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Abstract

Miscalibration of a model is defined as the mismatch between predicting probability
estimates and the true correctness likelihood. In this work we aim to replicate the
results reported by [7]] on their analysis of the effect of Mixup [S]] on a network’s
calibration. Mixup is an effective yet simple approach of data augmentation
which generates a convex combination of a pair of training images and their
corresponding labels as the input and target for training a network. We replicate the
results reported by the authors for CIFAR-100[6], Fashion-MNIST[10], STL-10[2],
out-of-distribution and random noise data.

1 Introduction

1.1 Calibration

Modern neural networks are miscalibrated i.e. their predicted confidence value is not reflective of its
confidence in prediction. If a model is overconfident, it becomes prone to making wrong predictions
with high confidence thereby depleting the trust on its predictions. It becomes really important in high
risk applications such as in medical diagnosis, automated navigation etc. for the neural network’s
prediction to be correct as well as trustworthy. If the network generates reliable predictions, it would
enable the use of some form of fall back mechanism such as a human-in-the-loop for life critical
scenarios. Finding a solution to this problem of miscalibration hence becomes important due to the
widespread applicability of deep neural networks(DNN5s) across multitude of domains.

Figure [I] displays this phenomenon which has been replicated following the details provided by
[7]]. The top row(a—e), corresponds to a training scenario where no Mixup is used. As the training
progresses the network tends to become overconfident in its predictions. However, by training with
Mixup bottom row(f—j), the network is much better calibrated.

1.2 Risk Minimisation and Mixup

For an input A" and an output ) we are interested in finding f € F which describes the mapping
from input to the target output. The loss function ¢ penalises the differences between f(x) and y for
samples (z,y) ~ P(X,)). We aim to minimise the expected risk R:

R() = [ €5(e).) dP(a,y) m
The joint probability distribution P(x,y) is in most scenarios unavailable and subsequently, the task

is altered to minimise the risk over the training data {(z;,y;)"_, }. P is replaced by the empirical
distribution P and this approach is referred to as Empirical Risk Minimisation(ERM)[8]]. As a result
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of this substitution, equationcan be modified to find an approximate mapping f € Ffor f

R(l) = / 0(f(x),y) dP(z,y) @)
where,
Pley) = -3 6 =20y = y) 3)
=1

and 0(x = x;, y = y;) is a Dirac delta distribution centered at ;, y;.

The vicinal probability distribution P, is the probability of finding a virtual feature-target pair (Z, ¢)
in the vicinity of the original pair (z;, y;). Since, the support of P(x,y) is a one-point set, it fails
to approximate P(x,y) if P is a continuous distribution[9} [1]. Vicinal Risk Minimisation(VRM)[9]
assumes that the input distribution is smooth in the vicinity of z; and replaces P by the vicinal
probability distribution P, where,

1 n
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Mixupl5] is based on the principle of VRM and generates the vicinal input and the corresponding
target from a convex combination of a pair of original inputs and targets. Formally, the vicinal input
and output can be represented as:

Ui = Ayi + (1= Ny, (6)
where, z; and x; are randomly selected input samples and y; and y; are their corresponding target

values. A € [0, 1] is drawn from a symmetric Beta distribution B(a, «). The expected risk R, for
Mixup can thus be defined as:

D U@, 9) (7)

1.3 Proposed Method

Mixup serve as simple yet effective data-augmentation procedure to enhance the performance of
deep neural networks. The working of Mixup has been proved empirically via extensive experiments
to suggest that it’s contribution in boosting the performance is significant. However, moving away
from analysing the boost in performance or explaining why Mixup works, the authors explore the
impact of mixup on the calibration of deep neural networks. The paper performs considerable
experiments across a number of datasets to measure the degree of miscalibration with Mixup and
make a comparison with clearly defined baselines.

As part of the replication track of NeurIPS Reproducibility challenge 2019, we aim at reproducing
the reported results of their hypothesis i.e. training with Mixup leads to better calibrated neural
networks. For the baseline, though not required by the track, we use training without Mixup. The
report is structured as follows: section [2]contains the description of the metrics used by the authors,
in section 3] we provide a detailed information of the implementations which we gathered from the
authors’ submission as well as email correspondences. We also state clearly where we make certain
reasonable assumptions in implementation. Section ] contains the results on various datasets. In the
end we provide our concluding remarks in section 5]

2 Calibration Metrics

To measure the calibration of a network we follow the approach as described in [4]]. We initially define
the number of confidence intervals M each of size 1/M. The confidence interval I,,, corresponds to
the confidence range ((m — 1)/M, m/M]. Let B,, be the set of samples for which the predicted
confidence falls in [,,,. The accuracy and confidence for B,, is defined as:

1 "
acc(Bp,) = Bl Z 1(9: = v:)
m 1€ B



nnnnnn /w epochi00

() (b) (© (d) (e)

uuuuuuu Epochso Epoch100 Epoch1s0 Epoch199

® (® () ® ®

Figure 1: Joint density plot for average accuracy vs average confidence coputed for different epochs
on CIFAR-100 test dataset ona VGG-16 neural network. Top Row(a—e): Trained without Mixup,
the network grows overconfident as the training proceeds represented by the sharp peak for the
confidence. Bottom Row(f—j): Mixup allows the network to be better calibrated in the corresponding
epochs.

1 .
conf(Bm) = 51 3 b
Ml ieBm,
where, ¥;,y;,and p; corresponds to true label, predicted label, and the confidence(winning score)
respectively. Unless stated explicitly, confidence and accuracy will refer to a bin’s confidence and
accuracy. The Expected Calibration Error(ECE) measures the amount of miscalibration in a

network by computing the difference between the confidence and accuracy over the M intervals.
Formally, ECE is defined as:

M
ECE = Z @ )conf(Bm) — ace(Bp,)

m=1

The Overconfidence Error(OE) is a weighted measure which penalises overconfident predictions
and is defined as:

M ‘B |
OF = Z ,’;n [Conf(B'rn) *max (COTLf(Bm) B CLCC(Bm), O)]
m=1

3 Implementation Details

We have followed, wherever applicable, the implementation details of authors submission. Though,
some of the fine grain details on training a network and generating the reported results were lacking,
for this we have made reasonable assumptions and listed below a full table of implementation details
which we followed. The details are provided in table[T]

4 Replication Experiments

We conduct 4 trials per experiment, and report the mean and standard deviation over the trials. We
report results for more than few values of « as opposed to the paper. The authors report the best
working value of o € [0.2,0.4] hence, we use o« = 0.3 when selecting an individual value for a.
Accuracy, ECE, and OE are computed for « € [0, 1]. Important thing to note is & = 0 corresponds to
no Mixup which is one of the author’s baseline and « = 1 is simple averaging of two input images.



Table 1: Fine-grain details for replicating the experiments

Property

Values

Remark

Framework

Pytorch

Version 1.3.1

Neural Networks

Resnet-18, Resnet-34, and
VGG-16

Datasets CIFAR-100, Fashion-MNIST, More details in their corre-
MNIST, and STL-10 sponding results section

Batch Normalisation Enabled -

Weight Initialisation Kaiming Assumed as the detail was not
provided in the report

Batch Size 128 -

Epochs 200 —

Initial Learning Rate 0.1 Reduced by a factor of 0.5 at
60, 120, 160 epoch

Optimiser SGD -

Momentum 0.9 Nesterov momentum

Weight Decay 5x10~4 -

Number of Interval Bins 100 Communicated via. the au-
thors

Data Pre-processing Enabled Random cropping(padding=4),

rotation £15°, horizontal flip-
ping, standardisation

The addition of +standard deviation also provides additional insights as to the range of values for
accuracy, ECE and OE one can expect which are missing from the paper. We also show scatter
plots for &« = {0,0.3,1.0} to compare average bin accuracy against average bin confidence. To
provide additional details of the frequency of samples in the bin, we scale the point size on the plot to
correspond to the size of the bin |B,,|.

4.1 CIFAR-100

CIFAR-100 consists of 100 classes with input image of the dimensions 32x32x3. We use the standard
split of the dataset consisting of 50,000 and 10, 000 as training and test images respectively. We
train the Resnet-34 model following the details provided in the section

The results can be viewed in figure 2| Though we were not able to obtain the accuracy value 80% we
were able to replicate the trend that the accuracy is higher when the network is trained with Mixup.
For ECE and OE there are significant fluctuations in the values. The results reported by the authors
lie within one standard deviation due to large value of standard deviation. However, ECE decreases
till @ = 0.3 and then increases which is also reported in paper. Figure [{d—f), represent the shift from
the network being overconfident(aw = 0) to under confident(cw = 1). The network is better calibrated
if the points in the scatter plot lie close to the line y = z and it is observed with o = 0.3 in figure

o).
4.2 STL-10

The dataset consists of labelled as well as unlabelled examples. For the purpose of this experiment
we utilise the labelled split of train and test. The dataset consists of 10 classes with input image of
the dimensions 96x96x3. We train the VGG-16 model following the details provided in the section 3]

The accuracy match with the values reported by authors as observed in figure[3] The trend of improved
accuracy due to Mixup is also observed. For ECE, and OE the values no Mixup were off, but, the
expected trend of improved calibration was observed. Again, « € [0.2,0.4] can be seen as the best
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Figure 2: Replication of the results corresponding to CIFAR-100 dataset.

value w.r.t ECE. Figure [3{d—f), represents the shift from the network being overconfident(cc = 0) to

under confident(av = 1).
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Figure 3: Replication of the results for STL-10 dataset.

4.3 Fashion-MNIST

The dataset consists of a training set of 60, 000 examples and a test set of 10, 000 examples. Each
example is a 28x28x1 gray-scale image, associated with a label from 10 classes. We use the standard
splits for training and testing.

The effect of mixup on accuracy not quite evident since the network learns to classify effectively
without Mixup, figure ] ECE value is lower for majority of « indicating better calibration. The
scatter plots do hint at the network being better calibrated when trained with Mixup however, to
confirm it visually is challenging.
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Figure 4: Replication of the results for FashionMNIST dataset.

4.4 Testing on Out-Of-Distribution dataset & Random Noise

In the original work, authors have trained a neural network on STL-10(in-distribution data) and tested
on the samples from ImageNet(out-of-distribution data)[3] corresponding to new classes only. We, on
the otherhand, aim to replicate the effectiveness of this experiment by training on fashionMNIST(in
distribution data) and test on MNIST(out-of-dsitribution data). In principle, the findings of our
experiment should go along with the reported results.

MNIST, similar to Fashion-MNIST, consists of 50,000 training and 10,000 test images of the
dimensions 28x28x3. We train the Resnet-18 network on the train split of Fashion-MNIST and report
the results on the test split of MNIST. For random noise images, we use gaussian noise with mean
and standard deviation of the FashionMNIST dataset to generate 1024 test images.

In figure [} the plots closely resemble to the outputs of the paper. For both the scenarios, we can
observe that the network trained with Mixup is significantly less confident in predicting the test
samples. For random noise, the predictions are somewhat separable as reported by the authors.
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Figure 5: Distribution of confidence of various models when tested on out-of-distribution and
Gaussian noise samples, after being trained on the FashionMNIST dataset



5 Conclusion

In this report we were able to confirm the major results reported in [7] by replicating majority
of the experiments. Though the values were not exactly replicated for ECE and OE, the trend of
improved calibration when the network is trained using Mixup was confirmed. We were able to
obtain the authors finding regarding the value of « € [0.2,0.4] providing the best calibration in
terms of ECE. Through the out-of-distribution and random noise experiments in section £.4] we
were able to provide some evidence regarding the generalisability of the author’s corresponding
experiment thereby strengthening their claim of improved calibration on unseen data. The decrease
of OE with increase in « is also confirmed, which the authors attributed to underfitting of the model.
An important finding from the replication experiment was the volatility of the error values hence, we
urge future researchers to report mean and variance for the errors to allow for better comparisons. We
also provide the source code{ﬂ for generating the results and setting up the experiments.
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