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ABSTRACT

Active learning (AL) algorithms identify an optimal subset of data for annotation,
such that deep neural networks (DNN) can achieve better performance when
trained on this labeled subset. AL is especially impactful in industrial scale settings
where data labeling costs are high and practitioners use every available tool to
improve model performance. The recent success of self-supervised pretraining
(SSP) highlights the importance of harnessing abundant unlabeled data to boost
model performance. By combining AL with SSP, we make use of unlabeled data
while simultaneously labeling and training on particularly informative samples.
We study a combination of AL and SSP on ImageNet. We find that performance
on small toy datasets – the typical benchmark setting in the literature – is not
representative of performance on ImageNet due to the class imbalanced samples
selected by an active learner. Among the existing baselines we test, popular AL
algorithms across a variety of small and large scale settings fail to outperform
random sampling. To remedy the class-imbalance problem, we propose Balanced
Selection (BASE), a simple, scalable AL algorithm that outperforms random
sampling consistently by selecting class balanced samples for annotation.

1 INTRODUCTION

Fueled by the success of deep learning, the global data annotation market is projected to reach $3.4
billion by 2028 Research & Markets (2021). The data labeling process is a daunting hurdle for
institutions aiming to deploy deep learning models at an industrial scale. The annotation process is
slow, costly, and in some cases requires domain-expert annotators.

A large body of machine learning research seeks to reduce data labeling costs by harnessing as
much information as possible directly from unlabeled data or by leveraging other labeled datasets
whenever possible. Ultimately, however, labeled data is required to achieve adequate deep learning
model performance, especially in mission critical scenarios. Due to time and budget constraints,
practitioners are often restricted to selecting a small subset of the available data for annotation. This
restriction raises the following question: What is the best approach for selecting this subset?

Active learning (AL) is a subfield of machine learning (ML) dedicated to answering this question.
Given a large pool of unlabeled data and a fixed labeling budget, an AL algorithm selects a subset of
the unlabeled data to be annotated. Once labeled, the subset is subsequently used to train a ML model.
The goal of the active learner is to select the subset that will optimize the generalization performance
of the ML model.

In this work, we focus on classification tasks using deep neural networks (DNN). We study a
combination of AL and self-supervised pretraining (SSP) in the large data regime. Large-scale
data is prevalent in real-world scenarios, where unlabeled data is typically abundant and cheap to
collect. Furthermore, in real-world settings, practitioners are compelled to leverage the available
unlabeled data in order to achieve adequate model performance at the lowest possible annotation cost.
State-of-the-art SSP methods can provide these performance boosts at no annotation cost.

Prior research on AL focuses on the CIFAR-10, CIFAR-100, and SVHN Krizhevsky (2009); Yang &
and (2019) datasets to compare AL algorithms. However, it is unclear whether performance on these
datasets is predictive of performance on real-world datasets that are orders of magnitude larger and
that may contain many more classes or even imbalanced data. We focus particularly on ImageNet
Russakovsky et al. (2015), as it contains 1000 classes, 1.2 million images, and a significant amount of
label noise Beyer et al. (2020); Stock & Cissé (2018); Tsipras et al. (2020) as is common in industrial
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settings Liao et al. (2021). AL cost savings are much more impactful at the ImageNet scale and
beyond, and cannot be understood by studying small datasets alone. These cost savings are due in
part to the sheer amount of available data but also the ambiguity of the classes considered. To curate
ImageNet, each image was presented to multiple human annotators who voted until a consensus was
reached on the label Deng et al. (2009). This voting mechanism translates directly to high annotation
costs.

Finally, we specifically focus on the interaction of AL with SSP. SSP has been shown to provide
a significantly larger accuracy boost compared to AL alone Siméoni et al. (2021). It is therefore
important to study whether AL offers any additional benefits on top of SSP. We present the first AL
results on ImageNet using SSP.

We summarize our contributions below:

1. We demonstrate that the performance of popular AL methods, which has been observed on
small datasets, does not transfer to the larger and more complex ImageNet challenge. In
fact, on the common linear evaluation task (see Section 3), most popular AL algorithms
perform worse than random sampling on ImageNet.

2. We identify and study sampling imbalance as a major failure mode for AL algorithms.
Because ImageNet has many classes with highly heterogeneous properties, AL algorithms
have a tendency to heavily sample from preferred classes while nearly ignoring others. This
problem is less severe on simple tasks with fewer and more homogeneous classes.

3. We introduce the Balanced Selection (BASE) AL strategy. BASE efficiently selects im-
ages that lie near class boundaries in feature space while also promoting an even class
distribution. By carefully selecting which data to label, BASE achieves significantly better
sample efficiency than standard self-supervised learning (SSL) pipelines that rely on random
sampling.

4. We show, for the first time, that AL can offer performance boosts on ImageNet when
combined with SSL. Our BASE algorithm, when used to train a classifier on top of a SSL
feature extractor, matches the top-5 accuracy of the state-of-the-art EsViT Li et al. (2021)
SSL algorithm while using only 55% of the labels.

We make our code publicly available in the hopes that others can easily reproduce our results and use
our codebase for future AL research 1.

2 BACKGROUND & RELATED WORK

A typical AL algorithm cycles between learning from a small amount of labeled data, using the model
to gather information about the unseen unlabeled data, and using this information to choose a subset
of the unlabeled data to be manually annotated. This cycle then repeats, with the labeled dataset
increasing in size at every iteration, until a pre-determined manual-annotation budget is exhausted. In
this section, we provide a formal description of the AL problem, followed by an overview of existing
methods.

We will adopt the notation from Sener & Savarese (2018) with slight modifications to accommodate
more general cases. We will study a C-way classification problem defined over a compact space
X = Rd and a finite label set Y = {1, . . . , C}. We denote the loss function by l(·, ·,w) : X ,Y → R,
where w are the parameters (i.e., the weights) of a classifier f(w, ·) : X → Y , which we simply
denote as f(x) in the rest of the paper.
The entire dataset is a collection of n points Z ⊆ X × Y sampled i.i.d. over Z = X × Y as
{xi, yi}i∈[n] ∼ pZ . Initially, some subset of m points is assumed to have been annotated by an
expert, we will denote the indices of those points by s0 = {s0(j) ∈ [n]}j∈[m].
An AL algorithm has access to {xi}i∈n ⊆ X but only the labels with indices s0, i.e. {ys0(j)}j∈[m].
The algorithm is also given a budget b of queries to ask an oracle (typically a human annotator), and
a learning algorithm As which outputs a set of parameters w given {xi}i∈n ⊆ X and {ys(j)}j∈[m].
The goal of AL is to identify a new subset s1 of unlabeled data such that:

s1 = argmin
s1:|s1|<b

Ex,y∼pZ [l(x, y;As0∪s1)] . (1)

1https://anonymous.4open.science/r/Active-Learning-At-The-ImageNet-Scale/README.md
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The above formulation constitutes one round of active learning. Typically, the algorithm runs for K
rounds producing a sequence of subsets s1, s2 . . . , sK to be labeled by the oracle and added to the
labeled dataset for the following round. We will denote by Dk

L all the indices of points labeled before
the start of round k, i.e., Dk

L =
⋃k−1

i=0 si, and likewise Dk
U = [n] \ Dk

L is the set of all unlabeled
points at round k. We will use | · | to refer to the cardinality of a set.

Selection Methodologies Existing AL algorithms for DNNs can be roughly broken down into
two categories: those designed to tackle class imbalanced datasets and those that are not. The wide
majority of existing algorithms fall in the latter category.

Algorithms designed for balanced datasets can be further broken down into two categories: uncertainty
based sampling and density based samplingAggarwal et al. (2020). Uncertainty based AL algorithms
operate by first quantifying the classifier’s uncertainty about its prediction on every unlabeled sample
at round k Gal & Ghahramani (2016); Gal et al. (2017); Settles (2010), then querying the examples
on which the classifier is deemed most uncertain. Prediction entropy, least confidence, and margin
sampling are commonly used uncertainty measures. Intuitively, uncertainty based sampling improves
the model’s prediction on subsets of the domain
mathcalX where the model is most uncertain, and in turn, improves the model’s generalization
ability.

On the other hand, density based algorithms Sener & Savarese (2018); Ash et al. (2020) generate
high-dimensional features from the data then select examples with the most representative features.
In practice, this selection involves running a clustering algorithm Ash et al. (2020); Citovsky et al.
(2021) or finding coresets Sener & Savarese (2018) in feature space. The features can be obtained by
removing the network’s linear classification head Sener & Savarese (2018); Citovsky et al. (2021)
or by taking its gradients with respect to every sample Ash et al. (2020). Intuitively, density based
sampling ensures that the most densely populated regions of space, which contain the most data at
test time, are represented in the labeled set.

A smaller minority of AL algorithms specifically tackle class imbalanced data Aggarwal et al. (2020).
However, as we discuss below, techniques in this area cannot scale to ImageNet.

Scaling Ability AL strategies designed for classical machine learning (ML) focus on querying
a single label (i.e. b = 1), re-training the model on all labeled data, querying the next example,
retraining again, etc. This has obvious advantages as the active learner is given access to the current
label and can therefore use it to guide its selection strategy. However, as datasets increased in size,
ML algorithms became costly to train, and data annotation grew into an entire industry. It is now
necessary for AL algorithms to operate at a large scale.

Table 1. Performance gains offered by VAAL Sinha et al.
(2019) on ImageNet vs those offered by MoCo v2 Chen et al.
(2020b), a popular SSP method. SSP, when combined with
random sampling, yields a substantially larger boost in perfor-
mance.

% of labels SSP Strategy Accuracy

25%
No Random 50%
No VAAL +1.5%
Yes Random +16.65%

To be practical for neural network applica-
tions, AL strategies must be able to query
a large batch of data at once, receive la-
bels for the entire batch, then query an-
other batch (i.e., b >> 1). This batch
AL approach minimizes costs and time by
keeping a large group of annotators occu-
pied and by reducing the number of train-
ing runs needed to update DNNs on newly
acquired data. At the same time, modern
AL strategies must be able to efficiently
process a massive pool of unlabeled data at
each round (i.e., large Dk

U ).

In Table 4 in Appendix and Section 5, we discuss the time complexities of several baselines considered
in this paper in greater detail.

Usage of Unlabeled Data Unlabeled data is often abundant in real-world scenarios, and leveraging
it effectively can lead to significant reductions in data annotation costs. In Chan et al. (2021); Siméoni
et al. (2021), the authors study the benefits of AL when combined with both SSP and FixMatch, a
semi-supervised technique.
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In this work, we restrict our experimental setup to SSP because semi-supervised techniques would
require training to saturation multiple times on the entire Imagenet dataset Sohn et al. (2020), which
is prohibitively expensive. In Table 1, we show that using only 25% of the ImageNet labels, the
MoCo v2 SSP method with randomly sampled labels is able to boost model performance by 18.15
percentage points, whereas carefully selecting examples using the VAAL Sinha et al. (2019) AL
algorithm only boosts performance by 1.5 percentage points if the classifier’s weights are randomly
initialized. Clearly, initializing models with SSP offers strong advantages in the label scarce regime.
In section 5, we show for the first time that AL offers additional performance gains on top of SSP at
the ImageNet scale. To the best of our knowledge, only two prior works Beluch et al. (2018); Sinha
et al. (2019) study AL on ImageNet, and none study the interaction between AL and SSP at this scale.

3 LINEAR EVALUATION TASK

When DNNs are deployed at an industrial scale, it is common to use a shared backbone network
for feature extraction, then apply separate heads directly on the features to accomplish different
downstream tasks. A single shared backbone is easier to maintain and carries a small memory
footprint, making it more practical for edge devices. Training this entire pipeline end-to-end is time
consuming and computationally intensive. Therefore, in this setting, as new labeled data becomes
available, the different task-specific heads are frequently finetuned while keeping the backbone frozen.
The backbone itself is updated less frequently2. In fact, with the emergence of massive foundation
models Bommasani et al. (2021), such as GPT-3 Brown et al. (2020), BERT Devlin et al. (2019),
and DALL-E Ramesh et al. (2021), practitioners may only have restricted access to the backbone.
Consequently, it is important to evaluate AL algorithms when the feature extractor is fixed and only
the classification head is finetuned. This task is a common benchmark in self-supervised learning
(SSL) research Li et al. (2021); Chen et al. (2020a;b), where the proposed SSL method is used to
pretrain the network’s feature extractor, then a linear classification head is trained on the features in a
fully-supervised fashion. However, to the best of our knowledge, AL strategies on ImageNet have not
been evaluated in this specific setting.

4 METHODS

We now describe our proposed method. We start with a simple preliminary variant of uncertainty
based selection. We then show how this variant can be adapted to prevent sampling imbalances from
emerging and accumulating over rounds, resulting in improved performance.

Algorithm 1 Algorithm for MASE

Input: Query Budget b, Indices of Labeled
Samples Dk

L

s← Dk
L

while |s| < |Dk
L|+ b do

x∗ ← argminx∈[N ]\s DDB(f(x))
s← s ∪ {x∗}

end while
return s\Dk

L

Margin Selection We first introduce a simplified
variant of our Balanced Selection algorithm, which
we call Margin Selection (MASE). MASE selects
the b examples closest to any decision boundary at
every round of AL. Intuitively, these samples should
have the most influence on the decision of the model.
We define distance to decision boundary (DDB) as
follows,

DDB(x) = min
ϵ
||ϵ||2 s.t.f(x+ ϵ) ̸= f(x). (2)

When f is a DNN, DDB is expensive to compute
in input space. We instead estimate this distance in feature space. For the models considered in
this paper, the final layer is a linear classification head on top of the features produced by a feature
extractor; therefore, computing DDB in feature space reduces to computing the projection of the
feature vector onto the normal vector of the linear decision boundary, which can be implemented
very efficiently. We provide pseudocode for MASE in Algorithm 1.

To the best of our knowledge, MASE is a novel AL strategy, similar algorithms were only studied
on 2-class classification tasks using support vector machines Ertekin et al. (2007), or a different
definition of distance Cho et al. (2021).

2The quintessential manifestation of this framework is described in Tesla’s AI day:
https://youtu.be/j0z4FweCy4M?t=3300 (55th minute).
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Algorithm 2 Algorithm for BASE

Input: Query Budget b, Number of Classes C, Indices of Labeled Samples Dk
L

s← Dk
L

while |s| < |Dk
L|+ b do

for c in [C] do
x∗ ← argminx∈[N ]\s DCSDB(f(x)), c)
s← s ∪ {x∗}

end for
end while
return s\Dk

L

Balanced Selection In Section 5, we show that only a single baseline AL algorithms beats random
sampling on the linear evaluation task on ImageNet and only by a relatively small margin. This is
partially due to the imbalance induced by the active learner, which does not query examples evenly
across classes. Motivated by this observation, we design Balanced Selection (BASE), an AL strategy
capable of scaling efficiently while also querying a balanced batch of examples. As opposed to
naı̈vely choosing the examples with the smallest DDB, BASE selects examples based on their distance
to class specific decision boundaries (DCSDB), defined as

DCSDB(x, c) =
{
minϵ ||ϵ||2 s.t. f(x+ ϵ) = c if f(x) ̸= c

minϵ ||ϵ||2 s.t. f(x+ ϵ) ̸= c if f(x) = c.

More specifically, for each class c ∈ {1, . . . , C}, BASE selects the b/C samples with the smallest
DCSDB(x, c). Similar to our MASE implementation, we only consider distances in feature space. We
provide a visual illustration of BASE’s selection strategy in Fig. 1 and its pseudocode in Algorithm 2.
The time complexity of Algorithm 2 is dominated by computing DCSDBs, but those can be computed
once and stored, so the algorithm runs in O(C · (d′ + log(b)) · |Dk

U |) in practice, where d′ is the
dimension of the features. This puts BASE on par with the fastest baselines – see 4.

Figure 1. An illustration of BASE for 2-dimensional features and a 3 class problem. The algorithm selects
an equal number of points (shown using colored stars, crosses, and triangles) that are closest to each decision
boundary (solid lines).

5 EXPERIMENTS

In this section, we outline our experimental design, followed by a presentation of our results. In
figure captions, we will refer to different experiments using a capital letter for the dataset/model
combination, and a capital roman numeral for the experimental setup. For example, setting A-I refers
to AL strategies tested on CIFAR-10 using a ResNet-18 with the model weights initialized using SSP
at every round. Baseline strategies are referenced using lower case roman numerals, e.g., v refers to
BADGE. Below, we enumerate each dataset/model combination, training setup, and AL method, and
assign each a letter or numeral. All other implementation details can be found in Appendix A.

Datasets and Models In our experiments, we use the following dataset and model architecture
combinations.

A. CIFAR-10 Krizhevsky (2009) w/ ResNet-18 He et al. (2016).
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B. Imbalanced CIFAR-10 Krizhevsky (2009) w/ ResNet-18 He et al. (2016): The number of samples
per class decreases exponentially from the most frequent class to the least frequent class; the most
sampled class contains 10× the number of samples in the least sampled class Cao et al. (2019a).

C. ImageNet Russakovsky et al. (2015) w/ ResNet-50 He et al. (2016).
D. ImageNet Russakovsky et al. (2015) w/ ViT Dosovitskiy et al. (2021).

Training Setups We consider two different settings for training the classifier.

I. End-to-end finetuning from a self-supervised checkpoint. We first train the network using
self-supervised learning on all available unlabeled data. At every round k of AL, the backbone’s
weights (all layers except the final linear classifier) are reset to the SSP weights then the network
is finetuned end-to-end on all the available labeled data Dk

L.
II. Linear evaluation from a self-supervised checkpoint. Here, we employ SSP. At every AL

round k, we use the SSP checkpoint, but we only update the final linear layer of the network on
labeled data Dk

L.

Baselines We compare BASE (ours) to the following baselines.

i. Random Sampler. Queries samples from Dk
U uniformly at random.

ii. Balanced Random Sampler. Iterates over classes and chooses an equal number of examples
uniformly at random from each class. This baseline strategy cheats, as it requires the labels for
points in Dk

U in order to make its selection. We include it only for scientific purposes.
iii. Coreset AL. Sener & Savarese (2018) We solve the k-center problem using the classical greedy

2-approximation, as described in Algorithm 1 of Sener & Savarese (2018).
iv. Partitioned Coreset Sampler. Citovsky et al. (2021) Partitions the dataset into p partitions, then

runs the coreset algorithm to select b/p examples from each partition. This implementation only
calculates pairwise distances on smaller subsets, which is more computationally efficient.

v. BADGE AL Ash et al. (2020). Calculates the gradient with respect to the last linear layer, then
applies the K-means++ seeding algorithm Arthur & Vassilvitskii (2007) on the gradients. On Im-
ageNet, the size of the gradient embedding is proportional to the number of classes, which makes
it 100× larger than CIFAR-10 embeddings. Furthermore, the K-means++ seeding algorithm
requires the pairwise distances, which again is computationally prohibitive on ImageNet.

vi. Partitioned BADGE Sampler. Citovsky et al. (2021) BADGE with a similar partitioning trick as
Partitioned Coreset, and global pooling to reduce the embedding dimension.

vii. Confidence Sampler. Selects the examples with the smallest top logit (least confidence).
viii. Margin SamplerScheffer et al. (2001). Selects examples with the smallest differences between

the top logit and the second largest logit (minimum margin).
ix. VAAL Sinha et al. (2019). Trains a binary classifier to distinguish between features produced by

labeled vs unlabeled samples. The features are obtained by training a variational autoencoder.
Queries the unlabeled samples that the binary classifier is most confident about.

x. Balancing Sampler Aggarwal et al. (2020) Calculates cluster centers for each class in feature
space, then targets the class with the least number of queried examples, and finally selects
examples that are close to the target class’ center and away from other clusters.

xi. MASE (ours). See Section 4.

Scalability of baseline methods Coreset (iii) and BADGE (v) are prohibitively expensive to run
at the ImageNet scale – see Table 4. Additionally, both algorithms require storing large tensors in
memory – O(d′ · |Dk

U |) space complexity – as they require solving an optimization problem in feature
space. For this reason, we exclude them from our comparisons, and instead implement Partitioned
Coreset (iv) and Partitioned BADGE (vi), two scalable variants of the original strategies Citovsky et al.
(2021). We also note that the Balancing Sampler (x) is not a batch AL algorithm as it acquires labels
one at a time, making it impractical in terms of both computation and human labeling bandwidth in
large-scale settings.

5.1 SOLVING CLASS IMBALANCE ALLOWS SCALING

This section will show that class balanced sampling is important to scaling. Without explicitly
imposing balance, imbalance becomes a problem and causes baseline algorithms to under-perform
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(a) Setting C-I (b) Setting C-II

(c) Setting C-I (d) Setting C-II

Figure 2. Average ImageNet accuracy and imbalance ratio over 3 runs. Shaded regions depict the 95% confidence
interval of the results. Figures 2a and 2c are obtained by training a ResNet-50 end-to-end starting from a SSP
checkpoint at every AL round. In contrast, Figures 2b and 2d are obtained by finetuning only the final linear
layer at every round.

random sampling at the ImageNet scale. But by querying balanced samples, our BASE algorithm
recovers the good properties of AL in the large-scale regime, and even matches the state-of-the-art
EvSiT Li et al. (2021) results using only 71% of the ImageNet labels.

5.1.1 BASELINES PERFORM POORLY ON IMAGENET

Here, we analyze the performance of all baselines on ImageNet. In Figure 2a, we compare different
baselines on ImageNet, starting from a SSP checkpoint and finetuning the network end-to-end at
each AL round. Three baselines provide material performance boosts over random sampling in that
setting: Margin Sampler (viii), Partitioned BADGE (vi), and our MASE algorithm (xi). In Figure
2b, we evaluate all baselines on ImageNet in the linear evaluation setting described in Section 3.
Surprisingly, only a single baseline outperforms random sampling on the linear evaluation task.

5.1.2 THE IMPORTANCE OF BALANCED SAMPLING

Figures 2c and 2d compare class imbalance ratios – the number of labels from the most sampled
class over that of the least sampled class – for each sampling strategy. Most baseline samplers
disproportionately query certain classes. Indeed, the Confidence Sampler, the worst performing
baseline in Figure 2b, induces an imbalance ratio close to 12 after the first round of AL. To further
investigate the effects of class imbalance, we implement a cheating baseline strategy (Balanced
Random Sampler ii) which queries a perfectly balanced batch at each round. On the end-to-end
finetuning experiment in Figure 2a, querying balanced batches is not sufficient to outperform random
sampling. However, on the linear evaluation task in Figure 2b, the cheating Balanced Random
Sampler (ii) outperforms random sampling by approximately 6 percentage points at every round.
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(a) iv (b) vii (c) ix (d) vi (e) viii (f) MASE (g) BASE (h) i

Figure 3. Setting C-II. The distribution of Dk
U at every AL round for different strategies on ImageNet in the

linear evaluation setting. All experiments start with the same randomly selected subset s0. The x-axis is sorted
for each histogram (every row in every subplot) from least queried class to most queried class. The height of the
histogram at a given location on the x-axis indicates the proportion of the examples sampled from that class.
BASE is visibly the most balanced strategy after random sampling.

Table 2. When applying BASE on the linear evaluation task with the state-of-the-art EsViT Li et al. (2021)
SSP method, we are able to achieve the same state-of-the-art linear evaluation accuracy on ImageNet with only
71% (for top-1 acc.) and 55% (for top-5 acc.) of the data. The bolded number indicates the smallest amount of
required data to achieve the same accuracy as using all of the data for training.

Number of Labels (% of all labels)
Strategy 0.3M (24%) 0.5M (39%) 0.7M (55%) 0.9M (71%) 1.1M (87%) All(100%)

Top 1 Acc. BASE (ours) 78.9% 80.5% 81.0% 81.2% 81.2% 81.2%
Random 78.9% 79.9% 80.5% 80.7% 81.0% 81.2%

Top 5 Acc. BASE (ours) 94.4% 95.2% 95.5% 95.5% 95.5% 95.5%
Random 94.5% 94.9% 95.1% 95.3% 95.5% 95.5%

Class imbalance ratios do not fully describe the class imbalance across all classes, but only the
extremes. To further investigate class imbalance, we analyze the distributions of Dk

L for all baselines
on the ImageNet linear evaluation task in Figure 3. It is clear from the figure that all baselines exhibit
long tailed distributions, and increase the imbalance over time. In Appendix B, we include yet another
measure of class imbalance using entropy.

5.1.3 BASE OUTPERFORMS BASELINES AND MITIGATES CLASS IMBALANCE

In Section 4, we proposed BASE, an AL algorithm specifically designed to query class balanced
data. BASE can significantly outperform random sampling on the ImageNet linear evaluation task
shown in Figure 2b. In fact, BASE can even outperform the unrealistic Balanced Random Sampler
(ii), which cheats by using knowledge of ground truth labels to achieve perfect class balance. On the
finetuning experiment in Figure 2a, BASE performs on par with the best two baselines in terms of
accuracy. However, in Figures 3, 2c, and 2d, we show that our AL algorithm consistently achieves a
more uniform class distribution than all other baselines on both the linear evaluation and end-to-end
finetuning ImageNet tasks. The class distribution histograms for end-to-end finetuning can be found
in Appendix C.

Finally, in Table 2, we show that by carefully selecting examples, BASE can reproduce the state-of-
the-art linear evaluation top-1 accuracy results reported in EsViT Li et al. (2021) using ∼ 29% less
labeled data; BASE only needs 55% of the labels to match the same top-5 accuracy reported in Li
et al. (2021).
5.2 CLASS IMBALANCE ON SMALL DATASETS

Motivated by our observations concerning the importance of balanced sampling in large-scale settings,
we also investigate whether the balancing aspect of BASE offers benefits in small-scale settings. To
this end, in Figure 4, we compare all AL strategies on an imbalanced version of CIFAR-10 Cao
et al. (2019b) with an imbalance ratio of 10 starting from a SSP checkpoint obtained by training
on the full imbalanced dataset. In this experiment, when training the classifier, we weigh each
class differently in the loss function to penalize rare classes more heavily. The plots show a strong
correlation between class distributions and performance of the AL algorithm. Balanced Random
Sampler (ii), the “cheating” algorithm, achieves the best accuracy across the board. And with minor
exceptions, for each algorithm, the better the performance in terms of accuracy, the less severe the
observed class imbalance.

BASE is the best performing strategy in terms of accuracy and only second best in terms of class
imbalance – the best being the non-scalable Balancing Sampler (x).
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(a) (b)

Figure 4. Setting B-I with |s0| = b = 1000. Average results over 3 runs on imbalanced CIFAR-10 obtained by
finetuning a ResNet-18 end-to-end starting from a SSP checkpoint at every AL round. Shaded regions depict the
95% confidence interval of the results.

5.3 AL PERFORMS DIFFERENTLY WITH SSP

Figure 5. Setting A-I with |s0| = b = 1000. Average
results over 5 runs on CIFAR-10 obtained by training a
ResNet-18 end-to-end starting from a SSP checkpoint at
every AL round. Shaded regions depict the 95% confi-
dence interval of the results. The 5 overlapping curves
at the top are BASE, MASE, BADGE, Confidence Sam-
pler, and Margin Sampler.

Throughout this paper, we argue that apply-
ing SSP along with simple random sampling
is much more powerful than applying AL alone
– see Table 1. Therefore, AL algorithms must
prove that they can outperform random sampling
in the SSP setting, otherwise they are redundant
and potentially harmful to performance. In Fig-
ure 5, we show that some popular baselines,
notably, Coreset AL (iii), are indeed harmful.
A potential explanation for this failure mode
can be found in Anonymous (2022), where the
authors show that warm-starting the network
weights at each round can negatively impact the
performance of Coreset AL (iii). Warm-starting
means to continue training the network starting
with the weights obtained in the previous AL
round, as opposed to randomly re-initializing
the network weights at every round (cold start).
We suspect that SSP, just like warm-starting,
may negatively impact the performance of Core-
set AL on CIFAR-10 and conclude that future
research should not draw conclusions about the
performance of an AL algorithm in the SSP set-
ting solely by observing its behaviour in the cold
starting setting.

6 CONCLUSION

AL for DNNs is a very difficult problem to study, partly because we still cannot answer very
fundamental questions about the generalization abilities of DNNs Huang et al. (2020), but also because
random sampling is an incredibly robust baseline. In this paper, we highlighted the importance of
stress-testing AL algorithms where they are most useful, namely on large-scale tasks. We showed that
popular existing works cannot compete with random sampling across all settings, and we designed
BASE, a robust AL strategy capable of doing just that. In future work, we hope to tackle more
complex problems, where the cost savings incurred by AL are even more dramatic, such as large-scale
segmentation and detection tasks.
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Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai
Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi
Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the
opportunities and risks of foundation models, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

10

https://openreview.net/forum?id=7Rnf1F7rQhR
https://openreview.net/forum?id=7Rnf1F7rQhR
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://arxiv.org/abs/2106.15324
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Under review as a conference paper at ICLR 2023

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. Learning imbalanced
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A ADDITIONAL EXPERIMENTAL DETAILS

We provide additional details of implementations and hyperparameters in the following sections.

A.1 DATASET DETAILS AND EARLY STOPPING

Dataset Division We split the target dataset into training set, validation set and test set. All AL
algorithms are restricted to query from the training set, and the initial pool is also sampled from
training set. The validation set is used for early stopping.

CIFAR-10 comes with natural split of training and testing data. We keep the testing data as test set.
We randomly sample 1% of the training data as validation set and keep the rest as training set.

For Imbalanced CIFAR-10, we keep the original testing split as test data. We then follow this
implementation to subsample a set of long-tailed imbalance data from the training split. The set of
imbalance data is then randomly partitioned into training/validation data with 0.99/0.01 split ratio.

For ImageNet, the dataset itself comes with natural training split and validation split. We use the
validation split as test set. We randomly sample 10% of the training split as validation set and keep
the rest as training set.

Early Stopping. We use the validation set to estimate the final test accuracy and perform early stop-
ping during the network training to avoid over-fitting. In particular, we stop training the classification
network if the validation performance stops improving after a specific number of rounds (specified as
a hyperparameter).

A.2 HYPERPARAMETERS FOR EACH EXPERIMENT SETTING

We conduct our experiments in the following four settings: C-I, C-II, A-I, and B-I.

We provide the hyperparameters shared across these settings in Table 3, and discuss setting specific
hyperparameters as follows. For setting A-I, and B-I, we use cosine annealing learning rate scheduler
with Tmax = 200. For setting C-I and C-II, we start from the learning rate provided in Table 3, and
decrease it by a factor of 0.1 every 20 epochs.

A.3 ADDITIONAL DETAILS ON BASELINES

In this section we discuss additional implementation details of Partitioned Coreset/BADGE sampler
and VAAL sampler.

Partitioned Coreset/BADGE Sampler. To enable Coreset and BADGE sampler to run on ImageNet,
we modify each algorithm to allow to scale, inspired by the approach in Citovsky et al. (2021). At
each AL round we partition each of Dk

U and Dk
L into 10 random partitions. We then take one partition

from each and combine them into 10 partitions, say P1, . . . , P10, then run coresets or BADGE
separately on each partition using b/10 budget.

For BADGE we use global average pooling on the gradient embeddings to reduce their dimension to
512.

VAAL Sampler. We follow the repository provided by the original paper Sinha et al. (2019) to
implement VAAL sampler. Since the architecture of the Variational Auto-Encoder (VAE) provided in
the repository fails to handle ImageNet naturally, we instead use the VAE architecture in Tolstikhin
et al. (2017) and follow the paper to calculate the unsupervised loss with randomly-cropped 64× 64
patches instead of the full original images. Also, we perform a single VAE optimizer step for every
classifier optimizer step. The original Sinha et al. (2019) paper does not comment on this, however,
their codebase performs two VAE optimizer steps for every classifier optimizer step.

B DISTRIBUTION ANALYSIS WITH ENTROPY

Figure 6 displays the entropy of the class distributions at every AL round. Higher entropy is desirable
as it indicates more balanced sampling.
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Settings |s0| b Epochs ESP Batch size Optimizer Learning rate Weight Decay Momentum
A-I 1000 1000 200 50 128 SGD 1e−3 5e−4 0.9
B-I 1000 1000 200 50 128 SGD 2e−3 0 0.9
C-I 30000 10000 60 30 128 SGD 1e−3 0 0.9
C-II 30000 10000 60 30 128 SGD 15 1e−4 0.9

Table 3. Hyperparameters used for each setting. |s0| denotes the initial pool size. b denotes the budget per round,
and ESP abbreviates early stop patience.

C IMAGENET CLASS DISTRIBUTION HISTOGRAMS FOR END-TO-END
FINETUNING

Figure 7 contains histograms of the distributions for our end-to-end finetuning ImageNet experiments.

C.1 ADDITIONAL DETAILS ON SELF-SUPERVISED PRETRAINING

We use Moco-V2 Chen et al. (2020b) for all ImageNet experiments, i.e. setting C-I and C-II. We use
SimCLR Chen et al. (2020a) for all CIFAR-10 experiments, i.e. setting A-I, and B-I.

As described in the main paper, we train the backbone of the network using respective self-supervised
learning method on all available unlabeled data, including the random initial pool but not the
corresponding label. For ImageNet experiments, the backbone is trained with Moco-V2 for 800
epochs using SGD. The SGD optimizer uses batch size of 256, learning rate of 0.03, weight decay
of 0.0004 and momentum of 0.9. For further detail please refer to the original implementation.
For CIFAR-10 experiments, we train the backbone with SimCLR for 1000 epochs with Adam
opimizer Cao et al. (2019a). The Adam optimizer uses batch size 256, learning rate of 0.0003,
β1 = 0.9 and β2 = 0.999. We also use cosine learning rate schedule.

D LIMITATIONS

Plotting the test accuracy as a function of exhausted budget is common practice in AL research.
However, these experiments are difficult to produce correctly as they are computationally expensive
and very sensitive to hyperparameters Anonymous (2022); Beck et al. (2021). We conduct thorough
experiments over an extensive set of hyperparameters to ensure fair comparisons. We summarize our
findings below.

1. Training hyperparameters at every round. This includes the choice of optimizer, learning
rate, regularization, and early stopping hyperparameters. It is necessary to train the network
to saturation at every round with varying amounts of training data; otherwise, a fair com-
parison of AL algorithms would not be possible. In fact, if the network is not trained to
saturation at a round k, the AL algorithm will not query an optimal set sk, which will in turn
affect the distribution of Dk+i

L for all subsequent rounds k + i, i > 1 Anonymous (2022).

2. Initial Budget. s0 is randomly selected, therefore if the dataset is class balanced, s0 will be
relatively balanced. If s0 is large, it will take many rounds of querying before we can notice
performance differences between AL algorithms that select balanced data and those that
don’t. It is therefore important to monitor the distribution of Dk

L along with the accuracy of
the model at each round before drawing conclusions about performance.

E TIME COMPLEXITIES
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(a) Setting A-I. (b) Setting C-I.

(c) Setting C-II. (d) Setting B-I.

Figure 6. Class distribution entropy of Dk
L at different active learning rounds k.
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(a) iv (b) vii (c) ix (d) vi (e) viii (f) MASE xi
(g) BASE
(ours) (h) i

Figure 7. Setting C-I. The distribution of Dk
U at every AL round for different strategies on ImageNet in the

end-to-end finetuning setting. All experiments start with the same randomly selected subset s0. The x-axis is
sorted for each histogram (every row in every subplot) from least queried class to most queried class. The height
of the histogram at a given location on the x-axis indicates the proportion of the examples sampled from that
class. BASE is visibly the most balanced strategy after random sampling.

Table 4. Time complexities. d′ is the feature space dimension. On ImageNet using ResNet-50, |Dk
U | ≈ 106,

features d′ = 2048, gradient embeddings d′′ = 2048× 103, and C = 103. In our experiments, b = 103.

Algorithm Time Complexity
Margin Sampler O(C · log(b) · |Dk

U |)
Confidence Sampler O(C · log(b) · |Dk

U |)
Approx. Coreset O((b+ |Dk

L|) · d′ · |Dk
U |)

BADGE O(C · (b+ |Dk
L|) · d′′ · |Dk

U |)
Balancing Sampler O(C · b · d′ · |Dk

U |)
BASE (ours) O(C · (d′ + log(b)) · |Dk

U |)
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