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Abstract

Research on (multi-domain) task-oriented di-001
alog (TOD) has predominantly focused on002
the English language, primarily due to the003
shortage of robust TOD datasets in other lan-004
guages, preventing the systematic investiga-005
tion of cross-lingual transfer for this crucial006
NLP application area. In this work, we intro-007
duce MULTI2WOZ, a new multilingual multi-008
domain TOD dataset, derived from the well-009
established English dataset MULTIWOZ, that010
spans four typologically diverse languages:011
Chinese, German, Arabic, and Russian. In con-012
trast to concurrent efforts (Ding et al., 2021;013
Zuo et al., 2021), MULTI2WOZ contains gold-014
standard dialogs in target languages that are015
directly comparable with development and test016
portions of the English dataset, enabling reli-017
able and comparative estimates of cross-lingual018
transfer performance for TOD. We then intro-019
duce a new framework for multilingual conver-020
sational specialization of pretrained language021
models (PrLMs) that aims to facilitate cross-022
lingual transfer for arbitrary downstream TOD023
tasks. Using such conversational PrLMs spe-024
cialized for concrete target languages, we sys-025
tematically benchmark a number of zero-shot026
and few-shot cross-lingual transfer approaches027
on two standard TOD tasks: Dialog State Track-028
ing and Response Retrieval. Our experiments029
show that, in most setups, the best performance030
entails the combination of (i) conversational031
specialization in the target language and (ii)032
few-shot transfer for the concrete TOD task.033
Most importantly, we show that our conversa-034
tional specialization in the target language al-035
lows for an exceptionally sample-efficient few-036
shot transfer for downstream TOD tasks.037

1 Introduction038

Task-oriented dialog (TOD) is arguably one of the039

most popular NLP application areas (Yan et al.,040

2017; Henderson et al., 2019, inter alia), with more041

importance recently given to more realistic, multi-042

domain conversations (Budzianowski et al., 2018;043

Ramadan et al., 2018) (in which users may han- 044

dle more than one task during the conversation, 045

e.g., booking a taxi and making a reservation at 046

a restaurant). Unlike for many other NLP tasks 047

(Hu et al., 2020; Liang et al., 2020; Ponti et al., 048

2020, inter alia), the progress towards multilingual 049

multi-domain TOD has been hindered by the lack 050

of sufficiently large and high-quality datasets in 051

languages other than English (Budzianowski et al., 052

2018; Zang et al., 2020) and more recently, Chi- 053

nese (Zhu et al., 2020). Creating TOD datasets 054

for new languages from scratch or via translation 055

of English datasets is significantly more expensive 056

and time-consuming than for most other NLP tasks. 057

The absence of multilingual datasets that are com- 058

parable (i.e., aligned) across languages prevents a 059

reliable estimate of effectiveness of cross-lingual 060

transfer techniques in multi-domain TOD (Razu- 061

movskaia et al., 2021). 062

In order to address these gaps, in this work we in- 063

troduce MULTI2WOZ, a reliable and large multilin- 064

gual evaluation benchmark for multi-domain task- 065

oriented dialog, derived by translating the monolin- 066

gual English-only MultiWOZ data (Budzianowski 067

et al., 2018; Eric et al., 2020) to four linguistically 068

diverse major world languages, each with a differ- 069

ent script: Arabic (AR), Chinese (ZH), German 070

(DE), and Russian (RU). 071

Compared to the products of concurrent efforts 072

that derive multilingual datasets from English Mul- 073

tiWOZ (Ding et al., 2021; Zuo et al., 2021), our 074

MULTI2WOZ is: (1) much larger – we translate 075

all dialogs from development and test portions of 076

the English MultiWOZ (in total 2,000 dialogs con- 077

taining the total of 29.5K utterances); (2) much 078

more reliable – complete dialogs, utterances as 079

well as slot-values – have been manually trans- 080

lated (without resorting to error-prone heuristics), 081

and the quality of translations has been validated 082

through quality control steps; and (3) parallel – the 083

same set of dialogs has been translated to all target 084
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languages, enabling direct comparison of perfor-085

mance of multilingual models and cross-lingual086

transfer approaches across languages.087

We then use MULTI2WOZ to benchmark a088

range of state-of-the-art zero-shot and few-shot089

methods for cross-lingual transfer in two stan-090

dard TOD tasks: Dialog State Tracking (DST)091

and Response Retrieval (RR). As the second main092

contribution of our work, we propose a general093

framework for improving performance and sample-094

efficiency of cross-lingual transfer for TOD tasks.095

We first leverage the parallel conversational Open-096

Subtitles corpus (Lison and Tiedemann, 2016) to097

carry out a conversational specialization of a PrLM098

for a given target language, irrespective of the099

downstream TOD task of interest. We then show100

that this intermediate conversational specialization101

in the target language (i) consistently improves the102

DST and RR performance in both zero-shot and103

few-shot transfer, and (ii) drastically improves sam-104

ple efficiency of few-shot transfer.105

2 Multi2WOZ106

In this section we describe the construction of the107

MULTI2WOZ dataset, providing also details on108

inter-translator reliability. We then discuss two109

concurrent efforts in creating multilingual TOD110

datasets from MultiWOZ and their properties, and111

emphasize the aspects that make MULTI2WOZ a112

more reliable and useful benchmark for evaluating113

cross-lingual transfer for TOD.114

2.1 Dataset Creation115

Language Selection. We translate all 2,000 di-116

alogs from the development and test portions of the117

English MultiWOZ 2.1 (Eric et al., 2020) dataset to118

Arabic, Chinese, German, and Russian. Languages119

were selected based on the following criteria: (1)120

linguistic diversity (DE and RU belong to different121

Indo-European subfamilies – Germanic and Slavic,122

respectively; ZH is a Sino-Tibetan language and123

AR Semitic), (2) diversity of scripts (DE and RU124

use Latin and Cyrillic scripts, respectively, both125

alphabet scripts; AR script represents the Abjad126

script type, whereas the ZH Hanzi script belongs to127

logographic scripts), (3) number of native speakers128

(all four are in the top 20 most-spoken world lan-129

guages), and (4) access to native and fluent speak-130

ers of those languages (also proficient in English).131

Two-Step Translation. Following the well-132

established practice, we carried out a two-phase133

translation of the English data: (1) an automatic 134

translation of the dialogs – utterances as well as the 135

annotated slot values – followed by (2) the manual 136

post-editing. We first automatically translated all 137

utterances and slot values from the development 138

and test dialogs from the MultiWOZ 2.1 (Eric et al., 139

2020) (1,000 dialogs in each portion; 14,748 and 140

14,744 utterances, respectively) to our four target 141

languages, using Google Translate.1 We then hired 142

two native speakers of each target language,2 all 143

with a University degree and fluent in English, to 144

post-edit the (non-overlapping sets of) automatic 145

translations, i.e., fix the errors in automatic transla- 146

tions of utterances as well as slot values. 147

Since we carried out the automatic translation 148

of the utterances independently of the automatic 149

translation of the slot values, the translators were 150

instructed to pay special attention to the alignment 151

between each translated utterance and translations 152

of slot value annotations for that utterance. 153

Quality Control. Human post-editors worked on 154

disjunct sets of dialogs; we thus carried out an addi- 155

tional quality assurance step. Two new annotators 156

for each target language judged the correctness of 157

the translations on the random sample of 200 di- 158

alogs (10% of all translated dialogs, 100 from the 159

development and test set each), containing 2,962 160

utterances in total. The annotators had to inde- 161

pendently answer the following questions for each 162

translated utterance from the sample: (1) Is the 163

utterance translation acceptable? and (2) Do the 164

translated slot values match the translated utter- 165

ance? On average, across all target languages, both 166

quality annotators for the respective language an- 167

swered affirmatively to both questions for 99% of 168

all utterances. Adjusting for chance agreement, we 169

measured the Inter-Annotator Agreement (IAA) in 170

terms of Cohen’s κ (Cohen, 1960), observing the 171

almost perfect agreement3 of κ = 0.824 for the 172

development set and κ = 0.838 for test set. 173

Annotation Duration and Cost. We hired 16 an- 174

notators in total – 4 per language: 2 for transla- 175

tion and 2 for quality assessment. The overall ef- 176

fort spanned almost full 5 months (from July to 177

1Relying on its Python API: https://pypi.org/
project/googletrans

2In order to reduce the translation costs, we initially at-
tempted to post-edit the translations via crowdsourcing. We
tried this for Russian using the popular platform Toloka
(toloka.yandex.com); however, the translation quality
remained unsatisfactory even after several post-editing rounds.

3According to Landis and Koch (1977), if κ ≥ 0.81.
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November 2021), and amounted to 1,083 person-178

hours. With the remuneration rate of 16 $/h,179

MULTI2WOZ creation cost $17,328 in total.180

2.2 Comparison with Concurrent Work181

Two concurrent works also derive multilingual182

datasets from MultiWOZ (Ding et al., 2021; Zuo183

et al., 2021), with different strategies and proper-184

ties, discussed in what follows.185

GlobalWOZ (Ding et al., 2021) encompasses186

Chinese, Indonesian, and Spanish datasets. The187

authors first create templates from dialog ut-188

terances by replacing slot-value strings in the189

utterances with the slot type and value index190

(e.g., “. . . and the post code is cb238el” be-191

comes the template “. . . and the post code is192

[attraction-postcode-1]”. They then193

automatically translate all templates to the target194

languages. Next, they select a subset of 500 test set195

dialogs for human post-editing with the following196

heuristic: dialogs for which the sum of corpus-level197

frequencies of their constitutive 4-grams (normal-198

ized with the dialog length) is the largest.4 Since199

this selection step is independent for each language,200

each GlobalWOZ portion contains translations of201

a different subset of English dialogs: this prevents202

any direct comparison of downstream TOD perfor-203

mance across languages. Even more problemati-204

cally, the selection heuristic directly reduces lin-205

guistic diversity of dialogs chosen for the test set of206

each language, as it favors the dialogs that contain207

the same globally most frequent 4-grams. Due to208

this artificial homogeneity of its test sets, Global-209

WOZ is very likely to overestimate downstream210

TOD performance for target languages.211

Unlike GlobalWOZ, AllWOZ (Zuo et al., 2021)212

does automatic translation of a fixed small subset213

of MultiWOZ plus post-editing in seven target lan-214

guages. However, it encompasses only 100 dialogs215

and 1,476 turns; as such, it is arguably too small216

to draw strong conclusions about performance of217

cross-lingual transfer methods. Its usefulness in218

joint domain and language transfer evaluations is219

especially doubtful, since it covers individual Mul-220

tiWOZ domains with an extremely small number of221

dialogs (e.g., only 13 for the Taxi domain). Finally,222

neither Ding et al. (2021) nor Zuo et al. (2021)223

provide any estimates of the quality of their final224

datasets nor do they report their annotation costs.225

4Interestingly, the authors do not provide any motivation or
intuition for this heuristic. It is also worth noting that 4-gram
frequencies are counted on the noisy automatic translations.

In contrast to GlobalWOZ, MULTI2WOZ is a 226

parallel corpus – with the exact same set of dialogs 227

translated to all four target languages; as such it 228

directly enables performance comparisons across 229

the target languages. Further, containing transla- 230

tions of all dev and test dialogs from MultiWOZ 231

(i.e., avoiding sampling heuristics), MULTI2WOZ 232

does not introduce any confounding factors that 233

would distort estimates of cross-lingual transfer 234

performance in downstream TOD tasks. Finally, 235

MULTI2WOZ is 20 times larger (per language) 236

than AllWOZ: experiments on MULTI2WOZ are 237

thus much more likely to yield conclusive findings. 238

3 Cross-lingual Transfer for TOD 239

The parallel nature and sufficient size of 240

MULTI2WOZ allow us to benchmark and com- 241

pare a number of established and novel cross- 242

lingual transfer methods for TOD. In particular, (1) 243

we first inject general conversational TOD knowl- 244

edge into XLM-RoBERTa (XLM-R; Conneau et al., 245

2020), yielding TOD-XLMR (§3.1); (2) we then 246

propose several variants for conversational special- 247

ization of TOD-XLMR for target languages, better 248

suited for transfer in downstream TOD tasks (§3.2); 249

(3) we investigate zero-shot and few-shot transfer 250

for two TOD tasks: DST and RR (§3.3). 251

3.1 TOD-XLMR: A Multilingual TOD Model 252

Recently, Wu et al. (2020) demonstrated that spe- 253

cializing BERT (Devlin et al., 2019) on conversa- 254

tional data by means of additional pretraining via a 255

combination of masked language modeling (MLM) 256

and response selection (RS) objectives yields im- 257

provements in downstream TOD tasks. Following 258

these findings, we first (propose to) conversation- 259

ally specialize XLM-R (Conneau et al., 2020), a 260

state-of-the-art multilingual PrLM covering 100 261

languages, in the same manner: applying the RS 262

and MLM objectives on the same English conver- 263

sational corpus consisting of nine human-human 264

multi-turn TOD datasets (see Wu et al. (2020) for 265

more details). As a result, we obtain TOD-XLMR – 266

a massively multilingual PrLM specialized for task- 267

oriented conversations. Note that TOD-XLMR is 268

not yet specialized (i.e., fine-tuned) for any con- 269

crete TOD task (e.g., DST or Response Generation). 270

Rather, it is enriched with general task-oriented 271

conversational knowledge (in English), presumed 272

to be beneficial for a wide variety of TOD tasks. 273
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EN Subtitle ZH Subtitle

- Professor Hall. - Yes. - I think your theory may be correct. - Walk with me.
Just a few weeks ago, I monitored the strongest hurricane on record.
The hail, the tornados, it all fits.
Can your model factor in storm scenarios?

-霍尔教授 -是的 -我认为你的理论正确 -跟我来
上周我观测到史上最大的飓风
雹暴和龙卷风也符合你的理论
你能预测暴风雨的形成吗？

Translation LM (TLM) - Professor Hall. - Yes. - I think your theory may be [MASK]. - Walk with...-霍尔教授 -是的 -我认为你的[MASK]正确...

Response Selection (RS)
Context:
上周我观测到史上最大的飓风
雹暴和龙卷风也符合你的理论

Monolingual (RS-Mono)
True Response:
你能预测暴风雨的形成吗？
False Response:
你有彼得的电脑断层扫描吗？

Cross-lingual (RS-X)
True Response:
Can your model factor in storm scenarios?
False Response:
Do you have Peter’s CT scan results?

Table 1: Examples of training instances for conversational specialization for the target language created from
OpenSubtitles (OS). Top row: an example of a dialog created from OS, parallel in English and Chinese. Below are
training examples for different training objectives: (1) Translation Language Modelling (TLM) on the interleaved
English-Chinese parallel utterances; (2) two variants of Response Selection (RS) – (a) monolingual in the target
language (RS-Mono) and (b) cross-lingual (RS-X).

3.2 Target-Language Specialization274

TOD-XLMR has been conversationally specialized275

only on English data. We next hypothesize that a276

further conversational specialization for a concrete277

target language X can improve the transfer EN→X278

for all downstream TOD tasks. Accordingly, simi-279

lar to Moghe et al. (2021), we investigate several280

intermediate training procedures that further con-281

versationally specialize TOD-XLMR for the target282

language X (or jointly for EN and X). For this283

purpose, we (i) compile target-language-specific284

as well as cross-lingual corpora from the CCNet285

(Wenzek et al., 2020) and OpenSubtitles (Lison286

and Tiedemann, 2016) datasets and (ii) experiment287

with different mono-, bi-, and cross-lingual training288

procedures. Here, we propose a novel cross-lingual289

response selection (RS) objective and demonstrate290

its effectiveness in downstream TOD transfer.291

Training Corpora. We collect two types of data292

for language specialization: (i) “flat” corpora (i.e.,293

without any conversational structure): we simply294

randomly sample 100K sentences for each lan-295

guage from the respective monolingual portion of296

CCNet (we denote with Mono-CC the individual297

100K-sentence portions of each language; with Bi-298

CC the concatenation of the English and each of299

target language Mono-CCs, and with MultiCC the300

concatenation of all five Mono-CC portions); (ii)301

parallel dialogs (in EN and target language X) from302

OpenSubtitles (OS), a parallel conversational cor-303

pus spanning 60 languages, compiled from sub-304

titles of movies and TV series. We leverage the305

parallel OS dialogs to create two different cross-306

lingual specialization objectives, as described next.307

Training Objectives. We directly use the CC por-308

tions (Mono-CC, Bi-CC, and Multi-CC) for stan-309

dard MLM training. We then leverage the parallel 310

OS dialogs for two training objectives. First, we 311

carry out translation language modeling (TLM) 312

(Conneau and Lample, 2019) on the synthetic di- 313

alogs which we obtain by interleaving K randomly 314

selected English utterances with their respective tar- 315

get language translations; we then (as with MLM), 316

dynamically mask 15% of tokens of such inter- 317

leaved dialogs; we vary the size of the context the 318

model can see when predicting missing tokens by 319

randomly selecting K (between 2 and 15) for each 320

instance. Second, we use OS to create instances 321

for both monolingual and cross-lingual Response 322

Selection (RS) training. RS is a simple binary 323

classification task in which for a given pair of a 324

context (one or more consecutive utterances) and 325

response (a single utterance), the model has to pre- 326

dict whether the response utterance immediately 327

follows the context (i.e., it is a true response) or not 328

(i.e., it is a false response). RS pretraining has been 329

proven beneficial for downstream TOD in monolin- 330

gual English setups (Mehri et al., 2019; Henderson 331

et al., 2019, 2020; Hung et al., 2021). 332

In this work, we leverage the parallel OS data to 333

introduce the cross-lingual RS objective, where the 334

context and the response utterance are not in the 335

same language. In our experiments, we carry out 336

both (i) monolingual RS training in the target lan- 337

guage (i.e., both the context and response utterance 338

are, e.g., in Chinese), denoted RS-Mono, and (ii) 339

cross-lingual RS between English (as the source 340

language in downstream TOD tasks) and the target 341

language, denoted RS-X. We create hard RS neg- 342

atives, by coupling contexts with non-immediate 343

responses from the same movie or episode (same 344

imdbID), as well as easy negatives by randomly 345

sampling m ∈ {1, 2, 3} responses from a different 346
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movie of series episode (i.e., different imdbID).347

Hard negatives encourage the model to reason be-348

yond simple lexical cues. Examples of training349

instances for OS-based training (for EN-ZH) are350

shown in Table 1.351

3.3 Downstream Cross-lingual Transfer352

Finally, we fine-tune the various variants of TOD-353

XLMR, obtained through the above-described spe-354

cialization (i.e., intermediate training) procedures,355

for two downstream TOD tasks (DST and RR)356

and examine their cross-lingual transfer perfor-357

mance. We cover two cross-lingual transfer sce-358

narios: (1) zero-shot transfer in which we only359

fine-tune the models on the English training por-360

tion of MultiWOZ and evaluate their performance361

on the MULTI2WOZ test data of our four target362

languages; and (2) few-shot transfer in which we363

sequentially first fine-tune the models on the En-364

glish training data and then on the small number of365

dialogs from the development set of MULTI2WOZ,366

in similar vein to (Lauscher et al., 2020). In order367

to determine the effect of our conversational target368

language specialization (§3.2) on the downstream369

sample efficiency, we run few-shot experiments370

with different numbers of target language training371

dialogs, ranging from 1% to 100% of the size of372

MULTI2WOZ development portions.373

4 Experimental Setup374

Evaluation Tasks and Measures. We evaluate dif-375

ferent multilingual conversational PrLMs in cross-376

lingual transfer (zero-shot and few-shot) for two377

prominent TOD tasks: dialog state tracking (DST)378

and response retrieval (RR).379

DST is commonly cast as a multi-class classifi-380

cation task, where given a predefined ontology and381

dialog history (a sequence of utterances), the model382

has to predict the output state, i.e., (domain, slot,383

value) tuples (Wu et al., 2020).5 We adopt the stan-384

dard joint goal accuracy as the evaluation measure:385

at each dialog turn, it compares the predicted dialog386

states against the manually annotated ground truth387

which contains slot values for all the (domain, slot)388

candidate pairs. A prediction is considered correct389

if and only if all predicted slot values exactly match390

the ground truth.391

RR is a ranking task that is well-aligned with392

the RS objective and relevant for retrieval-based393

5The model is required to predict slot values for each
(domain, slot) pair at each dialog turn.

TOD systems (Wu et al., 2017; Henderson et al., 394

2019): given the dialog context, the model ranks N 395

dataset utterances, including the true response to 396

the context (i.e., the candidate set includes the one 397

true response and N -1 false responses). We follow 398

Henderson et al. (2020) and report the results for 399

N = 100, i.e., the evaluation measure is recall at 400

the top 1 rank given 99 randomly sampled false 401

responses, denoted as R100@1. 402

Models and Baselines. We briefly summarize the 403

models that we compare in zero-shot and few-shot 404

cross-lingual transfer for DST and RR. As base- 405

lines, we report the performance of the vanilla mul- 406

tilingual PrLM XLM-R (Conneau et al., 2020)6 and 407

its variant further trained on the English TOD data 408

from (Wu et al., 2020): TOD-XLMR (§3.1). Com- 409

parison between XLM-R and TOD-XLMR quanti- 410

fies the effect of conversational English pretraining 411

on downstream TOD performance, much like the 412

comparison between BERT and TOD-BERT done 413

by Wu et al. (2020); however, here we extend the 414

comparison to cross-lingual transfer setups. We 415

then compare the baselines against a series of our 416

target language-specialized variants, obtained via 417

intermediate training on CC (Mono-CC, Bi-CC, 418

and Multi-CC) by means of MLM, and on OS 419

jointly via TLM and RS (RS-X or RS-Mono) ob- 420

jectives (see §3.2 again). 421

Hyperparameters and Optimization. For train- 422

ing TOD-XLMR (§3.1), we select the effective 423

batch size of 8. In target-language-specific inter- 424

mediate training (§3.2), we fix the maximum se- 425

quence length to 256 subword tokens; for RS ob- 426

jectives, we limit the context and response to 128 427

tokens each. We train for 30 epochs in batches of 428

size 16 for MLM/TLM, and 32 for RS. We search 429

for the optimal learning rate among the follow- 430

ing values: {10−4, 10−5, 10−6}. We apply early 431

stopping based on development set performance 432

(patience: 3 epochs for MLM/TLM, 10 epochs for 433

RS). In downstream fine-tuning, we train in batches 434

of 6 (DST) and 24 instances (RR) with the initial 435

learning rate fixed to 5 · 10−5. We also apply early 436

stopping (patience: 10 epochs) based on the devel- 437

opment set performance, training maximally for 438

300 epochs in zero-shot setups, and for 15 epochs 439

in target-language few-shot training. In all exper- 440

iments, we use Adam (Kingma and Ba, 2015) as 441

the optimization algorithm. 442

6We use xlm-roberta-base from HuggingFace.
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Model DE AR ZH RU Avg.
w/o intermediate specialization

XLM-R 1.41 1.15 1.35 1.40 1.33
TOD-XLMR 1.74 1.53 1.75 2.16 1.80

with conversational target-lang. specialization

MLM on Mono-CC 3.57 2.71 3.34 5.17 3.70
Bi-CC 3.66 2.17 2.73 3.73 3.07
Multi-CC 3.65 2.35 2.06 5.39 3.36

TLM on OS 7.80 2.43 3.95 6.03 5.05
TLM + RS-X on OS 7.84 3.12 4.14 6.13 5.31
TLM + RS-Mono on OS 7.67 2.85 4.47 6.57 5.39

Table 2: Performance of multilingual conversational
models in zero-shot cross-lingual transfer for Dialog
State Tracking (DST) on MULTI2WOZ, with joint goal
accuracy (%) as evaluation metric. Reference English
DST performance of TOD-XLMR: 47.86%.

5 Results and Discussion443

We now present and discuss the downstream cross-444

lingual transfer results on MULTI2WOZ for DST445

and RR in two different transfer setups: zero-shot446

transfer and few-shot transfer.447

5.1 Zero-Shot Transfer448

Dialog State Tracking. Table 2 summarizes zero-449

shot cross-lingual transfer performance for DST.450

First, we note that the transfer performance of all451

models for all four target languages is extremely452

low, drastically lower than the reference English453

DST performance of TOD-XLMR, which stands454

at 47.9%. These massive performance drops, stem-455

ming from cross-lingual transfer are in line with456

findings from concurrent work (Ding et al., 2021;457

Zuo et al., 2021) and suggest that reliable cross-458

lingual transfer for DST is much more difficult to459

achieve than for most other language understanding460

tasks (Hu et al., 2020; Ponti et al., 2020).461

Despite low performance across the board, we do462

note a few emerging and consistent patterns. First,463

TOD-XLMR slightly but consistently outperforms464

the vanilla XLM-R, indicating that conversational465

English pretraining brings marginal gains. All of466

our proposed models from §3.2 (the lower part467

of Table 2) substantially outperform TOD-XLMR,468

proving that intermediate conversational specializa-469

tion for the target language brings gains, irrespec-470

tive of the training objective.471

Expectedly, TLM and RS training on parallel OS472

data brings substantially larger gains than MLM-473

ing on flat monolingual target-language corpora474

(Mono-CC) or simple concatenations of corpora475

from two (Bi-CC) or more languages (Multi-CC).476

Model DE AR ZH RU Avg.

w/o intermediate specialization

TOD-XLMR 3.3 2.9 1.9 2.7 2.7

with conversational target-lang. specialization

MLM on Mono-CC 22.9 25.5 24.5 33.4 26.6
TLM on OS 44.4 30.3 34.1 39.3 37.0
TLM + RS-Mono on OS 44.3 30.9 34.8 39.6 37.4

Table 3: Performance of multilingual conversational
models in zero-shot cross-lingual transfer for Response
Retrieval (RR) on MULTI2WOZ with R100@1 (%) as
the evaluation metric. Reference English RR perfor-
mance of TOD-XLMR: 64.75%

German and Arabic seem to benefit slightly more 477

from the cross-lingual Response Selection train- 478

ing (RS-X), whereas for Chinese and Russian we 479

obtain better results with the monolingual (target 480

language) RS training (RS-Mono). 481

Response Retrieval. The results of zero-shot trans- 482

fer for RR are summarized in Table 3. Compared 483

to DST results, for the sake of brevity, we show the 484

performance of only the stronger baseline (TOD- 485

XLMR) and the best-performing variants with in- 486

termediate conversational target-language training 487

(one for each objective type): MLM on Mono-CC, 488

TLM on OS, and TLM + RS-Mono on OS. Similar 489

to DST, TOD-XLMR exhibits a near-zero cross- 490

lingual transfer performance for RR too, across 491

all target languages. In sharp contrast to DST re- 492

sults, however, conversational specialization for the 493

target language – with any of the three specializa- 494

tion objectives – massively improves the zero-shot 495

cross-lingual transfer for RR. The gains are espe- 496

cially large for the models that employ the parallel 497

OpenSubtitles corpus in intermediate specializa- 498

tion, with the monolingual (target language) Re- 499

sponse Selection objective slightly improving over 500

TLM training alone. 501

Given the parallel nature of MULTI2WOZ, we 502

can directly compare transfer performance of both 503

DST and RR across the four target languages. In 504

both tasks, the best-performing models exhibit 505

stronger performance (i.e., smaller performance 506

drops compared to the English performance) for 507

German and Russian than for Arabic and Chinese. 508

This aligns well with the linguistic proximity of the 509

target languages to English as the source language. 510

5.2 Few-Shot Transfer and Sample Efficiency 511

Next, we present the results of few-shot transfer 512

experiments, where we additionally fine-tune the 513
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Figure 1: Few-shot cross-lingual transfer results for Dialog State Tracking (left figure) and Response Retrieval
(right figure), averaged across all four target languages (detailed per-language results available in the Appendix).
Results shown for different sizes of the training data in the target-language (i.e., different number of shots): 1%, 5%,
10%, 50% and 100% of the MULTI2WOZ development sets (of respective target languages).

DST RR
Lang Model 1% 5% 10% 50% 100% 1% 5% 10% 50% 100%

DE TOD-XLMR 7.68 19.26 28.08 33.17 34.10 10.25 32.47 35.56 45.39 49.46
TLM+RS-Mono on OS 15.88 24.14 28.38 32.57 35.45 46.08 48.94 49.98 53.43 55.72

AR TOD-XLMR 1.48 1.57 6.18 15.62 17.63 6.36 18.72 23.57 36.04 42.69
TLM+RS-Mono on OS 4.42 6.79 8.27 14.39 21.48 33.45 37.09 38.01 41.89 47.15

ZH TOD-XLMR 8.63 12.55 16.40 23.45 25.49 15.69 31.10 33.22 41.97 48.14
TLM+RS-Mono on OS 11.63 14.90 17.97 22.81 28.84 38.45 43.71 45.27 48.50 51.81

RU TOD-XLMR 4.34 21.89 30.01 37.58 37.61 8.90 31.31 34.51 43.33 47.45
TLM+RS-Mono on OS 13.74 17.44 18.63 24.33 29.15 41.97 45.44 46.02 49.90 53.16

Table 4: Per-language few-shot transfer performance (sample efficiency results) on DST and RR for the baseline
TOD-XLMR and the best specialized model (TLM+RS-Mono on OS).

task-specific TOD model on a limited number of514

target-language dialogs from the development por-515

tion of MULTI2WOZ, after first fine-tuning it on516

the complete English training set from MultiWOZ517

(see §4). Few-shot cross-lingual transfer results,518

averaged across all four target languages, are sum-519

marized in Figure 1. The figure shows the per-520

formance for different sizes of the target-language521

training data (i.e., number of target-language shots,522

that is, percentage of the target-language develop-523

ment portion from MULTI2WOZ). Detailed per-524

language few-shot results are given in Table 4, for525

brevity only for TOD-XLMR and the best target-526

language-specialized model (TLM+RS-Mono on527

OS). We provide full per-language results for all528

specialized models from Figure 1 in the Appendix.529

The few-shot results unambiguously show that530

the intermediate conversational specialization for531

the target language(s) drastically improves the532

target-language sample efficiency in the down-533

stream few-shot transfer. The baseline TOD-534

XLMR – not exposed to any type of conversational535

pretraining for the target language(s) – exhibits sub-536

stantially lower performance than all three models537

(MLM on Mono-CC, TLM on OS, and TLM+RS- 538

Mono on OS) that underwent conversational in- 539

termediate training on respective target languages. 540

This is evident even in the few-shot setups where 541

the three models are fine-tuned on merely 1% (10 542

dialogs) or 5% (50 dialogs) of the MULTI2WOZ 543

development data (after prior fine-tuning on the 544

complete English task data from MultiWOZ). 545

As expected, the larger the number of task- 546

specific (DST or RR) training instances in the tar- 547

get languages (50% and 100% setups), the closer 548

the performance of the baseline TOD-XLMR gets 549

to the best-performing target-language-specialized 550

model – this is because the size of the in-language 551

training data for the concrete task (DST or RR) be- 552

comes sufficient to compensate for the lack of con- 553

versational target-language intermediate training 554

that the specialized models have been exposed to. 555

The sample efficiency of the conversational target- 556

language specialization is more pronounced for RR 557

than for DST. This seems to be in line with the zero- 558

shot transfer results (see Tables 2 and 3), where the 559

specialized models displayed much larger cross- 560

lingual transfer gains over TOD-XLMR on RR than 561
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on DST. We hypothesize that this is due to the inter-562

mediate specialization objectives (especially RS)563

being better aligned with the task-specific training564

objective of RR than that of DST.565

6 Related Work566

TOD Datasets. Research in task-oriented dialog567

has been, for a long time, limited by the existence568

of only monolingual English datasets. While ear-569

lier datasets focused on a single domain (Hender-570

son et al., 2014a,b; Wen et al., 2017), the focus571

shifted towards the more realistic multi-domain572

task-oriented dialogs with the creation of the Mul-573

tiWOZ dataset (Budzianowski et al., 2018), which574

has been refined and improved in several iterations575

(Eric et al., 2020; Zang et al., 2020; Han et al.,576

2021). Due to the particularly high costs of creat-577

ing TOD datasets (in comparison with other lan-578

guage understanding tasks) (Razumovskaia et al.,579

2021), only a handful of monolingual TOD datasets580

in languages other than English (Zhu et al., 2020)581

or bilingual TOD datasets have been created (Gu-582

nasekara et al., 2020; Lin et al., 2021). Mrkšić583

et al. (2017b) were the first to translate 600 dialogs584

from the single-domain WOZ 2.0 (Mrkšić et al.,585

2017a) to Italian and German. Concurrent work586

(Ding et al., 2021; Zuo et al., 2021), which we dis-587

cuss in detail in §2.2 and compare thoroughly with588

our MULTI2WOZ, introduces the first multilingual589

multi-domain TOD datasets, created by translating590

portions of MultiWOZ to several languages.591

Language Specialization and Cross-lingual592

Transfer. Multilingual transformer-based models593

(e.g., mBERT (Devlin et al., 2019), XLM-R (Con-594

neau et al., 2020)) are pretrained on large general-595

purpose and massively multilingual corpora (over596

100 languages). While this makes them versatile597

and widely applicable, it does lead to suboptimal598

representations for individual languages, a phe-599

nomenon commonly referred to as the “curse of600

multilinguality” (Conneau et al., 2020). There-601

fore, one line of research focused on adapting (i.e.,602

specializing) those models to particular languages603

(Lauscher et al., 2020; Pfeiffer et al., 2020). For604

example, Pfeiffer et al. (2020) propose a more com-605

putationally efficient approach for extending the606

model capacity for individual languages: this is607

done by augmenting the multilingual PrLM with608

language-specific adapter modules. Glavaš et al.609

(2020) perform language adaptation through ad-610

ditional intermediate masked language modeling611

in the target languages with filtered text corpora, 612

demonstrating substantial gains in downstream 613

zero-shot cross-lingual transfer for hate speech and 614

abusive language detection tasks. In a similar vein, 615

Moghe et al. (2021) carry out intermediate fine- 616

tuning of multilingual PrLMs on parallel conversa- 617

tional datasets and demonstrate its effectiveness in 618

zero-shot cross-lingual transfer for the DST task. 619

Lauscher et al. (2020) show that few-shot trans- 620

fer, in which one additionally fine-tunes the PrLM 621

on few labeled task-specific target-language in- 622

stances leads to large improvements for many task- 623

and-language combinations, and that labelling few 624

target-language examples is more viable than fur- 625

ther LM-specialization for languages of interest 626

under strict zero-shot conditions. This finding is 627

also corroborated in our work for two TOD tasks. 628

7 Conclusion 629

Task-oriented dialog (TOD) has predominantly fo- 630

cused on English, primarily due to the lack of 631

robust TOD datasets in other languages (Razu- 632

movskaia et al., 2021), preventing systematic in- 633

vestigations of cross-lingual transfer in this crucial 634

NLP application area. In this work, we have pre- 635

sented MULTI2WOZ – a robust multilingual multi- 636

domain TOD dataset. MULTI2WOZ encompasses 637

gold-standard dialogs in four languages that are 638

directly comparable with development and test por- 639

tions of the English MultiWOZ dataset, thus allow- 640

ing for the most reliable and comparable estimates 641

of cross-lingual transfer performance for TOD to 642

date. Further, we presented a framework for multi- 643

lingual conversational specialization of pretrained 644

language models that facilitates cross-lingual trans- 645

fer for downstream TOD tasks. Our experiments 646

on MULTI2WOZ for two prominent TOD tasks 647

– Dialog State Tracking and Response Retrieval – 648

reveal that the cross-lingual transfer performance 649

benefits from both (i) intermediate conversational 650

specialization for the target language and (ii) few- 651

shot cross-lingual transfer for the concrete down- 652

stream TOD task. Crucially, we show that our 653

novel conversational specialization for the target 654

language leads to exceptional sample efficiency in 655

downstream few-shot transfer. 656

In hope to steer and inspire future research 657

on multilingual and cross-lingual TOD, we make 658

MULTI2WOZ publicly available at: URL-HIDDEN. 659

We will extend the resource to further languages 660

from yet uncovered families (e.g., Turkish). 661
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Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-664
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ica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su, Ste- 855
fan Ultes, and Steve Young. 2017. A network-based 856
end-to-end trainable task-oriented dialogue system. 857
In Proceedings of the 15th Conference of the Euro- 858
pean Chapter of the Association for Computational 859
Linguistics: Volume 1, Long Papers, pages 438–449, 860
Valencia, Spain. Association for Computational Lin- 861
guistics. 862

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con- 863
neau, Vishrav Chaudhary, Francisco Guzmán, Ar- 864
mand Joulin, and Edouard Grave. 2020. CCNet: 865
Extracting high quality monolingual datasets from 866
web crawl data. In Proceedings of the 12th Lan- 867
guage Resources and Evaluation Conference, pages 868
4003–4012, Marseille, France. European Language 869
Resources Association. 870

Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher, 871
and Caiming Xiong. 2020. TOD-BERT: Pre-trained 872
natural language understanding for task-oriented di- 873
alogue. In Proceedings of the 2020 Conference on 874
Empirical Methods in Natural Language Processing 875
(EMNLP), pages 917–929, Online. Association for 876
Computational Linguistics. 877

Yu Wu, Wei Wu, Chen Xing, Ming Zhou, and Zhoujun 878
Li. 2017. Sequential matching network: A new archi- 879
tecture for multi-turn response selection in retrieval- 880
based chatbots. In Proceedings of the 55th Annual 881
Meeting of the Association for Computational Lin- 882
guistics (Volume 1: Long Papers), pages 496–505, 883
Vancouver, Canada. Association for Computational 884
Linguistics. 885

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe 886
Zhou, and Zhoujun Li. 2017. Building task-oriented 887

10

https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://doi.org/10.18653/v1/2020.emnlp-main.363
https://arxiv.org/abs/2106.02787
https://arxiv.org/abs/2106.02787
https://arxiv.org/abs/2106.02787
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://doi.org/10.18653/v1/P19-1373
https://doi.org/10.18653/v1/P19-1373
https://doi.org/10.18653/v1/P19-1373
https://doi.org/10.18653/v1/2021.emnlp-main.87
https://doi.org/10.18653/v1/2021.emnlp-main.87
https://doi.org/10.18653/v1/2021.emnlp-main.87
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/P18-2069
https://doi.org/10.18653/v1/P18-2069
https://doi.org/10.18653/v1/P18-2069
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://doi.org/10.18653/v1/P17-1046
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261


dialogue systems for online shopping. In Proceed-888
ings of the Thirty-First AAAI Conference on Artifi-889
cial Intelligence, AAAI’17, page 4618–4625. AAAI890
Press.891

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,892
Raghav Gupta, Jianguo Zhang, and Jindong Chen.893
2020. Multiwoz 2.2: A dialogue dataset with addi-894
tional annotation corrections and state tracking base-895
lines. In Proceedings of the 2nd Workshop on Natural896
Language Processing for Conversational AI, pages897
109–117.898

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and899
Minlie Huang. 2020. CrossWOZ: A large-scale Chi-900
nese cross-domain task-oriented dialogue dataset.901
Transactions of the Association for Computational902
Linguistics, 8:281–295.903

Lei Zuo, Kun Qian, Bowen Yang, and Zhou Yu. 2021.904
Allwoz: Towards multilingual task-oriented dialog905
systems for all. CoRR, abs/2112.08333.906

11

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261
https://doi.org/10.1162/tacl_a_00314
https://doi.org/10.1162/tacl_a_00314
https://doi.org/10.1162/tacl_a_00314
http://arxiv.org/abs/2112.08333
http://arxiv.org/abs/2112.08333
http://arxiv.org/abs/2112.08333


A Appendix907

DST RR

Lang Model 1% 5% 10% 50% 100% 1% 5% 10% 50% 100%

DE

TOD-XLMR 7.68 19.26 28.08 33.17 34.10 10.25 32.47 35.56 45.39 49.46
MLM on Mono-CC 13.75 25.15 34.12 38.01 38.26 34.37 42.13 43.51 49.10 52.80
TLM on OS 14.17 19.45 21.62 27.28 29.91 47.21 48.59 48.96 53.01 55.30
TLM+RS-Mono on OS 15.88 24.14 28.38 32.57 35.45 46.08 48.94 49.98 53.43 55.72

AR

TOD-XLMR 1.48 1.57 6.18 15.62 17.63 6.36 18.72 23.57 36.04 42.69
MLM on Mono-CC 4.41 5.74 7.02 14.10 17.22 28.54 31.50 32.82 41.09 44.26
TLM on OS 4.18 6.33 6.89 13.60 17.77 32.19 35.04 37.02 41.39 47.04
TLM+RS-Mono on OS 4.42 6.79 8.27 14.39 21.48 33.45 37.09 38.01 41.89 47.15

ZH

TOD-XLMR 8.63 12.55 16.40 23.45 25.49 15.69 31.10 33.22 41.97 48.14
MLM on Mono-CC 11.64 19.73 25.46 34.93 35.61 34.40 37.65 39.65 48.01 50.97
TLM on OS 11.48 17.43 21.95 28.52 32.51 38.17 42.82 42.91 49.29 51.63
TLM+RS-Mono on OS 11.63 14.90 17.97 22.81 28.84 38.45 43.71 45.27 48.50 51.81

RU

TOD-XLMR 4.34 21.89 30.01 37.58 37.61 8.90 31.31 34.51 43.33 47.45
MLM on Mono-CC 12.70 16.56 19.45 24.58 25.90 37.43 42.80 46.19 52.43 53.73
TLM on OS 12.45 14.26 16.10 21.13 27.04 42.23 44.40 44.78 49.43 53.76
TLM+RS-Mono on OS 13.74 17.44 18.63 24.33 29.15 41.97 45.44 46.02 49.90 53.16

Table 5: Full per-language few-shot cross-lingual transfer results for Dialog State Tracking and Response Retrieval.
Results shown for different sizes of the training data in the target-language (i.e., different number of shots): 1%, 5%,
10%, 50% and 100% of the MULTI2WOZ development sets (of respective target languages).
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