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Abstract

Multi-view classification aims at unifying the data from multiple views to com-
plementarily enhance the classification performance. Unfortunately, two ma-
jor problems in multi-view data are damaging model performance. The first
is feature heterogeneity, which makes it hard to fuse features from different
views. Considering this, we introduce a multi-scale alignment module, includ-
ing an instance-scale alignment module and a prototype-scale alignment mod-
ule to mine the commonality from an inter-view perspective and an inter-class
perspective respectively, jointly alleviating feature heterogeneity. The second
is information redundancy which easily incurs ambiguous data to blur class
boundaries and impair model generalization. Therefore, we propose a novel ex-
panded boundary by extending the original class boundary with fuzzy set the-
ory, which adaptively adjusts the boundary to fit ambiguous data. By integrating
the expanded boundary into the prototype-scale alignment module, our model
further tightens the produced representations and reduces boundary ambiguity.
Additionally, compared with the original class boundary, the expanded boundary
preserves more margins for classifying unseen data, which guarantees the model
generalization. Extensive experiment results across various datasets demonstrate
the superiority of the proposed model against existing state-of-the-art methods.

1 Introduction

Multi-view data are widely applied in real-world applications by combining diverse heterogeneous
features to describe the same object (Wang et al. (2023a); Zhang et al. (2024b)). Unluckily, feature
heterogeneity and information redundancy concealed in the multi-view data have become the
obstacles in multi-view learning (MVL) (Tan et al. (2024)). The feature heterogeneity means that
the multi-view data are collected from different data distributions without a unified data format,
causing fusion difficulty among the view features (Wang et al. (2024a)). The information redun-
dancy signifies the latency of unnecessary features or ambiguous data, which hinders the ability
to delimit the decision boundaries appropriately and naturally engenders classification ambiguity.
Existing MVL models mainly delve into alleviating the heterogeneity by finding informative com-
mon subspaces (Zhang et al. (2023a)) or ideal view weights (Hu et al. (2022)). The former explores
the feature consistency and complementarity among the multi-view data (Lyu et al. (2024); Wang
et al. (2024c)), which neglects significant class differences for separating reliable decision bound-
aries. The latter presumes that the qualities or importances of views are stable for samples (Kumar
& Maji (2023)), and aims at allocating appropriate weights to different views (Houfar et al. (2023);
Liu et al. (2023)). However, the varied view qualities fail to match diverse samples practically (Han
et al. (2022b)), which also leads to unreliable decision boundaries. For instance, tigers and ze-
bras have similar stripes but different colors, which makes the model give the color view a higher
weight. Nevertheless, zebras and pandas have the same colors but disparate stripes, which induces
the model to weigh more for the stripe view. Such scenarios easily result in unstable qualities or
significances of different views to construct unreliable decision boundaries eventually.
Recent MVL works are dedicated to realizing trusted decisions by estimating the inherent un-
certainties among multi-view data (Xu et al. (2023b; 2024)), and integrating multiple views at an
evidence level. Actually, though they modify the logits to realize better classification decisions
(Sensoy et al. (2018)), they still fail to deal with the aforementioned problems. To illustrate the
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(a) Raw data (b) ETMC (c) PDMF (d) RCML (e) Ours

Figure 1: t-SNE on Scene15 dataset. The boundaries of the green class and the brown class are delin-
eated. Compared with existing advanced models, our model showsmuchmore distinct boundaries.

issue and our motivation intuitively, we provide the t-SNE in Figure 1, which includes our model
MAMC (enhance multi-view classification through multi-scale alignment and expanded bound-
ary) and three advanced MVL models ETMC (Han et al. (2022b)), PDMF (Xu et al. (2023b)), and
RCML (Xu et al. (2024)) on Scene15 dataset. The t-SNE reflects two issues of current MVL mod-
els: 1) They cannot well mine the commonality to tighten the representations; 2) They ignore to
exploit the class difference for clearing the ambiguous decision boundaries. These observations
imply that they are unable to reduce the feature heterogeneity and the information redun-
dancy satisfactorily. Motivated by these observations, our model focuses on mining common-
alities among view representations and learning clear decision boundaries in the representation
space simultaneously to tackle the feature heterogeneity and the information redundancy. On the
one hand, MAMC introduces a multi-scale alignment module to learn expressive view representa-
tions by mining the commonalities among views and class differences among prototypes; on the
other hand, it expands the original class boundaries to the wider decision boundaries in the rep-
resentation space, fitting ambiguous samples to clear the blurry areas between different classes
adaptively. Specifically, the multi-scale alignment module includes two complementary contents:
1) An instance-scale alignment module mines the inter-view commonality by aligning the view
representations of each instance. 2) A prototype-scale alignment module exploits the inter-class
difference from the instances with the same labels to find appropriate decision boundaries jointly.
The design of expanded boundaries is based on fuzzy set theory (Zhang et al. (2023b)), and its
expansion process involves fuzzy representations and crisp representations, where the fuzzy rep-
resentations are defined in the fuzzy representation space while the crisp representations are in
the normal representation space. The core of boundary expansion is based on the assumption that
crisp representations are a special type of fuzzy representations. It enables us to find learnable
positives of the crisp representations in the fuzzy representation space, which are then employed
to construct elements of the expanded boundary. Finally, the expanded decision boundary is inte-
grated into the prototype-scale alignment process. By narrowing the expanded boundary and its
corresponding class prototype while distancing other class prototypes, the inter-class difference
is sufficiently exploited. Additionally, the expanded boundary reserves extra space for instances
that belong to the class latently, which is beneficial for improving the model generalization. Our
contributions are summarized as follows:

• We propose MAMC to address the problems caused by the feature heterogeneity and the
information redundancy. Through introducing the multi-scale alignment module, MAMC
sufficiently mines the inter-view commonality to tighten instances and inter-class differ-
ence to delimit the decision boundaries.

• We propose a novel self-adaptive expanded boundary to tackle the ambiguous decision
boundaries. By integrating the expanded boundary into the prototype-scale alignment
module, the inter-class difference is reinforced to clear the ambiguous decision bound-
aries, while the representations inside the boundary are tightened.

• We explain the rationality of the model design theoretically, and extensive experimen-
tal results across diverse public datasets and comprehensive experimental analysis have
verified that the proposed model shows significant superiority against the existing state-
of-the-art models.
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2 Preliminaries

2.1 Fuzzy Set Theory

Fuzzy set theory builds on classical (crisp) set theory by introducing the concept of membership
degrees, which allows for fine-grained definitions of whether an element belongs to a set (Zadeh
(1965)). A fuzzy set A in the universe U is characterized by a membership function fA (x) which
allocates each element in U with a real number in [0, 1], where U is defined as a set that contains
all the elements under consideration for a particular discussion or problem, and fA (x) represents
the membership degree of x in A (Zhelezniak et al. (2019)). Fuzzy set theory provides a pow-
erful framework for reasoning about sets with uncertainty, but the specification of membership
functions depends greatly on domain knowledge. Specifically, we have the following definitions:
Definition: A function fA : U → L ⊆ R is called a membership function.
Definition: A tupleA = (U, fA) including a universeU and a membership function fA is called
a fuzzy set.
Following the definitions, when L = [0, 1] ,A is a fuzzy set. When the membership function takes
on only two values 0 and 1, namely L = {0, 1} according to whether x belongs toA. In this case,
A reduces to a classical set.

2.2 Multi-view Learning

Joint learning on multi-view data has been proven effective on various tasks, such as clustering
(Zhuge et al. (2020); Shen et al. (2024a)), and classification (Jiang et al. (2024)). Current works
are roughly divided into the subspace-based (Shen et al. (2024b)) and view-weighted approaches
(Zhang et al. (2024a)). The first category aims at finding a common subspace where the consensus
representations are generated for all the views Wang et al. (2023b). Canonical correlation analysis
(CCA) based approaches are one type of representative methods that project different views into a
subspace by maximally correlating them. (Kumar & Maji (2023)) proposed D2CCA that integrates
the CCA theory with the objective function to find the joint representations. (Yuan et al. (2022))
proposed a canonical F-correlation framework where each feature was projected into a certain
space by an arbitrary nonlinear mapping. Meanwhile, many works are dedicated to searching op-
timal weights for different views. (Xu et al. (2020)) proposed to make deep interactive information
using view-specific information in an adaptive weighted manner, and seamlessly integrated the
view-specific information with a multi-view loss fusion strategy to achieve joint decisions. (Ho-
ufar et al. (2023)) attended the distinctions between different views because of the sample impor-
tances, and proposed a dynamic learning strategy for automatically weighting views and samples.
However, the subspace-based approaches mainly focus on mining feature commonality to handle
feature heterogeneity but ignore the inter-class difference for delimiting the decision boundaries.
And the view-weighted approaches have trouble producing generalized weights for views, which
also makes it hard to find an effective boundary. In summary, these approaches fail to tackle the
problem caused by information redundancy, especially when ambiguous samples are distributed
around the decision boundaries. Motivated by this, we focus onmining commonalities among view
representations and learning clear decision boundaries in the representation space simultaneously
to alleviate the feature heterogeneity and the information redundancy.

2.3 Multi-view Classification

Existing multi-view classification methods can generally be divided into two categories: feature
fusion-based and decision-based methods. Feature fusion-based methods focus on effectively com-
bining features from all views. MV-HFMD (Black & Souvenir (2024)) explores feature fusion by
introducing a novel fusion scheme and mutual distillation to adapt neural networks for multi-view
classification. Mmdynamics (Han et al. (2022a)) dynamically assesses the informativeness of both
feature-level and view-level data across different samples, ensuring trustworthy integration ofmul-
tiple views. However, these methods often neglect feature heterogeneity, which undermines the
effectiveness of feature fusion. For the decision-based methods, they are dedicated to making more
reasonable decisions. ETMC (Han et al. (2022b)) introduces a new paradigm formulti-view learning
by dynamically integrating different views at the evidence level, thereby enhancing classification
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reliability. RCML (Xu et al. (2024)) attends to that conflictive information in different views, and
proposes a conflictive opinion aggregation strategy that exactly models the relation of multi-view
common and view-specific reliabilities. MVAKNN (Fan et al. (2023)) utilizes the Dempster–Shafer
theory to integrate information from each view, successfully extending adaptive KNN to a multi-
view setting. IPMVSC (Hu et al. (2023)) constructs a multi-view fuzzy classificationmodel inherited
from the natural interpretability of fuzzy rule-based systems to realize interpretable classification.
Many methods of this kind interact with the multiple views only in the decision phase, which can-
not well integrate the information from all the views. In contrast, our model aligns view features
during the representation learning phase and combines them in the decision phase, allowing for
more effective and interactive information integration across all views.

3 Proposed Method

The proposed model aims to mine commonality and learn adaptive boundaries to deal with the
problems caused by feature heterogeneity and information redundancy. The architecture of our
model is shown in Figure 2, including view-specific representation extractors, a multi-scale align-
ment module, and a joint classifier. To detail the model architecture conveniently, we first provide
some notations.
Notations. Formally, a multi-view dataset D = {({x(v)

i }Vv=1, yi)|1 ≤ i ≤ N} is defined as
N i.i.d. instances with V views and corresponding labels. We use a real-value vector x(v)

i ∈
RDv (1 ≤ v ≤ V, i = 1, · · · , N) to denote the feature vector of i-th instance for the v-th view,
whereDv is the feature dimension of the v-th view andK is the number of classes. For the labels,
we use a natural number yi ∈ N to represent the ground truth of i-th instance and ŷi ∈ {0, 1}K
to represent the corresponding one-hot vector. To integrate information from the multiple views,
our model aims at learning a desired mapping f : X → Y from the multi-view datasetD for better
predicting the correct label of unseen instances.

3.1 View-Specific Representation Learning

Heterogeneous multi-view data conceal many inherent issues, such as inconsistent dimensions of
view features. To address the issues, we employ multiple view-specific auto-encoders to generate
exclusive view representations in the same dimension (Zhong et al. (2024)). For the v-th view data
X(v), we apply a view-specific encoder E(v) to produce the view representation matrixH(v) and
a decoderD(v) to restore the raw view feature, where the encoder and the decoder are constructed
by multi-layer perceptions (MLPs). The reconstruction process is given by

Lrec =
1

V

V∑
v=1

∥∥∥X(v) −D(v)
(
E(v)(X(v))

)∥∥∥2
F
. (1)

3.2 Instance-Scale Alignment

The key to reducing the feature heterogeneity of multi-view data is to mine the inter-view com-
monality. Contrastive learning exploits commonality among data by pulling together the positives
while pushing away the negatives (Wang et al. (2024b)). The instance-scale alignment module com-
bines contrastive learning and regards all the view representations of each instance as positives
while others as negatives. Concretely, the view representations {h(v)

i }Vv=1 abstracted from the
view-specific encoders are recognized as positives and others are negatives. Hence, the instance-
scale alignment loss is

Lins = − 1

NV

V∑
v=1

∑
u̸=v

N∑
i=1

log
e
−Dis

(
h

(v)
i ,h

(u)
i

)
·τins

e
−Dis

(
h

(v)
i ,h

(u)
i

)
·τins +

∑
r=u,v

∑
j ̸=i e

−Dis
(
h

(v)
i ,h

(r)
j

)
·τins

, (2)

where τins is a temperature coefficient, andDis (·, ·) is a distance function. By aligning the positive
view representations, the critical common semantics to recognize similar samples are exploited,
while the feature heterogeneity is mitigated. By differing the negatives, the discrepancies between
different samples gradually emerge, thereby making the learned representations more suitable for
delimiting the decision boundaries.
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Figure 2: Three main components of the proposed model: (1) View-specific representation ex-
tractors. Multiple view-specific auto-encoders abstract critical view representations {H(v)}Vv=1

from multi-view data {X(v)}Vv=1. (2) Multi-scale alignment module. The instance-scale alignment
module aligns view representations {h(v)

i }Vv=1 of each instance xi, where the icons with various
shapes correspond to different instances and those with different colors correspond to representa-
tions from different views. The prototype-scale alignmentmodule integrates the adaptive expanded
boundaries, and then aligns the view representations with the same labels. (3) Joint classifier. All
the view representations are sent into the joint classifier to obtain fused predictions.

3.3 Prototype-Scale Alignment

In contrast to the instance-scale alignment module, the goal of the prototype-scale alignment mod-
ule is to exploit the inter-class difference for delimiting clear decision boundaries. The core of
achieving this goal is to construct the expanded boundary.

3.3.1 Expanded Boundary

Since the information redundancy in multi-view data easily blurs the decision boundaries, general
prototype learning ignoring the inter-class difference has limited ability to work effectively. In-
stead, we propose an adaptive expanded boundary to assist the prototype-scale alignment module,
expecting to clear the ambiguous boundaries.
To sufficiently gather the class information for exploiting the inter-class difference, we collect all
the view representations with the same labels to construct the class prototypes and use them to
centralize the view representations. For the training data of the k-th class, the centralizing process
is defined as:

ck =
1

V |Yk|

V∑
v=1

∑
yi=k

h
(v)
i , (3)

z
(v)
i = h

(v)
i − ck, v = 1, · · · , V, (4)

where z(v)
i is the centralized representation vector of the i-th instance in the v-th view, Yk is the set

including the training data whose labels are k, and |·| is used for counting the cardinality of a set.
ck is the prototype vector of the k-th class, which filters the high-frequency noise by averaging.
A key step of boundary expansion is to construct the fuzzy representation space with membership
functions, and the Gaussian membership function is the most universal one (Li et al. (2023)). The
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appropriate number of membership functions imparts the expanded boundary with more adapt-
ability. To this end, we adoptLGaussianmembership functions. For the l-th membership function,
the corresponding membership degree is defined by

r
(v)
i,j,l = exp

−

(
z
(v)
i,j −mj,l

)2

2δ2j,l

 , l = 1, 2, · · · , L, j = 1, 2, · · · , d, (5)

where d is the dimension of the view representation, z(v)
i,j is the j-th element of i-th instance in

the v-th centralized view representation vector,mj,l and δj,l are the trainable mean and standard
deviation of the l-th Gaussian membership function respectively. These membership degrees are
fused to obtain the final one for producing fuzzy representations, and the process is defined as

r̃
(v)
i,j = Comb

{
r
(v)
i,j,l

}
, l = 1, 2, · · · , L, (6)

Z̃(v) = R̃(v) ⊙Z(v), (7)

where r̃
(v)
i,j is the element of the membership degree matrix R̃(v), and ⊙ is Hadamard product

to transform the crisp view representation Z(v) into the fuzzy representation Z̃(v). Comb is the
combination operator to fuse membership degrees and how to determine it will be explained later.

Centralized Representation Space

 �1, �2 
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Representation

② Mapping to 
Boundary Element

�1

�2

Figure 3: The boundary expansion process in 2-dimension
space. One centralized view representation is firstly
utilized to calculate the fuzzy representation , and then
mapped as the boundary element .

According to properties of mem-
bership functions, each value of
R̃(v) is limited in [0, 1], which
implies that the crisp representa-
tions can be viewed as one spe-
cial case of fuzzy ones. Based
on this, we regard crisp represen-
tations and fuzzy representations
as positives. Besides, we assume
that their discrepancies reflected
by the coordinate differences are
tolerable since the discrepancies
between positives do not signifi-
cantly violate the commonality se-
mantics in general. Inspired by
this, we implement the tolerable
discrepancy to expand the origi-
nal class boundary, and the bound-
ary expansion process is depicted
in Figure 3. Mathematically, the el-
ements of the expanded boundary
are transformed by the coordinates
of the fuzzy representations, which
are formalized as

Z
(v)

= Z̃(v) + 2
(
1− R̃(v)

)
⊙Z(v) =

(
2− R̃(v)

)
⊙Z(v), (8)

whereZ(v) is composed of boundary elements, 1 and 2 are two real value matrices whose each el-
ement is 1 and 2 respectively. Though simple, the expanded boundary inherits two desired proper-
ties from the fuzzy representations: 1) Semantics-positive. The boundary elements are supposed
to be the positives of crisp representations, which benefit recognizing the ambiguous samples far
away from the class centers. 2) Self-adaptive. The expanded boundaries are based on the learn-
able membership functions and could adjust adaptively to involve the ambiguous samples in the
training process. These two properties aim to capture nearly all the samples inside each boundary
for fully exploiting the inter-class difference.
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3.3.2 Loss Function

After expanding the original boundaries, we restore the coordinates of the centralized fuzzy repre-
sentation matrix Z by adding their corresponding class prototype C as the restored fuzzy repre-
sentation matrix H , since it is tough to separate the classes in a centralized representation space
whose class centers are all origin points. The expansion of the original class boundaries leads to
the new-born prototype of boundary elements C̃ , which causes a trade-off betweenC and C̃ . We
mix up both to harvest the fused prototype C by a linear combination as

C = ηC + (1− η) C̃, (9)

where each prototype vector ofC is calculated by Eq. (3), C̃ is calculated by averaging the bound-
ary elements of each class, and η is a balance coefficient to reconcile C and C̃ .
To generalize for unseen data as much as possible, we expect to maximize the spectrum of each
class, which is equal to maximizing the variance within each class. Meanwhile, we expect to
achieve better separateness among different classes and compactness within each class, which
intends to maximize the distances between different classes while minimizing the variance within
each class. Considering these factors, the loss function is formalized as a minimax game by

Lpro = min
P+V

max
V

(P + V), (10)

where P is defined to distance different classes and V to tighten samples within each class while
generalizing for unseen data. They could be defined as

P = − 1
NKV

∑V
v=1

∑K
k=1

∑N
n=1

∥∥∥h(v)

n − ck

∥∥∥2
2

V = 1
NV

∑V
v=1

∑K
k=1

∑
yi=k

∥∥∥h(v)

i − ck

∥∥∥2
2

. (11)

For convenience, we letQ = P +V , and propose an upper bound ofQ in our model, expecting to
further optimize Q by optimizing its upper bound. We define the upper bound Qpro as

Qpro = − 1

NV

V∑
v=1

K∑
k=1

∑
yi=k

log
e
−τpro

∥∥∥h(v)
i −ck

∥∥∥2

2∑
j e

−τpro

∥∥∥h(v)
i −cj

∥∥∥2

2

, (12)

where ck is the fused prototype vector of the k-th class, h(v)

i is the restored boundary elements of
the i-th instance in the v-th view, and τpro is the temperature coefficient to control the compactness
of classes. Generally, higher τpro makes the classes more compact. We provide the theoretical proof
that Qpro is an upper bound of Q in the Appendix.
In the prototype-scale alignment loss, we integrate all the view representations to serve as the
class samples since partial view information easily releases misleading information or loses crit-
ical information, which may lead to ambiguous decision boundaries. In this way, all the view
information is gathered to collaboratively form the inter-class difference for delimiting the deci-
sion boundaries. Additionally, according to (Oord et al. (2018)), contrastive learning evaluates the
mutual information between the raw view data and the restored boundary elements, namely

I

(
xi,

{
h
(v)

i

}V

v=1

)
≥ log (N )−Qpro, (13)

where I (·) is used to calculate the mutual information,N is the sample amount participated in the
loss function. This inequation reveals that more negatives raise the lower bound and preserve more
complete information from the raw data for better alignment performance. Typically, integrating
all the view representations is a flexible way to multiply the amount of negatives.

3.3.3 Combination Operator Determination

The combination operator Comb in Eq. (6) is crucial to the expanded boundaries. On the one
hand, the Comb operator cannot damage the self-adaptive ability of the expanded boundaries.
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On the other hand, the Comb operator controls the class variances to generalize for unseen data.
The former is achieved by the learnable membership functions, and the latter is affected by the
determination of the Comb.
Theorem 1. When employing Min Pooling as the Comb operator, the overall variance of each
class is maximized. The proof is provided in the Appendix.
Therefore, when the ideal Comb operator is defined as the minimal of the membership functions,
the spectrum of each class is maximized. It means that the expanded boundary could general-
ize more latent (unseen) samples belonging to corresponding classes. Finally, the prototype-scale
alignment loss Lpro in Eq. (10) is reduced as

Lpro = min− 1

NV

V∑
v=1

N∑
i=1

log
e
−τpro

∥∥∥h(v)
i −ci

∥∥∥2

2∑
j e

−τpro

∥∥∥h(v)
i −cj

∥∥∥2

2

. (14)

3.4 Classification Prediction

During the classification process, we employ a joint classifier that adopts the parameter sharing
strategy, and it has several merits: 1) Shared parameters receive information from all the views
simultaneously, which is conducive to constructing a classifier specific for the multi-view data.
2) The multi-scale alignment module has mined the inter-view commonality and the inter-class
difference to construct clear decision boundaries, reducing the demand on the complex classifier
with a large number of parameters. The model prediction is produced by averaging the outputs of
the joint classifier by

p̂i =
1

V

V∑
v=1

p
(v)
i =

1

V

V∑
v=1

g
(
h
(v)
i

)
, (15)

where g (·) is a logistic classifier, p(v)
i is the output of g (·) in the v-th view, and p̂i is the final

prediction. During training, we use the cross-entropy to calculate the classification loss as

Lcls = − 1

N

N∑
i=1

K∑
j=1

ŷij log p̂ij . (16)

where p̂i is the final prediction from Eq. (15), and p̂ij is its j-th element. ŷi refers to the one-hot
vector label of the i-th instance, and ŷij is the corresponding element in this vector. The overall loss
Lall comprises four parts, namely reconstruction loss, classification loss, instance-scale alignment
loss, and prototype-scale alignment loss, which is given by

Lall = Lrec+Lcls + αLins + βLpro, (17)
where α and β are penalty coefficients. Lall focuses on mining the commonality among different
views and clearing ambiguity areas around the decision boundaries, which successfully alleviates
the damage of the feature heterogeneity and the information redundancy.

4 Experiments

In our experiment, we evaluate our model on eight public multi-view datasets including HandWrit-
ten, Scence15, PIE, CCV, Animal, 100Leaves, Hdigit, and YoutubeFace. To show the effectiveness
of the proposed model, five state-of-the-art methods are adopted to compare with, includingmm-
dynamics (Han et al. (2022a)), ETMC (Han et al. (2022b)), UMDL (Xu et al. (2023a)), PDMF (Xu
et al. (2023b)), IPMVSC (Hu et al. (2023)), MV-HFMD (Black & Souvenir (2024)), and RCML (Xu
et al. (2024)). For each dataset, we split 80% instances for training and the remainder for testing.
To obtain reliable results, we implement the same dataset split ten times for all the models. More
details of the datasets are provided in the Appendix.

4.1 Experimental Results

Table 1 presents the classification results between our model and other baseline models, and we
adopt Accuracy (Acc), Purity, Recall, and Macro-F1 as the metrics. From the statistical compar-
isons, some important observations are revealed:
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Table 1: Classification results (%) with baseline models. The best results are highlighted in bold.
“OOM” indicates that the models raise the out-of-memory failure.

Datasets Metrics mmdynamics ETMC UMDL PDMF IPMVSC MV-HFMD RCML Ours

HandWritten
Acc 98.5±0.5 96.8±0.7 97.7±0.5 98.2±0.7 98.7±0.4 98.2±0.6 97.1±0.9 98.9±0.4

Precision 98.5±0.5 96.8±0.7 97.8±0.5 98.3±0.7 98.7±0.4 98.2±0.5 97.1±0.9 98.9±0.4
Recall 98.5±0.5 96.9±0.7 97.7±0.5 98.3±0.7 98.7±0.4 98.2±0.6 97.2±0.9 98.9±0.4

Macro F1 98.5±0.5 96.8±0.7 97.7±0.5 98.2±0.7 98.7±0.4 98.1±0.5 97.1±0.9 98.9±0.4

Scene15
Acc 62.0±2.2 66.5±1.8 63.3±0.4 67.8±1.1 71.8±1.4 80.7±1.2 70.0±1.0 81.5±0.7

Precision 57.3±2.8 66.6±2.5 61.2±0.7 65.8±2.8 73.8±0.7 80.6±1.6 70.6±1.3 81.0±0.6
Recall 60.1±2.2 65.3±1.6 62.7±0.5 65.9±1.1 70.5±0.8 80.3±1.3 68.9±1.3 80.8±0.7

Macro F1 57.6±2.5 62.8±1.8 61.1±0.7 63.0±1.4 69.1±0.9 80.0±1.4 67.1±1.1 80.5±0.7

PIE
Acc 72.5±3.7 90.5±2.3 71.1±3.3 88.7±3.0 91.9±2.0 86.8±2.4 91.8±2.9 93.1±1.7

Precision 70.6±4.0 88.0±3.8 74.6±3.9 87.6±3.8 81.7±2.1 87.7±2.7 91.1±3.4 92.8±2.1
Recall 70.6±3.7 89.6±3.6 71.1±3.3 87.3±4.9 82.1±1.8 88.9±2.4 91.0±3.5 93.6±1.8

Macro F1 67.4±3.8 87.4±3.8 69.3±3.5 85.7±4.5 80.5±2.5 83.8±6.1 89.8±3.9 92.1±2.0

CCV
Acc 29.6±1.1 42.6±1.4 36.2±1.5 50.5±1.4 42.6±1.8 53.4±0.9 42.4±1.7 54.0±1.1

Precision 22.8±2.8 41.4±2.6 35.5±1.3 48.5±1.3 48.3±2.0 51.1±1.1 42.3±2.2 53.0±1.3
Recall 23.2±1.0 37.1±1.4 33.7±1.4 45.4±1.3 35.5±1.3 50.5±0.8 37.0±1.4 50.6±1.0

Macro F1 20.1±1.1 36.0±1.6 33.1±1.4 45.1±1.5 34.3±1.5 50.4±0.9 35.9±1.5 51.0±0.9

Animal
Acc 56.7±1.4 56.6±0.8 34.0±1.1 57.0±0.7 39.5±1.9 59.6±0.7 56.8±1.2 60.2±1.1

Precision 52.4±2.2 53.3±3.2 33.7±0.9 49.5±0.6 37.3±3.9 56.5±0.6 54.5±2.5 56.7±1.3
Recall 49.9±1.3 49.7±1.0 30.4±0.8 47.2±0.7 33.3±2.5 53.7±0.4 49.5±1.2 53.8±0.8

Macro F1 50.4±1.4 49.7±1.1 30.4±0.7 46.7±0.6 33.3±2.7 54.0±0.5 49.6±1.3 54.1±0.8

100Leaves
Acc 93.5±1.5 90.8±2.1 98.4±0.8 97.7±0.7 66.1±4.1 98.3±0.2 88.6±1.5 98.5±1.1

Precision 93.6±1.2 90.5±2.5 98.7±0.8 97.7±0.9 70.2±3.4 98.4±0.0 88.7±2.0 98.5±1.0
Recall 93.9±1.1 91.3±2.4 98.4±0.9 98.0±1.0 69.0±2.0 98.9±0.2 89.4±1.4 99.0±0.7

Macro F1 92.7±1.3 89.3±2.7 98.3±0.9 97.5±1.0 64.0±2.7 98.4±0.1 87.0±1.7 98.5±1.0

Hdigit
Acc 99.6±0.1 90.8±2.1 98.0±0.2 99.4±0.2 97.8±0.3 84.1±2.0 98.3±0.3 99.8±0.1

Precision 99.6±0.1 98.4±0.2 98.0±0.2 99.4±0.2 97.8±0.3 88.9±1.7 98.3±0.3 99.8±0.1
Recall 99.6±0.1 98.4±0.2 98.0±0.2 99.4±0.2 97.9±0.3 87.5±2.0 98.3±0.3 99.8±0.1

Macro F1 99.6±0.1 98.4±0.2 98.0±0.2 99.4±0.2 97.8±0.3 86.5±2.3 98.3±0.3 99.8±0.1

YoutubeFace
Acc 56.3±0.3 71.9±2.1 OOM 85.6±0.3 28.2±0.3 83.4±0.8 52.6±1.0 87.1±0.2

Precision 74.8±0.6 83.2±0.8 OOM 89.2±0.4 29.9±4.0 85.6±1.0 83.1±1.0 89.5±0.4
Recall 46.0±0.3 67.7±3.1 OOM 84.3±0.4 5.4±0.3 82.8±0.8 38.7±1.3 86.2±0.3

Macro F1 53.5±0.5 73.0±2.8 OOM 86.6±0.3 5.2±0.4 83.9±0.8 46.6±1.4 87.7±0.1

1) The proposed model shows extraordinary superiority among the comparing methods across all
the datasets, especially on the Scene15 dataset. Compared with existing methods, our model is
ideal to align all the view information while learning satisfactory decision boundaries, which are
critical for the classification task.
2) For datasets that all the models receive wonderful results such as HandWritten, 100Leaves, and
Hdigit datasets, the satisfactory decision boundaries are easily delimited. However, the proposed
model could further improve the performance, which implies the rooted ambiguity near the deci-
sion boundaries is further alleviated.
3) MV-HFMD shows a very outstanding performance, which implies the significance of effective
feature fusion in multi-view learning. However, it may neglect to address the feature heterogeneity
that plays an important role in facilitating the feature fusion, so the model performance is some-
what limited when compared with our model.
4) Compared with a fuzzy multi-view learning model IPMVSC that focuses on using fuzzy rules
to realize an interpretable classifier, our model attends to the feature-level issues and applies the
fuzzy set theory in the representation space. Besides, from the results, we find that IPMVSC does
not work well on large datasets, but our model works well on both small and large datasets.
In summary, the proposed model successfully mines the commonality to tackle the feature het-
erogeneity, learns the adaptive boundaries to mitigate the harm from the information redundancy,
and preserves margins for unseen data to enhance the model generalization.

4.2 Ablation Study

To evaluate the effectiveness of the multi-scale alignment module and the rationality of the Comb
operator determination, we conduct the ablation study whose results are provided in Table 2, and
have the following observations:
1) According to the results, the instance-scale alignment and the prototype-scale alignment work
effectively to improve the inter-view commonalities and inter-class differences, which are essential
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Table 2: Results of ablation study on classification (%), which are concerned with the functions of
the multi-scale alignment module and the selection of Comb operator.

Lcls Lrec Lins Lpro Comb HandWritten Animal PIE CCV
✓ ✓ 96.08±0.47 55.78±0.04 84.93±0.36 42.48±0.58
✓ ✓ ✓ 97.44±0.54 56.95±0.42 89.71±1.20 49.34±3.33
✓ ✓ ✓ 96.76±0.68 56.95±0.65 90.81±0.82 51.01±2.39
✓ ✓ ✓ ✓ 97.46±1.10 57.80±0.15 91.54±0.82 51.69±2.18
✓ ✓ ✓ Min 98.15±0.41 59.20±0.75 92.40±0.92 52.34±0.34
✓ ✓ ✓ ✓ Min 98.85±0.42 60.16±1.03 93.11±1.72 53.97±1.14
✓ ✓ ✓ ✓ Max 97.67±0.42 58.26±0.31 91.92±0.60 52.18±2.68
✓ ✓ ✓ ✓ Mean 98.69±0.30 59.74±0.81 92.46±1.09 53.11±0.40
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Figure 4: Hyperparameter analysis on the HandWritten and Hdigit datasets. (a) and (b) delve into
the functions of penalty coefficients α and β, (c) and (d) delve into the functions of temperature
coefficients τins and τpro.

for addressing the problems caused by feature heterogeneity and information redundancy.
2) In contrast to the instance-scale alignment, the prototype-scale alignment shows greater im-
provements, which is attributed to exploiting the helpful inter-class differences for delimiting the
clear boundaries.
3) Compared with different Comb operators, the Min Pooling exhibits the best performance,
which demonstrates the superiority of preserving more margins for classifying unseen data.

4.3 Hyperparameter Analysis

We conduct the hyperparameter analysis on two penalty coefficients α and β, and two tempera-
ture coefficients τins and τpro. For α and β, we vary their values from {0.1, 0.25, 0.5, 0.75, 1}, and
for τins and τpro, we vary their values from {0.5, 0.75, 1.0, 1.5, 2.0} and {0.5, 0.75, 1.0, 1.2, 1.5}
respectively. The results on HandWritten dataset and Hdigit dataset are presented in Figure 4.
Compared with the temperature coefficients, the penalty coefficients affect the results more signif-
icantly, which illustrates the effectiveness of the multi-scale alignment module. Besides, the best
results are prone to larger temperature coefficients that weigh more on similar samples.

4.4 Further Analysis

Due to the page limit, we provide further analysis in the Appendix, including the t-sne visualiza-
tion, convergence analysis, and the demonstration of the model to learn clear decision boundaries.

5 Conclusion

Feature heterogeneity and information redundancy among the multi-view data are likely to cause
the difficulty of feature fusion and the ambiguity around the decision boundaries, which moti-
vates us to propose a novel MVL model MAMC for addressing the problems. MAMC employs
the view-specific auto-encoders to abstract exclusive view representations and introduces a multi-
scale alignment module to reduce the feature heterogeneity by mining the feature commonality.
Besides, we propose a novel expanded boundary to exploit the class difference, which benefits
to clear the ambiguity from the information redundancy. Extensive experiments demonstrate the
superior performance and rational design of the proposed model.
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A Additional Proofs

A.1 Proof of Proposition 1

Proposition 1: Qpro is an upper bound of Q.
Proof: Without losing generalization, we let τpro = 1, and we have
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K is a constant to denote the number of classes, and we ignore it to obtain a new lossQ′
pro, namely

Q′
pro =

1

NV

V∑
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∑
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(
logE

[
e
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i −cj
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]
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2

)
. (19)

According to the Jensen’s inequality, we could get

exp

{
E
[
−
∥∥∥h(v)

i − cj

∥∥∥2
2

]}
≤ E

[
exp

{
−
∥∥∥h(v)

i − cj

∥∥∥2
2

}]
. (20)

Considering that the logarithmic function is a monotonically increasing function, we have

Q′
pro ≥ 1

NV

V∑
v=1

K∑
k=1

∑
yi=k

(
E
[
−
∥∥∥h(v)

i − cj

∥∥∥2
2

]
+

∥∥∥h(v)

i − ck

∥∥∥2
2

)
≈ Q. (21)

A.2 Proof of Theorem 1

Theorem 1. When employing Min Pooling as the Comb operator, the overall variance of each
class is maximized.
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Proof: Without losing generalization, we let τpro = 1, and we have

Qpro = − 1
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where V ar (c̄k) stands for the variance of the k-th class cluster. Actually, it could be observed that
V = 1

NV

∑V
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∑K
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∑
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∥∥∥h(v)
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2
=

∑K
k=1 V ar(ck). In practice, we weigh the crisp

prototype more and set η to approximate 1, then we have
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η→1

V = lim
η→1

K∑
k=1

V ar (ck) =
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V ar (ck) . (23)

When applying the centralized representations for constructing the expanded boundary, the max-
imal overall variance within each class cluster is formalized as

max lim
η→1
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(24)

where K is the number of classes. Obviously, for each representation, when each element of r̃(v)i
becomes smaller, V becomes greater, which is in line with∥∥∥(2−

{
r̃
(v)
i

}
min

)
⊙ z

(v)
i

∥∥∥2
2
≥
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, (25)

where
{
r̃
(v)
i

}
min

, and
{
r̃
(v)
i

}
other

are the membership degree vectors, which are the outputs
of Min Pooling, and other simple Comb operators such as Mean Pooling, or Max Pooling.
Finally, we have

V∑
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N∑
i=1

∥∥∥(2−
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(v)
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}
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)
⊙ z

(v)
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2
. (26)

This means that among the simple Comb operators, Min Pooling as the Comb could maximize
the overall variance of each class.
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B Experiment Settings

B.1 Datasets

We provide the complete statistics of the used datasets in Table 3. HandWritten 1 and Hdigit 2

datasets are composed of handwritten digit images, PIE 3 and YoutubeFace 4 datasets collect the
data on facial recognition and expression recognition, Scene15 5 dataset contains images from 15
different scene categories, CCV 6 dataset comprises videos under complex conditions, Animal 7

dataset contains images of different animals, 100Leaves 8 dataset is composed of images from 100
different leaves.

Table 3: Statistics of datasets, which include the number of instances, classes, and the view dimen-
sions.

Dataset Instances Classes Views View dimensions
HandWritten 2,000 10 6 240/76/216/47/64/6

Scene15 4,485 15 3 20/59/40
PIE 680 68 3 484/256/279
CCV 6,773 20 3 20/20/20

Animal 11,673 20 4 2,689/2,000/2,001/2,000
100Leaves 1,600 100 3 60/60/60
Hdigit 10,000 10 2 784/256

YoutubeFace 101,499 31 5 64/64/512/647/838

B.2 Implementation Details

The proposed model is implemented in Pytorch and trained with an SGD optimizer. The dimen-
sion settings of the encoder and decoder are formed by {Dv, 1.4× 512, 1.2× 512, 512} and
{512, 0.6×Dv, 0.8×Dv, Dv} respectively. The number of membership functions L is set as
5. The learning rate is chosen from

{
1e−3, 3e−3, 5e−3, 1e−2

}
, and the coefficients α and β are

chosen from {0.1, 0.25, 0.5, 0.75, 1}. The temperature coefficients τins and τpro are chosen from
{0.5, 0.75, 1.0, 1.5, 2.0} and {0.5, 0.75, 1.0, 1.2, 1.5} respectively. All experiments are conducted
on a server with 8 NVIDIA GeForce 3090 (24 GB memory each).

B.3 Training Algorithm

The proposed MAMC includes three main components of the proposed model, namely view-
specific representation extractors, a multi-scale alignment module, and a joint classifier. Among
the three components, the view-specific auto-encoders abstract critical view representations from
multi-view data, and the multi-scale alignment module mines the inter-view commonality and
inter-class difference. The joint classifier calculates the fused predictions. Algorithm 1 presents
the detailed training process of the proposed MAMC.

C Supplementary Experiments

C.1 Learning Clear Decision Boundaries

Information redundancy in the multi-view data would lead to ambiguous boundaries. To further
verify that MAMC has the ability to learn clear decision boundaries, we implement our model on

1HandWritten: http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
2Hdigit: https://archive.ics.uci.edu/ml/index.php.
3PIE: https://www.cs.cmu.edu/afs/cs/project/PIE.
4YoutubeFace: https://www.cs.tau.ac.il/wolf/ytfaces.
5Scene15: http://www-cvr.ai.uiuc.edu/ponce grp/data/scene15.
6CCV: http://www.ee.columbia.edu/ln/dvmm/CCV.
7Animal: https://www.cs.ucf.edu/ xmzhang/datasets.
8100Leaves: https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set.
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Algorithm 1 Training process of MAMC
Input: Multi-view dataset: D = {({x(v)

i }Vv=1, yi)|1 ≤ i ≤ N}; Hyperparameters τins, τpro, α,
and β; Training epochs T .
Output: Model parameters.
Initialization: Initialize the parameters of the neural network.
Process:
1: for epoch = 1 to T do
2: Calculate the view representation matrices {H(v)}Vv=1 with view-specific auto-encoders.
3: \\ Instance-scale alignment
4: Realize the instance-scale alignment by Eq. (2).
5: \\ Prototype-scale alignment
6: Centralize the view representations by Eq. (3)-(4).
7: Calculate the boundary elements by Eq. (5)-(8).
8: Realize the prototype-scale alignment by Eq. (14).
9: \\ Classification prediction
10: Calculate the classification loss by Eq. (15)-(16).
11: end for
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Figure 5: Performance comparison on multi-view datasets with different levels of noise.

manufactured ambiguous data. In our experiments, we add Gaussian noise with different levels of
deviations σ to half of the views, and provide the comparison results in Figure 5. We discover that
when the noise increases, the performance of all the models drops quickly since larger noise results
in more ambiguous boundaries. Even so, the performance of our model descends more slowly than
other models, especially when the noise is small. Actually, the data noise in the real multi-view
data is not large, which demonstrates that MAMC exploits the desired inter-difference from all the
view information to clear the ambiguous decision boundaries.
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Figure 6: The convergence analysis of MAMC across all the datasets.

C.2 Loss Analysis

We conduct the convergence analysis of the proposed method across all the datasets, where ex-
perimental results of loss values are illustrated in Figure 6. It is observed that the losses decrease
steadily and converge between 50 and 800 epochs across all datasets. Such a phenomenon empiri-
cally confirms the convergence of MAMC.
C.3 Visualization

In this experiment, we provide the t-SNE of the comparative MVL models and raw data in Figure 7.
In practice, one instance is encoded as several view representations, which are then concatenated
as a final representation vector. The final representation vector is input into the t-SNE algorithm to
obtain the visualization. From the results, we could find that though the raw data are ambiguous,
most models disentangle different classes to some degree. However, our model shows much better
results since it mines the feature commonalities to tighten samples inside each class and exploits
inter-class differences for separating different classes.

C.4 Complexity Comparison

We present the model complexity comparison in Table 4 and Table 5. Table 4 lists the complexity of
all the models, and we can find that our model has the same level of complexity as some compara-
tive models. Table 5 provides detailed computational overhead analysis including MACs, concrete
running time, and Parameters. For a fair comparison, we set the same batch size and training
epochs for all the models. From all the statistics, we could find that our model is not cumbersome,
but is competitive with some advanced models.

Table 4: Complexity comparison between the comparative models and the proposed model.
Model Complexity

mmdynamics O(N)
ETMC O(N)
UMDL O(N3)
PDMF O(N2)
RCML O(N)
Ours O(N2)
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(a) Raw (b) mmdynamics (c) ETMC

(d) PDMF (e) RCML (f) Ours

Figure 7: t-SNE of the comparative models and the proposed model on Scene15 dataset.

Table 5: Complexity comparison among the comparative models and the proposed model.
Datasets Metrics mmdynamics ETMC UMDL PDMF RCML Ours

Running Time 21.911s 35.739s 10057.537s 21.972s 17.064s 23.302s
MACs 267.871M 3.323M 1273.548M 189.989M 1.661M 1373.655MHandWritten

Parameters 1.0543M 0.0066M 5.2389M 1.722M 0.0066M 5.353M
Running Time 28.996s 42.596s 31938.726s 45.678s 22.922s 41.651s

MACs 66.604M 0.457M 132.890M 68.387M 0.457M 617.869MScene15
Parameters 0.264M 0.002M 20.632M 1.098M 0.002M 3.197M

Running Time 11.525s 11.233s 2721.368s 9.214s 7.775s 17.499s
MACs 536.394M 17.739M 248.090M 188.088M 2.217M 996.040MPIE

Parameters 2.099M 0.070M 1.429M 1.540M 0.070M 4.622M
Running Time 40.678s 61.986s 29783.373s 69.529s 37.905s 65.490s

MACs 56.521M 0.307M 125.338M 9.978M 0.307M 263.633MCCV
Parameters 0.225M 0.001M 46.361M 1.331M 0.001M 3.323M

Running Time 650.847s 181.911s 52103.473s 221.021s 119.074s 177.946s
MACs 7643.710M 44.493M 1269.197M 576.355M 44.493M 9360.186MAnimal

Parameters 29.873M 0.174M 141.214M 10.937M 0.174M 37.353M
Running Time 12.697s 16.173s 7386.190s 19.825s 10.078s 44.393s

MACs 247.370M 4.915M 142.234M 80.740M 4.915M 672.518M100Leaves
Parameters 0.971M 0.020M 3.113M 0.814M 0.020M 3.323M

Running Time 57.370s 58.236s 44589.832s 85.163s 41.918s 59.256s
MACs 506.520M 0.666M 211.558M 42.877M 2.662M 883.593MHdigit

Parameters 1.982M 0.010M 100.825M 2.614M 0.010M 4.245M
Running Time 1660.614s 598.449s — 513.350s 523.801s 702.112s

MACs 4393.923M 67.456M — 1466.827M 67.456M 7988.087MYoutubeFace
Parameters 4.328M 0.066M — 15.840M 0.066M 8.544M
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