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Abstract: We demonstrate the task of giving natural language summaries of the
actions of a robotic agent’s actions in a virtual environment. Existing datasets that
match robot actions with natural language descriptions designed for instruction
following tasks can be repurposed to serve as a training ground for robot action
summarization. We propose and test several methods of learning to generate such
summaries, starting from either egocentric video frames of the robot taking actions
or text representations of the actions and find a two stage summarization process
which uses structured language as an intermediate step improves accuracy. Quan-
titative and qualitative evaluations of the results are provided to serve as a baseline
for future work.
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1 Introduction

As robots become more capable and are entrusted with more tasks, it will be increasingly important
to reliably keep track of what they do. However, robots will routinely perform roles that make direct
supervision of them difficult or impossible. A robot may, for example, be used to move many loads
of construction material from place to place or perform household chores. In both cases, real time
human oversight would be impractical. It will therefore be necessary to develop methods to monitor
and record the actions of such agents and provide that information at a later time to a human. One
way to do that is to develop the capability for robots to report on and summarize their actions in
natural language. Summaries, rather than complete records, will be particularly useful as action
sequences become longer. They will also be challenging to produce because it will be necessary
to identify the most important actions and, very often, to describe those actions using higher level
abstract terms.

The task of robot action summarization is a new one and there is no existing dataset explicitly de-
signed for it. We suggest that popular datasets of natural language instruction following for robots
[1, 2, 3] can be repurposed for robot action summarization. For example, the popular ALFRED
dataset [1] is used to train robotic agents in the virtual AI-2 Thor [4] environment to perform compli-
cated, multi-step tasks given natural language instructions. We propose inverting that order, instead
using it to train an agent to summarize the actions it takes while performing the tasks.

We assess the accuracy of producing summaries from different input modalities such as natural
language, formal plans, or images. First, if a robotic agent may be able to produce a record of its
actions in the form of short keywords, we find that these can very accurately be transformed into a
summary. Second, if such text is unavailable, we show that we are able to generate summaries using
frames from egocentric videos captured by the agent, though these summaries are not as accurate
as those derived from text. Third, we find that these summaries can be improved if we use a two
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Figure 1: Examples of system outputs of natural language summaries, PDDL, low level actions,
and natural language instructions generated from video frames. Examples are selected to show
representative errors, which are annotated according to the key at the bottom of the figure.

step pipeline which takes in the video frames, first produces a text description of actions in an
intermediate structured language, and then transforms that text into natural language summaries.

2 Method

Problem definition Our objective is to generate summary report in natural language l ∈ L of a
long horizon robotic task, given the history of observations o ∈ O, actions a ∈ A or intermediate
plans p ∈ P that the robot experienced during the task. We define the robot experience/trajectory as
τ = {(o0, a0, p0), ...}. We seek to learn a function Fθ such that: l = Fθ(τ).

Repurposed dataset An episode of action in the ALFRED dataset [5] we use has five different kinds
of representation: 1) Summaries: Human-generated natural language one sentence summaries of
the whole action sequence (called “goal descriptions” in the original dataset). 2) Instructions: Nat-
ural language step by step instructions over several sentences written by humans. 3) PDDL: High
level action plan in the Planning Domain Description Language [6] with semantically rich content.
4) Action descriptions: Low level action plan generated by an automatic planner corresponding to
available actions in the environment. It is more detailed and longer than the PDDL but less eas-
ily readable and contains slightly less semantically rich content. For example, where the higher
level PDDL might read ”GotoLocation alarmclock” the lower level actions might be a sequence of
”MoveAhead”, ”RotateRight”, and ”RotateLeft” actions. 5) Video, images, and visual features:
Raw video of a task episode as well as still frames from the video, including a pre-selected subset
of such frames which we use here, and 512 7 × 7 layers of features of those frames extracted from
a Resnet-50 convolutional neural network [7].

Single stage summarization models: To generate summaries from text, we experiment with using
three kinds of text as input: PDDL, lower level action plans, and natural language instructions. For
all of these experiments, we fine-tune a T5 large language model transformer originally trained on
multiple tasks including summarization [8] (”t5-base” from the Hugging Face library [9]). To study
going from visual input to text descriptions, we pass the Resnet image features through two further
convolutional layers trained from scratch and then into a bidirectional recurrent encoder-decoder
network with attention, also trained from scratch, to output text, using a cross-entropy loss over the
vocabulary present in the dataset.
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Input No errors Action errors Object errors Place errors Extra errors
PDDL 98% 0% 0% 2% 0%
Actions 96% 0% 4% 0% 0%
Instructions 98% 0% 0% 2% 0%
Video frames 38% 4% 26% 22% 4%
Generated pddl 54% 10% 8% 38% 4%

Table 1: Manual error analysis of high level summaries by method of generation. The percentage of
generated examples with no errors is shown in the left column; in the right columns are percentages
of errors present by type of error. Some examples may have more than one error. All examples are
from the unseen validation set. Italicized last line is our two stage pipeline approach.

Two stage summary generation via auxilliary supervision with intermediate plan : The task
of robot action summarization from a stream of images is challenging as it entails integrating high
dimensional information over time into a succinct natural language summary. To address this chal-
lenge, we propose a method that uses intermediate PDDL action plans as auxilliary prediction targets
to extract valuable features from images as an intermediate output using the convolutional and re-
current network described above. These generated PDDL representations are then passed through a
T5 transformer which we previously fine-tuned to summarize from PDDL.

3 Results

Our experiments are designed to address a few questions: 1) Can high level plans (e.g. PDDL) or lists
of lower level actions be used to generate natural language summaries? 2) Can we directly generate
text descriptions, either structured representations or natural language, using only egocentric video
frames of the robot during action? 3) Can we use the structure and relative semantic richness of
PDDL descriptions as an intermediate text representation between video frames and natural language
summaries? 4) How accurate will these various techniques be and what are the patterns of failure?
To answer these questions, we devise automatic manual evaluation metrics, as well as examples of
our models’ outputs.

First, we manually inspect a randomly selected set of fifty examples for each summary output and
calculate what percentage of these are error free or have one or more errors. There are four types of
error used for our analysis: action errors, in which the main action that took place during the relevant
episode is reported incorrectly in the generated summary; object errors, in which the main object
interacted with is wrongly named or counted; place errors, in which the place or places mentioned
are incorrect; and extra errors, in which details which are unwarranted by the input are hallucinated
by the model. These analyses can be found in Table 1.

Second, we automatically calculate ROUGE [10] and BLEU [11] scores for all types of output text.
These automatic evaluation scores can be found in Table 2. We report ROUGE-1 (recall), ROUGLE-L
F1, BLEU and BLEU-1 scores.

Third, in Figure 1 we provide examples of the generated text from video frames for each level of
description (i.e. summary, PDDL, actions, or step by step instructions). We provide examples here of
the kinds of errors enumerated in Table 1 as well as ommission errors, in which details mentioned
in the ground truth text are missing in the generated text.

Text to summary The T5 model does a very good job of generating summaries based on either high
level PDDL, low level actions, or natural language instructions as input. It makes an error on only
one of our fifty manually inspected PDDL to summary examples and two in the low level actions to
summary examples. The BLEU and ROUGE scores for each of these text inputs are similar and high.

Video frame to text Going directly from video frames to natural language summaries is less suc-
cessful, as can be seen in the lower scores for both tasks in Table 2. It is also evident from the
higher number of errors flagged by the manual inspection of the generated summaries in Table 1.
Generating summaries from video frames alone has by far the lowest rate of success; only 38% of
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Task Seen Unseen
R-1 R-L Bleu Bleu-1 R-1 R-L Bleu Bleu-1

PDDL to summary .628 .590 .624 .902 .610 .587 .607 .890
Actions to summary .610 .589 .604 .881 .630 .599 .647 .900
Instructions to summary .624 .596 .663 .917 .629 .598 .665 .910
Images to PDDL .923 .923 .854 .942 .761 .763 .594 .824
Images to actions .858 .713 .652 .856 .822 .769 .590 .812
Images to instructions .540 .496 .501 .805 .536 .460 .438 .769
Images to summary .582 .556 .550 .862 .519 .496 .438 .779
Img to pddl to summ .596 .565 .580 .877 .518 .505 .472 .810

Table 2: ROUGE and BLEU scores for generated text. Results from virtual environments seen during
training are on the left; unseen environments are on the right. The italicized last line is our two stage
images to PDDL to summary pipeline generation approach.

inspected generated summaries contain no errors at all. Generating natural language instructions
directly from frames is also challenging, likely exacerbated by the relative length and diversity of
vocabulary in the instructions. By contrast, generating PDDL and low level actions is significantly
more reliable than generating natural language from images.

From the sample outputs in Figure 1 it is evident that common errors include visual identification
errors such as mistaking a bowl for a plate, confusing rotation directions, and missing or extra
moveahead action commands. The fact that the BLEU and ROUGE scores for these is meaningfully
worse in the unseen environments suggests that the errors derive mostly from the vision system
and could be due to particular aspects of the virtual environment which may make some objects,
particularly small ones, hard to recognize.

Two stage video frame to summary via intermediate representation Because the PDDL gen-
erated from video frames is of significantly higher quality than the generated natural language
summaries or instructions from the same frames, we developed a pipeline that first takes in image
features and produces the corresponding PDDL before producing summaries. We find that according
to both automatic metrics and manual inspection of summaries, using the generated PDDL as an
intermediate step produces better output than is seen when going from video frames directly to
summaries or instructions. PDDL is less expressive than free form English so perhaps forcing the
system to use it to represent action sequences provides fewer opportunities to make mistakes than
going directly to natural language.

4 Related work

DeChant and Bauer [12] proposed and argued for the importance of enabling robots to learn to
summarize their past actions. Some work on following instructions in simulated environments for
navigation and task performance has used the generation of natural language descriptions of naviga-
tion trajectories as a training signal or tool: Nguyen et al. [13] provide feedback to an agent in the
Room to Room environment by describing in natural language the paths the agent actually takes so
it can learn to compare that to the path it should have taken; Fried et al. [14] learn to generate in-
structions to augment training data and then, at test time, to evaluate the similarity of routes it might
take with the description of the route it is supposed to take. The challenges of natural language sum-
marization have been addressed for many years in the NLP literature [15, 16]. Recurrent sequence to
sequence models have been employed for so-called abstractive summarization, which outputs newly
generated text rather than simply selecting text, [17, 18], as have transformer architectures [19, 8].
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5 Conclusion

This work begins a line of research on robot action summarization. It is important that robots
operating in the real world be well supervised by humans and that their actions be understandable.
We suggest that establishing a basic narrative of what an agent does is in some ways a prerequisite
to understanding why it does something. Once action summarization can be performed reliably, we
expect it to be useful in a variety of ways, including in the training of robotic agents, automatically
generating labels for action sequences, and in lifelong learning settings in which robots might receive
feedback to the summaries they generate.
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