
Towards Diverse Device Heterogeneous Federated
Learning via Task Arithmetic Knowledge Integration

Mahdi Morafah∗1, Vyacheslav Kungurtsev2, Hojin Chang1, Chen Chen3, Bill Lin1

1University of California San Diego (UCSD), 2Czech Technical University in Prague,
3University of Central Florida (UCF)

∗Correspondence: mmorafah@ucsd.edu

Abstract
Federated Learning (FL) has emerged as a promising paradigm for collabora-
tive machine learning, while preserving user data privacy. Despite its potential,
standard FL algorithms lack support for diverse heterogeneous device prototypes,
which vary significantly in model and dataset sizes—from small IoT devices to
large workstations. This limitation is only partially addressed by existing knowl-
edge distillation (KD) techniques, which often fail to transfer knowledge effec-
tively across a broad spectrum of device prototypes with varied capabilities. This
failure primarily stems from two issues: the dilution of informative logits from
more capable devices by those from less capable ones, and the use of a single
integrated logits as the distillation target across all devices, which neglects their
individual learning capacities and and the unique contributions of each device.
To address these challenges, we introduce TAKFL, a novel KD-based frame-
work that treats the knowledge transfer from each device prototype’s ensemble
as a separate task, independently distilling each to preserve its unique contribu-
tions and avoid dilution. TAKFL also incorporates a KD-based self-regularization
technique to mitigate the issues related to the noisy and unsupervised ensemble
distillation process. To integrate the separately distilled knowledge, we intro-
duce an adaptive task arithmetic knowledge integration process, allowing each
student model to customize the knowledge integration for optimal performance.
Additionally, we present theoretical results demonstrating the effectiveness of
task arithmetic in transferring knowledge across heterogeneous device prototypes
with varying capacities. Comprehensive evaluations of our method across both
computer vision (CV) and natural language processing (NLP) tasks demonstrate
that TAKFL achieves state-of-the-art results in a variety of datasets and settings,
significantly outperforming existing KD-based methods. Our code is released
at https://github.com/MMorafah/TAKFL.

1 Introduction
Federated Learning (FL) has rapidly gained traction as a promising approach to train machine learn-
ing models collaboratively across multiple devices, while preserving the privacy of user data. Stan-
dard federated learning methods, such as FedAvg [33], however, are primarily designed for un-
realistic device-homogeneous scenarios, where all devices are assumed to have identical compute
resource and can train the same neural network architecture [28, 33, 47, 21, 27, 46, 31]. Therefore,
standard FL cannot support the participation of heterogeneous devices, all of which could signif-
icantly contribute to model training due to their unique and invaluable local datasets. To address
this gap, knowledge distillation (KD) techniques have emerged as a promising approach to establish
federation among heterogeneous device prototypes and facilitate knowledge transfer between them.
In this approach, locally updated client models from different device prototypes, collectively termed
as ensembles, serve as teachers to distill their knowledge into each device prototype’s server student
model using an unlabeled public dataset.

This work was supported in part by a research grant from Cisco Systems, Inc.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/MMorafah/TAKFL

Despite their success, however, existing KD-based methods for device heterogeneous FL are primar-
ily designed for scenarios where device prototypes are in the same-size with similar capabilities, i.e.
same model and dataset sizes. However, in practice, device capabilities vary widely, ranging from
small devices like IoTs with small models and small datasets to large devices like workstations with
large models and large datasets. This diversity, often overlooked in the existing literature, results in
device prototypes with varying strengths and information qualities. Unfortunately, existing methods
struggle to establish effective knowledge transfer in these challenging, real-world device heteroge-
neous settings, primarily due to two reasons: 1 Existing methods often disregard the individual
strengths and information quality of each device prototype’s ensembles and integrate their logits
into a single distillation target. This approach dilutes the richer, more informative logits from larger,
more capable devices with less informative logits from smaller, less capable ones. 2 Additionally,
these methods employ this single integrated distillation target to transfer knowledge across all dif-
ferent size student models. This one-size-fits-all approach fails to provide customized knowledge
integration based on the unique learning capacities of each student and the specific helpfulness of
each device prototype’s ensembles.

Moreover, the heterogeneous ensemble distillation process can inadvertently lead student models
into erroneous learning directions, causing them to forget their self-knowledge acquired through
averaged locally updated parameters. This issue arises primarily due to two reasons: 1 The distilla-
tion process introduces noise, as the ensembles’ logits are inferred on an unfamiliar public dataset,
distinct from their original training data. Additionally, the presence of data heterogeneity and the
insufficient training of some ensembles, due to computational constraints, can further exacerbate
this noise. 2 The distillation process lacks supervision from the actual private datasets, which are
the ultimate learning objectives. Consequently, these factors, combined with the limitations outlined
earlier, result in suboptimal knowledge transfer in device heterogeneous settings. This underscores
the urgent need for a more effective knowledge transfer framework.

In this paper, we introduce TAKFL, a novel “Task Arithmetic Knowledge Transfer Integration for
Federated Learning” framework, designed to overcome the fundamental limitations in the existing
methods and improve knowledge transfer in scenarios where device prototypes vary in size—both
model and dataset—and consequently, in strength. TAKFL treats knowledge transfer from each
device prototype’s ensembles as separate tasks, distilling them independently to ensure that each
prototype’s unique contributions are accurately distilled without interference. To tackle the chal-
lenges associated with noisy and unsupervised ensemble distillation, we incorporate a KD-based
self-regularization technique into this individual knowledge transfer process. Subsequently, to se-
lectively integrate the separately distilled knowledge from heterogeneous prototypes’ ensembles, we
introduce an adaptive task arithmetic knowledge integration method by extending the notion of task
vectors from centralized learning to federated learning. Our approach enables the student model
to strategically customize the knowledge integration process based on the quality of knowledge
from each prototype’s ensembles and its intrinsic capacity, aiming to achieve optimal performance.
We present theoretical results, grounded on the established theoretical learning properties of over-
parametrized neural networks, that conceptualize knowledge distillation as the allocation of device
prototypes’ capacities to accurately fit the chosen logits. These results demonstrate the advantages
of employing task arithmetic for knowledge transfer in terms of overall accuracy, coverage, and effi-
ciency, as well as the adaptive knowledge integration based on the capacity of the student prototype.
Furthermore, we comprehensively evaluate our method across both computer vision (CV) and nat-
ural language processing (NLP) tasks, utilizing various datasets and architectures, and demonstrate
that TAKFL consistently achieves state-of-the-art (SOTA) performance.

The contribution of our paper is as follows:
1. We formalize and review the important considerations of the problem statement of federated

learning with heterogeneous device prototypes.
2. We introduce TAKFL, a novel KD-based method designed to overcome the fundamental limita-

tions of existing approaches, effectively facilitating knowledge transfer across diverse heteroge-
neous device prototypes with varying capabilities.

3. We present a theoretical model for device heterogeneous KD, and demonstrate the effectiveness
and efficiency of TAKFL compared to the standard alternatives that do not adapt to the student’s
self-knowledge quality and available learning capacity.

4. Our comprehensive experimental evaluations on both CV and NLP tasks, spanning various
datasets and architectures, reveal that TAKFL consistently achieves SOTA performance, out-
performing existing KD-based methods.

2

(a) Vanilla Ensemble Distillation (b) Overview of TAKFL

Figure 1: Overview of our approach and its distinction from prior works. (a) This figure il-
lustrates the vanilla ensemble distillation process, where logits from ensembles of various sizes are
averaged and used as the distillation target across all prototypes. This approach leads to the dilution
of information and suboptimal knowledge transfer (refer to Sections 6 and 7 for details). (b) This
figure depicts our approach, TAKFL, which treats knowledge transfer from each prototype’s ensem-
ble as a separate task and distills them independently. Additionally, a KD-based self-regularization
technique is introduced to mitigate issues related to the noisy and unsupervised ensemble distilla-
tion. Finally, the heterogeneously distilled knowledge is strategically integrated using an adaptive
task arithmetic operation, allowing for customized knowledge integration based on each student pro-
totype’s needs.

2 Related Works
Device Heterogeneous FL. Prior works on device heterogeneous FL have considered two distinct
approaches with different objectives and settings. The first array of studies focuses on accommo-
dating devices with varying compute resources, aiming to train a single global model. Techniques
such as static and rolling-based partial model training allow devices to train a sub-model of the
global model tailored to their compute resources [11, 18, 3, 1]. However, this approach does not
fully reflect real-world scenarios. In practice, device prototypes such as IoTs and smartphones have
unique neural network architectures designed for their specific configurations and underlying tasks,
which may not support training varying neural architectures. This highlights a significant limitation
in accommodating the full spectrum of device heterogeneity in this approach. The second array of
studies addresses a more practical scenario where device prototypes with heterogeneous model ar-
chitectures participate in FL to enhance their global model performance through mutual knowledge
sharing [30, 41, 6]. In this context, KD techniques are used to transfer knowledge among prototypes,
where locally updated client models, termed as ensembles, serve as teachers to distill their knowl-
edge into each server’s student model using an unlabeled public dataset. For example, FedDF [30]
uses vanilla logit averaging, while Fed-ET [6] applies an uncertainty-weighted logit averaging, en-
hanced by a diversity regularization technique. However, existing works typically focus on settings
where prototypes have similar capabilities—both model and dataset sizes—and thus neglecting the
challenges in more diverse settings with varying capabilities. This oversight leaves their effective-
ness in such settings largely unexplored. In this paper, we aim to study the underexplored diverse
heterogeneous device settings. See Appendix A for a more detailed discussion on the related works.

Model Editing via Task Arithmetic. Traditional methods for model editing often involve expen-
sive joint fine-tuning across multiple tasks, which can limit scalability and democratization [60].
Recently, a promising technique called task arithmetic has emerged as a cost-effective and scal-
able method for updating pre-trained models with new information or refining undesired behav-
ior [51, 37, 32]. The concept of “task vectors” introduced by Wortsman et al. [51] plays a pivotal
role in these techniques. For any given task t, a task vector is derived by subtracting the model’s
pre-trained weights θpre from its fine-tuned weights θt

ft on task t , i.e. τt = θft − θpre. These task
vectors act as unique representations for specific tasks. Furthermore, researchers have demonstrated
that by summing multiple task vectors {τt}Tt=1, and integrating them into a pre-trained model via
θ = θpre+λ

∑T
t=1 τt, one can effectively create a model capable of handling multiple tasks [51, 55].

To the best of our knowledge, this work is the first to extend the notion of task vectors to the federated
learning setting, introducing a task arithmetic for knowledge distillation across diverse heteroge-
neous device prototypes.

3

3 Problem Statement: FL with Heterogeneous Device Prototypes
Consider a cross-device FL setup with a set of M distinct device prototypes M, i.e., M = |M|.
Each device prototype mj ∈ M has a distinct neural network architecture f j(·;θj) parameterized
by θj ∈ Rnj and a set of clients Cj , with N j = |Cj | clients in total. Each client ck ∈ Cj has a
local private dataset Dj

k = {(xi, yi)}
nj,k

i=1 , where nj,k = |Dj
k|, and locally trains the parameters θj

of the neural network architecture f j on its local dataset. Furthermore, denote Dj = ∪k∈CjDj
k to be

the union of the private datasets for device prototype j. We assume Dj ∼ Dj , that is a subsample
from the population distribution Dj and similarly Dj

k ∼ D
j
k. The union of the private datasets, i.e.

D =
⋃

j∈M Dj , is sampled from the entire population D, which is defined as an unknown mixture
of the distributions each device prototype sampled its data from, i.e. generically non-i.i.d. We
formalize this as a mixture of local clients data population, i.e., D =

∑
j ωj,:Dj =

∑
j

∑
k ωj,kDj

k,
where 0 ≤ ωj,k ≤ 1 and

∑
jk ωj,k = 1, and ωj,k is unknown.

The ultimate objective is to minimize the test error and thus enable accurate inference for each device
prototype j, aiming to obtain the optimal parameters for the population dataset:

argmin
θj

E(x,y)∼D[ℓ(f
j(x;θj), y)] = argmin

θj

M∑
j=1

Nj∑
k=1

ωi,kE(x,y)∼Dj
k
[ℓ(f j(x;θj), y)] (1)

where ℓ(·, ·) is the sample-wise loss function (e.g. cross entropy for image classification) and we
decompose by total population loss with the linearity of expectation in the mixture. See Fig 4b for a
visual illustration of heterogeneous device prototype FL.

4 Background: Federated Ensemble Distillation
To address the limitations of standard FL in device heterogeneous settings, Lin et al. [30] proposed
ensemble knowledge distillation to transfer knowledge between heterogeneous device prototypes in
FL. This procedure consists of two stages: (1) local per-prototype FL, and (2) server-side vanilla
ensemble distillation. The details of each stage discussed in the following paragraphs.

Local Per-Prototype FL. In this context, at each round r a subset of clients Cj
r from each device

prototype j ∈ M is randomly selected by the server and download their corresponding model ini-
tialization θj

r . Each client cjk ∈ Cj
r, starting from this model initialization, locally train the model f j

on its local private data Dj
k by taking multiple steps of stochastic gradient descent. Then, they send

back their updated parameters {θ̂j
k}k∈Cj

r
to the server. The server aggregates the received clients

parameters, and computes θj
avg =

∑
k∈Cj

r

|Dk|∑
k∈Cjr

|Dk| θ̂
j
k. In classic federated learning formalism,

the parameters θj
avg satisfy,

θj
avg ∈ argmin

θj

Nj∑
k=1

E(x,y)∼Dj
k

[
ℓ(f j(x;θj), y)

]
(2)

Vanilla Ensemble Distillation. In this stage, each server model f j gets initialized with θj , and
undergoes updates using ensemble knowledge distillation. Here, heterogeneous client models from
heterogeneous device prototypes, collectively termed as ensembles, serve as teachers, i.e. T :=

{f i(·, θ̂i
k)| i ∈ M, k ∈ Ci}, transferring their knowledge to each server student model, i.e. Si :=

f i(·,θi). For simplicity, we drop the index for each server student model, denoting it as S . The
ensemble distillation loss using a mini-batch of data from an unlabeled public dataset, i.e x ∈
Dpublic, can be defined by the following equation:

LED = KL
[
σ

(
1

|T |
∑
F∈T
F(x)

)
, σ (S(x))

]
, (AvgLogits) (3)

where σ(·) is the softmax function. As illustrated in Eq. 3, vanilla ensemble distillation treats all
heterogeneous device prototypes’ ensembles equally by uniformly averaging their logits. This way
of knowledge integration overlooks the individual strengths and informational value of each pro-
totype’s ensembles. As a result, the richer, more informative logits from stronger ensembles are
diluted by less informative logits from weaker ensembles, leading to information loss. Furthermore,

4

this averaged logits is used as the distillation target across different-sized student models, irrespec-
tive of their intrinsic capacity and the helpfulness of each prototype’s ensembles. Consequently, this
leads to suboptimal knowledge transfer in device heterogeneous FL. See Section 6 for theoretical
analysis and Section 7 for experimental observations.

5 Task Arithmetic Knowledge Transfer and Integration
In this section, we introduce TAKFL, designed to overcome the fundamental limitations of previous
approaches and enhance knowledge transfer across diverse heterogeneous device prototypes, which
vary in size—in terms of both model and dataset size. TAKFL consists of two main components:
(1) individually transferring knowledge from each device prototype’s ensembles, and (2) adaptively
integrating knowledge via task arithmetic. Detailed descriptions of each component are provided in
Section 5.1 and 5.2, respectively. An illustrative overview of TAKFL is presented in Figure 1b, and
the full algorithm is detailed in Appendix B, Algorithm 1.

5.1 Knowledge Transfer from Individual Device Prototype

We begin by discussing our proposed knowledge transfer framework from each individual device
prototype’s ensembles. This process consists of two main components: ensemble knowledge trans-
fer and self-regularization, each detailed in the subsequent paragraphs.

Ensemble Knowledge Transfer. Vanilla ensemble distillation integrates the knowledge of vary-
ing strength ensembles by uniformly averaging their logits. This approach can potentially trans-
form or even degrade the overall quality of the knowledge being transferred, leading to suboptimal
knowledge transfer. To effectively distill the unique knowledge and contributions of each proto-
type’s ensembles, and to avoid dilution, information loss, and interference from other prototypes’
ensembles, we propose transferring the knowledge from each prototype’s ensembles separately and
independently.

Specifically, let’s consider Ti := {f i(·, θ̂i
k)| k ∈ Ci} denotes the ensembles of device prototype

i as teacher and Sj denotes the server student model of the device prototype j. Without loss of
generality, we refer to each device prototype’s server student model as just student denoted as S.
Therefore, the knowledge distillation loss between the teacher ensembles Ti and server student S
(Ti → S) is defined below:

LTi)S
KD = KL

[
σ

(
1

|Ti|
∑
F∈Ti

F(x)
)
, σ (S(x))

]
. (4)

Scaffolding Student from Noisy Ensemble Distillation. The ensemble distillation process may
adversely impact the student, causing it to forget its own knowledge acquired through averaged
locally updated parameters and be drifted into erroneous directions. This is primarily due to two
key factors: (1) The ensemble distillation process introduces noise, mainly because the ensembles’
logits are inferred on an unfamiliar public dataset they have not been trained on. These ensembles
are originally trained on local private datasets, which usually differ from the unlabeled public dataset
used for distillation. Moreover, other factors such as the presence of data heterogeneity within FL
and insufficient training of some ensembles due to limited computational resources can exacerbate
this noise, particularly in the initial rounds of federation. (2) The ensemble distillation process lacks
supervision from the actual private datasets, which is the ultimate learning objective.

To scaffold the student models from the noisy and unsupervised distillation process, which may
cause them to drift into erroneous directions and forget their invaluable self-knowledge, we introduce
a KD-based self-regularization technique. Our self-regularization technique mitigates these issues
by enforcing similarity between the logits of the student and its initial logits (when the student is
initialized with averaged parameters) using KL divergence loss defined below:

Lself
S = KL

[
σ (S(x;θavg)) , σ (S(x))

]
. (5)

Overall Knowledge Transfer Objective. The overall knowledge transfer objective from teacher
ensembles Ti of device prototype i to the student S is the combination of the ensemble knowledge
distillation loss LTi)S

KD (Eq. 4) and the self-regularization loss Lself
S (Eq. 5) defined in the following:

LTi

S = LTi)S
KD + γ · Lself

S . (6)
Here, γ is a hyperparameter controlling the effect of self-regularization term. We associate the
knowledge transfer from each device prototype i to a task Ti with the loss LTi

S .

5

5.2 Task Arithmetic Knowledge Integration

Figure 2: Analogy between task
vector in centralized learning
and federated learning.

Herein, we delve into the details of our proposed method for
customized integration of the separately distilled knowledge
from heterogeneous ensembles. Drawing inspiration from
recent advances in model editing via task arithmetic [51],
where a pre-trained model’s knowledge can be edited via task-
specific vectors using arithmetic operation, we propose a novel
customizable knowledge integration method via task arith-
metic. To do so we extend the notion of task vector from
centralized learning to federated learning. We conceptualize
the averaged locally updated parameters, i.e. θavg , as a “pre-
trained”, similar to those in centralized learning, and the pa-
rameters of the distilled model via knowledge transfer objective (Eq. 4), denoted as θdistilled, as a
“fine-tuned” version of the model (see Fig. 2). Consequently, the task vector τi associated with the
knowledge transfer task LTi

S can be defined by subtracting the distilled parameters from the averaged
locally updated parameters as follows:

τi = θTi)S
distilled − θavg. (7)

Essentially, task vectors serve as unique representations for the transferred knowledge from each
prototype’s ensembles to the student and encapsulate the distinct contributions of each prototype’s
ensembles to the student model. To selectively merge the knowledge of each prototype’ ensembles
into the student, we employ an adaptive task arithmetic operation as follows:

θmerged = θavg +
∑
i∈M

λiτi, (8)

where λi denotes the merging coefficient associated with task vector τi, and they sum to one, i.e.∑
i∈M λi = 1. The merging coefficients determine the extent of knowledge integration from each

prototype’s ensembles. Essentially, they enable the student to have customized knowledge inte-
gration to achieve maximum performance. The student can determine these merging coefficients
based on its own learning capacity and the relative knowledge and helpfulness of other device proto-
types’ ensembles. This approach provides an effective, low-cost, and scalable knowledge integration
strategy in settings with diverse device heterogeneity. In our experiments, we considered this as a
hyperparameter and tuned it manually or determined it using held-out validation sets which achieves
similar results. More details can be found in Appendix F.3.

6 Theoretical Results
We present a theoretical understanding on the efficacy of knowledge distillation in device heteroge-
neous FL. We argue that vanilla ensemble distillation (VED) diffuses the information from logits,
which presents a notable disadvantage for solving (1). This effect is particularly pronounced when
the teacher ensembles are from a device prototype of small capacity, and the student model is from a
device prototype of large capacity. By contrast, our proposed method of task arithmetic knowledge
integration, mitigates the drawbacks of VED and is able to simultaneously incorporate information
from differently sized heterogeneous ensembles, efficiently filling up the capacity of each student
with the most informative knowledge, achieving optimal knowledge transfer.

Assumptions and Preliminaries. Standard practice, including the setting in consideration as well
as the numerical experiments here, involves overparametrized neural networks, that is, the total
number of weights far exceeds the training sample size. This implies that the set of weights that
minimize the loss is non-unique, and moreover, it has been argued that they form a submanifold [8].
This submanifold structure of solution sets will provide the critical source of understanding the
subsequent results. In particular, we shall consider knowledge distillation as filling up the capacity
of device prototypes’ models with basis vectors corresponding to submanifolds that minimize as
many device prototypes’ data distributions as possible.

Since we are interested in server-side distillation across heterogeneous device prototypes, we assume
optimal conditions at the local per-prototype FL level, meaning that the perfect solution for local
per-prototype FL is achieved. The formal details of the assumptions and statements are presented in
Appendix C.
Proposition 1. (information loss in VED, informal). Consider the VED procedure in the form of
solving (3). Consider two device prototypes with a device capacity and solution dimension of Q1, Q2

6

and W 1,W 2, respectively, and with associated eigenbases Qi,Wi. Denote W i,j , i, j = 1, 2 as the
capacity allocated by student i in order to distill knowledge from teacher j’s logits.

1. Case 1: When the capacities are the same, that is Q1 = Q2 and W 1 = W 2 = W 1,2 = W 2,1,
then with VED, there will be some capacity, in the sense of eigenspace, of student prototypes that
will be allocated with parameters that do not minimize the student’s its own data distribution.

2. Case 2: Assume that Q1 > Q2 and W 1 = W 1,2 > W 2. Then the phenomenon as for Case
1 holds. Moreover, there will be some capacity of student 1’s model that will be allocated with
parameters that do not minimize either of the teacher or student prototype’s data distribution.

An interesting key mechanism of the proof is that when VED is applied in distilling logits from a
small device prototype to a large one, the modeling capacity of W 1,2 is structurally reduced to that
of W 2 < W 1,2, i.e., it is an operation wasteful of the potential model capacity.
Remark 1. This proposition proves that in general, VED is prone to diffuse knowledge already
present in students, and leads to inefficient and inaccurate use of model capacity. Furthermore,
under the case that device prototypes have different capacities, VED ends up leading to more er-
ronous models entirely as the small information within the small teacher is transferred onto a larger
capacity target.
Proposition 2. (improve knowledge transfer with task arithmetic, informal). Consider the TAKFL
procedure as in the form of computing (8). Consider two device prototypes with a device capac-
ity and solution dimension of Q1, Q2 and W 1,W 2, respectively, and with associated eigenbases
Qi,Wi.

1. Case 1: In the case that that Q1 ≥ Q2 and W 1 ≥ W 2, it holds that the TAKFL with prototype
1 as student preserves the eigenbasis associated to the parameters used to accurately fit the data
D1.

2. Case 2: Assume that Q1 = Q2 and W 1 = W 2. TAKFL yields a solution for the student that is
at the intersection of the subspaces corresponding to minimizing the two data distributions.

3. Case 3: Assume that Q1 > Q2 and W 1 > W 2. In the case of prototype 1 being the student,
TAKFL yields a solution that:
(a) retains the approximation accuracy on device 1’s data distribution,
(b) ensures approximation accuracy to the level of device 2’s relative capacity
(c) fills the remaining local capacity device 1 has allocated for device 2’s logits with no infor-

mative new knowledge, unless enforced otherwise.
Remark 2. This proposition proves that in general, TAKFL promotes the most efficient allocation
of the devices’ capacity in order to accurately fit a diverse set of data distributions. With TAKFL,
the previously acquired knowledge is entirely preserved. Even under the case that device prototypes
have different capacities, TAKFL smartly transfers the most informative knowledge to each proto-
type’s student model based on its own intrinsic capacity. Still, the final statement indicates that in
the case that there are many different teachers, while a small device prototype serving as teacher
will not be necessarily compromise information, it would still be preferable to allocate that capacity
to a more informative, larger, teacher model.

7 Experiments
7.1 Main Experimental Setup
Dataset and Architecture. We evaluate our method on computer vision (CV) and natural language
processing (NLP) tasks. For CV, we train image classification using CIFAR10/100 [24], CINIC-
10 [9], and TinyImagenet [25]. For NLP, we fine-tune pre-trained models for text classification on
MNLI [50], SST-2 [43], MARC [22], and AG News [58]. Our architectures include ResNet [17],
VGG [42], and ViT [12] for CV, and small BERT variants [45] (-Tiny, -Mini, -Small) for NLP.
We simulate a federated non-i.i.d setting using a Dirichlet distribution Dir(α), where a lower α
indicates higher heterogeneity [27, 36]. Further details can be found in Appendix F.1 and F.2.

Implementation Details. We use the Adam optimizer for both CV and NLP tasks. For CV, local
training involves 20 epochs with a learning rate of 0.001, weight decay of 5e-5, and a batch size
of 64. NLP training is conducted over 1 epoch with a learning rate of 3e-5, no weight decay, and
a batch size of 32. For distillation, Adam is used with a learning rate of 1e-5 and weight decay of
5e-4 for CV, and 3e-5 with no weight decay for NLP. Batch sizes for distillation are 128 for CV
and 32 for NLP. The softmax temperature is set at 3 for both tasks, with a temperature of 20 for
self-regularization. Further details are provided in Appendix F.1 and F.2.

7

Table 1: Performance Results for CV task on CIFAR-10 and CIFAR-100. Training data is distributed
among S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using Dirichlet distribution.
Public datasets are CIFAR-100 [24] for CIFAR-10 [24] and ImageNet-100 [10] for CIFAR-100. Client config-
urations include 100, 20, and 4 clients for S, M, and L, with sampling rates of 0.1, 0.2, and 0.5. Architectures
are ResNet-8, ResNet-14, and ResNet-18 [17] for S, M and L, respectively. All models are trained from scratch
for 60 rounds. See Appendix D.1 for additional experiments using hetero-family architecture and more details.

Low Data Heterogeneity (Dir(0.3)) High Data Heterogeneity (Dir(0.1))
Dataset Baseline S M L Average S M L Average

CIFAR-10

FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93
FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.60 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.62
TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62

CIFAR-100

FedAvg 13.22±0.14 21.39±1.11 29.47±0.86 21.36 11.86±0.08 14.63±0.65 26.25±1.64 17.58
FedDF 19.54±0.20 24.32±0.45 29.29±1.45 24.38 16.09±0.32 19.80±0.17 26.59±0.25 20.83
FedET 19.67±0.35 25.27±0.66 31.10±1.53 25.35 11.18±1.68 18.22±0.35 26.40±0.65 18.60
TAKFL 24.48±0.42 27.60±0.25 29.84±0.94 27.31 22.90±0.18 23.63±0.72 26.98±0.13 24.50
TAKFL+Reg 27.18±0.27 29.14±0.20 31.15±0.97 29.15 22.88±0.37 23.92±0.57 28.01±0.34 24.94

Baselines and Evaluation Metric. We compare our method against standard FL, i.e. Fe-
dAvg [33] and SOTA KD-based methods designed for heterogeneous device prototypes FL, includ-
ing FedDF [30] and FedET [6]. The evaluation metric is the final top-1 classification accuracy of
each device prototype’s global model on the test dataset, as per the methodology described in [36].
We report the average results and the standard deviation over three independent runs, each with a
different random seed. A more detailed version of the experiments, alongside additional experiments
and ablation studies, is presented in Appendix D and E.

7.2 Main Experimental Results
In this section, we evaluate the performance of our method, TAKFL, in a federated learning environ-
ment that mirrors real-world scenarios with diverse, heterogeneous device prototypes, as illustrated
in Fig. 4b. Our experimental setup includes three different device prototype sizes: Small (S) with a
small model and small dataset, Medium (M) with a medium-sized model and medium-sized dataset,
and large (L) with a large model and large dataset.

Performance on CV Task. Table 1 presents the performance of TAKFL in the homo-family ar-
chitecture setting on the CIFAR-10 and CIFAR-100 [24] datasets (for hetero-family architecture
results, see Appendix D.1, Table 4). TAKFL consistently enhances performance across all device
prototypes in various scenarios, achieving SOTA results. Notably, in the Dir(0.3) setting on CIFAR-
10, TAKFL improves average performance across all prototypes by 8%, and by 4% on CIFAR-100.
From Table 1, inconsistent performance improvements are observed with prior KD-based methods,
especially for the L prototype. While S and M prototypes achieve gains, the L prototype suffers up
to a 10% degradation compared to vanilla FedAvg, highlighting the dilution issue where valuable
information from larger, more capable device prototypes is diluted by less informative outputs from
smaller devices. Moreover, the significant performance improvements TAKFL achieves for each
device prototype, particularly for S and M prototypes, illustrate the ineffectiveness of the one-size-
fits-all approach used in the existing KD methods. These observations confirm the shortcomings
of vanilla ensemble distillation and corroborate our theoretical findings in Remark 1 and 2. The
effectiveness of our self-regularization technique is further supported by these experimental results.
For more detailed and insightful analysis see Appendix D.1.1.

Performance on NLP Task. Table 2 presents the results on MNLI [50] and SST-2 [43] datasets (see
Appendix D.3 for further experiments). Similar to the CV task, TAKFL has consistently improved
performance across all device prototypes of varying sizes, achieving SOTA results: a 3% average
increase on MNLI and 2% on SST-2. The suboptimality of existing KD methods, is evident from the
results presented here as well. Notably, FedET suffers from a significant performance degradation
compared to vanilla FedAvg. This issue stems from FedET’s reliance on the confidence scores of
neural networks for uncertainty estimates. However, neural networks, especially pretrained language
models (PLMs), tend to be poorly calibrated and overconfident, undermining reliable uncertainty
estimates [48, 15, 5, 53].

7.3 Scalability Evaluation

We evaluate the scalability of TAKFL across a spectrum of device prototypes, from extremely small
(XXS) to extremely large (XXL), to see how well our method adapts from a uniform array of small-
size prototypes to a diverse mix of sizes. Each prototype is equipped with appropriately scaled
model and dataset sizes, simulating real-world variations in device capabilities.

8

Table 2: Performance Results for NLP Task on MNLI and SST-2. Training data distribution is similar to
the CV task using only Dir(0.5) here. Public datasets are SNLI [2] for MNLI [50] and Sentiment140 [14] for
SST-2 [43]. Client configurations are 8, 4, and 2 clients for S, M, and L, with sample rates of 0.3, 0.5, and 1.0,
respectively. Architectures include Bert-Tiny, Bert-Mini, and Bert-Small [45] for S, M, and L, initialized from
pre-trained parameters and fine-tuned for 20 communication rounds. See Appendix F.2 for more details.

Baseline MNLI SST-2
S M L Average S M L Average

FedAvg 36.15±0.46 54.47±2.48 57.51±2.79 49.37 54.98±1.81 74.71±8.22 86.69±0.06 72.13
FedDF 54.21±0.15 60.44±1.91 66.71±1.09 60.45 74.41±2.62 80.71±1.63 84.35±1.66 79.82
FedET 48.03±6.32 50.33±7.87 53.80±6.18 50.72 66.63±9.14 65.89±16.35 70.05±15.83 67.52
TAKFL 57.43±0.21 63.58±0.31 68.74±0.12 63.25 74.73±0.55 82.17±0.31 86.93±0.42 81.28
TAKFL+Reg 57.61±0.89 63.91±1.05 68.96±1.10 63.49 74.88±0.43 82.40±0.83 87.33±0.63 81.54

Figure 3: Scalability Evaluation of TAKFL. Image classification on CINIC-10 [9] dataset is used to evaluate
TAKFL’s scalability across device prototypes ranging from XXS to XXL. Training data is distributed among
prototypes in a 1:2:3:4:5:6:7 ratio, further subdivided using Dir(0.5). Client configurations range from 35 for
XXS to 5 for XXL. Architectures span from ResNet10-XXS for XXS to ResNet50 for XXL prototype, all
initialized from scratch and trained over 30 communication rounds. The public dataset is CIFAR-100 [24]. See
Appendix D.4 for more details.

Figure 3 illustrates TAKFL’s ability to effectively scale from 3 to 7 device prototypes. In scenarios
where all devices are similarly small, i.e. 3-device setup, TAKFL’s performance is slightly better
than FedDF. This is because when devices are homogeneously small and similar in capability, they
do not offer unique contributions that could benefit from more complex distillation strategies. How-
ever, as the scenario expands to include larger devices like XL and XXL in the 5- and 7-device
configurations, TAKFL significantly outperforms existing KD-based methods. This improvement is
driven by the larger devices’ ability to offer more significant and higher-quality knowledge, which
TAKFL effectively distills across all prototypes, contrasting sharply with existing methods that fail
to utilize this potential. These experimental observations, corroborated by our theoretical insights in
Remark 2, demonstrate TAKFL’s superior scalability and effectiveness.

8 Conclusion and Discussion
In this work, we addressed a fundamental issue in standard federated learning: the lack of support for
heterogeneous device prototypes. Existing KD-based methods often fall short in real-world scenar-
ios, where device capabilities vary widely. To address this, we introduced TAKFL, a novel KD-based
method that treats knowledge transfer from each prototype’s ensembles as separate tasks and distills
them independently. TAKFL susequently integrates the knowledge using an adaptive task arithmetic
technique for optimized performance. We also introduced a KD-based self-regulation technique to
mitigate issues arising from noisy and unsupervised ensemble distillation. The effectiveness of our
method is substantiated by both theoretical results and extensive experimentation across CV and
NLP tasks, using various datasets and models.

Limitations remain, notably in real-world applicability. While TAKFL’s effectiveness in an approx-
imated real-world setup has been demonstrated, actual deployment on physical devices and in envi-
ronments with extremely large models remains untested due to resource constraints. Experiencing
TAKFL in genuine real-world settings could unveil additional challenges or limitations, providing
further insights into its scalability and efficiency.

9

References
[1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-heterogeneous federated learning

with rolling sub-model extraction. Advances in Neural Information Processing Systems, 35:29677–29690,
2022. 3, 1

[2] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference, 2015. 9, 12, 18

[3] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expanding the reach of
federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210, 2018. 3,
1

[4] Chuan Chen, Tianchi Liao, Xiaojun Deng, Zihou Wu, Sheng Huang, and Zibin Zheng. Advances in robust
federated learning: Heterogeneity considerations. arXiv preprint arXiv:2405.09839, 2024. 2

[5] Yangyi Chen, Lifan Yuan, Ganqu Cui, Zhiyuan Liu, and Heng Ji. A close look into the calibration of
pre-trained language models. arXiv preprint arXiv:2211.00151, 2022. 8, 2, 12

[6] Yae Jee Cho, Andre Manoel, Gauri Joshi, Robert Sim, and Dimitrios Dimitriadis. Heterogeneous ensem-
ble knowledge transfer for training large models in federated learning. arXiv preprint arXiv:2204.12703,
2022. 3, 8, 1, 2, 17

[7] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 215–223, Fort Lauderdale, FL, USA, 2011. PMLR. 11, 16

[8] Yaim Cooper. Global minima of overparameterized neural networks. SIAM Journal on Mathematics of
Data Science, 3(2):676–691, 2021. 6

[9] Luke N. Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey. Cinic-10 is not imagenet or
cifar-10, 2018. 7, 9, 11, 13, 16

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
248–255, 2009. 8, 9, 16

[11] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient federated
learning for heterogeneous clients. arXiv preprint arXiv:2010.01264, 2020. 3, 1

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021. 7, 9, 17

[13] Cong Fang, Hanze Dong, and Tong Zhang. Mathematical models of overparameterized neural networks.
Proceedings of the IEEE, 109(5):683–703, 2021. 8

[14] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009, 2009. 9, 12, 18

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.
In International conference on machine learning, pages 1321–1330. PMLR, 2017. 8, 2, 12, 14

[16] Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated
learning. arXiv preprint arXiv:1910.14425, 2019. 4

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition,
2015. 7, 8, 9

[18] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and Nicholas
Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout.
Advances in Neural Information Processing Systems, 34:12876–12889, 2021. 3, 1

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications, 2017. 11, 17

[20] Anil Kag, Durmus Alp Emre Acar, Aditya Gangrade, and Venkatesh Saligrama. Scaffolding a student to
instill knowledge. In The Eleventh International Conference on Learning Representations, 2022. 17

10

[21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national conference on machine learning, pages 5132–5143. PMLR, 2020. 1

[22] Phillip Keung, Yichao Lu, György Szarvas, and Noah A. Smith. The multilingual amazon reviews corpus.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020. 7,
12, 18

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. 11

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009. 7, 8, 9,
11, 14, 16

[25] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. 7, 11, 16

[26] Lin Li, Jianping Gou, Baosheng Yu, Lan Du, and Zhang Yiand Dacheng Tao. Federated distillation: A
survey. arXiv preprint arXiv:2404.08564, 2024. 2

[27] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10713–10722, 2021. 1, 7

[28] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Feder-
ated optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450,
2020. 1

[29] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?–a mathematical
framework. In International Conference on Learning Representations, 2021. 8

[30] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363, 2020.
3, 4, 8, 1, 2

[31] Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural network
fusion via graph matching with applications to model ensemble and federated learning. In International
Conference on Machine Learning, pages 13857–13869. PMLR, 2022. 1

[32] Tian Yu Liu and Stefano Soatto. Tangent model composition for ensembling and continual fine-tuning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 18676–18686, 2023.
3

[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pages 1273–1282. PMLR, 2017. 1, 8

[34] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-friendly
vision transformer, 2022. 11, 17

[35] Alessio Mora, Irene Tenison, Paolo Bellavista, and Irina Rish. Knowledge distillation for federated learn-
ing: a practical guide. arXiv preprint arXiv:2211.04742, 2022. 2

[36] Mahdi Morafah, Weijia Wang, and Bill Lin. A practical recipe for federated learning under statistical
heterogeneity experimental design. IEEE Transactions on Artificial Intelligence, 2023. 7, 8

[37] Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent space:
Improved editing of pre-trained models. Advances in Neural Information Processing Systems, 36, 2024.
3, 4, 5

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang,
Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019. 16

[39] Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jörg Henkel. Federated learning for computationally
constrained heterogeneous devices: A survey. ACM Computing Surveys, 55(14s):1–27, 2023. 2

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021. 14

11

[41] Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. Fedaux: Leveraging unlabeled aux-
iliary data in federated learning. IEEE Transactions on Neural Networks and Learning Systems, 2021. 3,
1

[42] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-
nition, 2015. 7, 9, 16

[43] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–
1642, Seattle, Washington, USA, 2013. Association for Computational Linguistics. 7, 8, 9, 12, 18

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15
(1):1929–1958, 2014. 1

[45] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better: On
the importance of pre-training compact models. arXiv preprint arXiv:1908.08962v2, 2019. 7, 9, 12, 18

[46] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Feder-
ated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020. 1

[47] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective incon-
sistency problem in heterogeneous federated optimization. Advances in neural information processing
systems, 33:7611–7623, 2020. 1

[48] Yuxia Wang, Daniel Beck, Timothy Baldwin, and Karin Verspoor. Uncertainty estimation and reduction
of pre-trained models for text regression. Transactions of the Association for Computational Linguistics,
10:680–696, 2022. 8, 2, 12

[49] Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet strikes back: An improved training procedure
in timm. In NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future. 17

[50] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference, 2018. 7, 8, 9, 12, 18

[51] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S
Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: aver-
aging weights of multiple fine-tuned models improves accuracy without increasing inference time. In
International Conference on Machine Learning, pages 23965–23998. PMLR, 2022. 3, 6, 4

[52] Yebo Wu, Li Li, Chunlin Tian, and Chengzhong Xu. Breaking the memory wall for heterogeneous
federated learning with progressive training. arXiv preprint arXiv:2404.13349, 2024. 1

[53] Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie Neiswanger, Ruslan Salakhutdinov, and Louis-Philippe
Morency. Uncertainty quantification with pre-trained language models: A large-scale empirical analysis.
arXiv preprint arXiv:2210.04714, 2022. 8, 2, 12, 14

[54] Ziyue Xu, Mingfeng Xu, Tianchi Liao, Zibin Zheng, and Chuan Chen. Fedbrb: An effective solution to
the small-to-large scenario in device-heterogeneity federated learning. arXiv preprint arXiv:2402.17202,
2024. 1

[55] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Resolving
interference when merging models. Advances in Neural Information Processing Systems, 36, 2024. 3

[56] Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, and Salman Avestimehr. Timelyfl: Heterogeneity-aware
asynchronous federated learning with adaptive partial training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 5064–5073, 2023. 1

[57] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classifica-
tion. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2015. 12, 18

[58] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classi-
fication. In NIPS, 2015. 7, 12, 18

[59] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classifica-
tion, 2016. 12, 18

[60] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020. 3

12

Appendix

The supplementary materials are organized as follows:

• Appendix A: Provides more details on related works.

• Appendix B: Presents the full algorithm description of TAKFL.

• Appendix C: Presents formal theoretical statements, assumptions, and proofs supporting
our method.

• Appendix D: Presents detailed experimental results including some additional experiments.

• Appendix E: Presents the ablation studies experiments.

• Appendix F: Presents hyper-parameters and implementation details.

A More Detailed Related Works

(a) Partial Model Training (b) Heterogeneous Device Prototypes

Figure 4: Overview of Two Different Device Heterogeneous FL Settings. (a) In the partial model
training setting, the objective is to train a single global model where heterogeneous devices train
a specific sub-model based on their computational resources. This approach necessitates device
support for varying neural network architectures, which is impractical as devices typically have spe-
cialized architectures designed to match their hardware, software configurations, and underlying
machine learning tasks. (b) In the heterogeneous device prototypes setting, device prototypes par-
ticipate in FL to enhance the performance of their global model by transferring knowledge across
prototypes. This setting is more feasible as it accommodates diverse device prototypes with their
own specific configurations, including neural network architecture and dataset. However, establish-
ing effective knowledge transfer between differently sized prototypes (like IoTs and workstations)
and diverse configurations is challenging. In this paper, we address this issue.

Prior works on device heterogeneous FL have considered two distinct approaches with different ob-
jectives and settings. The first group of studies focuses on accommodating devices with varying
compute resources, aiming to train a single global model [11, 3, 56, 52, 54]. Various partial model
training techniques have been proposed for this setting, where devices are tasked with training a sub-
model of a global model according to their compute resources. These include dropout-based [3],
static [11, 18], and rolling-based sub-model extraction techniques [1]. Federated Dropout builds
upon the concept of dropout [44] to extract smaller sub-models. Static sub-model extraction tech-
niques like in HeteroFL [11] and FjORD [18] consistently extract designated portions of the global
model, whereas FedRolex [1] introduces a more flexible rolling method for sub-model extraction.
However, these approaches assume that devices can support various sub-model architectures for
training, which does not fully reflect the real-world scenario. In practice, there exist a diverse spec-
trum of device prototypes such as IoT devices and smartphones each have unique and unhashable
neural network architectures tailored to their specific hardware and software configurations and un-
derlying machine learning tasks. Consequently, these device prototypes may not support training
various neural network architectures, highlighting a significant limitation in accommodating the full
spectrum of device heterogeneity in this setting.

The second array of studies tackles a more practical scenario where device prototypes with heteroge-
neous model architectures participate in FL to enhance their global model performance through mu-
tual knowledge sharing. In this context, knowledge distillation techniques are employed to transfer
knowledge among device prototypes [30, 6, 41]. Here, locally updated client models from various

1

device prototypes, collectively referred to as ensembles, serve as teachers to distill their knowl-
edge into each server’s student model using an unlabeled public dataset. For instance, FedDF [30]
utilizes vanilla averaging of all ensemble logits as the distillation target for all server student mod-
els. In contrast, FedET [6] employs an uncertainty-weighted average of ensembles’ logits as the
distillation target for all server student models, complemented by a diversity regularization tech-
nique. However, methods like FedET rely on the neural networks’ confidence scores for uncertainty
estimates, overlooking the fact that neural networks are often poorly calibrated and prone to over-
confidence, which compromises their ability to provide reliable uncertainty estimates [48, 15, 5, 53].
These existing works typically focus on settings where device prototypes have similar capabilities,
i.e. similar model and dataset sizes, thus neglecting the challenges presented in more diverse set-
tings where device prototypes vary significantly in terms of model and dataset size. This oversight
limits the effectiveness of these methods in truly diverse and heterogeneous environments. In this pa-
per, we introduce TAKFL, which is designed to address the limitations of existing methods in these
underexplored diverse device heterogeneous settings.

Figure 1 illustrates the distinctions between these two different settings studied in the literature. For
more information, we refer the reader to recent surveys [35, 26, 39, 4].

2

B Full Algorithm Description of TAKFL

The full algorithm description of TAKFL is presented in Algorithm 1.

Algorithm 1 TAKFL Algorithm

Require: number of communication rounds (R), public unlabeled dataset Dpublic, server training
iterations I , heterogeneous device prototypes (i ∈M) with their associated clients (Ci) and local
datasets ({Di

k}k∈Ci), model architecture (f i), local training iterations (Ilocal), local learning rate
(ηlocal), server distillation iterations (Idistill), and server distillation learning rate (ηdistill).

1: Server Executes:
2: Randomly initialize all device prototype’s server model {θi

0}i∈M
3: for each round r = 0, 1, . . . , R− 1 do
4: Ci

r ← (randomly select clients from each device prototype) ∀i ∈M
5: for each client k ∈ Ci

r, ∀i ∈M in parallel do
6: θ̂i

k ← ClientUpdate(k;θi
r)

7: end for
8: θi

avg =
∑

k∈Ci
r

|Di
k|∑

k∈Cir
|Di

k|
θ̂i
k

9: for each device prototype’s server student i = 1, 2, . . . ,M in parallel do
10: for each device prototype’s teacher ensembles j = 1, 2, . . . ,M in parallel do
11: θ ← θi

avg
12: for each server distillation iteration t = 0, 1, 2, . . . , Idistill do
13: x← sample a mini-batch of data from public dataset Dpublic

14: θt+1 ← θt − ηdistill · ∇LTi

S defined in Eq. 6.
15: end for
16: τj ← θIdistill − θi

avg
17: end for
18: θi

r+1 ← θi
avg +

∑M
j=1 λjτj

19: end for
20: θi

r+1 ← θi

21: end for

22: function ClientUpdate(k,θi
r)

23: θ ← θi
r

24: for each local update iteration t = 0, 1, . . . , Ilocal − 1 do
25: {x, y} ← sample a mini-batch of data from local dataset Di

k

26: θt+1 ← θt − ηlocal · ∇ℓ(f i(x;θt), y)
27: end for
28: θ̂i

k ← θIlocal

29: end function

3

C Theoretical Results

C.1 Proofs of the Main Propositions

First we present the formal assumptions associated with our theoretical derivations.

Assumption 1. Local federated averaging is performed with perfect test accuracy, i.e.,

argmin
θj

M∑
j=1

Nj∑
k=1

E(x,y)∼Dj
k

[
ℓ(f j(x;θj), y)

]
= argmin

θj

E(x,y)∼Dj

[
ℓ(f j(x;θ), y

]
(9)

That is, the training error on the datasets {Dj
k} for the computed θjavg is the same as the test error on

the population distributionDj . Moreover assume that we can write Ti =

{
Ni∑
k=1

f i(·, θ̂i
k)|k ∈ Ci

}
=

{f i(·, θiavg)}. Finally, we assume that the same population distribution
∑

j ωjDj is the same that
the clients perform their testing on as the server performs distillation on.

These assumptions are made for mathematical practicality while at the same time not starkly unrea-
sonable. The local FL the device prototypes perform is generically prone to imprecision, especially
as the clients’ data varies, but this discrepancy is bounded [16]. Similarly the difference in the aver-
age of logits and the logit of averages has a bounded difference norm [51]. Thus, violations of the
Assumption add additional perturbations to quantities derived in the Theoretical analysis without
having structural/qualitative effects, and thus would only present clutter in the presentation.

Notations. Now we present the notation defining the specific quantities we refer to in the derivations
below. The set of important quantities is given in Table 3. Note that the formal definitions of the
first two quantities are,

Θj := argmin
θ

E(x,y)∼Dj

[
ℓ(f j(x;θ), y

]
, Θj,k := argmin

θ
E(x,y)∼Di

[
ℓ(f j(x;θ), y

]

Table 3: Notation and Definitions
Notation Definition

Θj Parameters in j’s device model that minimize the loss on its population distribution
Θj,k Parameters in j’s device model that minimize the loss on i’th population distribution

Qj = dim(θj) The total capacity of device prototype j

Qj = {ejk}k=1,...,Qj Eigenbasis for the model of device prototype j
W j = dim(Θj) Dimension of the solution submanifold Θj

W j,k = dim(Θj,k) Dimension of the solution submanifold Θj,k

Wj = {ejk}k=1,...,W j Eigenbasis the solution submanifold Θj

Wj,k = {ej,kl }l=1,...,W j,k Eigenbasis the solution submanifold Θj,k

We shall make use of the “Choose” combinatorial operator, defined to be Ch(n, p) = n!
p!(n−p)! . The

standard O(·) notation indicates ak = O(bk) to mean there exists K and C such that for k ≥ K,
ak ≤ Cbk.

A recent finding that inspired the methodology in this work is the discovery of the weight disentan-
glement phenomenon underlying task arithmetic [37]. Indeed the task arithmetic property provides
the ideal circumstance for federated knowledge transfer as we shall see below. Formally, adapting
their definition to our notation:

(Task Arithmetic Property) holds for a set of vectors {τj} if for all j it holds that,

f j

x;θj
avg +

∑
i ̸=j

λiτi

 =

{
f j(x;θj

avg + λiτi) x ∈ Di

f j(x;θj
avg) x ∈ Dj \ ∪i ̸=jDi (10)

Let us define an important property of task arithmetic that we shall use in the sequel.

4

(Weight disentanglement).[37] A parametric function f : X ×Θ→ Y is weight disentangled with
respect to a set of task vectors T = {τj}j∈T and the corresponding supports DT := {Dj}j∈T if

f(x;θ0 +

T∑
i∈T

αiτi) =
∑
i∈T

gj(x;αiτi) + g0(x),

where gi(x;αiτi) = 0 for x ̸∈ Di and i ∈ T, and g0(x) = 0 for x ∈
⋃

i∈TDi.

We now present the formal statements as well as the proofs of the main propositions.
Proposition 1. (Information Loss in VED). Consider the VED procedure in the form of solv-
ing (3). Consider two device prototypes with a device capacity and solution dimension of Q1, Q2

and W 1,W 2, respectively, and with associated eigenbases Qi,Wi. Let the solution set of VED
with prototype i as student be Θ̂i

V ED with dim(Θ̂i
V ED) = W vi with eigenbasisWvi . In addition,

denote W s,t, s, t ∈ {1, 2} the dimension of the solution set for the student model trained on the
data from the teacher device’s ensembles. We assume that self-distillation is executed appropriately,
e.g., W 1,1 = W 1 and W 2,2 = W 2.

1. Case 1: Assume that Q1 = Q2 and W 1 = W 2 = W 1,2 = W 2,1. Then it holds that, in
expectation,

dim
(
Θ̂1

V ED ∩
[
Q1 \W1]) = O

(
(Q1 −W 1)(W 1)!(Q1 −W 1,2)!

Q1!(W 1)!(Q1 −W 1)! +Q1!W 1,2!(Q1 −W 1,2)!

)
This corresponds to the expected capacity of prototype 1 that is taken up for fitting logits that are not in the
span of W1, that is, that do not fit the data corresponding to prototype 1.

2. Case 2: Assume that Q1 > Q2 and W 1 = W 1,2 > W 2. Then the same quantity as for Case 1 holds.
Moreover,

dim
(
Θ̂V ED ∩

[
Q1 \ (W1 ∪W1,2]) = O

(
(Q1 −W 1)(W 1!)(W 1,2 −W 2)!

Q1!W 1!(Q1 −W 1)! +Q1!W 2!(W 1,2 −W 2)!

)
This corresponds to capacity of client 1 that has been allocated but fits, in the model of prototype 1, neither
the data of prototype 1, nor of the data of prototype 2.

Proof. Formally,

Θ̂V ED := argmin
θ∈Q1

LED = argmin
θ

KL
[∑
i=1,2

σ

(
f i(x,θi

avg)

)
, σ (S(x))

]
Since by assumption θi

avg solves the training problem on the data associated with device prototype
i, the logit is accurate, and thus there is a map O(i, j) : Ti → T j

i ⊆ Wi,j . The self distillation, that
is, Sj defines a bijective map fromWj toWj and thus does not affect the capacity allocation.

Case 1: In this case, generically (that is, measure zero on some non-atomic sampling on a dis-
tribution of operators) O(i, j) is bijective. Now let us compute the expectation of the number of
eigenvectors of, e.g. W1,2 that are in the complement of the span of W1. Assuming, for simplic-
ity, independence, this would correspond to counting the possible choices within the capacity of
Q1 \W1 over the range of possible choices of filling the capacity ofQ1 with vectors inW1 together
with choices of filling it with vectors inW1,2:

Q1−W 1∑
i=1

i
Ch(Q1 −W 1, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2)

For, e.g., Q1 = 4 and W 1 = W 1,2 = 2 this is 1
3 .

To derive a scaling rate we can write:∑
i i

(Q1−W1)!

i!(Q1−W1−i)!

Q1!

(W1)!(Q1−W1)!
+ Q1!

W1,2!(Q1−W1,2)!

= O
(

(Q1−W 1)(W 1)!(Q1−W 1,2)!
Q1!(W 1)!(Q1−W 1)!+Q1!W 1,2!(Q1−W 1,2)!

)
Case 2: In this case, it must be that, at best almost surely, O(2, 1) is injective, but not surjective.
This means that distilling from 2 to 1 does not fill the capacity ofW1,2, and is thus a fundamentally

5

wasteful operation, that is |T j
i | = W 2 < W 1,2. Now let us compute the expectation of the number

of eigenvectors of, e.g.W1,2 that are in the complement of the span ofW1. SinceW1,2 are being
structurally allocated for fitting, the combinatorial expression is the same:

Q1−W 1∑
i=1

i
Ch(Q1 −W 1, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2)

Thus for, e.g., Q1 = 4 and W 1 = W 1,2 = 2 this is, again, 1
3 . The scaling in this case is

O

(
(Q1 −W 1)(W 1!)(Q1 −W 1,2)!

Q1!W 1!(Q1 −W 1)! +Q1!W 2!(Q1 −W 2)!

)
However, we observe that there are vectors in the range of W1,2 \ O(2, 1)(W2) that have been
allocated by the VED but lie in neitherW1 nor inW1,2, that is, are garbage. We can compute those
as the expected number of eigenvectors arising from allocating W1,2 \ O(2, 1)(W2) that intersect
with Q1 \ W1 (that is, the spare capacity not used for fitting data D1). This is, using similar
principles:

W 1,2−W 1∑
i=1

i
Ch(Q1 −W 1, i)

Ch(Q1,W 1) + Ch(Q1,W 1,2 −W 2)

This is for, e.g., Q1 = 4, W 1,2 = 2 and W 2 = 1, this would be 3
10

The scaling here is

O

(
(Q1 −W 1)(W 1!)(W 1,2 −W 2)!

Q1!W 1!(Q1 −W 1)! +Q1!W 2!(W 1,2 −W 2)!

)
■

Proposition 2. (Improve knowledge transfer with task arithmetic). Consider the TAKFL procedure
as in the form of computing (8). Consider two device prototypes with a device capacity and solution
dimension of Q1, Q2 and W 1,W 2, respectively, and with associated eigenbases Qi,Wi. Let the
solution set of TAKFL with prototype i as student be Θ̂i

TA with dim(Θ̂i
TA) = W v with eigenbasis

Wv . In addition, denote W s,t, s, t ∈ {1, 2} dimension of the solution set for the student model
trained on the data from the teacher device’s ensembles. . The following statements hold:

In the case that that Q1 ≥ Q2 and W 1 ≥ W 2, it holds that the TAKFL preserves that the
eigenbasis used to model the data D1’s accuracy for device prototype 1, that is for student 1

dim
(
Wv ∩

[
Q1 \W1]) = 0

Case 1: Assume that Q1 = Q2 and W 1 = W 2. Then it holds that,

dim
(
Wv ∩

[
Q1 \ (W1 ∪W1,2]) = 0

Moreover, it holds that,
Θ̂TA ∈ Span(W1 ∩W1,2)

Thus, with equal capacity, no information is lost in Task Arithmetic aided knowledge ensemble distillation
and capacity is efficiently used to model the data from both prototype 1 and prototype 2.
Case 2: Assume that Q1 > Q2 and W 1 > W 2. Then it again holds that,

dim
(
Wv ∩

[
Q1 \ (W1 ∪W1,2]) = 0

However, while Θ̂TA ∈ Span(W1), it holds that dim
(
Wv ∩W1,2

)
= W 2 < W 1,2.

Proof. We can see immediately from the weight disentanglement property of Task Arithmetic that,

f1(x;θ1
avg + α1τ1 + α2τ2) = g1,1(x;α1τ1) + g1,2(x;α2, τ2) + g1,0(x)

with g1,1(x;α1τ1) for x /∈ D1, g1,2(x;α2τ2) for x /∈ D2 and g1,0(x) = 0 for x ∈ D1 ∪D2. From
this, we can immediately conclude the first statement of the Proposition as well as the expression

dim
(
Wv ∩

[
Q1 \ (W1 ∪W1,2

])
= 0

6

θ
1
avg

λ1,1τ1,1 + λ1,2τ1.2

θ
1,2
avgVEDΘ

1

Θ
1,2

θ
2
avg

θ
1,2
avg

VED

λ1,1τ1,1 + λ2,1τ2,1

Θ
2

Θ
2,1

θ
1
avg

θ
1,3
avgθ

1,2
avg

Θ
1

Θ
1,2

Θ
1,3

Figure 5: Illustration of Geometric Intuition. Each panel presents a different case example. The
left and center panels present the geometric intuition of KD for vanilla ensemble distillation (VED)
and TAKFL in the case where two different large device prototypes performing knowledge transfer.
The planes represent the solution subspaces. The right panel presents a circumstance by which two
small device prototypes (2, and 3) serve as teacher for transferring knowledge to a larger device
prototype 1.

and also, in the case of W 1 = W 1,2 = W 2 implies

Θ̂TA ∈ Span(W1 ∩W1,2)

For the last statement we observe again as in the second Case in the Proposition describing VED,
dim

(
O(2, 1)(W2)

)
< W 1,2 from which we can conclude that, generically

dim
({

v : v ∈ O(2, 1)(W2) ⊆ Wv, E(x,y)∼D2 l(f1(x; v), y) > 0
})

= W 1,2 −W 2

proving the final statement. ■

We observe that a key mechanism of the proof is the dimension of the target space of the teaching
operator O(i, j). As an informative model, we can consider coefficients λj of task vectors as re-
stricting the rank, relative to other teachers. For instance, in the previous Proposition, if W 1,2 = 2
and W 2 = 1, then λ2 = 1/2, so as to enforce one vector ofW1,2 is a target for the map Õ(2, 1),
would be appropriately sensible.

C.2 Geometric Intuition

In this section we aim to provide geometric intuition for the mechanism of VED and Task Arithmetic
KD on three different cases. Figure 5 presents the geometry illustration for three different cases. We
discuss each case in the following.

Case I: KD between two large prototypes with different data distributions. Consider Figure 5
left panel. This panel corresponds to a setting where two large device prototypes with similar total
capacity, i.e. Q1 = Q2 = 3 perform knowledge transfer. We consider the solution dimensions of
both prototypes to be the same, i.e. W 1 = W 2 = 2. These would correspond to planes in the
ambient space. Therefore, one plane corresponds to the solution subspace of the prototype 1 trained
on its own data, i.e. Θ1 subspace in the panel, and the other corresponds to the (theoretical) solution
subspace of this prototype trained on prototype 2’s data, i.e. Θ(1,2) in the panel. In this case, since
the data distributions of the prototypes are fairly disparate, this has resulted into near orthogonal
subspaces corresponding to these solutions. As we can see from the panel, VED will lead to point
which is far away from either of the planes corresponding to optimal solution subspaces, and far
from the optimal set of parameters, which is their intersection, suggesting a loss of knowledge. By
contrast, the TAKFL approach, by customizing the merging coefficients and putting each to half, i.e.
λ1,1λ1,2 = 0.5, can traverse in the tangent space of zero loss surface and get into the intersection
subspace which is exactly the optimal solution (θ∗

merged = θ1
avg + λ1,1τ1,1 + λ1,2τ1,2).

Case II: KD between two large prototypes with similar data distributions. Consider Figure 5
center panel. Similar to Case I, this panel corresponds to a setting where two large device prototypes
with similar total capacity, i.e. Q1 = Q2 = 3 performing knowledge transfer. We consider the
solution dimensions of both prototypes to be the same, i.e. W 1 = W 2 = 2. These would correspond

7

to planes in the ambient space. Therefore, one plane corresponds to the solution subspace of the
prototype 1 trained on its own data, i.e. Θ1 subspace in the panel, and the other corresponds to the
(theoretical) solution subspace of this prototype trained on prototype 2’s data, i.e. Θ(1,2) in the panel.
In this case, since the data distributions of the prototypes are fairly close, this has resulted into non-
orthogonal solution subspaces. As we can see from the panel, while VED could still lead to some
information loss, by and large we expect straightforward KD. Our task arithmetic (TA) approach,
again by customizing the merging coefficients λ1,1λ1,2 = 0.5, can traverse in the tangent space of
zero loss surface on each plane and get into the intersection subspace, corresponding to the most
efficient allocation of device prototype capacity for fitting simultaneously the logits corresponding
to accurate modeling of device prototype 1 as well as device prototype 2’s data distribution.

Case III: KD between two small prototypes and one large prototype. Now consider the right
panel in Figure 5. This panel corresponds to a setting where two small prototypes serve as teachers
and one large prototype is the student. The θ1

avg plane corresponds to the solution subspace of the
large prototype 1 on its own data, D1. The line θ1,2

avg line corresponds to the subspace of solutions in
prototype 1’s parameter space projected into the capacity of the information transferred from device
prototype 2. Finally, the line labelled θ1,3

avg corresponds to the subspace of solutions in prototype 1’s
parameter space projected into the capacity of the information transferred from device prototype 3.
Here, we can see from the relative angle of the lines with respect to the plane that the distribution
D1 is closer to the distribution D2 than to D3. Comparing this case to the previous cases, θ1,3

avg

is like case I and θ1,2
avg is like case II. We can apply the same conclusions here as well regarding

the performance of vanilla ensemble distillation and our adaptive task arithmetic approach. We
can see from the geometric visualization that knowledge distillation towards θ1,3

avg has more margin
of error for prototype 1. Therefore, with the TAKFL approach large prototype 1 can strategically
select which prototype to learn more from, and since θ1,2

avg has closer data distribution to prototype
1, TAKFL will prioritizes this by putting a larger merging coefficient, i.e λ1,2 > λ1,3. By contrast,
VED lacks this customization and results in sub-optimal knowledge distillation.

The geometric intuition discussed here is consistent with our detailed experimental analysis in D.1.1.

C.3 Analytical Properties of Learning Dynamics

Here we provide additional insights from the literature as to the nature and properties of learning
as it takes place on overparametrized models. Specifically, we comment on literature in the area
of Stochastic Differential Equation (SDE) models for SGD training dynamics, and its correspon-
dence to the results above. Overparametrization has been conjectured to be a significant factor in
contributing to the (unexpected, by classical bias-variance tradeoffs) generalization ability of deep
neural networks, from a number of perspectives [13].

Consider the diffusion model of SGD training for overparametrized NNs provided in [29]. Their
analysis relies on the following two assumptions. For our purposes L is shorthand for a client
group’s loss, L(θ) =

∑
k∈Cj

E(x,y)∼Dj
k

[
ℓ(f j(x;θ), y)

]
for some j, which will be identified from the

context.

Assumption 2. L : RQ → R is C3 and the solution set Γ is a W -dimensional C2-submanifold of
RD for 0 ≤W ≤ D and rank(∇2L(θ)) = Q−W

Assumption 3. Assume that U is an open neighborhood of Γ satisfying that gradient flow starting
in U converges to some point in Γ

From these, [29] derives Theorem 4.6. This Theorem decomposes the random process of the pa-
rameter weights driven by SGD after it has reached the solution manifold, e.g., the diffusive random
walk of θ1avg in Figure 5 along its respective solution manifold.

Theorem 1. Given L, Γ and θµ(0) = θ(0) ∈ U as by Assumptions 2 and 3 the SDE modeling
the optimization of F by SGD, that is, defining Φ(X) to be the gradient flow applied to the state
random variable X , then for T as long as P[Y (t) ∈ U,∀0 ≤ t ≤ T] = 1, θη(⌊T/η2⌋ converges in
distribution to the stochastic process Y (T) as η → 0, with Y (t) given as,

dY (t) = Σ
1/2
∥ (Y)dW (t)− 1

2∇
2L(Y)†∂2(∇L)(Y)[Σ∥(Y)]dt

− 1
2∂Φ(Y)

(
2∂2(∇L)(Y)

[
∇2L(Y)†Σ⊥,∥(Y)

]
+ ∂2(∇L)(Y)

[
L−1
∇2L(Σ⊥(Y))

])
dt

(11)

8

where Σ ≡ σσT and Σ∥, Σ∥, Σ∥ are given as,
Σ∥ = ∂ΦΣ∂Φ, Σ⊥ = (ID − ∂Φ)Σ(ID − ∂Φ),
Σ∥,⊥ = ∂Φσ(ID − ∂Φ)

(12)

This theorem indicates that the asymptotic flow of SGD on the client training can be decomposed
into a covariance-driven random walk in the tangent space, drift to preserve the flow into the tangent
plane, the tangent-normal portion of the noise covariance and noise in the normal direction.

This analytical expression provides the probabilistic foundations for the more higher level theoretical
results above. In particular, local gradient dynamics, as employed by individual device prototypes
j using FedAvg on its local clients, yields a flow for the stochastic process defined by the weights.
At this point of learning, the weights are traversing the solution set, with noise predominantly in the
tangent directions. Thus knowledge distillation which preserves this noise structure is going to be
more effective as far as preserving accuracy across data.

D Detailed Experimental Results

In this section we present a more detailed version of experimental results presented in the main paper
Section 7. Additional experimental results are also presented here.

D.1 Main Experimental Results on Computer Vision (CV) Task

The experiments in this section complements the main experimental results in the main paper
Section 7.2.

Experimental Setup. For the evaluation on CV task, we employ CIFAR-10 and CIFAR-100 [24]
datasets. For CIFAR-10, we use CIFAR-100 as the unlabeled public dataset, while ImageNet-100,
a subset of ImageNet [10] with 100 classes (see Appendix F.1.1), is used for CIFAR-100. We
distribute the training dataset among the device prototypes in a ratio of 1:3:6 for S, M, and L,
respectively. Each device prototype’s data portion is further distributed among its clients using a
Dirichlet distribution. We apply two levels of data heterogeneity for a comprehensive evaluation:
low heterogeneity, i.e. Dir(0.3), and high heterogeneity, i.e. Dir(0.1). Additionally, we configure the
number of clients and their sampling rates as follows: 100 clients for S, 20 for M, and 4 for L, with
sampling rates set at 0.1, 0.2, and 0.5 respectively. To comprehensively evaluate, we use two distinct
architectural settings: the “homo-family” setting, where all device prototypes’ architectures are from
the same family—employing ResNet8, ResNet14, and ResNet18 [17] for S, M, and L, respectively;
and the “hetero-family” setting, which diverse architectures are used—ViT-S [12] for S, ResNet14
for M, and VGG-16 [42] for L. All models are initialized from scratch, and the communication
round is set at 60 rounds. Further details regarding hyper-parameters can be found in Table 12.

Overview of Performance Results. Table 4 presents the performance of TAKFL across diverse
architecture settings on the CIFAR-10 and CIFAR-100 datasets. TAKFL consistently improves all
device prototypes of different sizes in various cases by a significant margin compared to the base-
lines, achieving SOTA performance. Notably, in the homo-family architecture setting with Dir(0.3)
on CIFAR-10, TAKFL improves average performance across all prototypes by 8%, and by 4% on
CIFAR-100. In the hetero-family settings with Dir(0.1) on CIFAR-10 and Dir(0.3) on CIFAR-100,
TAKFL enhances performance by ∼3% and 1%, respectively. Furthermore, we observe that our
self-regularization technique has successfully mitigated issues associated with the noisy and unsu-
pervised ensemble distillation process, thereby enhancing performance. Generally, the performance
gains from self-regularization are more pronounced in low data heterogeneity cases, where proto-
types’ models perform better and possess higher quality self-knowledge. Thus, self-regularization
proves more effective as it preserves this higher quality self-knowledge.

D.1.1 Consistency Analysis: Experimental and Theoretical Correlations

In this part, we elaborate on our key experimental observations and their alignment with our theo-
retical findings.

Insight 1: From Table 4, it is evident that prior KD-based methods show inconsistent performance
across various device prototypes, particularly for the large (L) prototype. For instance, in the CIFAR-
10 homo-family setting with Dir(0.3), while small (S) and medium (M) prototypes see performance

9

Table 4: Performance Results for CV task on CIFAR-10 and CIFAR-100. Training data is
distributed among S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using
Dirichlet distribution. Public datasets are CIFAR-100 for CIFAR-10 and ImageNet-100 for CIFAR-
100. Client configurations include 100, 20, and 4 clients for S, M, and L, with sampling rates of
0.1, 0.2, and 0.5. In homo-family settings, architectures are ResNet8, ResNet14, and ResNet18; in
hetero-family settings, they are ViT-S, ResNet14, and VGG-16. All models are trained from scratch
for 60 rounds. See Appendix F.1 for more details.

Dataset Baseline
Homo-family Architecture Setting

Low Data Heterogeneity High Data Heterogeneity
S M L Average S M L Average

CIFAR-10

FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93
FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.61 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.61
TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62

CIFAR-100

FedAvg 13.22±0.14 21.39±1.11 29.47±0.86 21.36 11.86±0.08 14.63±0.65 26.25±1.64 17.58
FedDF 19.54±0.20 24.32±0.45 29.29±1.45 24.38 16.09±0.32 19.80±0.17 26.59±0.25 20.83
FedET 19.67±0.35 25.27±0.66 31.10±1.53 25.35 11.18±1.68 18.22±0.35 26.40±0.65 18.60
TAKFL 24.48±0.42 27.60±0.25 29.84±0.94 27.31 22.90±0.18 23.63±0.72 26.98±0.13 24.50
TAKFL+Reg 27.18±0.27 29.14±0.20 31.15±0.97 29.16 22.88±0.37 23.92±0.57 28.01±0.34 24.94

Dataset Baseline
Hetero-family Architecture Setting

Low Data Heterogeneity High Data Heterogeneity
S M L Average S M L Average

CIFAR-10

FedAvg 27.53±0.83 47.30±3.17 55.10±8.60 43.31 20.93±1.54 25.62±6.04 36.80±5.47 27.78
FedDF 34.15±0.87 54.06±1.06 69.07±4.99 52.43 24.20±0.74 34.07±3.08 39.81±5.45 32.69
FedET 33.24±1.27 58.86±0.94 65.56±3.49 52.55 24.37±1.26 37.77±4.71 43.64±3.36 35.26
TAKFL 33.29±0.15 57.64±0.19 68.44±0.66 53.12 24.92±1.32 38.07±3.19 48.01±3.99 37.00
TAKFL+Reg 33.34±3.36 59.01±3.12 70.22±4.40 54.19 25.10±1.87 38.81±5.36 50.26±6.42 38.06

CIFAR-100

FedAvg 8.51±0.37 22.11±0.58 37.91±2.60 22.84 7.01±0.47 14.94±0.96 28.51±1.46 16.82
FedDF 10.46±0.17 23.46±0.65 36.81±0.82 23.58 7.76±0.40 18.92±0.39 29.81±1.09 18.83
FedET 11.16±0.18 25.40±0.30 37.38±0.60 24.65 8.20±0.54 20.66±0.50 28.95±1.79 19.27
TAKFL 10.29±0.11 27.14±0.89 39.15±0.88 25.53 7.88±0.68 21.41±0.37 31.31±0.66 20.20
TAKFL+Reg 11.25±0.37 27.86±0.86 38.68±0.45 25.93 8.45±0.20 22.16±0.87 31.95±1.13 20.85

gains, the L prototype experiences up to a ∼10% performance decline compared to vanilla FedAvg,
which lacks server-side knowledge distillation. This trend is consistent across other settings, such as
CIFAR-10 Dir(0.1) homo-family and CIFAR-100 Dir(0.3) homo-family. These outcomes underline
the dilution problem inherent in existing methods, where the valuable insights from larger, more ca-
pable device prototypes are overshadowed by less informative outputs from smaller devices, thereby
degrading the performance of L prototypes. These empirical findings are supported by our theoret-
ical insights as discussed in Remark 1. Specifically, Proposition 1 illustrates that vanilla ensemble
distillation (VED) leads to knowledge dilution and inaccuracies due to misaligned device capacity
allocations. Moreover, this issue becomes more significant when the smaller device prototype serve
as teacher.

Insight 2: From Table 4, the suboptimality of existing KD-based methods is evident from the sig-
nificant performance improvements of our method, especially for S and M prototypes across various
settings. This underscores the ineffectiveness of the one-size-fits-all approach these methods em-
ploy, where a single averaged logits distillation target is used for all device sizes, proving to be sub-
optimal. Our experimental observations regarding the shortcomings of vanilla ensemble distillation
methods align with our theoretical findings, as substantiated in Remark 1 and 2. It becomes evident
that an efficient knowledge distillation process must allocate capacity in a manner that appropriately
corresponds to the information value of the teacher ensemble prototypes.

Insight 3: Our experiments, detailed in Table 4, demonstrate TAKFL’s adept handling of knowl-
edge from various device prototypes under different data heterogeneity conditions. We observed
consistent performance gains for small (S) and medium (M) prototypes across both low and high
data heterogeneity, compared to vanilla FedAvg. However, in high heterogeneity settings, large (L)
prototypes show less improvement, prompting the question: What can smaller device prototypes
offer to larger ones?

In low heterogeneity scenarios, large prototypes significantly benefit from the collective knowledge,
showing enhanced performance. Conversely, in conditions of extreme heterogeneity, where smaller
models contribute less effectively, the performance improvements for larger devices are notably re-
duced. This pattern highlights TAKFL’s ability to intelligently manage and utilize the available
knowledge, selectively distilling information based on the intrinsic capacity and contributions of

10

Table 5: Performance Results for CV task on TinyImageNet, STL-10, and CINIC-10 using
pre-trained models.

Private Public Baseline S M L Average

TinyImageNet STL-10

FedAvg 8.97 13.03 15.12 12.37
FedMH 15.08 17.10 17.83 16.67
FedET 10.60 16.39 17.62 14.87
TAKFL 16.10 17.60 19.03 17.58
TAKFL+Reg 16.55 17.98 19.74 18.09

STL-10 CIFAR-100

FedAvg 26.01 34.47 42.88 34.45
FedMH 28.64 34.55 39.25 34.15
FedET 29.87 33.00 38.26 33.71
TAKFL 29.57 37.57 42.53 36.56
TAKFL+Reg 30.78 37.89 43.38 37.35

CINIC-10 CIFAR-100

FedAvg 44.87 55.49 51.33 50.56
FedMH 45.52 55.75 53.48 51.58
FedET 46.31 57.43 53.01 52.25
TAKFL 48.21 57.81 52.74 52.92
TAKFL+Reg 47.66 57.54 53.25 52.82

each prototype, and integrating only the most valuable knowledge from smaller devices when bene-
ficial.

By contrast, our analysis of existing KD-based methods shows their failure to effectively discern and
utilize the most informative knowledge across prototypes. These methods often overload the capac-
ity of larger prototypes with suboptimal or irrelevant information, particularly in high heterogeneity
environments, leading to not just stagnation but an accumulation of inefficiencies. These experi-
mental observations align with our theoretical insights, as outlined in Remark 2, which emphasizes
the crucial combinatorial constraint of capacity and diverse information. This further confirms the
superiority of TAKFL’s adaptive approach to knowledge distillation in diverse federated learning
environments.

D.2 Additional Experimental Results on CV Task

Experimental Setup. For additional evaluation of the CV task, we conducted experiments on Tiny-
ImageNet [25], STL-10 [7], and CINIC-10 [9] datasets using pre-trained models. For TinyIma-
geNet [25], we utilized STL-10 [7] as the unlabeled public dataset. STL-10 [7] and CINIC-10 [9]
both employ CIFAR-100 [24] as their respective public datasets. We distributed the training datasets
among the device prototypes in a 2:3:5 ratio for small (S), medium (M), and large (L) prototypes,
respectively. The data portion for each prototype was further subdivided among its clients using
a Dirichlet distribution: Dir(1.0) for TinyImageNet and Dir(0.3) for both STL-10 and CINIC-10.
Client configurations were set with 4, 3, and 2 clients for S, M, and L, respectively, all with a
sampling rate of 1.0. The architectures employed were MobileNetV3-Large [19] for S, Mobile-
ViTV2 [34] for M, and ResNet-34 for L, sourced from the TIMM library.1 The local training was
conducted over 10 epochs using an Adam [23] optimizer with a learning rate of 1e-3 and weight de-
cay of 1e-5. For server-side distillation, the epoch count was 10 for TinyImageNet and 1 for STL-10
and CINIC-10, with a batch size of 128, employing an Adam optimizer with a learning rate of 1e-5
and weight decay of 1e-5. For TinyImageNet, public dataset images from STL-10 were resized to
64×64, while for STL-10, images were resized to 32×32. No data augmentation was used. The
communication rounds is fixed to 40. These experiments were conducted by only 1 trial. Table 14
details the configurations.

Performance Results. Table 5 presents the results. The superiority of TAKFL’s performance across
these challenging datasets using pre-trained models is evident here as well.

D.3 Additional Experimental Results on Natural Language Processing (NLP) Task

The experiments in this section complements the main experimental results in the main paper
Section 7.2.

1https://github.com/huggingface/pytorch-image-models

11

https://github.com/huggingface/pytorch-image-models

Table 6: Performance Results for NLP Task on 4 Datasets.. Training data is distributed among
S, M, and L device prototypes in a 1:3:6 ratio, subdivided among clients using Dir(0.5). Client
configurations are 8, 4, and 2 clients for S, M, and L, with sample rates of 0.3, 0.5, and 1.0, respec-
tively. Architectures include Bert-Tiny, Bert-Mini, and Bert-Small for S, M, and L, initialized from
pre-trained parameters and fine-tuned for 20 communication rounds. See Appendix F.2 for more
details.

Private Public Baseline S M L Average

MNLI SNLI

FedAvg 36.15±0.46 54.47±2.48 57.51±2.79 49.37
FedDF 54.21±0.15 60.44±1.91 66.71±1.09 60.45
FedET 48.03±6.32 50.33±7.87 53.80±6.18 50.72
TAKFL 57.43±0.21 63.58±0.31 68.74±0.12 63.25
TAKFL+Reg 57.61±0.89 63.91±1.05 68.96±1.10 63.49

SST2 Sent140

FedAvg 54.98±1.81 74.71±8.22 86.69±0.06 72.13
FedDF 74.41±2.62 80.71±1.63 84.35±1.66 79.82
FedET 66.63±9.14 65.89±16.35 70.05±15.83 67.52
TAKFL 74.73±0.55 82.17±0.31 86.93±0.42 81.28
TAKFL+Reg 74.88±0.43 82.40±0.83 87.33±0.63 81.54

MARC Yelp

FedAvg 33.76±1.13 49.08±1.28 59.26±1.43 47.36
FedDF 53.01±1.24 55.37±0.87 56.81±0.99 55.06
FedET 52.63±2.29 54.28±2.31 56.11±2.61 54.34
TAKFL 55.70±2.08 58.64±1.75 59.39±1.16 57.91
TAKFL+Reg 55.96±1.66 59.18±1.13 59.61±1.89 58.25

AG-News DBPedia

FedAvg 83.64±3.51 83.47±2.35 91.48±2.22 86.20
FedDF 85.97±2.45 89.10±1.85 91.37±1.10 88.81
FedET 75.27±3.85 81.13±3.21 83.19±4.58 79.86
TAKFL 87.37±1.31 90.11±1.56 92.48±1.12 89.99
TAKFL+Reg 87.66±1.83 90.30±2.05 92.61±1.72 90.19

Experimental Setup. For the evaluation of NLP tasks, we utilize four datasets: MNLI [50], SST-
2 [43], MARC [22], and AG-news [58]. The corresponding unlabeled public datasets are SNLI [2]
for MNLI, Sentiment140 [14] for SST-2, Yelp [59] for Amazon, and DBPedia [57] for AG-News.
The training data is distributed among the device prototypes in a ratio of 1:3:6 for small (S), medium
(M), and large (L) categories, respectively, with each portion further subdivided among its clients
using a Dirichlet distribution (Dir(0.5)). The client configurations and their sampling rates are set
as follows: 8, 4, and 2 clients for S, M, and L categories, respectively, with sampling rates of 0.3,
0.5, and 1.0. The architectures employed for each prototype size are BERT [45] -Tiny, -Small, and
-Mini, respectively, each initialized from pre-trained parameters and tested over 20 communication
rounds. Additional details regarding hyper-parameters and datasets are presented in Appendix F.2
and Table 16.

Performance on NLP Task. Table 6 presents the results on four different datasets: MNLI, SST-2,
MARC, and AG-News. Similar to the CV task, TAKFL has consistently improved performance
across all device prototypes of varying sizes, achieving state-of-the-art results. On MNLI, it has en-
hanced average performance across all prototypes by 3%, on SST-2 by∼2%, on MARC by 3%, and
on AG-News by∼1.50%. As observed in the CV task, the suboptimality of existing KD-based meth-
ods is also evident here. Notably, FedET exhibits very poor performance compared vanilla FedAvg,
failing to achieve satisfactory results on all datasets except for the MARC dataset. Particularly, the
performance of the L prototype has consistently decreased across all datasets compared to vanilla
FedAvg. This behavior can be attributed to FedET’s reliance on neural network confidence scores
for uncertainty estimates in its uncertainty-weighted distillation. However, neural networks, espe-
cially pretrained language models (PLMs), are often poorly calibrated and prone to overconfidence,
which compromises their ability to provide reliable uncertainty estimates [48, 15, 5, 53].

D.4 Scalability Evaluation

This section complements the experimental results in the main paper Section 7.3.

Experimental Setup. To evaluate the effectiveness and scalability of our method across a broad
spectrum of device prototypes, ranging from very small to very large sizes, we conduct experi-
ments involving 3 to 7 different prototypes. Our objective is to assess how effectively our method
adapts from a uniform array of small-size prototypes (3 device prototypes) to a diverse mix that

12

includes prototypes ranging from extremely small (XXS) to extremely large (XXL) (7 device proto-
types). These experiments involve training image classification models from scratch on the CINIC-
10 dataset, using CIFAR-100 as the unlabeled public dataset. We randomly distribute the dataset
among prototypes with dataset ratios set to 1:2:3:4:5:6:7 from XXS to XXL. Each dataset portion
is further distributed among clients using a Dirichlet distribution (Dir(0.5)). The number of clients
ranges from 35 to 5 from XXS to XXL, respectively. Client sample rates are set at 0.1, 0.1, 0.15,
0.15, 0.2, 0.3, and 0.6 from XXS to XXL. We use a series of ResNet architectures—ResNet10-XXS,
ResNet10-XS, ResNet10-S, ResNet10-M, ResNet10, ResNet18, and ResNet50—scaled appropri-
ately for each prototype. The local training epochs are set at 2, 2, 2, 5, 10, 10, and 20 from XXS to
XXL to account for resource constraints, with fewer epochs assigned to smaller devices. We employ
the Adam optimizer with a learning rate of 1e-3 and a weight decay of 5e-5 for local training. For
XL and XXL, a step learning rate scheduler reduces the learning rate by a factor of 0.1 at half epoch.
Server-side distillation employs a fixed batch size of 128, using the Adam optimizer with learning
rate of 1e-3 and weight decay of 5e-5. The softmax temperature is set at 3 for ensemble distillation
and 20 for self-regularization. The number of communication rounds is fixed at 30. These exper-
iments are conducted over 3 trials with different random seeds, and the average performance with
standard deviation is reported. The entire device prototypes configurations are given in Table 15.

The detailed results are presented in Tables 7, 8, and 9.
Table 7: Scalability Evaluation. Detailed performance results for 7 device prototypes case.

Baseline XXS XS S M L XL XXL Average
FedAvg 23.17±1.26 30.66±0.14 32.81±0.21 31.77±0.21 37.69±0.08 41.78±0.05 50.52±0.01 35.49
FedDF 27.98±0.66 37.47±0.33 40.61±0.01 40.26±0.18 43.83±0.22 45.58±0.18 52.18±0.12 41.13
FedET 26.75±0.98 36.99±0.31 40.51±0.19 41.60±0.16 46.12±0.31 48.39±0.11 52.71±0.09 41.87
TAKFL 27.30±0.08 36.93±0.16 43.31±0.42 40.88±0.01 48.52±0.15 50.95±0.04 54.27±0.43 43.17
TAKFL+Reg 29.28±0.16 37.10±0.45 43.96±1.65 41.83±0.73 48.77±0.37 51.43±0.46 54.63±0.84 43.86

Table 8: Scalability Evaluation. Detailed performance results for 5 device prototypes case.

Baseline XXS XS S M XL Average
FedAvg 24.19±1.03 21.04±0.76 33.62±0.88 38.91±0.74 46.93±0.05 32.94
FedDF 28.31±0.61 34.66±0.00 39.91±0.07 38.24±0.36 46.81±0.11 37.59
FedET 26.88±0.95 34.11±0.27 41.15±0.29 40.81±0.87 48.14±0.06 38.22
TAKFL 27.91±0.12 37.09±0.11 40.46±0.34 41.06±0.02 49.02±0.35 39.11
TAKFL+Reg 28.24±0.46 37.30±1.10 40.76±0.94 43.09±0.27 50.86±0.22 40.05

Table 9: Scalability Evaluation. Detailed performance results for 3 device prototypes case.

Baseline XXS S M Average
FedAvg 24.19±1.03 33.62±0.88 38.91±0.74 32.24
FedDF 27.85±0.10 37.83±0.12 37.74±0.41 34.47
FedET 26.04±0.67 36.87±0.68 37.66±0.09 33.52
TAKFL 26.62±0.16 37.32±0.40 38.13±0.58 34.02
TAKFL+Reg 27.90±0.98 37.63±0.87 38.20±0.91 34.58

E Ablation Studies

E.1 Understanding Merging Coefficient

In this section, we conduct an ablation study to further understand how TAKFL customizes knowl-
edge integration and understand how the merging coefficients λi are achieving this. This experiment
aims to further understand the trade-offs between customized knowledge integration approach from
the one-size-fits-all strategy employed in vanilla ensemble distillation and prior works.

Experimental Setup. Our experimentation focuses on two device prototypes: XXS and XXL, se-
lected from the scalability evalulation detailed in Section 7.3, Appendix D.4, and Table 15. We
employ the image classification task on the CINIC-10 [9] dataset, starting from scratch. Each proto-
type receives a randomly selected, non-overlapping subset of the training dataset—3.57% for XXS
and 25% for XXL—distributed among their clients in a non-i.i.d. manner using Dir(0.5). Both pro-
totypes have three clients each. The architectures used are ResNet10-XXS for the XXS prototype
and ResNet-50 for the XXL prototype. To focus solely on the evaulation of the server-side distil-
lation process and its evolution with varying λ, we pre-train each prototype using standard FedAvg

13

for 10 communication rounds, with a sample rate of 1.0. Local training involves 20 epochs for XXS
and 20 epochs for XXL using an Adam optimizer with a learning rate of 1e-3 and weight decay of
5e-5. The XXL prototype employs a step learning rate scheduler that reduces the rate by a factor
of 0.1 at local epoch 10. For server-side distillation, we utilize a batch size of 128 and an Adam
optimizer with a learning rate of 1e-5 and weight decay of 5e-5. CIFAR-100 [24] serves as the un-
labeled public dataset. We save the final updated client and server models from both prototypes for
further experimentation, focusing on the impact of merging coefficients without self-regularization
in TAKFL. The merging coefficient λ is varied linearly from 0 to 1 in increments of 0.05. For
simplicity, the XXS prototype is referred to as the small (S) prototype and XXL as the large (L)
prototype.

Discussion. Figure 6 illustrates the significant impact of customized knowledge integration on the
performance of both small and large device prototypes compared to the one-size-fits-all approach
typical of vanilla ensemble distillation in the prior works, at different distillation epochs. Here,
TAKFL adeptly manages customization for both small and large prototypes by controlling the merg-
ing coefficient λ. The merged model for both the small and large student prototypes is obtained using
the formula θmerged = θavg +

(
(1 − λ)τS + λτL

)
. Notably, the performance is benchmarked at

λ ≈ 0.5 in all cases, reflecting similar results to vanilla ensemble distillation (FedDF), where no
customization in knowledge transfer occurs. This baseline performance is critical for understanding
the effects of further customization.

In small distillation epochs (Idistill < 10), minimal benefit is observed from customized knowledge
integration, as both small and large prototypes achieve optimal performance at the non-customized
λ ≈ 0.5. However, as the distillation process progresses beyond 10 epochs, the influence of λ be-
comes increasingly pronounced. For λ > 0.5, the knowledge from the large prototype’s ensembles
predominates, enhancing their impact, while for λ < 0.5, integration is more influenced by the
small prototype’s ensembles. This pattern suggests that increased distillation epochs enable more
effective distillation of each prototype’s unique knowledge for extreme cases of extremely small and
large prototypes, thereby making the customization benefits evident. In scenarios with small distilla-
tion epochs, the absence of significant unique knowledge results in optimal performance at λ ≈ 0.5.
Conversely, as the number of distillation epochs rises (Idistill ≥ 20), the one-size-fits-all strategy
proves suboptimal, underscoring the importance of tailored knowledge integration strategies. Opti-
mal performance increasingly occurs at λ > 0.5, indicating effective leveraging of each prototype’s
strengths to maximize overall performance. These findings confirm the necessity for customized
knowledge integration in environments with significant prototype size variations and support our
theoretical insights as detailed in Remark 1 and 2.

E.2 Impact of Public Dataset

In this section, we explore the influence of the public dataset on the performance of TAKFL and
existing KD-based methods when the public dataset used for server-side distillation is less simi-
lar to the private dataset, which is the actual learning objective. For this analysis we employ the
same experimental setup previously outlined in Section 7.2 and Appendix D.1, using the CIFAR-10
homo-family architecture. To measure dataset similarity, we compute cosine similarity between the
averaged features of datasets, extracted using an off-the-shelf pre-trained CLIP model [40] (CLIP
ViT-B/32) available from the official GitHub repository.2

Discussion. Table 10 presents our results, highlighting a significant observation: the performance
of existing methods drastically deteriorates as the similarity between the public dataset and private
datasets decreases. In contrast, TAKFL exhibits robustness, suffering much less performance degra-
dation under the same conditions. This demonstrates TAKFL’s practical utility in real-world sce-
narios where the server typically lacks knowledge of the private datasets to select a closely aligned
public dataset for distillation. Notably, FedET underperforms significantly when using a less similar
public dataset, performing worse than vanilla FedAvg in both low and high data heterogeneity sce-
narios. A similar pattern was observed with FedET in the NLP tasks discussed in Section 7.2 and
Appendix D.3. This issue is likely due to FedET’s dependence on the overconfident and poorly cal-
ibrated confidence scores from neural networks [15, 53] for uncertainty estimates in its uncertainty-
weighted distillation approach.

2https://github.com/OpenAI/CLIP

14

https://github.com/OpenAI/CLIP

Figure 6: Understanding the Impact of Merging Coefficients. This figure showcases server-side
knowledge distillation between two device prototypes, XXS and XXL, referred to as small and
large, respectively, utilizing CIFAR-100 as the unlabeled public dataset. Both prototypes were pre-
trained from scratch using standard FedAvg for 10 communication rounds. The CINIC-10 dataset
was distributed between the small and large prototypes in ratios of 3.57% and 25%, respectively,
and further subdivided non-i.i.d. among the clients using Dir(0.5). Each prototype has three clients
with a sample rate of 1.0. The small prototype utilizes a ResNet10-XXS architecture, while the large
prototype employs a ResNet-50.

Table 10: Impact of Public Dataset on performance results. Same experimental setting described
in Section 7.2 and Appendix D.1 on CIFAR-10 homo-family setting is used for this experiment. The
numbers in parentheses represent the similarity scores between private and public datasets, obtained
using a pre-trained CLIP ViT-B/32 model.

Public Dataset Baseline Low Data Heterogeneity (Dir(0.3)) High Data Heterogeneity (Dir(0.1))
S M L Average S M L Average

— FedAvg 36.21±2.24 46.41±2.33 59.46±6.17 47.36 22.01±0.78 25.26±3.89 51.51±3.52 32.93

FedDF 49.31±0.15 50.63±0.73 49.82±0.98 49.92 34.71±1.48 35.27±4.74 51.08±4.04 40.35
FedET 49.21±0.72 55.01±1.81 53.60±6.47 52.61 29.58±3.00 30.96±4.70 45.53±6.46 35.36
TAKFL 55.90±1.70 57.93±3.49 60.58±2.35 58.14 37.40±1.68 38.96±0.17 51.49±6.15 42.62

CIFAR-100 (0.99)

TAKFL+Reg 56.37±0.46 58.60±0.43 65.69±1.28 60.22 40.51±1.05 40.12±1.24 53.24±2.51 44.62

FedDF 49.37±1.58 49.41±4.21 55.06±6.71 51.28 31.41±6.61 30.73±7.77 39.82±5.16 33.99
FedET 33.95±0.92 37.26±1.64 39.77±3.44 36.99 24.12±1.84 24.58±2.13 28.91±1.09 25.87
TAKFL 55.20±0.07 56.36±0.40 60.71±0.22 57.42 40.08±0.19 40.26±0.04 43.56±1.10 41.30

TinyImagenet (0.92)

TAKFL+Reg 56.28±0.09 57.14±0.03 60.90±0.22 58.11 40.88±0.11 41.10±1.15 46.25±5.95 42.74

FedDF 48.99±0.37 50.06±0.43 55.12±4.95 51.39 29.80±0.39 32.28±4.41 44.0±4.60 35.36
FedET 28.56±3.00 28.80±1.00 37.20±2.78 31.52 15.28±1.75 19.00±3.43 23.29±5.04 19.19
TAKFL 45.65±2.72 54.53±1.72 58.13±0.13 52.77 31.02±0.68 36.76±1.58 48.33±0.53 38.70

Celeb-A (0.77)

TAKFL+Reg 46.93±0.67 56.67±1.26 60.13±1.38 54.58 30.88±3.51 35.95±5.40 52.68±1.90 39.84

15

F Hyper-parameters and Implementation

In this section we bring the details of the hyper-parameters we used and our implementation. We
implement our entire code in PyTorch [38] and release it at https://github.com/MMorafah/
TAKFL. We use two NVIDIA RTX 3090 gpus to conduct the entire experimentation in this paper.

F.1 Computer Vision (CV) Task

For comprehensive evaluation of our method, we consider federated learning image classification
training from scratch.

F.1.1 Datasets

Datasets. We experiment with several image classification datasets: CIFAR-10, CIFAR-100,
CINIC-10, TinyImageNet, STL-10. The details of each dataset is the following:

• CIFAR-10 [24]: CIFAR-10 consists of 60,000 images of size 32×32 RGB across 10
classes, with each class containing 6,000 images.

• CIFAR-100 [24]: CIFAR-100 comprises 60,000 images of size 32×32 RGB distributed
across 100 classes, with 500 images per class.

• CINIC-10 [9]: CINIC-10 has 270,000 images of size 32×32 RGB across 10 classes, each
class containing 27,000 images.

• TinyImageNet [25]: TinyImageNet contains 100,000 images of size 64×64 RGB across
200 classes.

• STL-10 [7]: STL-10 has 100,000 unlabeled images and 13,000 labeled images of size
96×96 RGB across 10 classes.

The ImageNet-100 as the unlabeled public dataset is constructed by randomly selecting 100 classes
from the ImageNet [10] dataset.

F.1.2 Architectures

Experiments in Section 7.2 and Appendix D.1. The architecture that we use are two distinct
architectural settings: the “homo-family” setting, where all device prototypes’ architectures are from
the same family, and the “hetero-family” setting, where architectures do not necessarily belong to
the same family. For the homo-family scenario, we employ ResNet-8 for S, ResNet-14 for M, and
ResNet-18 for L. For the hetero-family scenario, we use ViT-S for S, ResNet-14 for M, and VGG-16
for L. All models are initialized from random initialization.

For the ResNet architecture configuration, we utilize the standard ‘BasicBlock’ as the building block.
This consists of a convolutional block, followed by four residual block stages, an adaptive average
pooling layer, and a classifier layer. The models within this family differ in terms of the number
of repetitions of the residual block and the number of filters in each stage. The configurations for
different capacities are detailed below:

• ResNet-18 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [2, 2, 2, 2]
times.

• ResNet-14 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 2, 2, 1]
times.

• ResNet-8 is configured with [64, 128, 256] filters, corresponding to the first three stages, and
repeats the ‘BasicBlock’ [1, 1, 1] times.

For VGG-16 [42], we use the standard architecture which includes convolutional layers followed by
max-pooling layers. The configuration of filters for each layer is as follows:

VGG-16: [64, 64, ‘M’, 128, 128, ‘M’, 256, 256, 256, ‘M’, 512, 512, 512, ‘M’, 512, 512, 512,
‘M’]

The final classification head consists of two linear layers with a hidden size of 512, followed by a
ReLU activation, and a final linear classifier layer.

16

https://github.com/MMorafah/TAKFL
https://github.com/MMorafah/TAKFL

For ViT-S, we adopt the standard Vision Transformer [12] architecture implementation from
Github.3 We configure ViT-S with 6 attention blocks, each with 16 heads and a hidden dimen-
sion of 64. The final MLP dimension is set to 256. In our experiments with ViT-S, we set the patch
size to 4, and the input image size is 32×32.

Experiment in Appendix D.2. The pre-trained MobileNetV3-Large [19], MobileViTV2 [34], and
ResNet34 [49] were instantiated using the TIMM library.4

Scalability Experiments in Section 7.3. The architectures in these experiments are inspired by [20].
The details of architectures are as following:

• ResNet10-XXS is configured with [8, 8, 16, 16] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]
times.

• ResNet10-XS is configured with [8, 16, 32, 64] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]
times.

• ResNet10-S is configured with [16, 32, 64, 128] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]
times.

• ResNet10-M is configured with [8, 16, 32, 64] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]
times.

• ResNet10 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]
times.

• ResNet18 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [1, 1, 1, 1]
times.

• ResNet50 is configured with [64, 128, 256, 512] filters and repeats the ‘BasicBlock’ [3,4,6,3]
times.

F.1.3 FL configuration and Hyper-parameters

Base Hyper-parameters. The following hyperparameter values apply to all CV experiments unless
stated otherwise. We set the diversity regularizer coefficient of FedET to 0.1 for our entire experi-
mentation per the original paper [6]. We use the Adam optimizer with a learning rate of 1e-5, weight
decay value of 5e-5, and a batch size of 128 for distillation. The softmax distillation temperature is
set to 3, the distillation epoch to 1, and the self-regularizer softmax temperature to 20 for both CV
and NLP experiments. Table 12 details the hyper-parameters.

Experiments in Section 7.2 and Appendix D.1. For tables 1 and 4, there are 100 clients with
the S device prototype, 20 clients with the M device prototype, and 4 clients with the L device
prototype. For each round, 10, 4, and 2 clients from each S, M, and L prototype are randomly
sampled respectively for participation. 10% of the data goes to the S prototype, 30% to M, and 60%
to L. The data is distributed to each client among each prototype in a Dirichlet distribution. Table
13 details the FL configuration.

Experiments in Appendix D.2 and Appendix E.2. For tables 5 and 10, there are 4, 3, and 2 clients
for S, M, and L device prototypes, respectively. Each round, every client participates in FL. 20% of
the data is distributed to prototype S, 30% to prototype M, and 50% to prototype L. Table 14 details
the FL configuration.

Scalability Experiments in Section 7.3 and D.4. For tables 7, 8, and 9, there are 35, 30, 25, 20,
15, 10, and 5 clients for the prototypes XXS, XS, S, M, L, XL, and XXL, respectively. The sample
rate is set to 0.1, 0.1, 0.15, 0.15, 0.2, 0.3, and 0.6 from XXS to XXL. The data is distributed for each
prototype in the ratio 1:2:3:4:5:6:7 from XXS to XXL. Table 15 details the hyper-parameters and
configuration.

Validation Set. For TAKFL, the validation set used for the heuristic method (see F.3) is 5% of the
training dataset. The validation set and the private dataset does not overlap.

F.2 Natural Language Processing (NLP) Task

For the NLP task, we fine-tune federated learning text classification task using pretrained models.

3https://github.com/lucidrains/vit-pytorch
4https://github.com/huggingface/pytorch-image-models

17

https://github.com/lucidrains/vit-pytorch
https://github.com/huggingface/pytorch-image-models

F.2.1 Datasets.

All NLP datasets were provided by Hugging Face. 5

• MNLI [50]: MNLI contains 433K sentence pairs, each sentence pair labeled as one of
‘entailment,’ ‘neutral,’ and ‘contradiction.’

• SNLI [2]: SNLI is similar to MNLI, with 570K sentence pairs each labeled one of 3 labels.
• SST2 [43]: SST2 consists of 67K phrases, each labeled as sentiment ’positive’ or ’nega-

tive.’
• Sentiment140 [14]: Sentiment140 is a dataset of 1.6M Twitter messages each labeled with

one of 2 sentiment values.
• MARC [22]: MARC (Multilingual Amazon Reviews Corpus) is a dataset with online re-

views in multiple languages from the Amazon delivery service website. Each review has a
label which is one of 1-5 stars. We only use the English reviews from this dataset, which
results in 260,000 English reviews total.

• Yelp [59]: The Yelp reviews dataset contains 700K reviews each labeled 1-5 stars from the
Yelp service which publishes public reviews of businesses.

• AG News [58]: AG News contains 127,600 news article titles. Each article is one of four
classifications of news articles.

• DBpedia [57]: The DBpedia dataset consists of 630K DBpedia article summaries each
labeled one of 14 categorizations.

F.2.2 Architectures

Experiments in Section 7.2 and Appendix D.3. We use three variations of the BERT architec-
ture: BERT-Tiny, BERT-Mini, and BERT-Small from [45]. The weights were pre-trained on the
BookCorpus dataset and extracted text from Wikipedia. Further details regarding each model are
described extensively on Github.6 The tokenizer used for these transformer models are the same
ones provided by the authors of [45].

• BERT-Tiny contains 2 transformer layers and an embedding size of 128.
• BERT-Mini contains 4 transformer layers and an embedding size of 256.
• BERT-Small contains 4 transformer layers and and embedding size of 512.

F.2.3 FL configuration and hyper-parameters

Base Hyper-parameters. For distillation, we use the Adam optimizer with a learning rate of 3e-5,
no weight decay, and batch size of 32. The distillation epoch is set to 1, the ensemble distillation
softmax temperature to 3, and the self-regularizer softmax temperature to 20 for all NLP experi-
ments. Table 16 details the hyper-parameters.

Experiments in Section 7.2 and Appendix D.3. For tables 2 and 6, we limit the private dataset to
100,000 samples, randomly sampled from the original dataset i.i.d. The public dataset is limited to
30,000 examples sampled i.i.d as well. There are 8, 4, and 2 clients for the S, M, and L prototypes.
The private data is split across each prototype in the following proportions: 0.1, 0.3, 0.6. Table 17
details the FL configuration.

Validation Set. The validation dataset used for TAKFL is 5,000 samples taken from the original
training dataset that does not overlap with the 100,000 private dataset.

F.3 Hyper-parameters of TAKFL

Merging Coefficients. We conducted extensive experiments with different merging coefficients on
the main 3-device prototype setting of small (S), medium (M), and large (L) discussed in Section 7.2
and Appendix D.1. We empirically observed that the small (S) prototype typically achieves the best
performance using a uniformly increasing merging coefficient, where the larger the prototype, the

5https://github.com/huggingface/datasets
6https://github.com/google-research/bert

18

https://github.com/huggingface/datasets
https://github.com/google-research/bert

larger the merging coefficient, i.e., λS ≤ λM ≤ λL. As we move towards larger prototypes,
they benefit more from increasingly skewed merging coefficients towards the larger ones. In the
extreme case of the large (L) prototype, highly skewed merging coefficients generally led to better
performance, i.e., λS ≪ λM ≪ λL. This pattern is intuitive as small prototypes can benefit
from everyone while gaining more from the larger, more informative prototypes. However, larger
prototypes benefit less from smaller ones, as they typically offer less information, especially in
high data heterogeneity cases. Notably, in high data heterogeneity cases, more skewed merging
coefficients seemed to be more advantageous as the smaller prototypes (S and M) possess lower
quality knowledge.

Based on these observations, we designed a simple and cost-effective heuristic method that ran-
domly instantiates merging coefficients following this intuition. Our heuristic method, presented
in F.3, leverages these observations by generating candidate merging coefficients that incorporate
both uniformly increasing and different degrees of skewed merging coefficients. This dual approach
enables us to explore a wide range of merging strategies and identify the most effective configura-
tions for different prototypes. The optimal merging coefficient candidate is determined using the
performance on the held-out validation set.

import numpy as np
def heuristic(num_devices =3, n_candidates =10):

candidates = [[1/ num_devices for _ in range(num_devices)]]
for exponent in [1, 5, 10]:

for i in range(n_candidates):
candidate = np.random.beta(a=1, b=100, size=num_devices)
candidate = candidate ** exponent
candidate = np.sort(candidate)
candidate = candidate / np.sum(candidate)
candidates.append(candidate)

return candidates

Listing 1: Implementation of the heuristic method for merging coefficients in Python. The exponent
term controls the degree of skewness or peaking in the merging coefficients.

Furthermore, we experiment with manually determining the merging coefficients and fixating them
throughout the federation. We achieved similar results with this approach compared to adaptively
finding the coefficients using the heuristic method and a small held-out validation set. We present the
merging coefficient candidates that performed reasonably well during our experiments in Table 11.

Table 11: Details of the experimentally determined merging coefficients for the 3-device prototype
setting discussed in Section 7.2 and Appendix D.1. Coefficients are ordered as [λS , λM , λL].

Merging Coefficient Candidate Small Prototype Medium Prototype Large Prototype
1 [0.2, 0.3, 0.5] [0.1, 0.2, 0.7] [0.1, 0.2, 0.7]
2 [0.3, 0.3, 0.4] [0.05, 0.15, 0.8] [0.01, 0.09, 0.99]
3 [0.2, 0.3, 0.5] [0.1, 0.2, 0.7] [0.05, 0.2, 0.75]
4 [0.05, 0.1, 0.85] [0.01, 0.19, 0.8] [0.01, 0.09, 0.90]
5 [0.1, 0.15, 0.75] [0.05, 0.15, 0.8] [0.01, 0.09, 0.90]
6 [0.05, 0.1, 0.85] [0.05, 0.05, 0.9] [0.001, 0.009, 0.99]
7 [0.05, 0.15, 0.80] [0.05, 0.2, 0.75] [0.001, 0.009, 0.99]
8 [0.05, 0.15, 0.80] [0.05, 0.1, 0.85] [0.001, 0.009, 0.99]
9 [0.3, 0.35, 0.35] [0.2, 0.3, 0.5] [0.1, 0.2, 0.7]

Self-Regularization Coefficient. Extensive experiments were conducted on the self-regulation co-
efficients for different device prototypes and settings. Although no consistent pattern emerged, we
experimentally determined that optimal performance for the small prototype was achieved with self-
regulation coefficients γS ∈ 0.1, 0.01, 0.001. For the medium prototype, the coefficients were γM ∈
0.5, 0.1, 0.01, 0.001, 0.0001, and for the large prototype, γL ∈ 1.0, 0.8, 0.5, 0.1, 0.01, 0.001, 0.0001
yielded the best results.

19

Table 12: Details of hyper-parameters for CV task in Section 7.2, Appendix D.1, and Appendix E.2.
Local/Server Hyperparameter Small Prototype Medium Prototype Large Prototype

Local Training

Training epochs 20 80 100
Batch Size 64 64 64
Optimizer Adam Adam Adam
Learning Rate 1e-3 1e-3 1e-3
Weight Decay 5e-5 5e-5 5e-5

LR scheduler None None StepLR(step size = 10,
gamma = 0.1)

Server KD Training

Optimizer Adam Adam Adam
Learning Rate 1e-5 1e-5 1e-5
Weight Decay 5e-5 5e-5 5e-5
Batch Size 128 128 128
Training Epochs 1 1 1
Ensemble Distillation Softmax Temperature 3 3 3
Self-Regularizer Softmax Temperature 20 20 20

Table 13: Details of Architecture parameters and FL configuration for CV task in Section 7.2 and
Appendix D.1.

Architecture Setting Device Prototype CIFAR-10 CIFAR-100
Architecture Parameters Parameters Dataset Portion Clients Sample Rate

Homo-Family
Prototype S ResNet8 1.23M 1.25M 0.1 100 0.1
Prototype M ResNet14 6.38M 6.43M 0.3 20 0.2
Prototype L ResNet18 11.17M 11.22M 0.6 4 0.5

Hetero-Family
Prototype S ViT-S 1.78M 1.79M 0.1 100 0.1
Prototype M ResNet14 6.38M 6.43M 0.3 20 0.2
Prototype L VGG16 15.25M 15.30M 0.6 4 0.5

Table 14: Details of Architecture parameters and FL configuration for CV task experiment using
pre-trained models in Appendix D.2.

Device Prototype STL-10/CINIC-10 TinyImageNet
Architecture Parameters Parameters Dataset Portion Clients Sample Rate

Prototype S mobilenetv3-large-100 4.21M 4.45M 0.2 4 1.0
Prototype M mobilevitv2-175 13.36M 13.53M 0.3 3 1.0
Prototype L ResNet34 21.28M 21.38M 0.5 2 1.0

Table 15: Details of Architecture parameters for Scalability Section 7.3, and Appendix D.4.
Device Prototype CINIC-10

Architecture Parameters Dataset Portion Clients Sample Rate Local Epochs
Prototype XXS ResNet10-XXS 11K 0.0357 35 0.1 2
Prototype XS ResNet10-XS 78K 0.0714 30 0.1 2
Prototype S ResNet10-S 309K 0.1071 25 0.15 2
Prototype M ResNet10-M 1.2M 0.1428 20 0.15 5
Prototype L ResNet10 4.9M 0.1785 15 0.2 10
Prototype XL ResNet18 11M 0.2142 10 0.3 10
Prototype XXL ResNet50 24M 0.25 5 0.6 20

Table 16: Details of hyper-parameters for NLP task experiments in Section 7.2 and Appendix D.3.
Local/Server Hyperparameter Prototype S Prototype M Prototype L

Local Training

training epochs 1 1 1
batch size 32 32 32
optimizer Adam Adam Adam
Learning rate 3e-5 3e-5 3e-5
Weight decay 0 0 0
lr scheduler None None None

Server KD Training

optimizer Adam Adam Adam
learning rate 3e-5 3e-5 3e-5
weight decay 3e-5 3e-5 3e-5
batch size 32 32 32
training epochs 1 1 1
Ensemble distillation softmax temperature 3 3 3
Self-regularizer softmax temperature 20 20 20

20

Table 17: Details of Architecture parameters and FL configuration for NLP task experiment using
pre-trained models in Section 7.2 and Appendix D.3.

Device Prototype Architecture Parameters Clients Dataset Portion Sample Rate
Prototype S BERT-Tiny 4.39M 8 0.1 0.4
Prototype M BERT-Mini 11.17M 4 0.3 0.5
Prototype L BERT-Small 28.77M 2 0.6 1.0

G Acknowledgement

We would like to express our sincere gratitude to Ang Li, Matias Mendieta, and Guangyu Sun for
their invaluable feedback and insightful discussions, which significantly contributed to the develop-
ment and refinement of this work. Their thoughtful suggestions and careful review of earlier drafts
were instrumental in enhancing the quality of this paper.

This research was partially supported by a grant from Cisco Systems, Inc. We also gratefully ac-
knowledge the use of the computational infrastructure provided by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765, “Research Center for Informatics,” which enabled us to con-
duct the experiments presented in this work.

21

	Introduction
	Related Works
	Problem Statement: FL with Heterogeneous Device Prototypes
	Background: Federated Ensemble Distillation
	Task Arithmetic Knowledge Transfer and Integration
	Knowledge Transfer from Individual Device Prototype
	Task Arithmetic Knowledge Integration

	Theoretical Results
	Experiments
	Main Experimental Setup
	Main Experimental Results
	Scalability Evaluation

	Conclusion and Discussion
	More Detailed Related Works
	Full Algorithm Description of TAKFL
	Theoretical Results
	Proofs of the Main Propositions
	Geometric Intuition
	Analytical Properties of Learning Dynamics

	Detailed Experimental Results
	Main Experimental Results on Computer Vision (CV) Task
	Consistency Analysis: Experimental and Theoretical Correlations

	Additional Experimental Results on CV Task
	Additional Experimental Results on Natural Language Processing (NLP) Task
	Scalability Evaluation

	Ablation Studies
	Understanding Merging Coefficient
	Impact of Public Dataset

	Hyper-parameters and Implementation
	Computer Vision (CV) Task
	Datasets
	Architectures
	FL configuration and Hyper-parameters

	Natural Language Processing (NLP) Task
	Datasets.
	Architectures
	FL configuration and hyper-parameters

	Hyper-parameters of TAKFL

	Acknowledgement

