We report the mean and
standard deviation across five random splits. bold: indicates the best performance.

Method LLM Classification ↑ Regression ↓
MLP

Base – 0.745 ± 0.034 0.871 ± 0.027

LLM-FEXGB GPT-3.5-Turbo 0.763 ± 0.030 0.848 ± 0.017

LLM-FE GPT-3.5-Turbo 0.791 ± 0.029 0.631 ± 0.043

TabPFN

Base – 0.852 ± 0.028 0.289 ± 0.016

LLM-FEXGB GPT-3.5-Turbo 0.861 ± 0.017 0.287 ± 0.015

LLM-FE GPT-3.5-Turbo 0.863 ± 0.018 0.286 ± 0.015

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL MODELS

We extend the results from Section 4.4, showcasing the performance improvements achieved by
LLM-FE across various prediction models. Specifically, we employ XGBoost, MLP, and TabPFN
to generate features and subsequently use the same models for inference. As shown in Table 9,
the features using GPT-3.5-Turbo by LLM-FE consistently enhance model performance across
different datasets, outperforming the base versions trained without feature engineering. To further
assess the generalizability of LLM-FE, we conducted experiments on smaller prediction models like
CatBoost and Logistic Regression. From Table 10 that LLM-FE outperforms the respective base
models for most of the datasets.

Table 9: Performance improvement with LLM-FE. We report the mean and standard deviation
over five splits. We use Normalized Root Mean Square Error for all regression datasets, with a lower
value indicating better performance, and Accuracy for classification datasets, with a higher value
indicating better performance. bold: indicates the best performance.

Dataset XGBoost MLP TabPFN

Base LLM-FE Base LLM-FE Base LLM-FE

Classification Datasets

breast-w 0.956 ± 0.012 0.970 ± 0.009 0.957 ± 0.010 0.964 ± 0.005 0.971 ± 0.006 0.971 ± 0.007

blood-transfusion 0.742 ± 0.012 0.751 ± 0.036 0.674 ± 0.071 0.782 ± 0.017 0.790 ± 0.012 0.791 ± 0.011

car 0.995 ± 0.003 0.999 ± 0.001 0.929 ± 0.019 0.950 ± 0.009 0.984 ± 0.007 0.996 ± 0.006

cmc 0.528 ± 0.030 0.531 ± 0.015 0.559 ± 0.028 0.566 ± 0.028 0.563 ± 0.030 0.566 ± 0.036

credit-g 0.751 ± 0.019 0.766 ± 0.025 0.558 ± 0.144 0.633 ± 0.101 0.728 ± 0.008 0.794 ± 0.022

eucalyptus 0.655 ± 0.024 0.668 ± 0.027 0.414 ± 0.064 0.456 ± 0.062 0.712 ± 0.016 0.715 ± 0.021

heart 0.858 ± 0.013 0.866 ± 0.021 0.840 ± 0.010 0.844 ± 0.006 0.882 ± 0.025 0.880 ± 0.021

pc1 0.931 ± 0.004 0.935 ± 0.006 0.931 ± 0.002 0.904 ± 0.055 0.936 ± 0.007 0.937 ± 0.003

vehicle 0.754 ± 0.016 0.761 ± 0.027 0.583 ± 0.062 0.673 ± 0.043 0.852 ± 0.016 0.856 ± 0.028

Regression Datasets

airfoil_self_noise 0.013 ± 0.001 0.011 ± 0.001 0.275 ± 0.008 0.108 ± 0.001 0.008 ± 0.001 0.007 ± 0.001

bike 0.216 ± 0.005 0.207 ± 0.005 0.636 ± 0.015 0.551 ± 0.022 0.200 ± 0.005 0.199 ± 0.006

cpu_small 0.034 ± 0.003 0.033 ± 0.003 3.793 ± 0.731 2.360 ± 1.263 0.036 ± 0.001 0.035 ± 0.001

crab 0.234 ± 0.009 0.223 ± 0.014 0.214 ± 0.010 0.212 ± 0.011 0.208 ± 0.013 0.207 ± 0.014

diamond 0.139 ± 0.002 0.134 ± 0.002 0.296 ± 0.018 0.265 ± 0.011 0.132 ± 0.005 0.130 ± 0.005

forest-fires 1.469 ± 0.080 1.417 ± 0.083 1.423 ± 0.104 1.344 ± 0.091 1.270 ± 0.101 1.269 ± 0.114

housing 0.234 ± 0.009 0.218 ± 0.009 0.505 ± 0.009 0.444 ± 0.036 0.210 ± 0.004 0.202 ± 0.003

insurance 0.397 ± 0.144 0.381 ± 0.142 0.896 ± 0.053 0.487 ± 0.026 0.351 ± 0.018 0.346 ± 0.020

plasma_retinol 0.390 ± 0.032 0.388 ± 0.033 0.440 ± 0.070 0.411 ± 0.053 0.348 ± 0.048 0.348 ± 0.055

wine 0.110 ± 0.001 0.105 ± 0.001 0.125 ± 0.001 0.125 ± 0.013 0.117 ± 0.004 0.116 ± 0.004

Table 10: Performance improvement with LLM-FE on CatBoost and Logistic Regression. We
report the mean and standard deviation over five splits. We use Accuracy for classification datasets,
with a higher value indicating better performance. bold: indicates the best performance.

Dataset Logistic Regression CatBoost

Base LLM-FE Base LLM-FE

breast-w 0.955 ± 0.014 0.962 ± 0.008 0.957 ± 0.009 0.962 ± 0.008
blood-transfusion 0.799 ± 0.014 0.799 ± 0.009 0.742 ± 0.012 0.751 ± 0.036
car 0.690 ± 0.017 0.696 ± 0.031 0.999 ± 0.001 0.999 ± 0.001
cmc 0.520 ± 0.019 0.525 ± 0.012 0.518 ± 0.028 0.548 ± 0.027
credit-g 0.764 ± 0.006 0.780 ± 0.015 0.714 ± 0.046 0.700 ± 0.021
eucalyptus 0.671 ± 0.036 0.667 ± 0.042 0.436 ± 0.027 0.509 ± 0.050
heart 0.877 ± 0.021 0.872 ± 0.025 0.845 ± 0.015 0.839 ± 0.018
pc1 0.931 ± 0.003 0.935 ± 0.003 0.929 ± 0.005 0.932 ± 0.012
vehicle 0.772 ± 0.028 0.769 ± 0.015 0.719 ± 0.045 0.725 ± 0.033

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 ROBUSTNESS TO NOISE

Noise is an inherent challenge in real-world data, arising from various sources, including sensor
errors, human mistakes, environmental factors, and equipment limitations. Such noise can mask
underlying patterns and impair machine learning models’ ability to learn true relationships in the
data. To evaluate how effectively LLM-FE leverages prior knowledge and evolutionary search to
handle noisy data, we introduced Gaussian noise (σ = 0, 0.01, 0.05, 0.1) into numerical classification
datasets. As shown in Figure 6, we compared XGBoost’s performance across different feature
engineering approaches, using GPT-3.5-Turbo as the LLM backbone for both the LLM-based
approaches. The results demonstrate that LLM-FE maintains superior accuracy and robustness even
under increasing noise conditions.

0.0 0.01 0.05 0.1
Noise Level ()

0.85

0.87

0.89

0.91

Ac
cu

ra
cy

Base OpenFE CAAFE LLM-FE

Figure 6: Impact of Noise Levels on XGBoost model performance across different feature engineer-
ing approaches, under increasing noise conditions (σ = 0.0 to 0.1). We report the mean accuracy
across six classification datasets containing only numerical features.

B QUALITATIVE ANALYSIS

B.1 INTERPRETABILITY ANALYSIS

As illustrated in Figure7, LLM-FE generates feature-transformation programs in natural language,
thus supporting interpretability. Each generated feature program is evaluated independently, and
successful ones are stored for evolutionary refinement, enabling early discoveries to compose into
higher-order features while preserving interpretability.To evaluate the utility of the generated features,
we conduct attribution analysis using SHAP values. The results demonstrate that a consistent subset
of discovered features receives high attribution scores, indicating that they actively contribute to the
prediction process rather than serving as spurious or unused augmentations. Specifically, 16.7% of
generated features rank among the top-10 most impactful features, and over 60% appear within the
top-50 (Table 11), providing strong evidence that the features discovered by LLM-FE meaningfully
enhance model performance and decision-making.

Table 11: Percentage of generated features ranked among the top-k most impactful features by SHAP.

Top-k Percentage
Top-10 16.67
Top-20 25.93
Top-30 37.04
Top-40 57.41
Top-50 62.96

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

 def modify_features(df_input) -> pd.DataFrame:
 """
 Thought: Taking the logarithm of serum cholesterol
 may help normalize the distribution and
 emphasize the impact of extreme values.

 Feature: Log_Cholesterol | Log_Cholesterol =
 Logarithm(Cholesterol)
 """

 df_output = df_input.copy()

 # Calculate Log_Cholesterol
 df_output['Log_Cholesterol'] =
 df_output['Cholesterol'].apply(lambda x:
 np.log(x) if x > 0 else 0)

 return df_output

 def modify_features(df_input) -> pd.DataFrame:
 """
 Thought: Considering the importance of categorical variables in
 the prediction task.
 Feature: Frequency of C_1.
 Feature: GroupByThenMean of C_3 based on C_1.
 """
 df_output = df_input.copy()

 # Frequency of C_1
 df_output['C_1_freq'] =

df_output['C_1'].map(df_output['C_1'].value_counts())
 # GroupByThenMean of C_3 based on C_1
 df_output['C_3_mean_by_C_1'] =

df_output.groupby('C_1')['C_3'].transform('mean')

 return df_output

(c) LLM-FE (GPT-3.5-Turbo) Output(b) LLM-FE w/o Domain Knowledge (GPT-3.5-Turbo) Output(a) Quantitative Performance

def modify_features(df_input) -> pd.DataFrame:
 """
 Thought: Interaction between normal nucleoli and
 mitoses could capture the proliferative activity
 and potentially enhance the predictive power for
 malignancy.
 Feature: proliferation_activity |
 proliferation_activity = Normal_Nucleoli*Mitoses
 """
 df_output = df_input.copy()
 # Calculate the proliferation activity
 df_output['proliferation_activity'] =
 df_output['Normal_Nucleoli']*df_output['Mitoses']

 return df_output

def modify_features(df_input) -> pd.DataFrame:
 """

 Adding a feature representing the average value of C_0 to
 C_8 as a potential indicator of the overall severity

 """

 df_output = df_input.copy()
 df_output['avg_C'] = df_output[

['C_0', 'C_1', 'C_2', 'C_3',
'C_4', 'C_5', 'C_6', 'C_7', 'C_8']
].mean(axis=1)

 return df_output

Heart Dataset

Breast-W Dataset

Figure 7: Quantitative and Qualitative Analysis on Impact of Domain Knowledge for LLM-FE
on Heart and Breast-W datasets. (a) Comparison of XGBoost performance for LLM-FE against
its domain-agnostic variant and traditional methods, such as OpenFE and AutoFeat, which do not
integrate domain knowledge and exhibit reduced performance. (b) Features generated using the w/o
Domain Knowledge variant of LLM-FE. (c) Feature discovery program generated by LLM-FE. The
generated programs emphasize how incorporating domain expertise leads to more interpretable

features that improve model performance.

B.2 IMPACT OF DOMAIN KNOWLEDGE

Figure 7 highlights the qualitative and quantitative benefits of domain-specific feature transforms.
We demonstrate this using two datasets: the Breast-W dataset, which focuses on distinguishing
between benign and malignant tumors, and the Heart dataset, which predicts cardiovascular disease
risk based on patient attributes. These tasks underscore the crucial role of domain knowledge in
identifying meaningful features. Using embedded domain knowledge, LLM-FE not only significantly
improves accuracy but also provides the reasoning for choosing the given feature, leading to more
interpretable feature engineering. For example, in the Heart dataset, LLM-FE suggests the feature
‘Log_Cholesterol’, recognizing cholesterol’s critical role in heart health and applying a loga-
rithmic transformation to reduce the impact of outliers and stabilize the variance. In contrast, the
‘w/o Domain Knowledge’ variant arbitrarily combines existing features, leading to uninterpretable
transformations and reduced overall performance (Figure 7(a)). Similarly, for breast cancer predic-
tion, LLM-FE identifies ‘proliferation_activity’ a biologically relevant metric leading to
performance improvement, whereas the absence of domain knowledge results in a simple mean of all
features, lacking interpretability and clinical significance (Figures 7(b) and 7(c)).

B.3 IMPACT OF EVOLUTIONARY REFINEMENT

Figure 8 shows the detailed performance trajectory of LLM-FE compared with its ‘w/o Evolutionary
Refinement’ variant on PC1 and Balance-Scale datasets. The graph demonstrates that LLM-FE, using
evolutionary search, consistently improves validation accuracy, while the non-refinement variant
stagnates due to local optima. On the PC1 dataset, the non-refinement variant plateaus after seven
iterations, and on the Balance-Scale dataset, it stagnates after five iterations. LLM-FE’s evolutionary
refinement helps it escape local optima with more robust optimization, leading to better validation
accuracy on both datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 5 10 15 20
Iterations

0.850

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

Ac
cu

ra
cy

Adult

0 5 10 15 20
Iterations

0.895

0.900

0.905

0.910

0.915

0.920

0.925

0.930

Ac
cu

ra
cy

Bank

0 5 10 15 20
Iterations

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Balance-Scale

0 5 10 15 20
Iterations

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Ac
cu

ra
cy

Eucalyptus

0 5 10 15 20
Iterations

0.74

0.75

0.76

0.77

0.78

0.79

0.80

Ac
cu

ra
cy

Blood

0 5 10 15 20
Iterations

0.98

0.99

1.00

1.01

1.02

Ac
cu

ra
cy

Car

0 5 10 15 20
Iterations

0.52

0.53

0.54

0.55

0.56

0.57

Ac
cu

ra
cy

Cmc

0 5 10 15 20
Iterations

0.82

0.83

0.84

0.85

0.86

0.87

Ac
cu

ra
cy

Heart

0 5 10 15 20
Iterations

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

Ac
cu

ra
cy

Credit-g

0 5 10 15 20
Iterations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Junglechess

0 5 10 15 20
Iterations

0.98

0.99

1.00

1.01

1.02

Ac
cu

ra
cy

Tic-tac-toe

0 5 10 15 20
Iterations

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

Pc1

LLM-FE w/o Evolutionary Refinement LLM-FE

Figure 8: Performance Trajectory Analysis. Validation Accuracy progression for LLM-FE w/o evolutionary
refinement and LLM-FE. LLM-FE demonstrates better validation accuracy, highlighting the advantage of
evolutionary iterative refinement.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 COMPUTATIONAL ANALYSIS

0 100 200 300 400 500 600 700
Time (seconds)

0.83

0.84

0.85

0.86

Pe
rfo

rm
an

ce

Pareto Plot: Time vs Performance

base openfe caafe octree llm-fe

Figure 9: Pareto Plot: comparing trade-off be-
tween performance (accuracy) vs time (in sec-
onds) for LLM-FE and other feature engineering
baselines.

Automated feature engineering methods, both clas-
sical and LLM-based, universally employ model
training and validation to evaluate feature rele-
vance. This evaluation strategy represents stan-
dard methodology across all automated feature
engineering approaches rather than an additional
computational burden specific to LLM-FE. We
conduct our efficiency-performance trade-off anal-
ysis on the datasets with higher sample counts
from Section 4.4, as these datasets present greater
complexity with their substantial number of sam-
ples and features. Our comparative Pareto analy-
sis (Figure 9) presents the base model alongside
various feature engineering baselines. Our pro-
posed method, LLM-FE, demonstrates Pareto op-
timality by achieving superior performance with
substantially reduced computational requirements
compared to existing methods, which either ex-
hibit longer execution times or yield inferior per-
formance metrics on these datasets. Only the
base method requires less computation time than
LLM-FE, but at a significant performance cost.
This positions LLM-FE as the optimal solution in the efficiency-performance space, delivering
state-of-the-art results with reasonable computational demands even when handling datasets of
considerable complexity.

B.5 MEMORIZATION IN FEATURE ENGINEERING

Recent work has shown that LLMs can memorize tabular data under certain conditions (Bordt
et al., 2024), motivating careful evaluation of their behavior on structured tasks. We therefore study
XGBoost with and without LLM-FE, using GPT-3.5-Turbo, on datasets introduced by Bordt
et al. (2024), which are specifically designed to test memorization and shown not to be present in
model pretraining. In addition, we consider datasets from Hollmann et al. (2024), released after the
September 2021 training cutoff for GPT models and hosted on Kaggle with hidden splits, making
it unlikely they were included in pretraining corpora. As reported in Table 12, LLM-FE produces
modest but consistent improvements across all datasets, indicating that the observed gains stem from
semantically meaningful refinements rather than verbatim recall. While these findings highlight
the value of domain-informed and evolutionarily refined features, memorization remains a critical
concern in tabular domains, underscoring the need for more novel and carefully curated benchmarks.

Table 12: Comparison of the XGBoost with and without LLM-FE on five classification datasets.

Dataset Base LLM-FE
kidney-stones 0.761 ± 0.024 0.761 ± 0.027
health-insurance 0.756 ± 0.001 0.759 ± 0.001
pharyngitis 0.655 ± 0.008 0.660 ± 0.023
fico 0.715 ± 0.006 0.719 ± 0.009
acs-income 0.807 ± 0.002 0.809 ± 0.003

B.6 LLM BIAS IN OPERATOR SELECTION

LLMs exhibit a known bias toward simple operators such as addition, subtraction, or absolute
value Küken et al. (2024), limiting the diversity of generated features relative to specialized feature-
engineering systems. This tendency arises from pre-training corpora, where simple transformations
dominate, making them ‘default’ choices even when more sophisticated transformations may be

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

beneficial. Despite this bias toward simpler operators, LLM-FE consistently demonstrates the
valuable capability of identifying certain complex and informative transformations that are rarely
generated by conventional LLM-based automated methods. Specifically, complex operators like
groupbythenmean, groupbythenmin, groupbythenmax, residual, and sigmoid are
also recommended frequently by LLM-FE, as illustrated in Figure 10. Such complex operations
have the potential to capture meaningful patterns involving group-based aggregation that simpler
transformations may miss. Thus, while further refinement is needed to balance operator selection, the
ability of LLM-FE to discover nuanced, aggregation-based features emphasizes its promising role as
a complementary technique in the broader automated feature engineering toolkit.

abs add divide multiply subtract residual sigmoid groupby
thenmax

log groupby
thenmin

min groupby
thenmean

Operator

0.0

0.1

0.2

0.3

Fr
eq

ue
nc

y

LLM-FE w/o LLM-FE

Figure 10: Frequency of Feature Engineering Operators. We compare the operators for LLM-FE
with simple LLM-based methods.

C DATASET DETAILS

Table 13 describes the diverse collection of datasets spanning three major categories: (1) binary
classification, (2) multi-class classification, and (3) regression problems used in our evaluation. The
datasets were primarily sourced from established platforms, including OpenML Vanschoren et al.
(2014); Feurer et al. (2021), UCI Asuncion et al. (2007), and Kaggle. We specifically selected datasets
with descriptive feature names, excluding those with merely numerical identifiers. Each dataset
includes a task description, enhancing contextual understanding for users. Our selection encompasses
not only small datasets but also larger ones, featuring extensive data samples and high-dimensional
datasets with over 50 features. This diverse and comprehensive selection of datasets represents a
broad spectrum of real-world scenarios, varying in both feature dimensionality and sample size,
thereby providing a robust framework for evaluating feature engineering works.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: Dataset statistics.

Dataset #Features #Samples Source ID/Name

Binary Classification

adult 14 48842 OpenML 1590
blood-transfusion 4 748 OpenML 1464
bank-marketing 16 45211 OpenML 1461
breast-w 9 699 OpenML 15
credit-g 20 1000 OpenML 31
tic-tac-toe 9 958 OpenML 50
pc1 21 1109 OpenML 1068
pima-indian-diabetes 8 768 OpenML 43582

Multi-class Classification

arrhythmia 279 452 OpenML 5
balance-scale 4 625 OpenML 11
car 6 1728 OpenML 40975
cmc 9 1473 OpenML 23
eucalyptus 19 736 OpenML 188
jungle_chess 6 44819 OpenML 41027
vehicle 18 846 OpenML 54
cdc diabetes 21 253680 Kaggle diabetes-health-indicators-dataset
heart 11 918 Kaggle heart-failure-prediction
communities 103 1994 UCI communities-and-crime
myocardial 111 1700 UCI myocardial-infarction-complications

Regression

airfoil_self_noise 6 1503 OpenML 44957
cpu_small 12 8192 OpenML 562
diamonds 9 53940 OpenML 42225
plasma_retinol 13 315 OpenML 511
forest-fires 13 517 OpenML 42363
housing 9 20640 OpenML 43996
crab 8 3893 Kaggle crab-age-prediction
insurance 7 1338 Kaggle us-health-insurancedataset
bike 11 17389 UCI bike-sharing-dataset
wine 10 4898 UCI wine-quality

20

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://archive.ics.uci.edu/dataset/183/communities+and+crime
https://archive.ics.uci.edu/dataset/579/myocardial+infarction+complications
https://www.kaggle.com/datasets/sidhus/crab-age-prediction
https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://archive.ics.uci.edu/dataset/186/wine+quality

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D IMPLEMENTATION DETAILS

D.1 BASELINES

We implement and evaluate various state-of-the-art feature engineering baselines, spanning traditional
methods to recent LLM-based approaches, for comparison with LLM-FE. After generating features
with each baseline, we apply a unified preprocessing pipeline to prepare the data for training and
evaluation in the machine learning model. We implement the following baselines:

AutoFeat. AutoFeat is a classical feature engineering approach that uses iterative feature sub-
sampling with beam search to select informative features. We utilize the open-source autofeat1

package, retaining the default parameter settings. For parameter settings, we refer to the example
‘.ipynb’ files provided in their official repository.

OpenFE. OpenFE is another state-of-the-art traditional feature engineering method using feature
boosting and pruning algorithms. We employ the open-source openfe2 package with standard
parameter settings.

FeatLLM. FeatLLM uses an LLM to generate rules to binarize features that are then used as input
to a simple model, such as linear regression. We adapt the open-source featllm3 implementation,
modifying the pipeline to use an XGBoost model for inference. To ensure a fair comparison with
other methods, we provide the entire training dataset to train the XGBoost model while using only
a subset of the dataset (10 samples) to the LLM to generate binary features. We report the results
through an ensemble over three samples to maintain consistency with LLM-FE.

CAAFE. We utilize the official implementation of CAAFE,4, maintaining all parameter settings
as specified in the original repository. Following their workflow, we preprocess the data using their
pipeline before inputting it into the prediction model after the feature engineering process.

OCTree. The official OCTree implementation5 was modified to keep the data loading and model
initialization part common. We implemented OCTree only for classification datasets, as the official
implementation is limited to classification datasets, and running for regression datasets on our own
could have resulted in incorrect implementation.

D.2 LLM-FE

Feature Generation. Figure 12 presents an example prompt for the balance-scale dataset. The
prompt begins with general instructions, followed by dataset-specific details, such as task descriptions,
feature descriptions, and a subset of data instances serialized and expressed in natural language. To
introduce diversity in prompting, we randomly sample between this approach and an alternative set
of instructions, encouraging the LLM to explore a wider range of operators from OpenFE Zhang
et al. (2023), as prior LLMs tend to favor simpler operators Küken et al. (2024) (see Figure 11). The
quality of features generated has been detailed in Appendix B.6. By providing this structured context,
the model can leverage its domain knowledge to generate semantically and contextually meaningful
hypotheses for new feature optimization programs.

Data-Driven Evaluation. After prompting the LLM, we sample b = 3 outputs. Based on pre-
liminary experiments, we set the temperature for LLM output generation to t = 0.8 to balance
creativity (exploration) and adherence to problem constraints, as well as reliance on prior knowledge
(exploitation). The data modification process is illustrated in Figure 12(c), where the outputs are
used to modify the features via modify_features(input). These modified features are then
input into a prediction model, and the resulting validation score is calculated. To ensure efficiency,

1https://github.com/cod3licious/autofeat.git
2https://github.com/IIIS-Li-Group/OpenFE.git
3https://github.com/Sungwon-Han/FeatLLM
4https://github.com/noahho/CAAFE
5https://github.com/jaehyun513/OCTree

21

https://github.com/cod3licious/autofeat.git
https://github.com/IIIS-Li-Group/OpenFE.git
https://github.com/Sungwon-Han/FeatLLM
https://github.com/noahho/CAAFE
https://github.com/jaehyun513/OCTree

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

our evaluation is constrained by time and memory limits set at T = 30 seconds and M = 2GB,
respectively. Programs exceeding these limits are disqualified and assigned None scores, ensuring
timely progress and resource efficiency in the search process.

Memory Management. Following the ‘islands’ model used by Cranmer (2023); Shojaee et al.
(2024); Romera-Paredes et al. (2024), we maintain the generated hypotheses along with their eval-
uation scores in a memory buffer comprising multiple islands (m = 3) that evolve independently.
Each island is initialized with a basic feature transformation program specific to the dataset. Each
island is initialized with a simple feature transformation program specific to the dataset (def
modify_features_v0()in Figure 12(d)). In each iteration, novel hypotheses and their valida-
tion metrics are incorporated into their respective islands only if they exceed the island’s current
best score. Within each island, we additionally cluster feature discovery programs based on their
signature, characterized by their validation score. Feature transformation programs that produce
identical scores are consolidated together, creating distinct clusters. This clustering approach helps
preserve diversity by ensuring that programs with varying performance characteristics remain in the
population. We leverage this island model to construct prompts for the LLM. After an initial update
of the prompt template with dataset-specific information, we integrate in-context demonstrations from
the buffer. Following Shojaee et al. (2024); Romera-Paredes et al. (2024), we randomly select one of
the m available islands. Within the chosen island, we sample k = 2 programs to serve as in-context
examples. To sample programs, we first select clusters based on their signatures using the Boltzmann
selection strategy De La Maza & Tidor (1992) to sample clusters based on their signatures with a
preference for clusters with higher scores. Let si be the score of the i-th cluster, and the probability
Pi for selecting the i-th cluster is given as:

Pi =
exp(siτc)∑

i(
si
τc
)
, where τc = T0(1−

u mod N

N
) (4)

where τc is the temperature parameter, u is the current number of programs on the island, and
T0 = 0.1 and N = 10, 000 are hyperparameters. Once a cluster is selected, we sample the programs
from it.

###

<Role>
You are a data scientist with expert knowledge about the provided dataset.

Your primary responsibility is to identify the most informative features that can enhance the solution to the
specified <Task>.

###
<Instructions>

 - You are given a task description, a list of existing features, a set of advanced operators, and sample
data.
 - Your objective is to leverage the provided advanced operators within <Operators> to generate meaningful

and insightful features that enhance task performance. These operators have been carefully curated to extract
deeper patterns from the data.

 - Avoid relying on basic arithmetic operators (e.g., addition, subtraction, multiplication, or division).
Instead, focus exclusively on the provided advanced operators inside <Operators>.
 - For each feature you derive, provide a concise explanation of why it is relevant and to solving the <Task>

in the docstring.

###

<Operators>
 - General Operators: Frequency (Frequency of feature in the data)

 - Numerical Input Operators: Absolute, Logarithm, Square Root, Sigmoid, Square, Round, Residual
 - Numeric-Numeric Operators: Minimum, Maximum
 - Categorical-Numeric Operators: GroupByThenMin, GroupByThenMax, GroupByThenMean, GroupByThenMedian,

GroupByThenStd, GroupByThenRank
 - Categorical-Categorical Operators: Combine, CombineThenFreq, GroupByThenNUnique

Instruction

Figure 11: An example of the alternate set of instructions used to direct the model to use a complex
set of operations over simple operators for generating features.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

###
<Role>

You are a data scientist expert in the field of the given dataset.
Your role is to apply your domain expertise to identify and create, and refine the most informative features

that solve the <Task> effectively.

###

<Instructions>
- You are provided with the task description, a list of existing features, and data examples.

- Use your domain knowledge to derive features that capture meaningful patterns, trends, or relationships
inherent in the data.
- Prioritize features that have high potential to enhance the model’s ability to solve the <Task>, considering

both relevance and predictive power.
- For each derived feature, provide:
- A clear explanation of how it was derived and justification of its relevance for solving the <Task>.

- Ensure your approach remains grounded in the context of the dataset and the <Task>, and aim for features
that are interpretable and actionable.

###
<Task>

Which direction does the balance scale tip to? Right, left, or balanced?

###
<Features>

- Left-Weight: Left-Weight (numerical variable within range [1, 5])
....

....

###

<Examples>
If Left-Weight is 3, Left-Distance is 3, Right-Weight is 4, Right-Distance is 5, Then Result is right.

....

....

Please generate as many new features as possible using the information from the task, feature descriptions,
examples, and your domain understanding of the dataset. Remove any irrelevant, redundant, or less informative
features to enhance overall performance.

First, describe your new feature transformation and the main steps in a concise, one-sentence docstring.Then,

implement it in Python as a function that adheres to the given specifications.
Avoid providing any further explanations or additional descriptions.

def modify_features_v0(df_input) -> pd.DataFrame:

 """

 Thought 1: The absolute difference between Left-Weight and Right-Weight can

 capture the imbalance in weight distribution.

 Feature 1: weight_difference | weight_difference = abs(Left-Weight - Right-Weight)

 """

 df_output = df_input.copy()
 # Calculate absolute difference between Left-Weight and Right-Weight

 df_output['weight_difference'] =

 abs(df_output['Left-Weight'] - df_output['Right-Weight'])

 return df_output

Instruction

Dataset Specification

In-Context Example

def modify_features_v1(df_input) -> pd.DataFrame:

 """Improved version of modify_features_v0""" Function to Complete

def evaluate(data: dict):

 """ Evaluate the feature transformations on data observations."""

 import torch

 import utils

 from sklearn.model_selection import train_test_split

 from sklearn.metrics import accuracy_score

 from sklearn import preprocessing

 import xgboost as xgb

 #Data Loading and Processing

 # Load model

 model = xgb.XGBClassifier(random_state=42)

 # Training

 model.fit(X_train, y_train)

 # Inference

 y_pred = model.predict(X_test)

 score = accuracy_score(y_test, y_pred)

 return score, inputs, outputs Evaluation Function

 # Load data observations

 label_encoder = preprocessing.LabelEncoder()

 # Load data observations

 inputs, outputs = data['inputs'], data['outputs']

 X = modify_features(inputs)

 y = label_encoder.fit_transform(outputs)

 for col in X.columns:

 if X[col].dtype == 'string':

 X[col] = label_encoder.fit_transform(X[col])

 # Split the data

 X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.25, random_state=0)

 # Data Processing

 X_train = utils.make_numeric(X_train)

 X_test = utils.make_numeric(X_test)

 X_train = torch.tensor(X_train.to_numpy())

 X_test = torch.tensor(X_test.to_numpy())

Figure 12: Example of an input prompt for balance-scale dataset containing (a) instruction, (b) dataset
specification containing the details about the task, features, and data samples, (c) evaluation function, (d) initial
in-context demonstration, and (e) function to complete.

23

	Introduction
	Related Works
	LLM-FE Approach
	Problem Formulation
	Feature Generation
	Input Prompt
	Feature Sampling

	Data-Driven Evaluation
	Experience Management

	Experimental Setup
	Datasets
	Baselines
	LLM-FE Configuration
	Results and Discussion

	Analysis
	Generalizability Analysis
	Ablation Study
	Impact of Domain Knowledge and Evolutionary Refinement

	Conclusion
	Additional Results
	LLM-FE and Hyperparameter Optimization (HPO)
	Transferability of Generated Features
	Additional Models
	Robustness to Noise

	Qualitative Analysis
	Interpretability Analysis
	Impact of Domain Knowledge
	Impact of Evolutionary Refinement
	Computational Analysis
	Memorization in Feature Engineering
	LLM Bias in Operator Selection

	Dataset Details
	Implementation Details
	Baselines
	LLM-FE

