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Abstract—Trajectory planning for quadrupedal robots in com-
plex unknown environments is an extremely challenging task due
to the need to maintain balance, stability, and safe interaction
with unstructured terrain while navigating efficiently. Existing
methods often decouple planning and control, relying on compu-
tationally expensive environmental representations, or struggling
with non-convergence in intricate scenarios. This paper presents
a novel reinforcement learning(RL)-based approach that tightly
integrates spatio-temporal trajectory planning and control for
quadrupedal robots. The proposed method is validated on a
RL-based locomotion controller which is tailored to challenging
terrains. By unifying optimization-based planning and RL-based
control in a unified framework, the quadrupedal robot can
execute tasks intelligently while making real-time adjustments
based on environmental feedback, resulting in improved overall
performance and robustness. The proposed framework paves
the way for robust and efficient navigation of legged robots in
complex, unstructured, and off-road environments.

Index Terms—Off-road Autonomy; Trajectory Planning; Re-
inforcement Learning

I. INTRODUCTION

For quadrupedal robots, trajectory planning in unknown
complex environments is an extremely challenging task. Com-
pared to aerial robots such as unmanned aerial vehicles
(UAVs), quadrupedal robots not only need to satisfy balance
and stability constraints during motion but also must consider
the interaction and contact with complex terrains, avoiding
collisions or instability. Therefore, quadrupedal robots need to
plan an optimal trajectory that can reach the target point while
ensuring stability, to improve navigation efficiency and energy
utilization.

In recent years, researchers have proposed numerous
trajectory-planning algorithms for robot navigation, aiming to
generate optimal trajectories. However, most existing algo-
rithms are more suitable for robot systems that do not require
ground contact, such as UAVs. Although these algorithms can
be simply modified for application to quadrupedal robots, the
resultant planning results often exhibit abnormalities or sub-
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Fig. 1. The snapshot of a planning procedure in a random simulation
environment of massive trees

optimal performance, failing to meet the special requirements
of quadrupedal robots.

Therefore, developing a trajectory planning algorithm
specifically designed for quadrupedal robots has significant
theoretical value and application prospects.

A. Vision-based Obstacle Avoidance

Vision-based obstacle avoidance control algorithms play
a crucial role in autonomous navigation and path planning.
These algorithms aim to generate safe and efficient paths
by leveraging visual information, enabling robots to achieve
autonomous navigation capabilities in complex environments
[1]–[3]. However, many existing trajectory planning algo-
rithms construct Euclidean Signed Distance Fields (ESDF)
maps [4] or safe corridors [5] based on visual perception
to constrain the optimization of trajectory generation, which
typically consumes a significant amount of planning time.
To achieve real-time obstacle avoidance, some researchers
attempt to eliminate these additional operations by directly
incorporating the information as constraints in a gradient-
free manner [6], improving planning speed and efficiency
with satisfactory results. Nevertheless, these gradient-based



planners may face non-convergence or planning failures when
dealing with complex environments.

B. Learning-based Planner

In recent years, with the flourishing development of rein-
forcement learning(RL), utilizing learning-based planners to
solve path-planning problems has become a popular research
direction. RL is a learning method based on Markov decision
processes, where an intelligent agent observes states and
outputs behaviors that maximize the total expected reward.
Numerous research efforts focus on combining RL algorithms
with classical global or local motion planning modules to
achieve relatively optimal results [7]–[10]. These algorithms
are typically used as supplements to classical algorithms but
share the same limitation of insufficient robustness. Simulta-
neously, some end-to-end approaches directly take sensor data
as input and control the robot to reach its destination. These
works often employ deep learning techniques but still face
significant challenges when deployed in the real world.

C. Gap between Planning and Control

To handle complex environments and tasks, many works
discretize the robot’s state space. This approach simplifies the
problem but results in discontinuous and non-smooth planned
paths. This means that the robot may exhibit disjointed actions
when executing the planned path, affecting its performance and
effectiveness [11].

Furthermore, previous works often decouple planning and
control execution. While this decoupling reduces system com-
plexity, it also induces sub-optimal executed trajectory. This
implies that the robot may not achieve the expected perfor-
mance level in the actual environment, leading to a sim2real
gap [12]. In the summary, the contribution of this work can
be listed as follows:

• Proposed a novel optimization-based approach for spatio-
temporal planning of trajectories in unknown, off-road
environments. This approach leverages the power of an
RL-based pre-existing locomotion controller to generate
optimized trajectories without relying on prior knowledge
of the environment.

• By utilizing a RL control policy, the trajectory planning
process becomes more efficient and effective, leading to
improved performance in terms of speed and accuracy,
especially in challenging off-road scenarios.

• Integrated planning and control in a unified framework,
enabling the robot to execute tasks in unknown envi-
ronments, resulting in improved overall performance and
robustness in off-road autonomy.

II. METHOD

A. Overview

An overview of our system is illustrated in Fig 2. Given
a pre-established low-level locomotion policy, we develop a
planner that generates high-frequency velocity commands to
be tracked in a hierarchical structure. We first obtain sensor
information from the real robot, which can be accessed in

Fig. 2. Overview of the proposed pipeline

both simulation and real-world platforms. Assuming at the i-th
step ti, we can obtain the odometry messages Oi and camera
messages Ci. Based on this information, we can acquire the
point cloud transformed by the depth camera. Then, we apply
ground segmentation algorithms, specifically the Patchwork++
algorithm [13], to obtain two concerned point cloud classes
Ca = {Cg, Cn}, where Cg indicates the ground cloud used
to build a point cloud map using an ikd-tree [14], and Cn
indicates the non-ground segment used to build a grid map. We
then pass the output to the planner module, which generates
trajectories as discussed in the next section. The RL controller
subsequently generates the torque commands τ to drive the
motors. After completing this pipeline, we obtain the desired
outcome.

B. Trajectory Definition

In robot motion planning, trajectory generation is a critical
step to ensure smooth robot motion. For a quadruped robot, we
simplify the planning problem by focusing on the trajectory
planning of its base in the x, y, z, yaw state space, without
considering obstacle avoidance for the time being. The initial
trajectory is generated using the minimum jerk method [2].
The resulting trajectory is a piecewise four-dimensional fifth-
order polynomial with M segments, and the i-th segment Pi

can be represented as:

Pi = CT
i β(t− ti−1), t ∈ [ti−1, ti] (1)

where β(t) is the vector of fifth-order basis functions, and
Ci is the coefficient matrix for the i-th segment. The minimum
jerk trajectory ensures smooth continuity at the boundary
conditions while minimizing the trajectory curvature change,
thereby avoiding abrupt robot motions.

To further optimize the trajectory, we introduce the
MINCO [15] parameterization method. By turning the tra-
jectory coefficient matrices C and segment durations T =



[T1, . . . , TM ]T to optimization variables q, T , we can formu-
late the following unconstrained optimization problem:

c = M(q,T) (2)

where c = [cT1 , ..., c
T
M ]T collects the coefficients of all

segments, q represents the intermediate waypoints, and each
segment’s time cost is T , the MINCO optimization problem
can be formulated as:

min
q,T

J =

∫ Tt

0

∥ ...
p (t)∥2 dt+ ρTt Tt =

M∑
l=1

Tl (3)

We use a method similar to [3] to model the obstacle
avoidance penalty Jo as:

Jo =

κ∑
i=0

max{(Co − do(p(ti))), 0}3 (4)

where do(·) is a distance function that depends on the
trajectory p(t), and therefore Jo is a function of the MINCO
trajectory. Co represents the clearance threshold for obstacle
avoidance in the grid map.

We also incorporate additional penalties J∗ and solve this
optimization problem efficiently using unconstrained optimiza-
tion algorithms such as L-BFGS.

C. Deep Reinforcement Learning(DRL)-based Controller

In our previous work [16], we trained a general DRL-based
control policy that uniformly considers the robot’s structural
variation and terrain diversity. The model takes the observation
Ot ∈ R45 as input, which includes the body angular velocity
ωt ∈ R3, projected gravity gt ∈ R3, body linear velocity
command v∗

t ∈ R3, joint angles qt ∈ R12, joint velocities
q̇t ∈ R12, and the action from the previous time step at−1 ∈
R12, which can be written as:

Ot = [ωt, gt,v
∗
t , qt, q̇t,at−1] (5)

The output of the DRL policy is then directly applied to the
joint-level PD controller of the joint-level actuation module,
i.e., τ = Kp · (q∗

t − qt) + Kd · (−q̇t), where Kp and Kd

are the proportional and derivative gains, respectively.
The DRL controller can handle various velocity commands,

while the classical planner can generate smooth trajectories
with high responsiveness. By combining these two methods,
we can obtain a highly novel planner for navigation tasks
that leverages the strengths of both approaches. The DRL
controller provides robust and adaptive control policies, while
the the planner ensures smooth and responsive trajectory
generation.

III. EXPERIMENT

A. Experimental Setup

We utilized IsaacGym as the simulator environment for
training our model. Recent work has already generated a
diverse set of environments with varying tracks and obsta-
cles [16]. The model was trained on a desktop computer
equipped with an Nvidia RTX 4070 GPU for more than 6000
episodes, allowing for extensive training iterations.

To evaluate the performance of our algorithm, we generated
multiple testing environments using the Gazebo simulator.
The first testing scenario was a random forest environment
comprising 70 pine trees and 30 bark obstacles within a 15m
× 50m area. This environment aimed to assess the algorithm’s
capability to navigate through cluttered and unstructured en-
vironments. Additionally, we have environments with a 15m
× 50m random forest with 100, 150, and 200 pine trees.

The second testing scenario was derived from a highly
challenging competition [17], where our algorithm was eval-
uated on a 6m × 10.32m runway. This scenario provided a
controlled and structured environment to test the algorithm’s
performance under constrained conditions, mimicking real-
world applications such as autonomous navigation in urban
or industrial settings.

By leveraging diverse testing environments, including both
unstructured and structured scenarios, we aimed to comprehen-
sively evaluate the robustness, adaptability, and generalization
capabilities of our algorithm across a wide range of potential
real-world applications.

B. Experiment Results

Based on our algorithm, we first tested our planner’s
performance with both the Model Predictive Control (MPC)
controller and the DRL controller. Subsequently, we evaluated
our entire planner’s performance against some widely used
planners.

1) Controller Comparisons: In the pine tree forest environ-
ment, we evaluated the performance of our method against two
controllers: the MPC controller and the DRL controller shown
in Fig 3, 4. Our method demonstrated superior capabilities in
traversing exposed roots without slipping, resulting in higher
mobility and reduced time consumption compared to the
other controllers. Additionally, our method exhibited improved
velocity trackability, enabling more accurate and responsive
control.

2) Plan Quality Evaluation: We assessed the plan quality
of our method by testing it in both the random forest and
pine forest environments which are shown in Fig 5. The
results include metrics related to trackability and trajectory
smoothness. These evaluations provide insights into the algo-
rithm’s capability to generate high-quality plans that adhere to
the desired trajectories while navigating through diverse and
challenging terrain conditions.

IV. CONCLUSION

In this work, we presented a novel framework for integrated
spatio-temporal trajectory planning and control tailored for



Fig. 3. Collision-free navigation of a quadruped robot to the goal using the
proposed method

Fig. 4. Quadruped robot navigation using MPC fails due to execution error

quadrupedal robots in complex, unstructured off-road envi-
ronments. By leveraging the power of RL techniques, our
approach generates optimized normalized trajectories that en-
able dynamic adaptation to environmental constraints while
ensuring balance, stability, and safe terrain interaction.

Future research directions include incorporating more so-
phisticated perception modules, extending to multi-robot co-
ordination scenarios, and exploring applications in challenging
domains.
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