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ABSTRACT

Contextual biasing refers to the problem of biasing the automatic speech recog-
nition (ASR) systems towards rare entities that are relevant to the specific user
or application scenarios. We propose algorithms for contextual biasing based on
the Knuth-Morris-Pratt algorithm for pattern matching. During beam search, we
boost the score of a token extension if it extends matching into a set of biasing
phrases. Our method simulates the classical approaches often implemented in
the weighted finite state transducer (WFST) framework, but avoids the FST lan-
guage altogether, with careful considerations on memory footprint and efficiency
on tensor processing units (TPUs) by vectorization. Without introducing addi-
tional model parameters, our method achieves significant word error rate (WER)
reductions on biasing test sets by itself, and yields further performance gain when
combined with a model-based biasing method.

1 INTRODUCTION

Recent years have seen a tremendous explosion in voice user interfaces (VUIs), like voice search,
assistant, and control applications. The success of VUI-based applications depends on the ability of
the underlying Automatic Speech Recognition (ASR) system to properly transcribe phrases that are
contextually relevant to the speaker, the listener, or both. Examples of contextually-relevant phrases
include names of the speaker’s contacts and geographically-close points of interest. Contextually-
relevant phrases are inherently hard to recognize because they represent instances of domain shift.
For example, generally, it is much more likely for a single user to speak the name of one of their
contacts than for any given contact name to occur in a given training data set; indeed, a given name
or phrase may not appear at all in an ASR system’s training set in the case of unorthodox spellings
(Ke$ha) or novel words (COVID-19). Further, contextually-relevant phrases may not be known until
inference time, e.g., as the user of a voice assistant can add contact names any time before speaking.

ASR contextual biasing is a set of techniques which enables ASR systems to recognize contextually-
relevant words without retraining. Contextual biasing can generally be grouped into model-based
and inference-based approaches. Model-based methods typically incorporate a biasing compo-
nent into an end-to-end (E2E) ASR system (Graves, 2012; Chorowski et al., 2015; Chan et al.,
2016a), which takes in biasing contexts as additional input to the E2E model. An attention mech-
anism (Vaswani et al., 2017) is typically used to condition the model outputs on biasing con-
texts (Munkhdalai et al., 2021; Chang et al., 2021; Han et al., 2022) (see Sec 3 for more discussions).

The more classical inference-based approach, dating back to the pre-E2E era, injects biasing contexts
to boost decoding scores for the words or phrases in the biasing contexts to increase the probability
of recognizing those words (Aleksic et al., 2015; Hall et al., 2015). A compact search graph, based
on Weighted Finite State Transducers (WFSTs, Mohri et al., 2002), is built to encompass the set
of biasing phrases, and incorporated into the normal search graph which then transduces acoustic
model outputs to word-level hypotheses. Weights are distributed along edges of the biasing search
graph, so that when the acoustic model output extends the matching of the phrases, a bonus score is
added to the hypothesis to help it survive beam search and increase its likelihood of becoming the
top hypothesis. The approach was later extended to E2E models (Zhao et al., 2019) where bonuses
are incorporated at subword level. While E2E ASR systems have greatly simplified modeling and
deployment, and that most components are readily implemented on GPU or TPU to enjoy parallel
processing, FST-based biasing poses significant challenges for an efficient TPU-based implementa-
tion, due to their inherent sparse nature (adjacency matrices for FSTs are typically very sparse).

1



Under review as a conference paper at ICLR 2024

Our contributions In this work, we propose a TPU-friendly implementation of search-based bi-
asing, leveraging the equivalence between the biasing FST and the efficient matching algorithm
by Knuth et al. (1977), with careful considerations on memory complexity and efficiency through
vectorization. Our algorithms can be incorporated into the beam search of any ASR system, in both
the on-the-fly rescoring and shallow fusion manner. On large voice search datasets, our method
achieves significant word error rate (WER) reductions on biasing test sets by itself, without intro-
ducing additional model parameters. And when plugged into a model-based biasing method, namely
neural associative memory (NAM, Munkhdalai et al., 2021), our method leads to further improved
biasing accuracy. Our method enables learning with the discrete structure of ASR biasing, and can
be potentially useful for other sequence transduction tasks.

2 OUR METHOD

An intuitive and classical idea for biasing is to check iteratively, at each beam search step, if the
suffixes of partial hypotheses are partially or fully matching any of the biasing phrases, and give
score bonuses to those with matches. This helps a partial hypotheses to survive beam search pruning,
if it has the potential to develop into a full match of a biasing phrase. In this section, we develop
the algorithms for efficiently performing pattern matching for multiple biasing phrases, and properly
assigning biasing bonus for each beam search expansion, based on the classical KMP algorithm for
string/pattern matching. We review the classical algorithm in Sec 2.1, describe its usage for biasing
in Sec 2.2, discuss the two variants for beam search in Sec 2.3, and an extension in Sec 2.4.

Notations Below we use P to denote the pattern sequence to be searched/matched, and T to
denote the sequence to be searched from; both are strings in the context of the classical match-
ing algorithm or token sequences in the context of speech recognition. The length of P is de-
noted len(P). We use P[i] to denote the element at (0-based) index i, and use P[s, . . . , t] :=
[P[s],P[s+ 1], . . . ,P[t]] to denote the sub-sequence of P with start index s and end index t. Two
sequences are equal if they have the same length and corresponding elements match for all indices.

2.1 THE KNUTH-MORRIS-PRATT MATCHING ALGORITHM

For searching the occurrences of a string P of length m within another string T of length n, the
most naive solution is perhaps to loop over the set of indices j = 0, 1, . . . , n − m, and check if
the sub-string T [j, . . . , j + m − 1] = P , which requires another loop over the elements of P .
Clearly, this algorithm has a worse-case time complexity of O(mn). There exists, however, a much
more efficient linear-time Knuth-Morris-Pratt (KMP) matching algorithm (Knuth et al., 1977) for
this problem, with a worse case complexity of O(m+ n). We extract two major components out of
KMP below, which are used for efficiently maintaining status of matching, as needed by biasing.

2.1.1 THE FAILURE FUNCTION

The key insight behind the KMP algorithm is to not waste comparisons: if during matching we have
a partial matching of length i and T [j] 6= P[i], then instead of moving back to index j − i + 1 for
T and moving back to index 0 for P , and restarting the matching (by checking whether T [j − i +
1, . . . , j − i + m] = P), we may continue by comparing T [j] against P[π(i)] with some π(i) < i,
without backtracking in T . Here π(i) specifies the index of the potential next match in P when we
have a mismatch for P[i], and is called the failure function.

The failure function is originally defined as follows (Cormen et al., 2001): set π(0) = −1, and for
i = 1, . . . ,m− 1,

π(i) = max {k < i : P[0, . . . , k − 1] = P[i− k, . . . , i− 1]} .
That is, for i > 0, π(i) is the length of the longest proper prefix that matches a proper suffix of the
sequence P[0, . . . , i− 1]; the value is 0 if no such prefix exists. The special value −1 indicates that
there is no possible match starting at the current index of T and we must move to the next index to
restart matching: if T [j] 6= P[0], we must move to index j + 1 in T to compare again with P[0].

To see why this definition helps save unnecessary comparisons, consider the scenario where we have
a partial match of length i > 0, but then the mismatch T [j] 6= P[i] occurs. Since T [j − i, . . . , j −
1] = P[0, . . . , i− 1], we must have

T [j − π(i), . . . , j − 1] = P[i− π(i), . . . , i− 1] = P[0, . . . , π(i)− 1].
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Algorithm 1 Forward a search pattern with an input token.
Input: P with length m and failure function Π, current partial matching length i, new token x.
Output: Updated partial matching length q, and if we obtain a full match, after consuming x.

procedure FORWARD(P, i, x)
full match← False
if P[i] = x then

q ← i+ 1
if q = m then . Full match

full match← True, q ← 0
end if

else
k ← Π[i]
while k >= 0 and P[k] 6= x do . Determinization loop

k ← Π[k]
end while
q ← k + 1 . Either k = −1 or P[k] = x

end if
return (q, full match)

end procedure

Therefore, without backtracking in T , we already have a partial match of length π(i) < i, and we
then check if T [j] = P[π(i)] to determine whether we can extend the partial match; in case of
further mismatch, we repeat the process and backtrack to π(π(i)), π3(i),. . . , etc, until we reach −1.

The failure function we use in this work, denoted as π̄(·), is based on the above definition, and has
an additional “shortcut” logic (Aho & Corasick, 1975): for i = 1, . . . ,m− 1,

π̄(i) =

{
π̄(π(i)) if P[π(i)] = P[i], (shortcut)
π(i) otherwise.

The rationale behind the shortcut is that, as we are backtracking due to T [j] 6= P[i], in the case of
P[π(i)] = P[i] we deduce T [j] 6= P[π(i)], and thus π(i) cannot be the next possible match and we
shall keep backtracking. We provide the algorithm for computing π̄(·) in Algorithm 4 (Append A).
The time complexity for building the failure function of a pattern with length m is O(m).

An example of search pattern and its failure function is as follows.

i 0 1 2 3 4 5 6 7 8
P[i] A B A C A B A B A
Π[i] -1 0 -1 1 -1 0 -1 3 -1

(1)

2.1.2 THE FORWARD FUNCTION

With the failure function defined above, we can define a forward function. Given the matching state,
defined as the current partial matching length i (i.e., we have matched P[0, . . . , i − 1] so far, and i
is the next index to match in P), and a new token x from the string T to be searched, the forward
returns the updated partial matching length (the new position in P to match), after consuming x.
Here by “consuming” we mean either we have a match for x and we move to i + 1 in P , or we
determine that it is impossible to match x and restart the matching; in both cases we move beyond
x in T . The logic is sketched in Algorithm 1.

The complexity of this algorithm mainly lies in the “determinization loop”, where we keep back-
tracking until we find a match of x in P; when no such match is possible, we end up with k = −1
out of the loop, and restart matching at the next token in T . Additionally, we check whether we
obtain a full match of P after matching token x, in which case we also restart matching at the next
token in T (we are not interested in overlapping matches of patterns in this work).

If we add another loop on top of Algorithm 1 over the tokens in T , we recover the KMP search
algorithm, which has a time complexity of O(n) after the failure function is computed (with O(m)
complexity). Note how similar is the determinization loop of Algorithm 1 to the inner loop of
Algorithm 4; in fact the latter can be seen as searching P over itself.
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Algorithm 2 Compute bonus score of a token extension.
Input: Biasing phrases {Pb}Bb=1, current partial matching lengths I = (i1, . . . , iB), new token x.
Output: Updated partial matching lengths, and biasing bonus.

procedure COMPUTEBONUS({Pb}Bb=1, I, x)
any match← False . Track if there is any full match
for b = 1, . . . , B do

ub, matchb ← FORWARD(Pb, ib, x)
if matchb then

any match← True
vb ← len(Pb) . For full match, use pattern length for computing potential

else
vb ← ub

end if
end for
bonus← µ(v1, . . . , vB)− µ(i1, . . . , iB)
if any match then

ub ← 0 for b = 1, . . . , B . In case of any full match, restart matching for all phrases
end if
return ((u1, . . . , uB), bonus)

end procedure

We can design a finite state automaton (FSA) A(P) with m states, where state i = 0, . . . ,m −
1 denotes the state for partially matching i tokens of P , and the forward function provides the
transition function for this automaton, i.e., for an arc that starts at state i with input x, it ends at
the state specified by FORWARD(P, i, x). With the determinization loop, each transition consumes
a non-epsilon token on its edge, ensuring that A(P) is deterministic and epsilon-free. See Cormen
et al. (2001, Chapter 32.4) for more detailed discussions on the equivalence between KMP and FSA.

One could run Algorithm 1 for all x in the vocabulary (all characters in the alphabet in the case of
string matching) for i = 0, . . . ,m−1; this yields a table of sizem×|V | where |V | is the vocabulary
size. While we could in principle use this table for biasing, the memory cost may be too high when
we have on the level of thousands or more patterns to search, each with some number of tokens (up
to 16 in our experiments), while V is also in the thousands (4096 for our ASR system). It is therefore
much more memory efficient to store the failure function which only takes O(m) memory, and we
pay the cost of determinization loop. For any x, the number of times we have to backtrack in the
determinization loop is bounded by

γ(P) = max
i

ei, where ei is the integer satisfying πei(i) = −1. (2)

As an example, for the pattern in (1), we have γ(P) = 3 with maximum achieved at i = 7.

2.2 CONTEXTUAL BIASING WITH KMP

For biasing in ASR, each utterance is associated with B biasing phrases, denoted as (P1, . . . ,PB),
and we attempt to match all of them at each beam search step. Another task is to assign a bonus,
either positive or negative, to each new token expansion proposed by beam search. We achieve this
goal by defining a potential function based on the state of matching.

For each phrase Pb, b = 1, . . . , B, we first define a scoring function for partial matching of length
i (i.e., we have matched Pb[0, . . . , i− 1] so far). In this work, we simply parameterize the function
to be linear in i:

f(Pb, i) = i · δ, for i = 0, . . . , len(Pb),
where δ ≥ 0 is the per-token bonus and is a hyper-parameter to be tuned. It is future work to explore
more sophisticated scoring functions for biasing phrases.

Let the partial matching lengths for the B biasing phrases be I = (i1, . . . , iB). We define the
potential function as the maximum scoring function over phrases:

µ(i1, . . . , iB) = max
b=1,...,B

f(Pb, ib).
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Algorithm 3 Beam search with KMP biasing.
Input: ASR model. Biasing phrases {Pb}Bb=1. Beam size K. Number of biasing expansion F .
Output: Top K hypotheses.

procedure BEAMSEARCHWITHBIASING({Pb}Bb=1,K, F )
H ← {(h, s, I)} where h is empty with score s = 0, I contains biasing states of all zeros.
for step = 1, 2, . . . , do
G ← {} . G is buffer for storing intermediate hypotheses
for (h, s, I) ∈ H do

Conditioned on h, compute top F expansions {(x1, s1), . . . , (xF , sF )} with ASR
model, where xk is token id and sk is its model score

for k = 1, . . . F do
h′ ← Append(h, xk), s′ ← s+ sk . Extend previous hypothesis by a token

Option I (Shallow Fusion):
I ′, bonus← ComputeBonus({Pb}Bb=1, I, xk), s′ ← s′ + bonus

G ← G ∪ {(h′, s′, I ′)}
end for
H ← Prune(G,K) . Prune to top K hypotheses

end for
Option II (On-the-fly Rescoring):
G ← {}
for (h, s, I) ∈ H do . There are exactly K hypotheses inH

x← h[−1] . Retrieve the last token
I ′, bonus← ComputeBonus({Pb}Bb=1, I, x), s′ ← s+ bonus
G ← G ∪ {(h, s′, I ′)}

end for
H ← G

end for
returnH

After consuming a new token x for each biasing phrase with the forward function, the partial match-
ing lengths are updated, based on which we compute the new potential function; the difference
between the potentials is the bonus for x. We sketch this algorithm in Algorithm 2. We addition-
ally track if we finish matching any phrase fully, in which case we restart matching for all phrases
as we do not want overlapping matches. Note it is possible that x extends matching for multiple
phrases, especially if these phrases share prefix. If the hypothesis was partially matching a phrase
and then becomes non-matching after consuming a new token, the previously added biasing bonus
is canceled (Zhao et al., 2019).

To summarize, we maintain a total of B integers as states for tracking the progress on each phrase.
Consuming a new token and computing its bonus boils down to running the forward function.
We vectorize the for-loop in Algorithm 2, and compute the forward functions for all B phrases
in parallel, which further reduces to looking up the failure function table and running the deter-
minization loop in parallel. Therefore, the time complexity for Algorithm 2 is O(γ̄B), where
γ̄ = maxb=1,...,B γ(Pb) with the γ function defined in (2). Note γ is a worse-case bound for
the number of iterations in the determinization loop.

2.3 INTEGRATING BIASING INTO BEAM SEARCH

We propose two ways to incorporate biasing bonus computation into beam search, with trade offs
between accuracy and efficiency. We collectively refer to them as KMP biasing.

• Shallow fusion. In this approach, we perform biasing before pruning: for each hypothesis,
we consider a number of top expansions according to the ASR model scores, and compute
biasing bonus for each of them, which are combined with ASR scores used for pruning;
this is similar to the shallow fusion approach for applying language models to ASR infer-
ence (Gulcehre et al., 2015; Chorowski & Jaitly, 2017; Zhao et al., 2019).
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• On-the-fly (OTF) rescoring. In this approach, after expansions and pruning, we com-
pute biasing bonuses for the expansion tokens of surviving hypotheses, and incorporate the
bonus into the total score of each hypothesis, to influence future steps. Note this is different
from offline rescoring, which only modifies total scores for re-ranking final hypotheses.

The two approaches are sketched in Algorithm 3. Let the beam size be K, which is the number
of hypotheses maintained at the end of each beam search step. If we consider F expansions for
biasing, the complexity of shallow fusion isO(γ̄KFB) per beam search step. Typically the biasing
accuracy improves with F , at the cost of heavier computation. On the other hand, since we consider
a total of K expansions in on-the-fly biasing, its time complexity isO(γ̄KB), cheaper than shallow
fusion biasing by a factor of F . As we have multiple hypotheses, each of which considers multiple
extensions, our implementation of ComputeBonus is parallelized in the (hyp, extension, phrase)
combination dimension. The failure functions are computed for all phrases once before beam search
starts. One can implement the loops using the while statement, and table lookups using gather
or einsum functions provided by tensor-based learning platforms.

2.4 BOOSTING BIASING STRENGTH WITH PREFIXES

In many applications, the biasing phrase frequently follows a set of prefixes (also known as carrier
phrases). For example, when using smart devices to initiate communication, the user typically
speakers “call”, “text”, or “send a message to” before the contact name. It is natural to bias the ASR
system more heavily towards the user’s contact list, conditioned on recognizing such prefixes (Zhao
et al., 2019). A naive way to extend our method to leverage prefixes is to augment the original
biasing phrases (contact names in the above use case) with all combinations of prefix and biasing
phrase (“call John”, “text Joe”, etc). If we have C prefixes and B biasing phrases, this approach
leads to B + CB phrases, significantly increasing the cost of KMP biasing.

We propose an alternative and more time efficient approach, with minimal cost increase in state
maintenance. For each new token, we perform matching for both prefixes and biasing phrases
simultaneously (although the hypothesis receives no bonus from matching prefixes), with a time
complexity ofO(C+B). If a new token is not extending the partial matching of any biasing phrase,
but leads to a full matching of some prefix, we restart matching of biasing phrases for the extended
hypothesis, which is marked as prefix-matching for all biasing phrases. And if a hypothesis is prefix-
matching for some biasing phrase, we boost the scoring function of partial matches of that biasing
phrase by a factor λ > 1. A hypothesis stays prefix-matching if it was prefix-matching, and the
new token extends the partial matching of the same biasing phrase. Compared with the case without
prefixes, we pay an additional cost of maintaining the states of partial matching lengths for prefixes,
with a memory cost of O(C), and whether each hypothesis is prefix-matching for each biasing
phrase, with a memory cost of O(B). We sketch the implementation in Algorithm 5 (Appendix B).

Our approach can be interpreted in the WFST framework, as having one FST for the set of prefixes
and another for the set of biasing phrases, and we transit from the prefix FST to biasing FST when
detecting full match of some prefix, so that the two FSTs are concatenated.

3 RELATED WORKS

WFST-based biasing Initial WFST (Mohri et al., 2002) approaches to contextual ASR (Aleksic
et al., 2015; Hall et al., 2015) performed on-the-fly rescoring (Hori et al., 2007) during beam-search,
for classical ASR systems that use a CLG decoder graph (Mohri et al., 2008). The contextual phrases
are encoded separately from the CLG in a word-level deterministic WFST with failure transitions.
Arbitrary word-level rescoring functions can be used, including CLG score replacement and various
forms of interpolation. In Vasserman et al. (2016), the approach was extended to efficiently handle
dynamic classes, by encoding non-terminal labels in the contextual models. Classes are dynamically
inserted in the CLG graph, instead of being inserted in the contextual WFST, avoiding its exponential
growth during determinization. Search errors caused by the late integration of contextual models at
word labels were reduced by Williams & Aleksic (2017).

Later End-to-End (E2E) ASR systems most often do not have an external LM and require an alter-
native WFST approach that uses shallow fusion (Zhao et al., 2019) instead of on-the-fly rescoring.
In this approach, the contextual information is encoded as a subword-level deterministic WFST with
failure transitions, which is used to directly modify the acoustic scores, before pruning is done by
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beam-search. The search space of E2E ASR systems tends to be sparser than the search space of
classic ASR systems, so earlier integration is necessary to reduce search errors.

WFST contextual modeling can also be approached as a lattice-augmentation problem (Serrino et al.,
2019; Huang et al., 2020). These techniques identify spans in the word lattice where rare entities are
likely to occur and search for acoustically confusable alternatives that are contextually relevant. The
span identification and fuzzy matching are done using flexible and efficient WFST-based techniques.

We note that FSTs are good at encoding domain knowledge and complex matching rules compactly.
While they can be represented as graph with sparse adjacency matrices, in general FSTs are not
efficient to use on TPUs which are optimized for dense operations. Our work is one step towards
incorporating FST functionalities into a TPU-friendly implementation.

Model-based biasing Context can be utilized by adding trainable parameters to the ASR model
and performing model-based biasing (Fu et al., 2023; Harding et al., 2023; Xu et al., 2023). Learning
such parameters in an end-to-end fashion was first considered in the CLAS model (Pundak et al.,
2018), that augmented the LAS (Chan et al., 2016b) decoder with a suitable attention mechanism.
CLAS is trained by sampling random n-grams (playing to role of bias phrases) from the reference
transcripts. CLAS sampling was later improved in Alon et al. (2019) by emphasizing proper nouns,
and considering hard phonetically-similar distractors (anti-bias terms). A notable drawback from
CLAS is that the full-context nature of the decoder limits it to non-streaming applications.

The above limitation was addressed in Neural Associative Memory (NAM, Munkhdalai et al.,
2021), a streaming model-based biasing method that utilizes an external associative memory mod-
ule (Munkhdalai et al., 2019; Ramsauer et al., 2020) as an intermediate representation of biasing
contexts, and is augmenting the RNN-T architecture. Given a trained ASR model, let x be au-
dio feature sequence extracted by the encoder, and y be the label sequence. NAM learns a mod-
ified conditional probability p(y|x + ∆) by incorporating into ASR model an additional feature
sequence ∆. To compute ∆, NAM utilizes an additional text encoder to extract embeddings of bias-
ing phrases {Pb}Bb=1, which are used to construct the associative memory, and another Multi-Head
Attention (Vaswani et al., 2017) module that uses x as query and the associative memory as keys and
values, whose output context vector becomes ∆. Essentially, the attention module is used to detect
the presence of biasing phrases in the audio. NAM is trained as part of the E2E model (typically
with the base ASR model frozen), so that the likelihood of ground truth, including the biasing phrase
present in the audio, is maximized. At inference time, NAM introduces a biasing strength parameter
s ≥ 0 to control the effect of external biasing phrases (Wu et al., 2023), and uses p(y|x + s ·∆) for
decoding. Given that NAM injects biasing information at the encoder output, while KMP biasing
works at beam search, they can be complimentary to each other, as is observed in our experiments.

4 EXPERIMENTS
We use a large RNN-Transducer (RNN-T, Graves, 2012) as our base ASR model. Our training set
contains 520M utterances of English voice search queries; the total amount of audio is 490K hours.
A small percentage of the training data is human transcribed while the rest is pseudo-labeled by a
teacher (Hwang et al., 2022). We tokenize training transcripts, as well as biasing phrases, using a
word-piece model (Schuster & Nakajima, 2012) with an inventory of 4096 tokens. All acoustic and
text training data is anonymized and adheres to Google AI Principles (Google, 2023).

We use 128-dimensional log Mel-filterbank energies, extracted from 32ms window and 10ms shift,
as frontend features. After two 2D-convolution layers, both with strides 2, the resulting feature se-
quence has a frame rate of 40ms and becomes the input to a conformer encoder (Gulati et al., 2020).
The encoder consists of 16 Conformer layers of attention dimension 1536, where each attention
module has 8 heads, and each feedforward network has a hidden dimension of 6144. The RNN-T
decoder uses a |V |2 embedding prediction network (Botros et al., 2021), which computes text fea-
tures based on two previous non-blank tokens. The ASR model has a total of 870M parameters. For
decoding, we perform label synchronous beam search with beam size K = 8. RNN-T has a special
blank token which indicates non-emission and does not alter decoder and biasing states. The word
error rate (WER) of our RNN-T system on an in-house test set of voice search queries is 3.8%.

Evaluation We use both voice-assistant based real-audio data and TTS synthetic data as described
in Munkhdalai et al. (2023) for evaluation. The real-audio test-set Contact-Tag contains 7.6K ut-
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Table 1: WER (%) results obtained by KMP biasing.

Dataset
KMP Biasing

OTF Rescoring Fusion F = 10 Fusion F = 50 Fusion F = 4096
δ = 2.4 δ = 2.2 δ = 2.3 δ = 2.3

Anti-Biasing, without-biasing WER: 1.7
B = 150 1.7 1.7 1.7 1.7
B = 600 1.8 1.8 1.8 1.8
B = 3000 2.1 2.2 2.3 2.3

With-Prefix, without-biasing WER: 9.6
B = 150 4.1 3.7 2.6 2.4
B = 600 4.5 4.0 2.9 2.7
B = 3000 5.1 4.6 3.8 3.6

Without-Prefix, without-biasing WER: 20.9
B = 150 7.9 7.7 5.5 4.8
B = 600 8.4 8.0 5.8 5.3
B = 3000 10.1 9.6 7.9 7.4

Contact-Tag, without-biasing WER: 14.7
B = 265 8.7 8.3 7.8 7.7

terances focusing on contact recognition (i.e., call $CONTACTS), each utterance is associated with
265 biasing entities and one of which is the true contact. The TTS data contains three categories:
1. Anti-Biasing: Utterances simulating general voice-assistant traffic (e.g., what’s the weather), we
use a super-set of that used in Munkhdalai et al. (2023) containing 10K utterances; 2. With-Prefix:
2.6K utterances with patterns such as: open $APPS, call $CONTACT, play $SONG; 3. Without-
Prefix: 1.3K Utterances with prefix-less patterns such as $APPS, $CONTACTS, or $SONGS. The
real-audio test set is anonymized and adheres to Google AI Principles (Google, 2023).

The utterances are associated with up to 3K biasing entities in total, and the maximum number of
tokens in a biasing phrase is 16. With-Prefix and Without-Prefix evaluate in-domain performance
(one of the biasing entities appears in the transcript truth), while Anti-Biasing evaluates out-of-
domain performance (biasing entities are irrelevant to the transcript truth). In general, a larger set
of biasing entities leads to more confusion in the ASR model and worse WER. We tune the hyper-
parameters of methods based on averaged WERs on Anti-Biasing and With-Prefix; Without-Prefix
and Contact-Tag are treated as test sets.

4.1 RESULTS BY KMP BIASING

We first present the results of KMP biasing by itself, without combining with NAM or score boosting
by prefixes. In both the OTF rescoring and shallow fusion modes, we tune the hyper-parameter δ
which is the biasing bonus per token along phrases. We observe that, as we increase δ, WERs on
biasing sets first decrease, then stay low for a range of values, and eventually increase. We provide
WER curves of varying δ in Figure 1 (Appendix C) for both modes.

We provide WERs together with the optimal δ in Table 1, for OTF-rescoring and three settings of
F for shallow fusion. Our method achieves significant WER reduction over the base ASR model
on all biasing sets, e.g., by 50% to over 70% relative on the With-Prefix set with B = 150 phrases,
while not degrading the Anti-Biasing set by much. We observe that shallow fusion consistently
outperforms OTF rescoring as expected, and in general large F leads to better WER. From F = 50
to the full vocabulary size 4096, improvements start to saturate and we find F = 50 to offer a good
balance between accuracy and efficiency and use it in the experiments below.

4.2 COMBINING KMP BIASING WITH MODEL-BASED BIASING

Given that KMP biasing is applied during beam search and is agnostic to the base ASR model, one
may wonder if its performance gain is additive to that of a strong model-based biasing method. We
train a state of the art NAM model on top of our base model, and its performance with normal beam
search is provided in Table 2 (left column). We observe that model-based biasing does achieve
superior results by itself, especially on Without-Prefix and Contact-Tag.
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Table 2: WER (%) results obtained by NAM + KMP biasing. s denotes NAM biasing strength, λ
denotes score boosting factor with prefixes.

Dataset NAM
NAM (s = 0.5) + KMP biasing NAM (s = 0.5) + KMP w. boost

OTF Rescoring Fusion F = 50 OTF Rescoring Fusion F = 50
s = 0.6 δ = 0.6 δ = 0.8 δ = 0.6, λ = 2.0 δ = 0.9, λ = 1.5

Anti-Biasing, without-biasing WER: 1.7
B = 150 1.9 1.9 2.0 1.9 2.1
B = 600 2.1 2.1 2.3 2.1 2.3
B = 3000 2.2 2.2 2.4 2.2 2.5

With-Prefix, without-biasing WER: 9.6
B = 150 1.5 1.0 0.9 0.9 0.8
B = 600 1.8 1.3 1.2 1.0 0.9
B = 3000 2.8 2.2 2.1 1.9 1.7

Without-Prefix, without-biasing WER: 20.9
B = 150 1.8 0.9 0.8 1.0 0.8
B = 600 2.1 1.2 1.0 1.3 1.0
B = 3000 4.0 3.1 2.5 3.1 2.3

Contact-Tag, without-biasing WER: 14.7
B = 265 3.8 3.5 3.4 3.1 3.0

We then perform KMP biasing on top of NAM, and the results are given in Table 2 (mid columns).
We find it better to slightly tune down the biasing strength of NAM when combing it with KMP
biasing, and now the optimal δ is much smaller than those used in Section 4.1, as the output of
NAM already contains strong biasing information. Nonetheless, KMP provides additional 20%–
40% relative WER improvements over NAM across With-Prefix and Without-Prefix, and 8%–10%
relative improvements on Contact-Tag, with small degradation on Anti-Biasing.

4.3 BOOSTING KMP WITH PREFIXES

Finally, we verify the effectiveness of prefixes and Algorithm 5 on top of NAM + KMP biasing. We
provide three prefixes {call, open, play} as additional inputs to KMP biasing while NAM
only uses biasing phrases as before. For With-Prefix and Contact-Tag, each test utterance comes
from one of App, Contact, and Song domains, and so it contains one of the prefix while the other
two act as distractors; Without-Prefix does not contain prefixes before biasing phrases by design.

We fix NAM biasing strength to s = 0.5, tune the score boosting factor λ over {1.5, 2.0, 2.5}, and
search δ locally around the optimal values found in Section 4.2. Final results are shown in Table 2
(right columns). We obtain further gains on With-Prefix and Contact-Tag, while not degrading
much on other sets. In particular, we achieve a final 21% relative WER reduction on Contact-Tag
with shallow fusion over NAM itself. We also observe that OTF rescoring prefers a larger λ than
shallow fusion, as it has less chance to be confused by mis-recognized prefixes and wrongly boosted
bonuses. It is future work to conduct full-fledged experiments with more complex prefixes.

5 CONCLUSIONS

We have proposed a TPU-friendly implementation of pattern-matching based biasing, and demon-
strated the effectiveness of its variants on large-scale voice search queries. Our method achieves
significant WER reduction on biasing sets without introducing additional learning parameters, and
is complementary to a strong model-based biasing method. There are several directions for future
research. To scale up our method to more than thousands of biasing phrases, we may study deep in-
tegration with NAM+ (Munkhdalai et al., 2023), which performs a quick filtering of a large amount
of unlikely biasing phrases before conducting more careful search over the remaining ones. Our
current implementation has used a fixed per-token score, and it is straightforward to incorporate an
external neural language model for improved bonus computation (Le et al., 2021). Finally, our on-
TPU implementation enables training with matching-based biasing, and it is an interesting research
question to design a suitable learning objective for further performance gain.
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A BUILDING THE FAILURE FUNCTION

We provide the pseudo code for building the failure function in Algorithm 4.

Algorithm 4 Building failure function π̄ for a single pattern.
Input: Search pattern P of length m
Output: Failure function π̄ stored in array Π

Π[0]← −1
k ← 0 . Index of next possible match
for i = 1, . . . ,m− 1 do

if P[i] = P[k] then
Π[i]← Π[k] . Shortcut

else
Π[i]← k . Π[i]← π(i)
while k ≥ 0 and P[i] 6= P[k] do

k ← Π[k]
end while

end if
k ← k + 1 . Loop invariance: k = π(i+ 1) at end of each for-loop

end for=0
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B KMP BIASING WITH PREFIXES

In Algorithm 5 we provide the implementation of bonus computation with a set of prefixes. The new
scoring function is defined as

µλ((i1,m1), . . . , (iB ,mB)) = max
b=1,...,B

λint(mi) · f(Pb, ib),

where λ > 1 is the score multiplier that is effective immediately after matching a prefix, and int(m)
converts the boolean variable m into integer, i.e., int(m) = 1 if m = True and 0 otherwise.

Algorithm 5 Compute bonus score of a token extension with prefixes.
Input: Prefixes {Rc}Cc=1, current partial matching lengths for prefixes J = (j1, . . . , jC). Biasing

phrases {Pb}Bb=1, current partial matching lengths for biasing phrases. I = (i1, . . . , iB). Current
prefix matching maskM = (m1, . . . ,mB), biasing bonus multiplier λ, new token x.

Output: Updated partial matching lengths, updated prefix matching mask, and biasing bonus.
procedure COMPUTEBONUS({Pb}Bb=1, I, {Rc}Cc=1,M, x)

prev score← µλ((i1,m1), . . . , (iB ,mB))
match any bias← False
for b = 1, . . . , B do

ub, matchb ← FORWARD(Pb, ib, x)
if matchb then

match any bias← True
vb ← len(Pb) . For full match, use pattern length for computing potential
extb ← True . ext tracks if x extends matching for Pb

else
vb ← ub

if ub > ib then
extb ← True

else
extb ← False

end if
end if
mb ← (mb & extb) . Update prefix-matching status

end for
updated score← µλ((v1,m1), . . . , (vB ,mB))
bonus← updated score− prev score
match any prefix← False
for c = 1, . . . , C do . Try to consume x with prefixes

nc, matchc ← FORWARD(Rc, jc, x)
if matchc then

match any prefx← True
end if

end for
for b = 1, . . . , B do

restartb ← match any prefix & (not extb)
if restartb then . Restart matching of Pb after fully matching prefix

ub ← 0, mb ← True . Cancel current partial matching of Pb
end if

end for
if match any bias then

nc ← 0 for c = 1, . . . , C
ub ← 0, mb ← False for b = 1, . . . , B

end if
return ((n1, . . . , nC), (u1, . . . , uB), (m1, . . . ,mB), bonus)

end procedure
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C WER OF KMP BIASING FOR VARYING δ

We provide WER curves of varying δ in Figure 1 for both OTF rescoring and shallow fusion options.

Figure 1: WER versus δ for KMP biasing in both OTF rescoring and shallow fusion (F = 50)
modes, on the With-Prefix set.
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