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Abstract

Out-of-Domain (OOD) intent detection is vital
for practical dialogue systems, and it usually re-
quires considering multi-turn dialogue contexts.
However, most previous OOD intent detec-
tion approaches are limited to single dialogue
turns. In this paper, we introduce a context-
aware OOD intent detection (Caro) framework
to model multi-turn contexts in OOD intent
detection tasks. Specifically, we follow the in-
formation bottleneck principle to extract robust
representations from multi-turn dialogue con-
texts. Two different views are constructed for
each input sample and the superfluous informa-
tion not related to intent detection is removed
using a multi-view information bottleneck loss.
Moreover, we also explore utilizing unlabeled
data in Caro. A two-stage training process is in-
troduced to mine OOD samples from these un-
labeled data, and these OOD samples are used
to train the resulting model with a bootstrap-
ping approach. Comprehensive experiments
demonstrate that Caro establishes state-of-the-
art performances on multi-turn OOD detection
tasks by improving the F1-OOD score of over
29% compared to the previous best method.

1 Introduction

Intent detection is vital for dialogue systems (Chen
etal., 2017). Recently, promising results have been
reported for intent detection under the closed-world
assumption (Shu et al., 2017), i.e., the training and
testing distributions are assumed to be identical,
and all testing intents are seen in the training pro-
cess. However, this assumption may not be valid
in practice (Dietterich, 2017), where a deployed
system usually confronts an open-world (Fei and
Liu, 2016; Scheirer et al., 2012), i.e., the testing dis-
tribution is subject to change and Out-of-Domain
(OOD) intents that are not seen in the training pro-
cess may emerge in testing. It is necessary to equip
intent detection modules with OOD detection abil-
ities to accurately classify seen In-Domain (IND)

intents while rejecting unseen OOD intents (Yan
et al., 2020a).

Various methods are proposed to tackle the issue
of OOD detection on classification problems (Geng
et al., 2020). Existing approaches include using
thresholds (Zhou et al., 2021) or (k + 1)-way clas-
sifiers (k is the number of IND classes) (Zhan et al.,
2021). Promising results are reported to apply these
OQOD detection methods on intent detection mod-
ules (Zhou et al., 2022). However, most existing
OOD intent detection studies only focus on single-
turn inputs (Yan et al., 2020a; Lee and Shalyminov,
2019), i.e., only the most recently issued utterance
is taken as the input. In real applications, com-
pleting a task usually necessitates multiple turns
of conversations (Weld et al., 2021). Therefore,
it is important to explicitly model multi-turn con-
texts when building OOD intent detection modules
since users’ intents generally depend on turns of
conversations (Qin et al., 2021).

However, it is non-trivial to directly extend previ-
ous methods to the multi-turn setting (Ghosal et al.,
2021). Specifically, we usually experience long
distance obstacles when modeling multi-turn dia-
logue contexts, i.e., some dialogues have extremely
long histories filled with irrelevant noises for in-
tent detection (Liu et al., 2021). It is challenging
to directly apply previous OOD intent detection
methods under this obstacle since the learned rep-
resentations may contain superfluous information
that is irrelevant for intent detection tasks (Federici
etal., 2019).

Another challenge for OOD detection in multi-
turn settings is the absence of OOD samples in
the training phase (Zeng et al., 2021a). Specifi-
cally, it is hard to refine learned representations for
OQD detection without seeing any OOD training
samples (Shen et al., 2021), and it is expensive to
construct OOD samples before training, especially
when multi-turn contexts are considered (Chen and
Yu, 2021). Fortunately, unlabeled data (i.e., a mix-



ture of IND and OOD samples) provide a conve-
nient way to access OOD samples since these un-
labeled data are almost “free” to collect from a
deployed system. However, few studies have ex-
plored utilizing unlabeled data for OOD detection
in the multi-turn setting.

In this study, we propose a novel context-aware
OOD intent detection framework Caro to address
the above challenges for OOD intent detection in
multi-turn settings. Specifically, we follow the in-
formation bottleneck principle (Tishby et al., 2000)
to tackle the long-distance obstacle exhibited in
multi-turn contexts. Robust representations are ex-
tracted by retaining predictive information while
discarding superfluous information unrelated to in-
tent detection. This objective is achieved by op-
timizing an unsupervised multi-view information
bottleneck loss, during which two views are built
based on the global pooling approach and adaptive
reception fields. A gating mechanism is introduced
to adaptively aggregate these two views to obtain an
assembled representation. Caro also introduces a
two-stage self-training scheme to mine OOD sam-
ples from unlabeled data. Specifically, the first
stage builds a preliminary OOD detector with OOD
samples synthesized from IND data. The second
stage uses this detector to select OOD samples
from the unlabeled data and use these samples to
further refine the OOD detector. We list our key
contributions:

1. We propose a novel framework Caro to ad-
dress a challenging yet under-explored problem of
OOD intent detection considering multi-turn dia-
logue contexts.

2. Caro learns robust representations by building
diverse views of inputs and optimizing an unsu-
pervised multi-view loss following the information
bottleneck principle. Moreover, Caro mines OOD
samples from unlabeled data to further refine the
OOD detector.

3. We extensively evaluate Caro on multi-turn
dialogue datasets. Caro obtains state-of-the-art re-
sults, outperforming the best baseline by a large
margin (29.6% in the F1-OOD score).

2 Related Work

OOD Detection is a widely investigated machine
learning problem (Geng et al., 2020). Recent ap-
proaches try to improve the OOD detection perfor-
mance by learning more robust representations on
IND data (Zhou et al., 2021; Yan et al., 2020b; Zeng

etal.,2021a; Zhou et al., 2022; Wu et al., 2022) and
use these representations to develop density-based
or distance-based OOD detectors (Lee et al., 2018;
Tan et al., 2019; Liu et al., 2020; Podolskiy et al.,
2021). Some works also try to build OOD detectors
with generated pseudo OOD samples (Hendrycks
et al., 2018; Shu et al., 2021; Zhan et al., 2021;
Marek et al., 2021) or thresholds based approaches
(Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2017; Ren et al., 2019; Gangal et al., 2020;
Ryu et al., 2017).

Some OOD detection methods also make use of
unlabeled data. Existing approaches either focus on
utilizing unlabeled IND data (Xu et al., 2021; Jin
et al., 2022) or adopting a self-supervised learning
framework to handle mixtures of IND and OOD
samples (Zeng et al., 2021b). These approaches do
not explicitly model multi-turn contexts.

Modeling Multi-turn Dialogue Contexts is the
foundation for various dialogue tasks (Li et al.,
2020; Ghosal et al., 2021; Chen et al., 2021). How-
ever, few works focus on detecting OOD intents in
the multi-turn setting. Lee and Shalyminov (2019)
proposed to use counterfeit OOD turns extracted
from multi-turn contexts to train the OOD detec-
tor, and Chen and Yu (2021) augmented seed OOD
samples that span multiple turns to improve the
OOD detection performance. Nevertheless, these
approaches either suffer from the long distance
obstacle or require expensive annotated OOD sam-
ples. In this study, we attempt to learn robust repre-
sentation by explicitly identifying and discarding
superfluous information.

Representation Learning is also related to our
work. Recent approaches for representation learn-
ing include optimizing a contrastive loss (Caron
et al., 2020; Gao et al., 2021) or maximizing the
mutual information between features and input
samples (Poole et al., 2019). However, these ap-
proaches cannot tackle the long distance obstacle
exhibited in multi-turn contexts. In this study, we
follow the information bottleneck principle (Tishby
et al., 2000; Federici et al., 2019) to remove super-
fluous information from long contexts.

3 Problem Setup

We start by formulating the problem: Given k£ IND
intent classes Z = {I;}*_,, we denote all samples
that do not belong to these & classes as the (k + 1)-
th intent I ;. Our training data contain a set of
labeled IND samples D; = {(x;, y;)} and a set of



unlabeled samples Dy = {(x;, y;) }, where y; € Z
and y; € Z U {I11} is the label of input sample
x; and x;, respectively. y; labels are not observed
during training. Our testing data contain a mixture
of IND and OOD samples D = {(x;, y;) }, where
Y; € Z U {Ip41}. For a testing input &, our OOD
intent detector aims to classify the intent label of
x if it belongs to an IND intent or reject x if it
belongs to the OOD intent I, 1. We also assume a
validation set Dy that only contains IND samples
is available. Moreover, each input sample « from
D;, Dy, Dy, and Dr consists of an utterance u
and a multi-turn dialogue history h = uy, ..., u;,
(t > 0) prior of u: @ = (h,u). u, is the utterance
issued in each dialogue turn.

4 Method

Care tackles the OOD intent detection problem by
training a (k + 1)-way classifier F' on Dy U Dy.
Specifically, samples classified into the (k + 1)-th
intent [, are considered as OOD samples. There
are mainly two challenges to be addressed in Caro:
(1) How to alleviate the long distance obstacle and
learn robust representations from multi-turn dia-
logue contexts; (2) How to effectively leverage
unlabeled data for OOD intent detection. These
two issues are tackled with two key ingredients in
Caro (see Figure 1): 1. A multi-view information
bottleneck method (Section 4.1); 2. A two-stage
self-training scheme (Section 4.2).

4.1 Multi-View Information Bottleneck

The major challenge for learning robust representa-
tions from multi-turn dialogue contexts is the long
distance obstacle, i.e., information that is irrelevant
for intent detection may degenerate the extracted
representation if the dialogue history A becomes
too long. In this study, we follow the informa-
tion bottleneck principle (Tishby et al., 2000) to
alleviate this issue, i.e., only the task-relevant infor-
mation is retained in the extracted representations
while all the superficial information is discarded.
Specifically, we adopt a more general unsupervised
multi-view setting for the information bottleneck
method (Federici et al., 2019). For each input
sample x;, two semantic invariant views are con-
structed: v1(x;), vo(x;). These two views preserve
the same task-relevant information (Zhao et al.,
2017). The mutual information between vy (x;) and
vo(x;) are maximized while the information not
shared between v (x;) and vy (x;) are eliminated.

To achieve this goal, we adopt the multi-view infor-
mation bottleneck loss introduced by Federici et al.
(2019).

Constructing Multiple Views for an input sam-
ple x is the key to the success of the unsupervised
information bottleneck method. In this study, we
construct these two views v1(x;), va(x;) by adjust-
ing the receptive fields of the final representation.
This scheme is inspired by the observation in the
neuroscience community that human brains process
information with multiple receptive fields (Sceniak
et al., 1999), i.e., the receptive field size for neu-
rons is adapted based on input stimuli (Spillmann
et al., 2015) so that different regions of inputs are
emphasized (Pettet and Gilbert, 1992). This phe-
nomenon has been demonstrated to be effective in
modeling more robust features (Pandey et al., 2022)
and inspired numerous successful neural models
(Wang et al., 2021; Wei et al., 2017).

Specifically, for each input sample x = (h, u),
we first concatenate all utterances in « and then
use a pre-trained BERT model £ (Devlin et al.,
2018) to encode the sequence of concatenated to-
kens into a sequence of embedding vectors E(x) =
le1, - ep], where e; € R™. The following two
strategies are used to construct two different views:

1. Global Pooling builds view vi(x) with a
mean-pooling layer on top of [e1, - - - €], v1(x) as-
sumes each token embedding is equally weighted:

=> ei/n (1
=1

2. Adaptive Reception Field builds view vs(x)
by adapting the synaptic weight of each token em-
bedding based on the input x:

Z CXP CMZ e
> iexp(ag) )

Q; = a(wi . ReLU(W1 . S)),

where s € R™ is the concatenation of all n
embeddings [e1,---e,]. o is the Sigmoid acti-
vation function. w; € R (; = 1,---n) and
Wi € R"*™ are learnable parameters. 71 is
the size of the intermediate layer. Moreover, to
enhance the generalization ability, we set a small
value for 1 in our implementation to form a bottle-
neck structure in the weighting function (Hu et al.,
2017).
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Figure 1: Framework of Caro. For each input sample = (h,u), two views v1(z) and ve(x) are obtained and
a multi-view information bottleneck loss L5 is optimized to learn robust representations. A two-stage training
process is introduced to mine OOD samples Do from unlabeled data Dys, and optimize the cross entropy loss Lo g

with Do U Dy

Optimizing Information Bottleneck is per-
formed in an unsupervised setting based on the
two views of each sample. Specifically, we assume
the representation z; of each view v;(x), (i = 1,2)
follows a distribution that is parameterized by an
encoder p(z|v;), where v; is short for v;(x) for
abbreviation. To facilitate the computation, we
model p as factorized Gaussian distributions, i.e.,
p(zlo;) = Nu(v;), S(v7)], in which ju(v;) and
Y (v;) are two neural networks that produce the
mean and deviation, respectively. The following
information bottleneck loss (Federici et al., 2019)
is optimized to remove superfluous information in
vi(x) and va(x):

1
Lrp = ~1(2132) + 5 (Drcelp(z]vr) | [p(=

v2)]

(3)
+Dxrlp(zlv2)|lp(z|v1)]),

where [ calculates the mutual information of two
random variables, and Dy, calculates the KL di-
vergence between two distributions.

4.2 Two-stage Self-training

Although robust representations can be obtained
with the help of the information bottleneck loss
Lp from Section 4.1, we still lack the annotations
for OOD samples to train the (k + 1)-way classifier
F for OOD detection. In this study, we tackle this
issue with a two-stage self-training process, which
mines OOD samples from the unlabeled data Dy
with a bootstrapping approach. Moreover, for each
input sample x, we also aggregate its two views
vi(x) and vy(x) with a dynamic gate to obtain
assembled representations in training.

Stage One synthesizes pseudo OOD samples Dp
by mixing up IND features. Specifically, samples
from Dy are first mapped into IND representation
vectors, and pseudo OOD samples are obtained as
convex combinations of these vectors (Zhan et al.,
2021). A preliminary OOD detector F' is trained

using the classical cross-entropy loss Lo g on these
synthesized pseudo OOD samples and labeled IND
samples Dj. This stage endows F' with a prelimi-
nary ability to predict the intent distribution of each
input sample.

Stage Two predicts a pseudo label for each sam-
ple € Dy using F, and then collects samples
that are assigned with the OOD label I ; as a set
of mined OOD samples Dp. With the help of Do,
we further train the classifier /' on the following
loss:

L= E

xeDrUDo

Log+ A E

x€Dy

Lip &)
where A is a scalar hyper-parameter to control the
weight of the information bottleneck loss.

Multi-view Aggregation is performed to ob-
tain assembled representations for input samples.
Specifically, whenever we need to extract the rep-
resentation v () for an input sample x in the train-
ing process, we use the following aggregation ap-
proach:

v(z) = B@ui(z)+ (1 - B)@v(z)

B — o(Ws - ReLUW: - (01 (@) + ()

where ® represents the element-wise product,

Wy € R™%X™ and W3 € R™*"2 are learnable

parameters. 7 is the size of the intermediate layer.
The training of Caro is given in Algorithm 1.

S Experiments

5.1 Datasets

We perform experiments on two variants of the
STAR dataset (Mosig et al., 2020), i.e., STAR-Full
and STAR-Small. Specifically, STAR is a task-
oriented dialogue dataset that has 150 intents. It is
designed to model long context dependence, and
provides explicit annotations of OOD intents. Fol-
lowing Chen and Yu (2021), we regard samples



Algorithm 1: The training process of Caro
Input: IND data Dy, unlabeled data Dy;.
Output: A trained OOD detector F'.

// Stage 1
1 Synthesize pseudo OOD samples Dp by
mixing up IND representations.
2 Train F' using the cross-entropy loss Lo g
on Dy UDp.
// Stage 2
3 Mine OOD samples Do from Dy using F'.
4 Train F using £ (Eq. 4) on Dy, Do, and Dy

Train valid Test # Avg. Context
p, D, Pv Dr Turns
STAR-Full 154K 7.9K 28K 2.9K 6.13
STAR-Small 7.7K 39K 2.8K 29K 6.12

Table 1: Dataset statistics.

LR INT3

from intents “out_of_scope”, “custom”, or “am-
biguous” as OOD samples and all other samples as
IND samples. We also filter out generic utterances
(e.g., greetings) in the pre-processing stage.

STAR-Full contains all pre-processed samples
from the original STAR dataset. To construct un-
labeled data Dy, we extract 30% of IND samples
and all OOD samples from the training set. The
intent labels of all these extracted samples are re-
moved, and the remaining samples in the training
set are used as the labeled data D;. STAR-Small is
constructed similarly, except that we down-sample
50% of the training set. We aim to evaluate the
performance of OOD detection in low-resource
scenarios with STAR-Small. Table 1 shows the
statistics of these datasets.

5.2 Maetrics

Following Zhang et al. (2021b); Shu et al. (2021),
the OOD intent detection performance of our model
is evaluated using the macro F1-score (F1-All) over
all testing samples (i.e., IND and OOD samples).
The fine-grained performance of our model is also
evaluated by the macro F1-score over all IND sam-
ples (F1-IND) and OOD samples (F1-OOD), re-
spectively. We use macro F1-scores to handle the
class imbalance issue of the test set.

5.3 Implementation Details

Our BERT backbone is initialized with the pre-
trained weights of BERT-based-uncased (Devlin

et al., 2018). We use AdamW, and Adam (Kingma
and Ba, 2014) to fine-tune the BERT backbone and
all other modules with a learning rate of 1e-5 and
le-4, respectively. The Jensen-Shannon mutual in-
formation estimator (Hjelm et al., 2018) is used to
estimate the mutual information / in Eq. 3. All
results reported in our paper are averages of 3 runs
with different random seeds. Hyper-parameters are
searched based on IND intent classification perfor-
mances on the validation set. See Appendix A for
more implementation details. Note that Caro only
introduces little computational overhead compared
to other OOD detection models (See Appendix C).

5.4 Baselines

Our baselines can be classified into two categories
based on whether they use unlabeled data. The
first set of baselines only use labeled IND samples
Dy in training: 1. MSP: (Hendrycks and Gimpel,
2017) utilizes the maximum Softmax predictions of
a k-way IND classifier to detect OOD inputs. We
set the OOD detection threshold to 0.5 following
Zhang et al. (2021a); 2. SEG: (Yan et al., 2020b)
proposes a semantic-enhanced Gaussian mixture
model; 3. DOC: (Shu et al., 2017) employs k 1-
vs-rest Sigmoid classifiers and uses the maximum
predictions to detect OOD intents; 4. ADB: (Zhang
et al., 2021b) learns an adaptive decision bound-
aries for OOD detection; 5. DAADB: (Zhang et al.,
2021c) improves the baseline ADB with distance-
aware intent representations; 6. Outlier: (Zhan
et al., 2021) mixes convex interpolated outliers and
open-domain outliers to train a (k 4+ 1)-way clas-
sifier for OOD detection; 7. CDA: (Lee and Sha-
lyminov, 2019) utilizes counterfeit OOD turns to
detect OOD samples.

The second set of baselines uses both labeled
IND samples Dy and unlabeled samples Dy for
training. Specifically, Zeng et al. (2021b) proposes
a self-supervised contrastive learning framework
ASS to model discriminative features from unla-
beled data with an adversarial augmentation mod-
ule. We implement three variants of ASS by us-
ing different detection modules: 1. ASS+MSP:
uses the detection module from the baseline MSP;
2. ASS+LOF: (Lin and Xu, 2019) implements
the OOD detector as the local outlier factor; 3.
ASS+GDA: (Xu et al., 2020a) uses a generative
distance-based classifier with Mahalanobis dis-
tance as the detection module.

Moreover, we also report the performance of a



Model STAR-Full STAR-Small
F1-All F1-O0D F1-IND F1-All F1-O0D F1-IND
Oracle | 50.1 64.46 50 | 46.54 58.23 46.46
MSP 40.83 19.74 40.97 37.17 18.1 37.31
MSP w/o h 17.29 14.12 17.31 17.12 13.49 17.14
SEG 17.45 6.85 17.53 11.66 7.39 11.69
SEG w/o h 0.06 2.77 0.04 0.05 227 0.04
DOC 26.53 16.80 26.60 3.47 11.78 3.41
DOC wio h 11.31 14.16 11.29 0.08 11.04 0
D; | ADB 44.64 20.56 44.80 41.36 18.23 41.51
ADB w/o h 23.27 17.63 23.30 20.08 21.27 20.07
DAADB 37.27 22.87 37.37 34.81 20.43 34.91
DAADB w/o h 17.87 15.15 17.88 16.34 17.03 16.33
Outlier 43.84 19.53 44.01 39.51 19.92 39.64
Outlier w/o h 23.35 16.75 23.39 19.56 15.42 19.59
CDA 43.76 5.26 44.03 40.02 10.48 40.22
ASS+MSP 41.97 25.15 42.08 40.85 19.47 40.99
D2y, | ASSHLOF 39.87 17.65 40.02 39.54 18.49 39.68
72U | ASS+GDA 43.73 21.24 43.88 40.86 16.72 41.02

| Caro (ours)

| 48.75(£1.0) 54.75(+3.2) 48.71(£1.0) | 45.02(+1.1) 46.78(+1.8) 45.01(£1.1)

Table 2: Performance of Caro and baselines. All results are averages of three runs and the best results are bolded.
The standard deviation of the performance of Caro is provided in parentheses.

(k + 1)-way classifier trained on fully labeled IND
and OOD samples (Oracle), i.e., we preserve all
labels for samples in Dy and Dy. This model is
generally regarded as the upper bound of our model
since it uses all the annotations.

For fair comparisons, all baselines use the same
pretrained BERT-base backbones as our model.
Multi-turn dialogue contexts in all baselines are
modeled by concatenating utterances in dialogue
histories. Moreover, to further validate the impor-
tance of dialogue contexts for OOD detection, we
also implement a single-turn variant for the first
set of baselines by ignoring multi-turn dialogue
contexts (w/o h), i.e., only the latest user issued
utterance u is used as the input. Note that we do
not implement the single-turn variant for the base-
line CDA since CDA is specifically designed to
utilize multi-turn contexts. See Appendix B for
more details about baselines.

5.5 Main Results

The results for our model Caro and all baselines
are shown in Table 2. It can be seen that Caro out-
performs all other baselines on both datasets with
large margins. We highlight several observations:
1. Methods that model multi-turns of dialogue
histories (e.g., MSP, SEG, DOC, ADB, DA-ADB,
and Outlier) generally outperform their single turn
counter (i.e., models marked with “w/o h’’) with
large margins. This validates our claim that it is
necessary to consider multi-turn dialogue contexts

for OOD intent detection since users’ intents may
depend on prior turns. 2. Our method Caro out-
performs all baselines that only use IND data D;.
The performance gain demonstrates the advantage
of incorporating unlabeled data for OOD detection,
which can be used to learn compact representations
for both IND and OOD intents. 3. Caro also out-
performs baselines that utilize unlabeled data Dy;.
This validates Caro’s effectiveness in tackling the
long distance obstacle and modeling unlabeled sam-
ples. Our baselines are prone to capture irrelevant
noises for OOD intent detection, while Caro incor-
porates multi-view information bottleneck loss to
remove superfluous information.

We also analyze the effect of unlabeled data size
(Appendix E) and A (Appendix F) on the OOD
intent detection performance and carry out a case
study (Appendix G).

5.6 Ablation Studies

To validate our motivation and model design, we
ablate our model components and loss terms.

Model Components: Ablation studies are car-
ried out to validate the effectiveness of each com-
ponent in Caro. Specifically, the following variants
are investigated: 1. w/o Dy removes training stage
two, i.e., only Dy is used for training. 2. w/o MV
ablates the multi-view construction approach intro-
duced in Caro. Specifically, we adopt the approach
used by Gao et al. (2021) to perform two dropouts



Model STAR-Full STAR-Small

0¢el |F1-All F1-O0OD FI1-IND|F1-All F1-OOD FI1-IND
Caro | 48.75 5475 4871 [45.02 4678 45.01
wio Dy | 45.97 2145  46.14 | 4224 2323 4237
wioMV|47.71 5335 47.67 | 4442 3889  44.46
wio VA | 47.34 5085 4732 |44.14 4388  44.15
wioIB | 4823 4937 4822 |44.14 37.06 44.19

Table 3: Ablation on different components of Caro.

Model STAR-Full STAR-Small

0¢el IF1-All F1-OOD F1-IND|FI1-All F1-OOD FI-IND
Caro | 48.75 5475 4871 4502 4678 45.01
InfoMax | 47.27 49.92 47.25 |4427 36.66 44.32
MVI | 4846 51.99 4844 |4470 36.16 44.76
CL 48.18 5254  48.15 | 4459 3531  44.65
SimCSE | 47.73 4774 47773 | 4430 27.02 4442

Table 4: Ablation on the representation learning loss.

with two different masks when constructing these
two views. 3. w/o VA ablates the multi-view ag-
gregation approach, i.e., the representations of two
views are directly added instead of using the adap-
tive gate in Eq. 5. 4. w/o IB removes the infor-
mation bottleneck loss £;5. We implement this
variant by setting A = 0 in Eq.4.

Results in Table 3 indicate that Caro outperforms
all ablation variants. Specifically, we can also ob-
serve that: 1. Training models without unlabeled
data (i.e., w/o Drr) degenerate the performance of
Caro by a large margin. The F1-OOD score suf-
fers an absolute decrease of 33.3% and 23.6% on
STAR-FULL and STAR-Small, respectively. This
validates our claim that effective utilization of un-
labeled data improves the performance of OOD de-
tection. 2. Our multi-view construction approach
helps to improve the OOD detection performance
(see w/o MV), and our multi-view aggregation ap-
proach also benefits the extracted representation
(see w/o VA). 3. Removing the multi-view informa-
tion bottleneck loss (i.e., w/o IB) degenerates the
OOD performance. This validates our claim that
multi-turn contexts may contain irrelevant noises
for OOD intent detection.

Information Bottleneck Loss: We further
demonstrate the effectiveness of our information
bottleneck loss L;p by replacing L;p in Eq. 4
with other alternatives of representation learning.
Specifically, assume « is an input sample. 1. In-
foMax (Poole et al., 2019) maximizes the mutual
information between a and its representation z:
I(z; z); 2. MVI (Bachman et al., 2019) is similar

Ix;2) = I(z; y)

O NWRAULIO N

Caro

MVI InfoMax

Figure 2: Comparing representations obtained by dif-
ferent objectives on the STAR-Full dataset. A lower
score means that the learned representation discards
more superficial information. See Appendix D for mea-
surements used to produce the graph.

to InfoMax except that it maximizes the mutual in-
formation between x’s two views I (v1(x); va(x));
Note that both InfoMax and MVI do not attempt
to remove superficial information from representa-
tions. 3. CL (Caron et al., 2020) uses a contrastive
learning loss. Positive pairs in this variant are ob-
tained using our multi-view construction approach.
4. SimCSE (Gao et al., 2021) is similar to CL ex-
cept that it acquires positive pairs by two different
dropouts on the BERT encoder.

Results in Table 4 show that the information bot-
tleneck loss used in Caro performs better than all
other variants. We also want to highlight that the
approach of explicitly removing superficial infor-
mation in Caro makes it outperform InfoMax and
MVI by 4.83% and 2.76%, respectively, on the
F1-O0D score. This validates our claim that long
contexts may contain superficial information that
degenerates intent detection, and the multi-view in-
formation bottleneck loss used in Caro effectively
removes this superficial information.

Moreover, we also perform fine-grained analy-
sis of the learned representations following Tishby
et al. (2000). Specifically, for an input sample =
with a label of y and an extracted representation
of z, two scores are calculated: 1. Observational
information score (measured by I(x; z)); 2. Pre-
dictive ability score (measured by I(z;y)). An
ideal representation would be maximally predictive
about the label while retaining a minimal amount
of information from the observations (Tishby et al.,
2000; Federici et al., 2019). Here we report the
score of I(x; z) — I(z;y) for Caro, MVI and In-
forMax in Figure 2. It can be seen that the infor-
mation bottleneck loss helps Caro to achieve the
lowest I(x; z) — I(z;y) score. This indicates that
representations learned in Caro retrain low obser-
vational information while achieving a relatively



Context Len F1-All F1-O0D F1-IND

L ‘ w/o IB ‘ 44.14 37.06 44.19
ong

w B | 45.02 (+0.88) 46.78 (+9.72) 45.01 (+0.82)

Short ‘ w/o 1B ‘ 43.61 40.68 43.63

w IB | 43.70 (+0.09) 43.32 (+2.64) 43.70 (+0.07)

Table 5: Benefit of £;p under different context lengths
on the STAR-Small dataset. Long context means re-
taining all the original dialogue contexts (6 turns on
average), and short context means truncating contexts
longer than 3 turns. Scores in parentheses is the perfor-
mance improvement brought by L;p
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0 5‘0 160 15;0 260 256
Token index

Figure 3: Difference of averaged weight score at each
token index for testing samples from STAR-Full.

high predictive ability.

5.7 Further Analysis

Benefit of £;p in Different Context Lengths
We also validate the benefit of our information bot-
tleneck loss L£;p (Eq. 3) under different context
lengths. Specifically, we construct a variant of
STAR-Small (denoted as “Short”) by truncating
contexts longer than 3 turns, i.e., the dialogue histo-
ries before the latest 3 turns are discarded. We also
denote the original STAR-Small dataset as “Long”,
which has a maximum context length of 7 turns.
Caro’s performance with and without £;p, i.e., “w
IB” and “w/o IB” is tested on these two datasets.
Results in Table 5 show that Caro benefits
more from L;p in longer contexts. Specifically,
the longer the context, the larger improvement
is brought by L;p on the OOD detection perfor-
mance. This further validates our claim that our
information bottleneck loss L5 helps remove su-
perficial information unrelated to intent detection.

Diversity of Adaptive Reception Field Our
multi-view information bottleneck objective ex-
pects two diverse views for each input sample
(Federici et al., 2019). Here we validate the

0.2 4
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0.0 4

-0.24

T T T T T T T
0 100 200 300 400 500 600 700 768

Feature index

Figure 4: Difference of averaged aggregation weights
at each dimension for testing samples in STAR-Full.

diversity of our two views (Section 4.1) by vi-
sualizing the distribution of weight score «; in
Eq. 2. Specifically, we first calculate the av-
erage weight scores received at each token in-
dex for samples from the same intent (we use a
max sequence length of 256). Then we choose
two intents (i.e., weather_inform_forecast and
trip_inform_simple_step_ask_proceed) and visual-
ize the difference between their averaged weight
score at each token index in Figure 3. It can be seen
that weight scores change sharply across different
intents and token indices. That means the view
va(x) constructed for each sample is diverse.

Analysis of Aggregation Weights We also visu-
alize the weight 3 used in the multi-view aggrega-
tion process (Eq. 5). Specifically, we expect these
two views in Eq. 5 to receive different weights.
Concretely, we first calculate the averaged 3 vector
for all testing samples from STAR-Small. Then
we calculate the difference of weights received by
these two views vy (x) and vy(x) in Eq. 5, and
visualize values in each dimension in Figure 4. It
can be seen that diverse weights are used in the
multi-view aggregation process.

6 Conclusion

In this paper, we propose Caro, a novel OOD intent
detection framework to explore OOD detection in
multi-turn settings. Caro learns robust representa-
tions by building diverse views of an input and opti-
mise an unsupervised multi-view loss following the
information bottleneck principle. OOD samples are
mined from unlabeled data, which are used to train
a (k + 1)-way multi-view classifier as the resulting
OOD detector. Extensive experiments demonstrate
that Caro is effective as modeling multi-turn con-
texts and outperforms SOTA baselines.



Limitations

One major limitation of this work is its input modal-
ity. Specifically, our method is limited to textual
inputs and ignores inputs in other modalities such
as audio, vision, or robotic features. These modali-
ties provide valuable information that can be used
to build better OOD detectors. In future works, we
will try to model multi-modal multi-turn contexts
for OOD intent detection.

Ethics Statement

This work does not present any direct ethical issues.
In the proposed work, we seek to develop a context-
aware method for OOD intent detection, and we
believe this study leads to intellectual merits that
benefit from a reliable application of NLU models.
All experiments are conducted on open datasets.
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A More Implementation Details

We use Huggingface’s Transformers library (Wolf
et al., 2020) and train with the backbone of BERT
(Devlin et al., 2018). The max_seq_length is 256
for BertTokenize. The classification head is imple-
mented as two-layer MLPs with the LeakyReLLU
activation (Xu et al., 2020b), while the projection
heads in x(v;) and ¥(v;) as three-layer MLPs. The
projection dimension is 64. Following (Zhan et al.,
2021), We use AdamW (Kingma and Ba, 2014)
to fine-tune BERT using a learning rate of le-5
and Adam (Wolf et al., 2019) to train the MLP
heads using a learning rate of le-4. Following
(Federici et al., 2019), we use Jensen-Shannon mu-
tual information estimator (Hjelm et al., 2018) to
maximize mutual information between two random
variables. In the training stage, 15 epochs of pre-
training are first conducted, and then 10 epochs
of training are conducted by adding the process of
unsupervised representation learning on unlabeled
data with early stopping. The batch size is 25 for
IND and unlabeled datasets, respectively. We set
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the weight A for £;p to be 0.5 in all experiments.
And we set r; = 16 and v = 48. All results
reported in our paper are averages of 3 runs with
different random seeds, and each run is stopped
when we reach a plateau on the validation perfor-
mance. Hyper-parameters are searched based on
IND intent classification performances on the val-
idation set. All experiments are conducted in the
Nvidia Tesla V100-SXM2 GPU with 32G graphi-
cal memory.

B More Details about Baselines

We get the baseline results (MSP, SEG, DOC, ADB,
and DA-ADB) using the OOD detection toolkit
TEXTOIR (Zhang et al., 2021a). We get the base-
line result of Outlier by running their released
codes (Zhan et al., 2021). We re-implement CDA
by using counterfeit OOD turns (Lee and Shalymi-
nov, 2019). We re-implement ASS (Zeng et al.,
2021b) based on the code of authors (Zeng et al.,
2021a). For fair comparisons, all baselines are im-
plemented by using BERT as the backbone.

C Computational Cost Analysis

Methods | #Para. | Training Time | Testing Time
Outlier 111.47M 7.26 min 14.46 s
Caro 116.80 M 8.75 min 14.53 s

Table 6: Number of parameters (Million), average train-
ing time for each epoch (minutes) and the total time for
testing (seconds) on STAR-Full dataset.

We compare the computational cost of a vanilla
OOD detector Outlier (Zhan et al., 2021) and Caro.
We use the STAR-Full dataset for this analysis. As
shown in Table 6, Caro only introduces marginal
parameter overhead. We can also observe that using
Caro only introduces a little time overhead com-
pared to Outlier.

D More Details about Measurements
Used to Produce the Graph

The mutual information estimation (I(x; z) and
I(z;y)) reported in Figure 2 are computed by train-
ing two estimation networks from scratch on the
final representation of Caro. Following (Federici
et al., 2019), we use Jensen-Shannon mutual infor-
mation estimator (Hjelm et al., 2018) to maximize
mutual information between two random variables.
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The two estimation architectures consist of three-
layer MLPs. We report average numerical estima-
tions of mutual information using an energy-based
bound (Poole et al., 2019) on the test dataset. To
reduce the variance of the estimator, the lowest and
highest 5% are removed before averaging.

E Analysis for Unlabeled Data Size

Table 7 demonstrates the effect of unlabeled data
size for Caro. We downsample 100%, 75%, 50%,
and 25% of the unlabeled data from STAR-Small
and evaluate the performance of Caro. It can be
seen that our method Caro achieves superior OOD
detection performance in term of F1-OOD along
with the increase of unlabeled data.

DownSample-Rate | F1-All | F1-OOD | FI-IND

100% 45.02 46.78 45.01
75% 44.40 37.77 44.44
50% 45.04 30.13 45.15
25% 44 .47 20.76 44.62

Table 7: Effect of unlabeled data size on the OOD intent
detection performance. The reported performance are
produced on the STAR-Small dataset.

F Analysis for Loss Weight \

Tabel 8 reports the OOD detection results as we
vary the weight A for L;p in Eq. 4. The results
indicate that a relatively small weight is desirable.

A | FI-All | F1-OOD | F1-IND

0.3 | 47.57 55.68 47.51
04 | 48.10 51.44 48.08
0.5 | 48.75 54.75 48.71
0.6 | 47.15 50.84 47.12
0.7 | 47.83 50.60 47.81

Table 8: Effect of A on the OOD intent detection perfor-
mance. The reported performance are produced on the
STAR-Full dataset.

G Case Study
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Dialogue | Prediction of | Prediction of

“Outlier” “Caro”
Customer Agent | |

Somebody has transferred $500 from my

account.

Would you like to file a fraud report?
yes please .

Could I get your full name, please? bank_ask_pin | OOD
Jane Doe

Can you tell me your account number,
please?
What am I doing on this chat?

Hey there! Can you tell me what the
weather will be tomorrow please?

It will be Raining all day on Saturday in | “icanet 00D
Los Angeles, with temperatures of around “forecast

19 degrees celsius.

oh dang when’s the next time it will be

sunny?
It will be Sunny all day on Friday in Los
Angeles, with temperatures of around 11
degrees celsius.

Nice! I think I'll head to La brea tar pits.

I’ve never been there. have you seen those

animals? Crazy

Schedule a viewing at Shadyside
apartment for Thursday at 8pm my name

is john . L bank_inform
Have you already paid the application fee cannot 00D
for the apartment? authenticate

I can’t remember
I am sorry, but there is no viewing
available at your preferred time.

I have a hot date by 8pm o Thursday
When would you like the viewing to start?

How is the apartment like?

Table 9: Case study of classified intents on the OOD samples (from STAR-Full dataset) by Outlier and Caro. OOD
samples are classified as one of the IND classes by Outlier, which are detected as the OOD intent by Caro.
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