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Abstract

Out-of-Domain (OOD) intent detection is vital001
for practical dialogue systems, and it usually re-002
quires considering multi-turn dialogue contexts.003
However, most previous OOD intent detec-004
tion approaches are limited to single dialogue005
turns. In this paper, we introduce a context-006
aware OOD intent detection (Caro) framework007
to model multi-turn contexts in OOD intent008
detection tasks. Specifically, we follow the in-009
formation bottleneck principle to extract robust010
representations from multi-turn dialogue con-011
texts. Two different views are constructed for012
each input sample and the superfluous informa-013
tion not related to intent detection is removed014
using a multi-view information bottleneck loss.015
Moreover, we also explore utilizing unlabeled016
data in Caro. A two-stage training process is in-017
troduced to mine OOD samples from these un-018
labeled data, and these OOD samples are used019
to train the resulting model with a bootstrap-020
ping approach. Comprehensive experiments021
demonstrate that Caro establishes state-of-the-022
art performances on multi-turn OOD detection023
tasks by improving the F1-OOD score of over024
29% compared to the previous best method.025

1 Introduction026

Intent detection is vital for dialogue systems (Chen027

et al., 2017). Recently, promising results have been028

reported for intent detection under the closed-world029

assumption (Shu et al., 2017), i.e., the training and030

testing distributions are assumed to be identical,031

and all testing intents are seen in the training pro-032

cess. However, this assumption may not be valid033

in practice (Dietterich, 2017), where a deployed034

system usually confronts an open-world (Fei and035

Liu, 2016; Scheirer et al., 2012), i.e., the testing dis-036

tribution is subject to change and Out-of-Domain037

(OOD) intents that are not seen in the training pro-038

cess may emerge in testing. It is necessary to equip039

intent detection modules with OOD detection abil-040

ities to accurately classify seen In-Domain (IND)041

intents while rejecting unseen OOD intents (Yan 042

et al., 2020a). 043

Various methods are proposed to tackle the issue 044

of OOD detection on classification problems (Geng 045

et al., 2020). Existing approaches include using 046

thresholds (Zhou et al., 2021) or (k + 1)-way clas- 047

sifiers (k is the number of IND classes) (Zhan et al., 048

2021). Promising results are reported to apply these 049

OOD detection methods on intent detection mod- 050

ules (Zhou et al., 2022). However, most existing 051

OOD intent detection studies only focus on single- 052

turn inputs (Yan et al., 2020a; Lee and Shalyminov, 053

2019), i.e., only the most recently issued utterance 054

is taken as the input. In real applications, com- 055

pleting a task usually necessitates multiple turns 056

of conversations (Weld et al., 2021). Therefore, 057

it is important to explicitly model multi-turn con- 058

texts when building OOD intent detection modules 059

since users’ intents generally depend on turns of 060

conversations (Qin et al., 2021). 061

However, it is non-trivial to directly extend previ- 062

ous methods to the multi-turn setting (Ghosal et al., 063

2021). Specifically, we usually experience long 064

distance obstacles when modeling multi-turn dia- 065

logue contexts, i.e., some dialogues have extremely 066

long histories filled with irrelevant noises for in- 067

tent detection (Liu et al., 2021). It is challenging 068

to directly apply previous OOD intent detection 069

methods under this obstacle since the learned rep- 070

resentations may contain superfluous information 071

that is irrelevant for intent detection tasks (Federici 072

et al., 2019). 073

Another challenge for OOD detection in multi- 074

turn settings is the absence of OOD samples in 075

the training phase (Zeng et al., 2021a). Specifi- 076

cally, it is hard to refine learned representations for 077

OOD detection without seeing any OOD training 078

samples (Shen et al., 2021), and it is expensive to 079

construct OOD samples before training, especially 080

when multi-turn contexts are considered (Chen and 081

Yu, 2021). Fortunately, unlabeled data (i.e., a mix- 082
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ture of IND and OOD samples) provide a conve-083

nient way to access OOD samples since these un-084

labeled data are almost “free” to collect from a085

deployed system. However, few studies have ex-086

plored utilizing unlabeled data for OOD detection087

in the multi-turn setting.088

In this study, we propose a novel context-aware089

OOD intent detection framework Caro to address090

the above challenges for OOD intent detection in091

multi-turn settings. Specifically, we follow the in-092

formation bottleneck principle (Tishby et al., 2000)093

to tackle the long-distance obstacle exhibited in094

multi-turn contexts. Robust representations are ex-095

tracted by retaining predictive information while096

discarding superfluous information unrelated to in-097

tent detection. This objective is achieved by op-098

timizing an unsupervised multi-view information099

bottleneck loss, during which two views are built100

based on the global pooling approach and adaptive101

reception fields. A gating mechanism is introduced102

to adaptively aggregate these two views to obtain an103

assembled representation. Caro also introduces a104

two-stage self-training scheme to mine OOD sam-105

ples from unlabeled data. Specifically, the first106

stage builds a preliminary OOD detector with OOD107

samples synthesized from IND data. The second108

stage uses this detector to select OOD samples109

from the unlabeled data and use these samples to110

further refine the OOD detector. We list our key111

contributions:112

1. We propose a novel framework Caro to ad-113

dress a challenging yet under-explored problem of114

OOD intent detection considering multi-turn dia-115

logue contexts.116

2. Caro learns robust representations by building117

diverse views of inputs and optimizing an unsu-118

pervised multi-view loss following the information119

bottleneck principle. Moreover, Caro mines OOD120

samples from unlabeled data to further refine the121

OOD detector.122

3. We extensively evaluate Caro on multi-turn123

dialogue datasets. Caro obtains state-of-the-art re-124

sults, outperforming the best baseline by a large125

margin (29.6% in the F1-OOD score).126

2 Related Work127

OOD Detection is a widely investigated machine128

learning problem (Geng et al., 2020). Recent ap-129

proaches try to improve the OOD detection perfor-130

mance by learning more robust representations on131

IND data (Zhou et al., 2021; Yan et al., 2020b; Zeng132

et al., 2021a; Zhou et al., 2022; Wu et al., 2022) and 133

use these representations to develop density-based 134

or distance-based OOD detectors (Lee et al., 2018; 135

Tan et al., 2019; Liu et al., 2020; Podolskiy et al., 136

2021). Some works also try to build OOD detectors 137

with generated pseudo OOD samples (Hendrycks 138

et al., 2018; Shu et al., 2021; Zhan et al., 2021; 139

Marek et al., 2021) or thresholds based approaches 140

(Gal and Ghahramani, 2016; Lakshminarayanan 141

et al., 2017; Ren et al., 2019; Gangal et al., 2020; 142

Ryu et al., 2017). 143

Some OOD detection methods also make use of 144

unlabeled data. Existing approaches either focus on 145

utilizing unlabeled IND data (Xu et al., 2021; Jin 146

et al., 2022) or adopting a self-supervised learning 147

framework to handle mixtures of IND and OOD 148

samples (Zeng et al., 2021b). These approaches do 149

not explicitly model multi-turn contexts. 150

Modeling Multi-turn Dialogue Contexts is the 151

foundation for various dialogue tasks (Li et al., 152

2020; Ghosal et al., 2021; Chen et al., 2021). How- 153

ever, few works focus on detecting OOD intents in 154

the multi-turn setting. Lee and Shalyminov (2019) 155

proposed to use counterfeit OOD turns extracted 156

from multi-turn contexts to train the OOD detec- 157

tor, and Chen and Yu (2021) augmented seed OOD 158

samples that span multiple turns to improve the 159

OOD detection performance. Nevertheless, these 160

approaches either suffer from the long distance 161

obstacle or require expensive annotated OOD sam- 162

ples. In this study, we attempt to learn robust repre- 163

sentation by explicitly identifying and discarding 164

superfluous information. 165

Representation Learning is also related to our 166

work. Recent approaches for representation learn- 167

ing include optimizing a contrastive loss (Caron 168

et al., 2020; Gao et al., 2021) or maximizing the 169

mutual information between features and input 170

samples (Poole et al., 2019). However, these ap- 171

proaches cannot tackle the long distance obstacle 172

exhibited in multi-turn contexts. In this study, we 173

follow the information bottleneck principle (Tishby 174

et al., 2000; Federici et al., 2019) to remove super- 175

fluous information from long contexts. 176

3 Problem Setup 177

We start by formulating the problem: Given k IND 178

intent classes I = {Ii}ki=1, we denote all samples 179

that do not belong to these k classes as the (k+ 1)- 180

th intent Ik+1. Our training data contain a set of 181

labeled IND samples DI = {⟨xi, yi⟩} and a set of 182
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unlabeled samples DU = {⟨x̃i, ỹi⟩}, where yi ∈ I183

and ỹi ∈ I ∪ {Ik+1} is the label of input sample184

xi and x̃i, respectively. ỹi labels are not observed185

during training. Our testing data contain a mixture186

of IND and OOD samples DT = {⟨x̃i, ỹi⟩}, where187

ỹi ∈ I ∪ {Ik+1}. For a testing input x̃, our OOD188

intent detector aims to classify the intent label of189

x̃ if it belongs to an IND intent or reject x̃ if it190

belongs to the OOD intent Ik+1. We also assume a191

validation set DV that only contains IND samples192

is available. Moreover, each input sample x from193

DI , DU , DV , and DT consists of an utterance u194

and a multi-turn dialogue history h = u1, . . . ,ut,195

(t ≥ 0) prior of u: x = ⟨h,u⟩. ui is the utterance196

issued in each dialogue turn.197

4 Method198

Care tackles the OOD intent detection problem by199

training a (k + 1)-way classifier F on DI ∪ DU .200

Specifically, samples classified into the (k + 1)-th201

intent Ik+1 are considered as OOD samples. There202

are mainly two challenges to be addressed in Caro:203

(1) How to alleviate the long distance obstacle and204

learn robust representations from multi-turn dia-205

logue contexts; (2) How to effectively leverage206

unlabeled data for OOD intent detection. These207

two issues are tackled with two key ingredients in208

Caro (see Figure 1): 1. A multi-view information209

bottleneck method (Section 4.1); 2. A two-stage210

self-training scheme (Section 4.2).211

4.1 Multi-View Information Bottleneck212

The major challenge for learning robust representa-213

tions from multi-turn dialogue contexts is the long214

distance obstacle, i.e., information that is irrelevant215

for intent detection may degenerate the extracted216

representation if the dialogue history h becomes217

too long. In this study, we follow the informa-218

tion bottleneck principle (Tishby et al., 2000) to219

alleviate this issue, i.e., only the task-relevant infor-220

mation is retained in the extracted representations221

while all the superficial information is discarded.222

Specifically, we adopt a more general unsupervised223

multi-view setting for the information bottleneck224

method (Federici et al., 2019). For each input225

sample xi, two semantic invariant views are con-226

structed: v1(xi), v2(xi). These two views preserve227

the same task-relevant information (Zhao et al.,228

2017). The mutual information between v1(xi) and229

v2(xi) are maximized while the information not230

shared between v1(xi) and v2(xi) are eliminated.231

To achieve this goal, we adopt the multi-view infor- 232

mation bottleneck loss introduced by Federici et al. 233

(2019). 234

Constructing Multiple Views for an input sam- 235

ple x is the key to the success of the unsupervised 236

information bottleneck method. In this study, we 237

construct these two views v1(xi), v2(xi) by adjust- 238

ing the receptive fields of the final representation. 239

This scheme is inspired by the observation in the 240

neuroscience community that human brains process 241

information with multiple receptive fields (Sceniak 242

et al., 1999), i.e., the receptive field size for neu- 243

rons is adapted based on input stimuli (Spillmann 244

et al., 2015) so that different regions of inputs are 245

emphasized (Pettet and Gilbert, 1992). This phe- 246

nomenon has been demonstrated to be effective in 247

modeling more robust features (Pandey et al., 2022) 248

and inspired numerous successful neural models 249

(Wang et al., 2021; Wei et al., 2017). 250

Specifically, for each input sample x = ⟨h,u⟩, 251

we first concatenate all utterances in x and then 252

use a pre-trained BERT model E (Devlin et al., 253

2018) to encode the sequence of concatenated to- 254

kens into a sequence of embedding vectors E(x) = 255

[e1, · · · en], where ei ∈ Rm. The following two 256

strategies are used to construct two different views: 257

1. Global Pooling builds view v1(x) with a 258

mean-pooling layer on top of [e1, · · · en], v1(x) as- 259

sumes each token embedding is equally weighted: 260

v1(x) =
n∑

i=1

ei/n (1) 261

2. Adaptive Reception Field builds view v2(x) 262

by adapting the synaptic weight of each token em- 263

bedding based on the input x: 264

v2(x) =

n∑
i=1

exp(αi)∑n
j=1 exp(αj)

· ei

αi = σ(wi · ReLU(W1 · s)),
(2) 265

where s ∈ Rnm is the concatenation of all n 266

embeddings [e1, · · · en]. σ is the Sigmoid acti- 267

vation function. wi ∈ R1×r1 (i = 1, · · ·n) and 268

W1 ∈ Rr1×nm are learnable parameters. r1 is 269

the size of the intermediate layer. Moreover, to 270

enhance the generalization ability, we set a small 271

value for r1 in our implementation to form a bottle- 272

neck structure in the weighting function (Hu et al., 273

2017). 274
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Figure 1: Framework of Caro. For each input sample x = ⟨h,u⟩, two views v1(x) and v2(x) are obtained and
a multi-view information bottleneck loss LIB is optimized to learn robust representations. A two-stage training
process is introduced to mine OOD samples DO from unlabeled data DU , and optimize the cross entropy loss LCE

with DO ∪ DI

Optimizing Information Bottleneck is per-275

formed in an unsupervised setting based on the276

two views of each sample. Specifically, we assume277

the representation zi of each view vi(x), (i = 1, 2)278

follows a distribution that is parameterized by an279

encoder p(z|vi), where vi is short for vi(x) for280

abbreviation. To facilitate the computation, we281

model p as factorized Gaussian distributions, i.e.,282

p(z|vi) = N [µ(vi),Σ(vi)], in which µ(vi) and283

Σ(vi) are two neural networks that produce the284

mean and deviation, respectively. The following285

information bottleneck loss (Federici et al., 2019)286

is optimized to remove superfluous information in287

v1(x) and v2(x):288

LIB = −I(z1;z2) +
1

2
(DKL[p(z|v1)||p(z|v2)]

+DKL[p(z|v2)||p(z|v1)]),
(3)289

where I calculates the mutual information of two290

random variables, and DKL calculates the KL di-291

vergence between two distributions.292

4.2 Two-stage Self-training293

Although robust representations can be obtained294

with the help of the information bottleneck loss295

LIB from Section 4.1, we still lack the annotations296

for OOD samples to train the (k+1)-way classifier297

F for OOD detection. In this study, we tackle this298

issue with a two-stage self-training process, which299

mines OOD samples from the unlabeled data DU300

with a bootstrapping approach. Moreover, for each301

input sample x, we also aggregate its two views302

v1(x) and v2(x) with a dynamic gate to obtain303

assembled representations in training.304

Stage One synthesizes pseudo OOD samples DP305

by mixing up IND features. Specifically, samples306

from DI are first mapped into IND representation307

vectors, and pseudo OOD samples are obtained as308

convex combinations of these vectors (Zhan et al.,309

2021). A preliminary OOD detector F is trained310

using the classical cross-entropy loss LCE on these 311

synthesized pseudo OOD samples and labeled IND 312

samples DI . This stage endows F with a prelimi- 313

nary ability to predict the intent distribution of each 314

input sample. 315

Stage Two predicts a pseudo label for each sam- 316

ple x ∈ DU using F , and then collects samples 317

that are assigned with the OOD label Ik+1 as a set 318

of mined OOD samples DO. With the help of DO, 319

we further train the classifier F on the following 320

loss: 321

L = E
x∈DI∪DO

LCE + λ E
x∈DU

LIB (4) 322

where λ is a scalar hyper-parameter to control the 323

weight of the information bottleneck loss. 324

Multi-view Aggregation is performed to ob- 325

tain assembled representations for input samples. 326

Specifically, whenever we need to extract the rep- 327

resentation v(x) for an input sample x in the train- 328

ing process, we use the following aggregation ap- 329

proach: 330

v(x) = β ⊗ v1(x) + (1− β)⊗ v2(x)

β = σ(W3 · ReLU(W2 · (v1(x) + v2(x))))
(5) 331

where ⊗ represents the element-wise product, 332

W2 ∈ Rr2×m and W3 ∈ Rm×r2 are learnable 333

parameters. r2 is the size of the intermediate layer. 334

The training of Caro is given in Algorithm 1. 335

5 Experiments 336

5.1 Datasets 337

We perform experiments on two variants of the 338

STAR dataset (Mosig et al., 2020), i.e., STAR-Full 339

and STAR-Small. Specifically, STAR is a task- 340

oriented dialogue dataset that has 150 intents. It is 341

designed to model long context dependence, and 342

provides explicit annotations of OOD intents. Fol- 343

lowing Chen and Yu (2021), we regard samples 344
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Algorithm 1: The training process of Caro
Input: IND data DI , unlabeled data DU .
Output: A trained OOD detector F .
// Stage 1

1 Synthesize pseudo OOD samples DP by
mixing up IND representations.

2 Train F using the cross-entropy loss LCE

on DI ∪ DP .
// Stage 2

3 Mine OOD samples DO from DU using F .
4 Train F using L (Eq. 4) on DI , DO, and DU

Train Valid
DV

Test
DT

# Avg. Context
TurnsDI DU

STAR-Full 15.4K 7.9K 2.8K 2.9K 6.13
STAR-Small 7.7K 3.9K 2.8K 2.9K 6.12

Table 1: Dataset statistics.

from intents “out_of_scope”, “custom”, or “am-345

biguous” as OOD samples and all other samples as346

IND samples. We also filter out generic utterances347

(e.g., greetings) in the pre-processing stage.348

STAR-Full contains all pre-processed samples349

from the original STAR dataset. To construct un-350

labeled data DU , we extract 30% of IND samples351

and all OOD samples from the training set. The352

intent labels of all these extracted samples are re-353

moved, and the remaining samples in the training354

set are used as the labeled data DI . STAR-Small is355

constructed similarly, except that we down-sample356

50% of the training set. We aim to evaluate the357

performance of OOD detection in low-resource358

scenarios with STAR-Small. Table 1 shows the359

statistics of these datasets.360

5.2 Metrics361

Following Zhang et al. (2021b); Shu et al. (2021),362

the OOD intent detection performance of our model363

is evaluated using the macro F1-score (F1-All) over364

all testing samples (i.e., IND and OOD samples).365

The fine-grained performance of our model is also366

evaluated by the macro F1-score over all IND sam-367

ples (F1-IND) and OOD samples (F1-OOD), re-368

spectively. We use macro F1-scores to handle the369

class imbalance issue of the test set.370

5.3 Implementation Details371

Our BERT backbone is initialized with the pre-372

trained weights of BERT-based-uncased (Devlin373

et al., 2018). We use AdamW, and Adam (Kingma 374

and Ba, 2014) to fine-tune the BERT backbone and 375

all other modules with a learning rate of 1e-5 and 376

1e-4, respectively. The Jensen-Shannon mutual in- 377

formation estimator (Hjelm et al., 2018) is used to 378

estimate the mutual information I in Eq. 3. All 379

results reported in our paper are averages of 3 runs 380

with different random seeds. Hyper-parameters are 381

searched based on IND intent classification perfor- 382

mances on the validation set. See Appendix A for 383

more implementation details. Note that Caro only 384

introduces little computational overhead compared 385

to other OOD detection models (See Appendix C). 386

5.4 Baselines 387

Our baselines can be classified into two categories 388

based on whether they use unlabeled data. The 389

first set of baselines only use labeled IND samples 390

DI in training: 1. MSP: (Hendrycks and Gimpel, 391

2017) utilizes the maximum Softmax predictions of 392

a k-way IND classifier to detect OOD inputs. We 393

set the OOD detection threshold to 0.5 following 394

Zhang et al. (2021a); 2. SEG: (Yan et al., 2020b) 395

proposes a semantic-enhanced Gaussian mixture 396

model; 3. DOC: (Shu et al., 2017) employs k 1- 397

vs-rest Sigmoid classifiers and uses the maximum 398

predictions to detect OOD intents; 4. ADB: (Zhang 399

et al., 2021b) learns an adaptive decision bound- 400

aries for OOD detection; 5. DAADB: (Zhang et al., 401

2021c) improves the baseline ADB with distance- 402

aware intent representations; 6. Outlier: (Zhan 403

et al., 2021) mixes convex interpolated outliers and 404

open-domain outliers to train a (k + 1)-way clas- 405

sifier for OOD detection; 7. CDA: (Lee and Sha- 406

lyminov, 2019) utilizes counterfeit OOD turns to 407

detect OOD samples. 408

The second set of baselines uses both labeled 409

IND samples DI and unlabeled samples DU for 410

training. Specifically, Zeng et al. (2021b) proposes 411

a self-supervised contrastive learning framework 412

ASS to model discriminative features from unla- 413

beled data with an adversarial augmentation mod- 414

ule. We implement three variants of ASS by us- 415

ing different detection modules: 1. ASS+MSP: 416

uses the detection module from the baseline MSP; 417

2. ASS+LOF: (Lin and Xu, 2019) implements 418

the OOD detector as the local outlier factor; 3. 419

ASS+GDA: (Xu et al., 2020a) uses a generative 420

distance-based classifier with Mahalanobis dis- 421

tance as the detection module. 422

Moreover, we also report the performance of a 423
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Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

Oracle 50.1 64.46 50 46.54 58.23 46.46

DI

MSP 40.83 19.74 40.97 37.17 18.1 37.31
MSP w/o h 17.29 14.12 17.31 17.12 13.49 17.14
SEG 17.45 6.85 17.53 11.66 7.39 11.69
SEG w/o h 0.06 2.77 0.04 0.05 2.27 0.04
DOC 26.53 16.80 26.60 3.47 11.78 3.41
DOC w/o h 11.31 14.16 11.29 0.08 11.04 0
ADB 44.64 20.56 44.80 41.36 18.23 41.51
ADB w/o h 23.27 17.63 23.30 20.08 21.27 20.07
DAADB 37.27 22.87 37.37 34.81 20.43 34.91
DAADB w/o h 17.87 15.15 17.88 16.34 17.03 16.33
Outlier 43.84 19.53 44.01 39.51 19.92 39.64
Outlier w/o h 23.35 16.75 23.39 19.56 15.42 19.59
CDA 43.76 5.26 44.03 40.02 10.48 40.22

DI+DU

ASS+MSP 41.97 25.15 42.08 40.85 19.47 40.99
ASS+LOF 39.87 17.65 40.02 39.54 18.49 39.68
ASS+GDA 43.73 21.24 43.88 40.86 16.72 41.02

Caro (ours) 48.75(±1.0) 54.75(±3.2) 48.71(±1.0) 45.02(±1.1) 46.78(±1.8) 45.01(±1.1)

Table 2: Performance of Caro and baselines. All results are averages of three runs and the best results are bolded.
The standard deviation of the performance of Caro is provided in parentheses.

(k + 1)-way classifier trained on fully labeled IND424

and OOD samples (Oracle), i.e., we preserve all425

labels for samples in DI and DU . This model is426

generally regarded as the upper bound of our model427

since it uses all the annotations.428

For fair comparisons, all baselines use the same429

pretrained BERT-base backbones as our model.430

Multi-turn dialogue contexts in all baselines are431

modeled by concatenating utterances in dialogue432

histories. Moreover, to further validate the impor-433

tance of dialogue contexts for OOD detection, we434

also implement a single-turn variant for the first435

set of baselines by ignoring multi-turn dialogue436

contexts (w/o h), i.e., only the latest user issued437

utterance u is used as the input. Note that we do438

not implement the single-turn variant for the base-439

line CDA since CDA is specifically designed to440

utilize multi-turn contexts. See Appendix B for441

more details about baselines.442

5.5 Main Results443

The results for our model Caro and all baselines444

are shown in Table 2. It can be seen that Caro out-445

performs all other baselines on both datasets with446

large margins. We highlight several observations:447

1. Methods that model multi-turns of dialogue448

histories (e.g., MSP, SEG, DOC, ADB, DA-ADB,449

and Outlier) generally outperform their single turn450

counter (i.e., models marked with “w/o h”) with451

large margins. This validates our claim that it is452

necessary to consider multi-turn dialogue contexts453

for OOD intent detection since users’ intents may 454

depend on prior turns. 2. Our method Caro out- 455

performs all baselines that only use IND data DI . 456

The performance gain demonstrates the advantage 457

of incorporating unlabeled data for OOD detection, 458

which can be used to learn compact representations 459

for both IND and OOD intents. 3. Caro also out- 460

performs baselines that utilize unlabeled data DU . 461

This validates Caro’s effectiveness in tackling the 462

long distance obstacle and modeling unlabeled sam- 463

ples. Our baselines are prone to capture irrelevant 464

noises for OOD intent detection, while Caro incor- 465

porates multi-view information bottleneck loss to 466

remove superfluous information. 467

We also analyze the effect of unlabeled data size 468

(Appendix E) and λ (Appendix F) on the OOD 469

intent detection performance and carry out a case 470

study (Appendix G). 471

5.6 Ablation Studies 472

To validate our motivation and model design, we 473

ablate our model components and loss terms. 474

Model Components: Ablation studies are car- 475

ried out to validate the effectiveness of each com- 476

ponent in Caro. Specifically, the following variants 477

are investigated: 1. w/o DU removes training stage 478

two, i.e., only DI is used for training. 2. w/o MV 479

ablates the multi-view construction approach intro- 480

duced in Caro. Specifically, we adopt the approach 481

used by Gao et al. (2021) to perform two dropouts 482

6



Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

Caro 48.75 54.75 48.71 45.02 46.78 45.01

w/o DU 45.97 21.45 46.14 42.24 23.23 42.37
w/o MV 47.71 53.35 47.67 44.42 38.89 44.46
w/o VA 47.34 50.85 47.32 44.14 43.88 44.15
w/o IB 48.23 49.37 48.22 44.14 37.06 44.19

Table 3: Ablation on different components of Caro.

Model STAR-Full STAR-Small
F1-All F1-OOD F1-IND F1-All F1-OOD F1-IND

Caro 48.75 54.75 48.71 45.02 46.78 45.01

InfoMax 47.27 49.92 47.25 44.27 36.66 44.32
MVI 48.46 51.99 48.44 44.70 36.16 44.76
CL 48.18 52.54 48.15 44.59 35.31 44.65
SimCSE 47.73 47.74 47.73 44.30 27.02 44.42

Table 4: Ablation on the representation learning loss.

with two different masks when constructing these483

two views. 3. w/o VA ablates the multi-view ag-484

gregation approach, i.e., the representations of two485

views are directly added instead of using the adap-486

tive gate in Eq. 5. 4. w/o IB removes the infor-487

mation bottleneck loss LIB . We implement this488

variant by setting λ = 0 in Eq.4.489

Results in Table 3 indicate that Caro outperforms490

all ablation variants. Specifically, we can also ob-491

serve that: 1. Training models without unlabeled492

data (i.e., w/o DU ) degenerate the performance of493

Caro by a large margin. The F1-OOD score suf-494

fers an absolute decrease of 33.3% and 23.6% on495

STAR-FULL and STAR-Small, respectively. This496

validates our claim that effective utilization of un-497

labeled data improves the performance of OOD de-498

tection. 2. Our multi-view construction approach499

helps to improve the OOD detection performance500

(see w/o MV), and our multi-view aggregation ap-501

proach also benefits the extracted representation502

(see w/o VA). 3. Removing the multi-view informa-503

tion bottleneck loss (i.e., w/o IB) degenerates the504

OOD performance. This validates our claim that505

multi-turn contexts may contain irrelevant noises506

for OOD intent detection.507

Information Bottleneck Loss: We further508

demonstrate the effectiveness of our information509

bottleneck loss LIB by replacing LIB in Eq. 4510

with other alternatives of representation learning.511

Specifically, assume x is an input sample. 1. In-512

foMax (Poole et al., 2019) maximizes the mutual513

information between x and its representation z:514

I(x; z); 2. MVI (Bachman et al., 2019) is similar515

Caro MVI InfoMax0
1
2
3
4
5
6
7
8

I(
x;

z)
I(

z;
y)

Figure 2: Comparing representations obtained by dif-
ferent objectives on the STAR-Full dataset. A lower
score means that the learned representation discards
more superficial information. See Appendix D for mea-
surements used to produce the graph.

to InfoMax except that it maximizes the mutual in- 516

formation between x’s two views I(v1(x); v2(x)); 517

Note that both InfoMax and MVI do not attempt 518

to remove superficial information from representa- 519

tions. 3. CL (Caron et al., 2020) uses a contrastive 520

learning loss. Positive pairs in this variant are ob- 521

tained using our multi-view construction approach. 522

4. SimCSE (Gao et al., 2021) is similar to CL ex- 523

cept that it acquires positive pairs by two different 524

dropouts on the BERT encoder. 525

Results in Table 4 show that the information bot- 526

tleneck loss used in Caro performs better than all 527

other variants. We also want to highlight that the 528

approach of explicitly removing superficial infor- 529

mation in Caro makes it outperform InfoMax and 530

MVI by 4.83% and 2.76%, respectively, on the 531

F1-OOD score. This validates our claim that long 532

contexts may contain superficial information that 533

degenerates intent detection, and the multi-view in- 534

formation bottleneck loss used in Caro effectively 535

removes this superficial information. 536

Moreover, we also perform fine-grained analy- 537

sis of the learned representations following Tishby 538

et al. (2000). Specifically, for an input sample x 539

with a label of y and an extracted representation 540

of z, two scores are calculated: 1. Observational 541

information score (measured by I(x; z)); 2. Pre- 542

dictive ability score (measured by I(z; y)). An 543

ideal representation would be maximally predictive 544

about the label while retaining a minimal amount 545

of information from the observations (Tishby et al., 546

2000; Federici et al., 2019). Here we report the 547

score of I(x; z) − I(z; y) for Caro, MVI and In- 548

forMax in Figure 2. It can be seen that the infor- 549

mation bottleneck loss helps Caro to achieve the 550

lowest I(x; z)− I(z; y) score. This indicates that 551

representations learned in Caro retrain low obser- 552

vational information while achieving a relatively 553
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Context Len F1-All F1-OOD F1-IND

Long w/o IB 44.14 37.06 44.19
w IB 45.02 (+0.88) 46.78 (+9.72) 45.01 (+0.82)

Short w/o IB 43.61 40.68 43.63
w IB 43.70 (+0.09) 43.32 (+2.64) 43.70 (+0.07)

Table 5: Benefit of LIB under different context lengths
on the STAR-Small dataset. Long context means re-
taining all the original dialogue contexts (6 turns on
average), and short context means truncating contexts
longer than 3 turns. Scores in parentheses is the perfor-
mance improvement brought by LIB

0 50 100 150 200 256
Token index

0.004

0.002

0.000

0.002

0.004

Figure 3: Difference of averaged weight score at each
token index for testing samples from STAR-Full.

high predictive ability.554

5.7 Further Analysis555

Benefit of LIB in Different Context Lengths556

We also validate the benefit of our information bot-557

tleneck loss LIB (Eq. 3) under different context558

lengths. Specifically, we construct a variant of559

STAR-Small (denoted as “Short”) by truncating560

contexts longer than 3 turns, i.e., the dialogue histo-561

ries before the latest 3 turns are discarded. We also562

denote the original STAR-Small dataset as “Long”,563

which has a maximum context length of 7 turns.564

Caro’s performance with and without LIB , i.e., “w565

IB” and “w/o IB” is tested on these two datasets.566

Results in Table 5 show that Caro benefits567

more from LIB in longer contexts. Specifically,568

the longer the context, the larger improvement569

is brought by LIB on the OOD detection perfor-570

mance. This further validates our claim that our571

information bottleneck loss LIB helps remove su-572

perficial information unrelated to intent detection.573

Diversity of Adaptive Reception Field Our574

multi-view information bottleneck objective ex-575

pects two diverse views for each input sample576

(Federici et al., 2019). Here we validate the577

0 100 200 300 400 500 600 700 768
Feature index

0.2

0.1

0.0

0.1

0.2

Figure 4: Difference of averaged aggregation weights
at each dimension for testing samples in STAR-Full.

diversity of our two views (Section 4.1) by vi- 578

sualizing the distribution of weight score αi in 579

Eq. 2. Specifically, we first calculate the av- 580

erage weight scores received at each token in- 581

dex for samples from the same intent (we use a 582

max sequence length of 256). Then we choose 583

two intents (i.e., weather_inform_forecast and 584

trip_inform_simple_step_ask_proceed) and visual- 585

ize the difference between their averaged weight 586

score at each token index in Figure 3. It can be seen 587

that weight scores change sharply across different 588

intents and token indices. That means the view 589

v2(x) constructed for each sample is diverse. 590

Analysis of Aggregation Weights We also visu- 591

alize the weight β used in the multi-view aggrega- 592

tion process (Eq. 5). Specifically, we expect these 593

two views in Eq. 5 to receive different weights. 594

Concretely, we first calculate the averaged β vector 595

for all testing samples from STAR-Small. Then 596

we calculate the difference of weights received by 597

these two views v1(x) and v2(x) in Eq. 5, and 598

visualize values in each dimension in Figure 4. It 599

can be seen that diverse weights are used in the 600

multi-view aggregation process. 601

6 Conclusion 602

In this paper, we propose Caro, a novel OOD intent 603

detection framework to explore OOD detection in 604

multi-turn settings. Caro learns robust representa- 605

tions by building diverse views of an input and opti- 606

mise an unsupervised multi-view loss following the 607

information bottleneck principle. OOD samples are 608

mined from unlabeled data, which are used to train 609

a (k+1)-way multi-view classifier as the resulting 610

OOD detector. Extensive experiments demonstrate 611

that Caro is effective as modeling multi-turn con- 612

texts and outperforms SOTA baselines. 613
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Limitations614

One major limitation of this work is its input modal-615

ity. Specifically, our method is limited to textual616

inputs and ignores inputs in other modalities such617

as audio, vision, or robotic features. These modali-618

ties provide valuable information that can be used619

to build better OOD detectors. In future works, we620

will try to model multi-modal multi-turn contexts621

for OOD intent detection.622

Ethics Statement623

This work does not present any direct ethical issues.624

In the proposed work, we seek to develop a context-625

aware method for OOD intent detection, and we626

believe this study leads to intellectual merits that627

benefit from a reliable application of NLU models.628

All experiments are conducted on open datasets.629
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A More Implementation Details969

We use Huggingface’s Transformers library (Wolf970

et al., 2020) and train with the backbone of BERT971

(Devlin et al., 2018). The max_seq_length is 256972

for BertTokenize. The classification head is imple-973

mented as two-layer MLPs with the LeakyReLU974

activation (Xu et al., 2020b), while the projection975

heads in µ(vi) and Σ(vi) as three-layer MLPs. The976

projection dimension is 64. Following (Zhan et al.,977

2021), We use AdamW (Kingma and Ba, 2014)978

to fine-tune BERT using a learning rate of 1e-5979

and Adam (Wolf et al., 2019) to train the MLP980

heads using a learning rate of 1e-4. Following981

(Federici et al., 2019), we use Jensen-Shannon mu-982

tual information estimator (Hjelm et al., 2018) to983

maximize mutual information between two random984

variables. In the training stage, 15 epochs of pre-985

training are first conducted, and then 10 epochs986

of training are conducted by adding the process of987

unsupervised representation learning on unlabeled988

data with early stopping. The batch size is 25 for989

IND and unlabeled datasets, respectively. We set990

the weight λ for LIB to be 0.5 in all experiments. 991

And we set r1 = 16 and r2 = 48. All results 992

reported in our paper are averages of 3 runs with 993

different random seeds, and each run is stopped 994

when we reach a plateau on the validation perfor- 995

mance. Hyper-parameters are searched based on 996

IND intent classification performances on the val- 997

idation set. All experiments are conducted in the 998

Nvidia Tesla V100-SXM2 GPU with 32G graphi- 999

cal memory. 1000

B More Details about Baselines 1001

We get the baseline results (MSP, SEG, DOC, ADB, 1002

and DA-ADB) using the OOD detection toolkit 1003

TEXTOIR (Zhang et al., 2021a). We get the base- 1004

line result of Outlier by running their released 1005

codes (Zhan et al., 2021). We re-implement CDA 1006

by using counterfeit OOD turns (Lee and Shalymi- 1007

nov, 2019). We re-implement ASS (Zeng et al., 1008

2021b) based on the code of authors (Zeng et al., 1009

2021a). For fair comparisons, all baselines are im- 1010

plemented by using BERT as the backbone. 1011

C Computational Cost Analysis 1012

Methods #Para. Training Time Testing Time

Outlier 111.47 M 7.26 min 14.46 s
Caro 116.80 M 8.75 min 14.53 s

Table 6: Number of parameters (Million), average train-
ing time for each epoch (minutes) and the total time for
testing (seconds) on STAR-Full dataset.

We compare the computational cost of a vanilla 1013

OOD detector Outlier (Zhan et al., 2021) and Caro. 1014

We use the STAR-Full dataset for this analysis. As 1015

shown in Table 6, Caro only introduces marginal 1016

parameter overhead. We can also observe that using 1017

Caro only introduces a little time overhead com- 1018

pared to Outlier. 1019

D More Details about Measurements 1020

Used to Produce the Graph 1021

The mutual information estimation (I(x; z) and 1022

I(z;y)) reported in Figure 2 are computed by train- 1023

ing two estimation networks from scratch on the 1024

final representation of Caro. Following (Federici 1025

et al., 2019), we use Jensen-Shannon mutual infor- 1026

mation estimator (Hjelm et al., 2018) to maximize 1027

mutual information between two random variables. 1028
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The two estimation architectures consist of three-1029

layer MLPs. We report average numerical estima-1030

tions of mutual information using an energy-based1031

bound (Poole et al., 2019) on the test dataset. To1032

reduce the variance of the estimator, the lowest and1033

highest 5% are removed before averaging.1034

E Analysis for Unlabeled Data Size1035

Table 7 demonstrates the effect of unlabeled data1036

size for Caro. We downsample 100%, 75%, 50%,1037

and 25% of the unlabeled data from STAR-Small1038

and evaluate the performance of Caro. It can be1039

seen that our method Caro achieves superior OOD1040

detection performance in term of F1-OOD along1041

with the increase of unlabeled data.1042

DownSample-Rate F1-All F1-OOD F1-IND

100% 45.02 46.78 45.01
75% 44.40 37.77 44.44
50% 45.04 30.13 45.15
25% 44.47 20.76 44.62

Table 7: Effect of unlabeled data size on the OOD intent
detection performance. The reported performance are
produced on the STAR-Small dataset.

F Analysis for Loss Weight λ1043

Tabel 8 reports the OOD detection results as we1044

vary the weight λ for LIB in Eq. 4. The results1045

indicate that a relatively small weight is desirable.1046

λ F1-All F1-OOD F1-IND

0.3 47.57 55.68 47.51
0.4 48.10 51.44 48.08
0.5 48.75 54.75 48.71
0.6 47.15 50.84 47.12
0.7 47.83 50.60 47.81

Table 8: Effect of λ on the OOD intent detection perfor-
mance. The reported performance are produced on the
STAR-Full dataset.

G Case Study1047
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Dialogue Prediction of
“Outlier”

Prediction of
“Caro”

Customer Agent

Somebody has transferred $500 from my
account.

bank_ask_pin OOD

Would you like to file a fraud report?
yes please

Could I get your full name, please?
Jane Doe

Can you tell me your account number,
please?

What am I doing on this chat?

Hey there! Can you tell me what the
weather will be tomorrow please? weather

_inform
_forecast

OODIt will be Raining all day on Saturday in
Los Angeles, with temperatures of around
19 degrees celsius.

oh dang when’s the next time it will be
sunny?

It will be Sunny all day on Friday in Los
Angeles, with temperatures of around 11
degrees celsius.

Nice! I think I’ll head to La brea tar pits.
I’ve never been there. have you seen those
animals? Crazy

Schedule a viewing at Shadyside
apartment for Thursday at 8pm my name
is john bank_inform

_cannot
_authenticate

OODHave you already paid the application fee
for the apartment?

I can’t remember
I am sorry, but there is no viewing
available at your preferred time.

I have a hot date by 8pm o Thursday
When would you like the viewing to start?

How is the apartment like?

Table 9: Case study of classified intents on the OOD samples (from STAR-Full dataset) by Outlier and Caro. OOD
samples are classified as one of the IND classes by Outlier, which are detected as the OOD intent by Caro.
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