
On Mixup Training: Improved Calibration and
Predictive Uncertainty for Deep Neural Networks

NeurIPS Reproducibility Challenge 2019

Aditya Singh
Zebra Technologies

aditya.singh@zebra.com

Alessandro Bay
Zebra Technologies

alessandro.bay@zebra.com

Abstract

Miscalibration of a model is defined as the mismatch between predicting probability
estimates and the true correctness likelihood. In this work we aim to replicate the
results reported by [7] on their analysis of the effect of Mixup [5] on a network’s
calibration. Mixup is an effective yet simple approach of data augmentation
which generates a convex combination of a pair of training images and their
corresponding labels as the input and target for training a network. We replicate the
results reported by the authors for CIFAR-100[6], Fashion-MNIST[10], STL-10[2],
out-of-distribution and random noise data.

1 Introduction

1.1 Calibration

Modern neural networks are miscalibrated i.e. their predicted confidence value is not reflective of its
confidence in prediction. If a model is overconfident, it becomes prone to making wrong predictions
with high confidence thereby depleting the trust on its predictions. It becomes really important in high
risk applications such as in medical diagnosis, automated navigation etc. for the neural network’s
prediction to be correct as well as trustworthy. If the network generates reliable predictions, it would
enable the use of some form of fall back mechanism such as a human-in-the-loop for life critical
scenarios. Finding a solution to this problem of miscalibration hence becomes important due to the
widespread applicability of deep neural networks(DNNs) across multitude of domains.

Figure 1 displays this phenomenon which has been replicated following the details provided by
[7]. The top row(a–e), corresponds to a training scenario where no Mixup is used. As the training
progresses the network tends to become overconfident in its predictions. However, by training with
Mixup bottom row(f–j), the network is much better calibrated.

1.2 Risk Minimisation and Mixup

For an input X and an output Y we are interested in finding f ∈ F which describes the mapping
from input to the target output. The loss function ` penalises the differences between f(x) and y for
samples (x, y) ∼ P (X ,Y). We aim to minimise the expected riskR:

R(`) =
∫
`(f(x), y) dP (x, y) (1)

The joint probability distribution P (x, y) is in most scenarios unavailable and subsequently, the task
is altered to minimise the risk over the training data {(xi, yi)ni=1}. P is replaced by the empirical
distribution P̂ and this approach is referred to as Empirical Risk Minimisation(ERM)[8]. As a result

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

of this substitution, equation 1 can be modified to find an approximate mapping f̂ ∈ F for f

R̂(`) =
∫
`(f̂(x), y) dP̂ (x, y) (2)

where,

P̂ (x, y) =
1

n

n∑
i=1

δ(x = xi, y = yi) (3)

and δ(x = xi, y = yi) is a Dirac delta distribution centered at xi, yi.

The vicinal probability distribution Pv is the probability of finding a virtual feature-target pair (x̃, ỹ)
in the vicinity of the original pair (xi, yi). Since, the support of P̂ (x, y) is a one-point set, it fails
to approximate P (x, y) if P is a continuous distribution[9, 1]. Vicinal Risk Minimisation(VRM)[9]
assumes that the input distribution is smooth in the vicinity of xi and replaces P̂ by the vicinal
probability distribution Pv where,

Pv =
1

n

n∑
i=1

v(x̃, ỹ | xi, yi) (4)

Mixup[5] is based on the principle of VRM and generates the vicinal input and the corresponding
target from a convex combination of a pair of original inputs and targets. Formally, the vicinal input
and output can be represented as:

x̃i = λxi + (1− λ)xj (5)
ỹi = λyi + (1− λ)yj (6)

where, xi and xj are randomly selected input samples and yi and yj are their corresponding target
values. λ ∈ [0, 1] is drawn from a symmetric Beta distribution B(α, α). The expected risk R̂v for
Mixup can thus be defined as:

R̂v(`) =
1

n

n∑
i=1

`(f̂(x̃i), ỹi) (7)

1.3 Proposed Method

Mixup serve as simple yet effective data-augmentation procedure to enhance the performance of
deep neural networks. The working of Mixup has been proved empirically via extensive experiments
to suggest that it’s contribution in boosting the performance is significant. However, moving away
from analysing the boost in performance or explaining why Mixup works, the authors explore the
impact of mixup on the calibration of deep neural networks. The paper performs considerable
experiments across a number of datasets to measure the degree of miscalibration with Mixup and
make a comparison with clearly defined baselines.

As part of the replication track of NeurIPS Reproducibility challenge 2019, we aim at reproducing
the reported results of their hypothesis i.e. training with Mixup leads to better calibrated neural
networks. For the baseline, though not required by the track, we use training without Mixup. The
report is structured as follows: section 2 contains the description of the metrics used by the authors,
in section 3 we provide a detailed information of the implementations which we gathered from the
authors’ submission as well as email correspondences. We also state clearly where we make certain
reasonable assumptions in implementation. Section 4 contains the results on various datasets. In the
end we provide our concluding remarks in section 5.

2 Calibration Metrics

To measure the calibration of a network we follow the approach as described in [4]. We initially define
the number of confidence intervals M each of size 1/M . The confidence interval Im corresponds to
the confidence range ((m− 1)/M, m/M]. Let Bm be the set of samples for which the predicted
confidence falls in Im. The accuracy and confidence for Bm is defined as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi)

2

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: Joint density plot for average accuracy vs average confidence coputed for different epochs
on CIFAR-100 test dataset ona VGG-16 neural network. Top Row(a–e): Trained without Mixup,
the network grows overconfident as the training proceeds represented by the sharp peak for the
confidence. Bottom Row(f–j): Mixup allows the network to be better calibrated in the corresponding
epochs.

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i

where, ŷi, yi, and p̂i corresponds to true label, predicted label, and the confidence(winning score)
respectively. Unless stated explicitly, confidence and accuracy will refer to a bin’s confidence and
accuracy. The Expected Calibration Error(ECE) measures the amount of miscalibration in a
network by computing the difference between the confidence and accuracy over the M intervals.
Formally, ECE is defined as:

ECE =

M∑
m=1

|Bm|
n

∣∣∣conf(Bm)− acc(Bm)
∣∣∣

The Overconfidence Error(OE) is a weighted measure which penalises overconfident predictions
and is defined as:

OE =

M∑
m=1

|Bm|
n

[conf(Bm) ∗max (conf(Bm)− acc(Bm), 0)]

3 Implementation Details

We have followed, wherever applicable, the implementation details of authors submission. Though,
some of the fine grain details on training a network and generating the reported results were lacking,
for this we have made reasonable assumptions and listed below a full table of implementation details
which we followed. The details are provided in table 1.

4 Replication Experiments

We conduct 4 trials per experiment, and report the mean and standard deviation over the trials. We
report results for more than few values of α as opposed to the paper. The authors report the best
working value of α ∈ [0.2, 0.4] hence, we use α = 0.3 when selecting an individual value for α.
Accuracy, ECE, and OE are computed for α ∈ [0, 1]. Important thing to note is α = 0 corresponds to
no Mixup which is one of the author’s baseline and α = 1 is simple averaging of two input images.

3

Table 1: Fine-grain details for replicating the experiments
Property Values Remark

Framework Pytorch Version 1.3.1
Neural Networks Resnet-18, Resnet-34, and

VGG-16
–

Datasets CIFAR-100, Fashion-MNIST,
MNIST, and STL-10

More details in their corre-
sponding results section

Batch Normalisation Enabled –
Weight Initialisation Kaiming Assumed as the detail was not

provided in the report
Batch Size 128 –
Epochs 200 –
Initial Learning Rate 0.1 Reduced by a factor of 0.5 at

60, 120, 160 epoch
Optimiser SGD –
Momentum 0.9 Nesterov momentum
Weight Decay 5x10−4 –
Number of Interval Bins 100 Communicated via. the au-

thors
Data Pre-processing Enabled Random cropping(padding=4),

rotation ±15◦, horizontal flip-
ping, standardisation

The addition of ±standard deviation also provides additional insights as to the range of values for
accuracy, ECE and OE one can expect which are missing from the paper. We also show scatter
plots for α = {0, 0.3, 1.0} to compare average bin accuracy against average bin confidence. To
provide additional details of the frequency of samples in the bin, we scale the point size on the plot to
correspond to the size of the bin |Bm|.

4.1 CIFAR-100

CIFAR-100 consists of 100 classes with input image of the dimensions 32x32x3. We use the standard
split of the dataset consisting of 50, 000 and 10, 000 as training and test images respectively. We
train the Resnet-34 model following the details provided in the section 3.

The results can be viewed in figure 2. Though we were not able to obtain the accuracy value 80% we
were able to replicate the trend that the accuracy is higher when the network is trained with Mixup.
For ECE and OE there are significant fluctuations in the values. The results reported by the authors
lie within one standard deviation due to large value of standard deviation. However, ECE decreases
till α = 0.3 and then increases which is also reported in paper. Figure 2(d–f), represent the shift from
the network being overconfident(α = 0) to under confident(α = 1). The network is better calibrated
if the points in the scatter plot lie close to the line y = x and it is observed with α = 0.3 in figure
2(e).

4.2 STL-10

The dataset consists of labelled as well as unlabelled examples. For the purpose of this experiment
we utilise the labelled split of train and test. The dataset consists of 10 classes with input image of
the dimensions 96x96x3. We train the VGG-16 model following the details provided in the section 3.

The accuracy match with the values reported by authors as observed in figure 3. The trend of improved
accuracy due to Mixup is also observed. For ECE, and OE the values no Mixup were off, but, the
expected trend of improved calibration was observed. Again, α ∈ [0.2, 0.4] can be seen as the best

4

(a) Accuracy for different α (b) Expected Calibration Error (c) Overconfidence error

(d) No Mixup(α = 0) (e) α = 0.3 (f) Simple averaging(α = 1)

Figure 2: Replication of the results corresponding to CIFAR-100 dataset.

value w.r.t ECE. Figure 3(d–f), represents the shift from the network being overconfident(α = 0) to
under confident(α = 1).

(a) Accuracy for different α (b) Expected Calibration Error (c) Overconfidence Error

(d) No Mixup(α = 0) (e) α = 0.3 (f) Simple averaging(α = 1)

Figure 3: Replication of the results for STL-10 dataset.

4.3 Fashion-MNIST

The dataset consists of a training set of 60, 000 examples and a test set of 10, 000 examples. Each
example is a 28x28x1 gray-scale image, associated with a label from 10 classes. We use the standard
splits for training and testing.

The effect of mixup on accuracy not quite evident since the network learns to classify effectively
without Mixup, figure 4. ECE value is lower for majority of α indicating better calibration. The
scatter plots do hint at the network being better calibrated when trained with Mixup however, to
confirm it visually is challenging.

5

(a) Accuracy for different α (b) Expected Calibration Error (c) Overconfidence error

(d) No Mixup(α = 1) (e) α = 0.3 (f) Simple averaging(α = 1)

Figure 4: Replication of the results for FashionMNIST dataset.

4.4 Testing on Out-Of-Distribution dataset & Random Noise

In the original work, authors have trained a neural network on STL-10(in-distribution data) and tested
on the samples from ImageNet(out-of-distribution data)[3] corresponding to new classes only. We, on
the otherhand, aim to replicate the effectiveness of this experiment by training on fashionMNIST(in
distribution data) and test on MNIST(out-of-dsitribution data). In principle, the findings of our
experiment should go along with the reported results.

MNIST, similar to Fashion-MNIST, consists of 50, 000 training and 10, 000 test images of the
dimensions 28x28x3. We train the Resnet-18 network on the train split of Fashion-MNIST and report
the results on the test split of MNIST. For random noise images, we use gaussian noise with mean
and standard deviation of the FashionMNIST dataset to generate 1024 test images.

In figure 5, the plots closely resemble to the outputs of the paper. For both the scenarios, we can
observe that the network trained with Mixup is significantly less confident in predicting the test
samples. For random noise, the predictions are somewhat separable as reported by the authors.

(a) Out-of-Distribution data (b) Gaussian noise data

Figure 5: Distribution of confidence of various models when tested on out-of-distribution and
Gaussian noise samples, after being trained on the FashionMNIST dataset

6

5 Conclusion

In this report we were able to confirm the major results reported in [7] by replicating majority
of the experiments. Though the values were not exactly replicated for ECE and OE, the trend of
improved calibration when the network is trained using Mixup was confirmed. We were able to
obtain the authors finding regarding the value of α ∈ [0.2, 0.4] providing the best calibration in
terms of ECE. Through the out-of-distribution and random noise experiments in section 4.4, we
were able to provide some evidence regarding the generalisability of the author’s corresponding
experiment thereby strengthening their claim of improved calibration on unseen data. The decrease
of OE with increase in α is also confirmed, which the authors attributed to underfitting of the model.
An important finding from the replication experiment was the volatility of the error values hence, we
urge future researchers to report mean and variance for the errors to allow for better comparisons. We
also provide the source code1 for generating the results and setting up the experiments.

References
[1] Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization.

In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 416–422. MIT Press, 2001.

[2] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsu-
pervised feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors,
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
volume 15 of Proceedings of Machine Learning Research, pages 215–223, Fort Lauderdale, FL,
USA, 11–13 Apr 2011. PMLR.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[4] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pages 1321–1330. JMLR.org, 2017.

[5] Yann N. Dauphin David Lopez-Paz Hongyi Zhang, Moustapha Cisse. mixup: Beyond empirical
risk minimization. International Conference on Learning Representations, 2018.

[6] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[7] Sunil Thulasidasan, Gopinath Chennupati, Jeff A. Bilmes, Tanmoy Bhattacharya, and
Sarah Ellen Michalak. On mixup training: Improved calibration and predictive uncertainty for
deep neural networks. ArXiv, abs/1905.11001, 2019.

[8] V. Vapnik. Principles of risk minimization for learning theory. In J. E. Moody, S. J. Hanson, and
R. P. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages 831–838.
Morgan-Kaufmann, 1992.

[9] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin,
Heidelberg, 1995.

[10] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

1https://github.com/MacroMayhem/OnMixup

7

	Introduction
	Calibration
	Risk Minimisation and Mixup
	Proposed Method

	Calibration Metrics
	Implementation Details
	Replication Experiments
	CIFAR-100
	STL-10
	Fashion-MNIST
	Testing on Out-Of-Distribution dataset & Random Noise

	Conclusion

