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ABSTRACT

There has been a recent surge of interest in neural video compression models
that combine data-driven dimensionality reduction with learned entropy coding.
Scale Space Flow (SSF) is among the most popular variants due to its favorable
rate-distortion(RD) performance. Recent work showed that this approach could
be further improved by structured priors and stochastic temporal autoregressive
transforms on the frame level. However, as of early 2021, most state-of-the-
art compression approaches work with time-independent priors. Assuming that
frame latents are still temporally correlated, further compression gains should be
expected by conditioning the priors on temporal information. We show that the
naive way of conditioning priors on previous stochastic latent states degrades per-
formance, but temporal conditioning on a deterministic quantity does lead to a
consistent improvement over all baselines. Evaluating the benefits of the temporal
prior given the involved challenges in training and deployment remains an open
question.

1 INTRODUCTION

The last two years have seen a surge in exploring deep latent variable models for neural video
compression (Agustsson et al., [2020; |Yang et al.l [2020ajb; [2021; |2020d; [Habibian et al., 2019} |Lu
et al.l2019;|Liu et al.,|2019)). In contrast to neural image codecs that assume i.i.d. data, neural video
codecs exploit temporal redundancies in the frame sequence. Just as their classical analogs, neural
codecs typically involve two operations: motion compensation and residual compression. In the
motion compensation step, the model exploits information about already decoded frames to predict
the most likely next frame in sequence (e.g., by compressing an optical flow field). In the residual
compression step, the deviation from this prediction is encoded.

With few exceptions (Han et al.,|2019; |Yang et al., 2020b), most of the currently proposed methods
do not exploit temporal information on the prior level. Instead, they use time-independent image
compression models to compress the flow fields and residuals. In this paper, we analyze how these
models can be improved by temporal conditioning. Our paper thereby considers a state-of-the-art
model for low-latency video compression: Scale Space Flow (SSF) (Agustsson et al.|[2020). Recent
work has shown that this model can be further improved with hierarchical design by introducing
structured priors and stochastic temporal autoregressive transforms on the frame level (Yang et al.,
2020c). However, none of these versions use temporally conditioned priors for entropy coding.

We consider two types of temporally conditioned priors. In a first attempt, we condition the prior
of the residual on the previous time step’s latent residual. Despite being based on first principles in
latent time series modeling, we find that such temporal conditioning degrades the performance in
some cases, which we attribute to optimization problems. To circumvent the problem, we propose
to condition the prior on the previous reconstructed frame, which refers to a more complicated but
stable way of performing temporal conditioning. We show that this way of including temporal
information leads to consistent improvements over SSF and slight improvement over the newly
proposed hierarchical model by |Yang et al.|(2021).
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2 TEMPORAL PRIORS FOR VIDEO COMPRESSION MODELS

We follow the probabilistic modeling formalism of low-latency video compression proposed in
(Yang et al., [2020c), in which a learned compression model consists of a prior distribution p(z1.7)
of latent variables, a decoder that parameterizes the mean of Gaussian likelihood distribution
p(x1.7|21.7) of video frames x;.7, and an encoder that parameterizes the mean of a box-shaped
variational posterior ¢(z1.7|x1.7). Based on the variational compression approach (Ballé et al.,
2017) that approximates rounding operations (|-]) by uniform noise injection, the rate-distortion
function of such a compression model then corresponds to the 3-VAE objective:

Z = Eq(zlzT\xlzT)[_ 1ng(xl:T|Z1:T) - Blogp(ZLT)]. (1)

In this work, we explore various forms of the latent prior p(z;.7) that extend beyond the temporally
factorized prior [ [, p(z;) used in most of previous neural video compression methods.

2.1 LOW-LATENCY VIDEO COMPRESSION MODELS

A learned video compression model described above is primarily determined by the form of latent
variables z;, as well as the likelihood p(x1.7|Z1.7). The dominant low-latency compression meth-
ods employ a latent variable with two components, z; = (wy, v¢), where w; corresponds to the
encoded motion information, and v; the encoded residual information, and a Gaussian likelihood
p(x¢|z<;) whose mean X is the reconstructed version of the ground truth frame x; as would be
computed by the decoder. The Stochastic Temporal Autoregressive Transform (Yang et al.| [2021)
is a general decoding framework for computing X; that captures a variety of existing low-latency
video compression frameworks as special cases:

Xt = hu(Xeo1, Gw(We)) + ho(Rim1, Wi) © go(Ve, Wy). (Yang et al, 2021) 2)

For example, SSF (Agustsson et al.,[2020) is a special case of this class and reduces to

Rt = hwarpXi—1, guw(We)) + go (Ve, Wy). (Agustsson et al., [2020) 3)
In Eq. [3 g., and g, are deep neural networks, g,,(w;) has the interpretation of an estimated optical
flow (motion) field, hyqrp is the computer vision technique of warping, and the residual r; :=
Gu(Ve, W) = Xe—hoarp(Xe—1, g (W) represents the prediction error unaccounted for by warping.
Lu et al|(2019) only makes use of v; in the residual decoder g,, and performs simple 2D warping
by bi-linear interpretation; SSF (Agustsson et al.l [2020) augments the optical flow (motion) field
with an additional scale field, and applies scale-space-warping to the progressively blurred versions
of X;_1 to allow for uncertainty in the warping prediction.

Eq. [2] resembles the definition of the Masked Autoregressive Flow (Papamakarios et al., [2017).
Above, h,, and h, are functions that transform the previous reconstructed data frame X;_; along
with w; into a shift and scale parameter, respectively, where h,, use the same operation as hyqrp-
The function g, (v, w;) converts these latent variables into a noise variable that encodes residuals
with respect to the mean next-frame prediction h,,(X;—1, w). This provides an added degree of
flexibility, in a similar fashion to how RealNVP improves over NICE (Dinh et al., 2014; [2016)) in
the normalizing flow literature.

2.2 TEMPORAL PRIOR

In previous works in variational compression, the prior model p(z;.7) typically assumes that the

latent variables z;.r are temporally factorized: p(z;.7) = HZ;I p(z¢). However, such assumptions
may be unrealistic for real world data, such as modeling natural video (Denton & Fergus| [2018;; [Li
& Mandt, 2018} Marino et al.,[2020), where temporal dependencies may persist even after removing
low-level motion information. To this end, we model these dependencies by introducing a temporal
prior: p(z1.1) = p(z1) Hthz p(2¢|z<+) to more accurately predict the density of the latent variable.
Given the framework described in Section [2.1] and Figure [} we implement the prior of the video
compression model with the following two types of temporal conditioning.

Naive Residual Conditioning p(v;|v;_1) (TP). For video compression, we usually make the
Markov assumption, as optical flow only shows a one-step vector field of adjacent frames. More-
over, because — logp(vy) > —logp(wy), it is not necessary to further reduce the bitrate of the
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Figure 1: Model diagrams for the generative and inference procedures of the current frame x;, for
various neural video compression methods considered (see Table[I)). Random variables are shown in
circles; all other quantities are deterministically computed; solid and dashed arrows describe com-
putational dependency during generation (decoding) and inference (encoding), respectively. Purple
nodes correspond to neural encoders and decoders. From left to right: (a) SSF (Agustsson et al.,
2020). (b) SSF-TP(+) (this paper) with two possible prior choices: conditioning on v;_; ("TP”,
blue arrow) and conditioning on X;_; (“TP+”, green arrow). (¢c) STAT-SSF (Yang et al.,[2021) with
optional modified priors. The basic model (“STAT-SSF”) uses no temporal prior (no solid arrows
into v;). STAT-SSF-SP introduced a structured (but not temporal) prior p(v;|w;) via the red arrow.
STAT-SSF-SP-TP+ (this paper) uses additional temporal information from X;_; (green arrow).

latent variable w, so we choose to keep p(w;) temporally factorized for simplicity. Temporal con-
ditioning in v is implemented by using an additional neural network that takes v;_; as input to
construct the conditional Gaussian prior for v,. However, naive conditioning may require special
handling for the initial frames because the individual image compression model for the I-frame (the
first frame) does not have a “residual.” This indicates that such temporal conditioning can only start
from the 2™ frame, as p(vi|vi—1) is only available for ¢ > 3. Instead, we use a separate factorized
prior p(vs) for the 2" frame.

Conditioning on Previous Frame p(v;|X;_1) (TP+). Learning a temporal prior directly may be
challenging, as v changes throughout learning without complete information from previous time
step (only residual), affecting both the inputs and outputs of the prior. Thus, in addition to naive
conditioning, we explore an alternative scheme, TP+, in which v, is conditioned on the previous re-
construction, X;_1, which maintains a fixed representation throughout training. In this scenario, the
model no longer requires the extra prior for p(vs), as in TP. However, TP+ may require additional
convolution layers to transform X;_; to match the dimensionality of v;, which leads to the increase
of memory consumption and the time of training and evaluation.

Structured Prior p(v:|w;) (SP). |Yang et al|(2021) explores the use of a structured prior within
time steps, conditioning v; on w,, observing that motion information encoded in w, can often be
informative of the residual error encoded in v;. While this is not a temporal prior, Yang et al.|(2021)),
we employ the same structured prior in our setup for supplemental evaluation.

3 EXPERIMENTS

We conducted experiments to illustrate the rate-distortion performance of SSF (Agustsson et al.
2020) and its recent extension based on stochastic autoregressive transforms (STAT-SSF) (Yang
et al.| 2021) using different temporal priors.

Data. We use Vimeo-90k (Xue et al.| [2019) and UVG (Mercat et al., [2020) to train and evaluate
the model, using the conventional train-test splits and schedules outlined in (Yang et al., [2021)). We
use sequences of 3 consecutive frames for training and 100 frames for evaluation.

Ablations and Baselines. We compare against a variety of models and ablations from |Agustsson
et al|(2020); [Yang et al.|(2021)). For naming conventions, we refer to Table E} The first three rows
are existing versions; the last three ones are proposed ablations.
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Table 1: Naming Convention and Overview of Ablation Models

| Model Name | Reference / Definition
SSF Basp model of |Agustsson et al. (2020}
STAT-SSF Yang et al.[(2021); version with factorized prior p(v;)
STAT-SSF-SP Yang et al.|(2021); version with structured prior (SP), p(v¢[w)
SSE-TP New: [Agustsson et al.[(2020) with naive temporal prior (TP), p(v[v_1)
SSF-TP+ New: |Agustsson et al.|(2020) with temporal prior conditioned on X;_1, p(v¢[Xi—1)
STAT-SSF-SP-TP+ | New: structured prior (SP) of|Yang et al.[(2021) plus improved temporal prior, p(v;[X;—_1, W¢)
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Figure 2: Rate-Distortion Performance of various models and ablations (see Table[l). Results are
evaluated on (a) UVG and (b) MCL_JCV datasets. Best results are obtained by deterministic tempo-
ral conditioning (dark blue), while conditioning on previous latents (green) degrades performance.

Figure [2 shows the RD curve of each ablation model. We see that performing temporal conditioning
through the prior does indeed improve performance, both for STAT and SSF. However, we also
observe that, as compared with the SSF baseline model, SSF-TP degrades in performance at the
low bitrate regime on the UVG dataset. We hypothesize that this may be attributable either to
optimization challenges, which are known to affect latent variable models (Bowman et al., 2015) or
video length inconsistency between training and evaluation data. As far as we know, most proposed
generative or compression models with temporal prior are trained with more than three consecutive
frames (Marino et al.| 2020; L1 & Mandt, 2018} |[Denton & Fergus) 2018 [Liu et al., |2019; |Yang
et al.,|2020ajb), as three frames can only cover one step of observation p(v3|vs) during training in
our case. Indeed, we see that instead temporally conditioning on the previous reconstruction (SSF-
TP+) does not suffer from the same issue, outperforming naive conditioning in almost all bitrate
regimes across both datasets. Finally, SSF-TP+ performs comparably with the previous state-of-
the-art, STAT-SSF-SP, and the hybrid model STAT-SSF-SP-TP+ offers slight improvement.

4  DISCUSSION

We provide an ablation study on the use of temporally-conditioned priors for neural video com-
pression. Our results demonstrate that temporal conditioning can improve performance, however,
this can also raise additional challenges on optimization and model complicity. Conditioning on
previous reconstructions, rather than latent variables, appears to provide a simple method for learn-
ing temporal priors. Our temporally-conditioned models outperform current state-of-the-art video
compression methods without temporal priors, scale-space-flow (Agustsson et al., 2020) and its hi-
erarchical generalized version (Yang et al.l[2021). Future work can further investigate the challenges
that arise in learning temporal priors between latent variables, particularly with regard to local op-
tima and other optimization issues.
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