LEAP: Learnable Pruning for Transformer-based Models

Anonymous ACL submission

Abstract

Pruning is an effective method to reduce the
memory footprint and computational cost asso-
ciated with large natural language processing
models. However, current pruning algorithms
either only focus on one pruning category, e.g.,
structured pruning and unstructured, or need
extensive hyperparameter tuning in order to get
reasonable accuracy performance. To address
these challenges, we propose LEArnable Prun-
ing (LEAP), an effective method to gradually
prune the model based on thresholds learned
by gradient descent. Different than previous
learnable pruning methods, which utilize Lj or
L penalty to indirectly affect the final pruning
ratio, LEAP introduces a novel regularization
function, that directly interacts with the preset
target pruning ratio. Moreover, in order to re-
duce hyperparameter tuning, a novel adaptive
regularization coefficient is deployed to control
the regularization penalty adaptively. With the
new regularization term and its associated adap-
tive regularization coefficient, LEAP is able
to be applied for different pruning granular-
ity, including unstructured pruning, structured
pruning, and hybrid pruning, with minimal hy-
perparameter tuning.

1 Introduction

Since the development of transformer mod-
els (Vaswani et al., 2017), the number of parameters
for natural language processing (NLP) models has
become much larger, e.g., BERT 44 (330M) (De-
vlin et al., 2019), Megatron-LM (8.3B) (Shoeybi
et al,, 2019), TS5 (11B) (Raffel et al., 2019),
GPT3 (170B) (Brown et al., 2020), and MT-NLG
(530B) (Microsoft and Nvidia, 2021). Although
larger models tend to exhibit better generalization
ability for downstream tasks, the inference time
and associated power consumption become critical
bottlenecks for deploying those models on both
cloud and edge devices.

One promising approach to address the inference
time and power consumption issues of these large

models is pruning (Sanh et al., 2020; Michel et al.,
2019; Wang et al., 2020a). As the nature of neu-
ral networks (NNs), different pruning granularity
exists, e.g., structured pruning (head pruning for
transformers and block-wise pruning for weight
matrices) and unstructured pruning (purely sparse-
based pruning). Different pruning methods are
proposed, but they generally only target one set
of pruning granularity. As such, when a new sce-
nario comes, e.g., hybrid pruning, a combination
of structured pruning and unstructured pruning, it
is unclear how to choose the proper method.

Meanwhile, existing work sometimes sets the
same pruning ratio for all layers. However, it is
challenging to prune the same amount of param-
eters of all weights of a general NN to ultra-low
density without significant accuracy loss. This is
because not all the layers of an NN allow the same
pruning level. A possible approach to address this
is to use different pruning ratios. A higher den-
sity ratio is needed for certain “sensitive” layers
of the network, and a lower density ratio for “non-
sensitive” layers. However, manually setting such
multi-level pruning ratios is infeasible. Regulariza-
tion method, e.g., (Sanh et al., 2020), is proposed to
address multi-level pruning ratio issue. Howeyver, it
introduces two drawbacks: (i) a careful hand-tuned
threshold schedule is needed to improves the per-
formance; and (ii) the regularization needs heavy
tuning to get the desired density ratio in that the
regularization term is not directly applied to the
pruning ratio,

Motivated by these issues, we propose an effec-
tive LEArnable Pruning (LEAP) method to grad-
ually prune the weight matrices based on corre-
sponding thresholds that are learned by gradient
descent. We summarize our contributions below,

* LEAP sets a group of learnable pruning ratio pa-
rameters, which can be learned by the stochastic
gradient descent, for the weight matrices, with
a purpose to set a high pruning ratio for insen-

sitive layers and vice versa. As the NN prefers
a high-density ratio for higher accuracy and low
loss, we introduce a novel regularization func-
tion that can directly control the preset target
pruning ratio. As such, LEAP can easily achieve
the desired compression ratio unlike those L or
L1 penalty-based regularization methods, whose
target pruning ratio needs careful tuning.

» To ease hyperparameter search, we design an
adaptive regularization magnitude \.4 to adap-
tively control the contribution to the final loss
from the regularization penalty. The coefficient
Areg 18 automatically adjusted to be large (small)
when the current pruning ratio is far away (close
to) the target ratio.

* We apply LEAP for BERT},s On three datasets,
i.e., QQP/MNLI/SQuAD, under different prun-
ing granularity, including structured, hybrid, and
unstructured pruning, with various pruning ra-
tios. Our results demonstrate that LEAP can con-
sistently achieve on-par or better performance
as compared to previous heavily tuned methods,
with minimal hyperparameter tuning. Moreover,
by analyzing the pruned models, two observa-
tions are made: (1) early layers are more sensi-
tive to pruning, which results in a higher density
ratio at the end; and (2) fully connected layers are
less sensitive to pruning, which results in higher
pruning ratios than multi-head attention layers.

2 Methodology

2.1 Background and Problems
Regardless of pruning granularity, in order to prune
a neural network (NN) there are two approaches:
(i) one-time pruning (Yu et al., 2021; Michel et al.,
2019) and (ii) multi-stage pruning (Han et al., 2016;
Lagunas et al., 2021). The main difference between
the two is that one-time pruning directly prunes
the NN to a target ratio within one pruning cycle.
However, one-time pruning oftentimes requires a
pre-trained model on downstream tasks and leads
to worse performance as compared to multi-stage
pruning. For multi-stage pruning, two main cate-
gories are used: (i) one needs multiple rounds for
pruning and finetuing (Han et al., 2016); and (ii) an-
other gradually increases pruning ratio within one
run (Sanh et al., 2020; Lagunas et al., 2021). Here,
we focus on the latter case, where the pruning ratio
gradually increases until it reaches the target.
Assume the NN consists of n weight matrices,
W = {Wy,...,W,}. To compress W, gradual

pruning consists of the following two stages:

* (S1) For each W;, we initialize a correspond-
ing all-one mask M; and denote M =
{M, ..., M,} as the whole set of masks.

* (S2) We train the network with the objective:
minyy Lpyre(M © W), where M © W means
W; © M; forall ¢ = 1,...n, and Lpye is the
standard training objective function of the as-
sociated task, e.g., the finite sum problem with
cross-entropy loss. As the training proceeds, M;
is gradually updated with more zero, i.e., the
cardinality | M;| = s becomes smaller.

Here st in (S2) could be a simple linear decaying
function or more generally a polynomial function
based on the user’s requirement. Such method is
called hard/soft-threshold pruning. For both thresh-
old pruning, users have to design sparsity schedul-
ing which raises hyperparameters search issues.
Hard-threshold pruning can hardly extend to dif-
ferent pruning granularity, which likely leads to
sub-optimal solutions by setting the same pruning
ratio for all layers. While soft threshold methods
could be a possible solution to resolve part of the
problems, it introduces another extra hyperparame-
ter, Areg, and there are critical concerns on how to
obtain the target sparse ratio. See Appendix B for
detailed description.

We address the above challenges in the coming
section by designing learnable thresholds with (i) a
simple yet effective regularization function that can
help the users to achieve their target sparse ratio,
and (ii) an adaptive regularization magnitude, \,c4
to alleviate the hyperparameter tuning.

2.2 LEAP with A New Regularization

We denote the learnable threshold vector o =
[0i,...,0,] and each o; associates with the tu-
ple (W;, M;, S;). With the score S and learnable
threshold vector o, LEAP can be smoothly incor-
porated to Top-k pruning method (Zhu and Gupta,
2017; Sanh et al., 2020).!

Recall the Top-K pruning uses the score matrix
set S to compute M, i.e., M; = Top-K (S;) with
K €]0,100] in a unit of percentage. By sorting the
elements of the matrix 5;, Top-K set the mask M;
for the top K % to be 1, and the bottom (100— K)%
to 0. Mathematically, it expresses as

TOp—K(LU) =]l{xesort(Si,K%)} (1)
'Our methods can thus be easily applied to magnitude-

based pruning methods by setting S to be identical to YV (Han
et al., 2015).

where sort(S;, K %) contains the Top K% of the
sorted matrix S;. Here K is determined by the
users, and thus follows various kinds of sched-
ules such as the cubic sparsity scheduling, Eq. 6.
As described in Section 2.1, such a schedule usu-
ally requires extensive engineering tuning in or-
der to achieve state-of-the-art performance. More-
over, in (Zhu and Gupta, 2017), the Top-K(-)
threshold is fixed for all weight matrices. How-
ever, different weight matrices have different toler-
ances/sensitivities to pruning, meaning that a low
pruning ratio needs to be applied for sensitive lay-
ers, and vice versa. In order to resolve those is-
sues, we propose an algorithm to automatically ad-
just their thresholds for all weight matrices. More
specifically, we define K (o;) := 100 - k(o;) for
t=1,...,n with

k(o;) = Sigmoid(o; /T") ()

where the Sigmoid function is used to map o to
be in the range of (0, 1). 7" is a temperature value
which critically controls the speed of k transition-
ing from 1 to 0 as o decreases. We remark that
Sigmoid could be replaced with any continuous
function that maps any positive or negative values
to [0, 1]. Investigating for various such functions
could be an interesting future direction.

For a mask M; € R%n*dou, its density ratio
|M;|/(di x di,) = k(o;) is uniquely determined
by ;. However, directly applying this for our ob-
jective function will tend to make k(o;) always
close to 1, since the model prefers no pruning to
achieve lower training loss. Therefore, we intro-
duce a novel regularization term to compensate for
this. Denote R(o) the remaining ratio of weight
parameter, which is a function of o (more details
of how to calculate R(o) are given later). Suppose
that our target pruning ratio is R4get. We propose
the following regularization loss,

Lreg(o) = { éR(ff) — Riarget)

Equipped with Eq. 1, 2, and 3, we then rewrite the
training objective as

R(U) Z Rta'rget;
else.

3

»Cobj = »Cpure(Mcr ® W) + Areg»creg (U) “4)

where the masks M is written in an abstract man-
ner, meaning that each mask M; is determined by
Top-K (defined in Eq. 1). As the Top-k opera-
tor is not a smooth operator, we use the so-called

Straight-through Estimator (Bengio et al., 2013) to
compute the gradient with respect to both o and S.
That is to say, the gradient through Top-K operator
is artificially set to be 1. With such a regulariza-
tion defined in Eq. 4, there exits “competition”
between o; in Lyue and o in L,.¢4. Particularly, o;
in Lpure tends to make k(o) close to 1 as the dense
model generally gives better accuracy performance,
while o; in £,.., makes k(o;) close to the target ra-
tio Ryqrget- Notably, our regularization method is
fundamentally different from those soft-threshold
methods by using Lg or L; regularization. While
they apply a penalty to the score matrices with in-
direct control on final sparsity, our method focus
on learnable sparsity thresholds o;. Thus, we could
easily achieve our target compression ratios. On the
other hand, one may add L¢ or L; regularization
to Eq. 4 as the two are complementary.

Critical term R(o) We now delve into the
calculation of R(o). For simplicity, we con-
sider that all three matrices M;, W;, and S;
follow the same dimensions d x di,. Then
R(6) = Nremain(0)/Niotal, Where the total num-
ber of weight parameters Ny = Y o (dl X
d’), and the number of remaining parameters
Neemain(07) = 3271 k(03)(dfy % diy)-

Adaptive regularization coefficient \,.., Gener-
ally, for regularization-based (e.g., L or Lg regu-
larization) pruning methods, A4 needs to be care-
fully tuned (Sanh et al., 2020). To resolve this
tuning issue, we propose an adaptive formula to
choose the value:

>\reg = max {)\maxﬁreg/(l - Rtarget)Q,)\mzn} s

(5)
where A4, and A, are pre-chosen hyperparam-
eters.We found that our results are not sensitive
to the choice of these hyper-parameters. The idea
is that when R(o) is far away from the Riqrget,
the new coefficient A4 in Eq. 5 is close t0 Ayaq
(when R(o) = 1, itis indeed A;,qz) SO that we can
have a strong regularization effect; and when R is
close to Ryqrget, the penalty can be less heavy in
Eq. 4. Detailed comparison between constant and
our proposed adaptive regularization are referred
to Section 3.

3 Experimental Setup and Results

We apply LEAP with task-specific pruning for
BERTye, a 12-layer encoder-only Transformer
model (Devlin et al., 2019) on three tasks QQP,
MNLI and SQUAD for unstructured, hybrid and

Methods Density 1 Density 2 Density 3 Methods Density 1 Density 2 Density 3
9~10% 3~4% 1~2% 27~30% 21~25% 11~15%
o Soft MvP 90.2/86.8 89.1/855 N/A o, soft MvP-1(Hs) NA/87.6 NA/87.1 NA/86.8
g LEAP 90.4/87.1 90.3/87.0 89.6/86.0 S LEAP-1(Hz) — 91.2/88.0 91.0/87.9 90.7/855
LEAP-1 90.9/87.9 90.6/87.4 90.4/87.1 LEAP-1 (S32) 91.0/87.9 90.9/87.7 90.5/87.3
12~13% 10~11% 2~3% 27~30% 17~21% 11~15%
— Soft MvP N/A 81.2/81.8 79.5/80.1 - soft MvP-1 (Hs2) 83.0/83.6 82.3/82.7 81.1/81.5
2 LEAP 81.3/81.5 80.6/81.0 79.0/79.3 Z LEAP-1(Hs) ~ 83.0/832 82.2/82.4 8L58LS
= LEAP-1 822/822 81.7/81.7 80.3/80.2 = LEAP-1(S) — 82.0/821 8107810 80.0/80.0
0~10% 56% 34% 27~30% 21~25% 15~19%
S LEAP 77.0/854 743833 729/825 < LEAP-1(Hz) ?0,-;,/8,7;6, _79.3/87.0 78.2186.1
S LEAP1 78.7/86.7 75.9/84.5 75.7/84.5 S Soft MyP-1(S3y) 77.9/85.6 - 77.185.2 N/A
LEAP-1 (S32) 77.9/85.9 77.2/864 N/A

Table 1: Different density ratios for unstructured prun-
ing. Here Soft MvP is referred to (Lagunas et al., 2021).
Here LEAP uses exactly training strategies as (Lagunas
et al., 2021) and LEAP-1 doubles the training epochs.
We report accuracy/F1 socre for QQP, accuracy of match
and mis-match sets for for MNLI, exact match/F1 score
for SQuAD.

structured block-wise pruning. Please see the de-
tailed experimental setup in Appendix C). We com-
pare with (Sanh et al., 2020; Lagunas et al., 2021)
but not other methods for the two reasons: (1) our
training setup are close to them and they are the
current stat-of-the-art methods for BERT models.
(2) in (Sanh et al., 2020; Lagunas et al., 2021),
there already exist extensive comparisons between
different methods, including hard-threshold and L
regularization.
Unstructured pruning We show the results of
LEAP under different density ratios of BERT},s
on QQP/MNLI/SQuAD. As can be seen, compared
to Soft MvP, LEAP achieves better performances
on 4 out of 6 direct comparisons (as Soft MvP only
provides two pruning ratios per task). Particularly,
for QQP, LEAP is able to reduce the density ratio
to 1~2% while achieving similar performance as
Soft MvP with 3~4% density ratio; for MNLI,
although LEAP is slightly worse than Soft MvP,
the performance gap is within 0.6 for all cases.
We also list the results of LEAP-I, which utilizes
more training epochs to boost the performance,
in Table 1. One hypothesis to explain why longer
training can significantly boost the performance of
LEAP is that LEAP introduces both more learn-
able hyperparameters and the adaptive regulariza-
tion magnitude. As such, those extra parameters
need more iterations to reach the “optimal” values
(which is also illustrated in Section E).
Hybrid and structure pruning We start with hy-
brid pruning and compare LEAP-1 with Soft MvP-

Table 2: Hybrid and structured pruning comparison
between LEAP and Soft MvP (Lagunas et al., 2021).See
Table 1 for task metrics and reading instructions

1. The results are shown in Table 2. Again, as can
be seen, for different tasks with various pruning
ratio, the overall performance of LEAP-1 is similar
to Soft MvP-1, which demonstrates the easy adop-
tion feature of LEAP. We also present structured
pruning results in Table 2. The first noticeable
finding as expected here is that the accuracy drop
of structured pruning is much higher than hybrid
mode, especially for a low density ratio. Compared
to Soft MvP-1, LEAP-1 achieves slightly better
performance on SQuAD.

We reiterate that Table 1 and Table 2 are not
about beating the state-of-the-art results but em-
phasizing that LEAP requires much less hyper-
parameter tuning but achieves similar performance
as Soft MvP that involved a large set of the
hyper-parameter sweep. For details about hyper-
parameter tuning of Soft MvP-1 and LEAP, see
Appendix D. In addition, we provide in-depth anal-
ysis of LEAP in Appendix E.

4 Conclusions

In this work, we present LEAP, a learnable prun-
ing framework for transformer-based models. To
alleviate the hyperparameter tuning effort, LEAP
introduces a novel regularization function and de-
signs an adaptive regularization magnitude coeffi-
cient. By combining these two techniques, LEAP
achieves on-par or even better performance for var-
ious pruning scenarios as compared to previous
methods. LEAP is less sensitive to the newly intro-
duced hyperparameters and show the advance of
the proposed adaptive regularization coefficient. Fi-
nally, we show that there exists pruning sensitivity
associated with the depth of the network.

References

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing
Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2020. BinaryBERT: Pushing the limit of BERT
quantization. arXiv preprint arXiv:2012.15701.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,
Vivek Menon, Sun Choi, Kushal Datta, and Vikram
Saletore. 2019. Efficient 8-bit quantization of trans-
former neural machine language translation model.
arXiv preprint arXiv:1906.00532.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Si-
jia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. 2020. The lottery ticket hypoth-
esis for pre-trained BERT networks. arXiv preprint
arXiv:2007.12223.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learn-
ing to prune deep neural networks via layer-wise
optimal brain surgeon. In Advances in Neural Infor-
mation Processing Systems, pages 4857—4867.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S
Modha. 2019. Learned step size quantization. arXiv
preprint arXiv:1902.08153.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Angela Fan, Pierre Stock, Benjamin Graham, Edouard
Grave, Remi Gribonval, Herve Jegou, and Armand
Joulin. 2020. Training with quantization noise for
extreme fixed-point compression. arXiv preprint
arXiv:2004.07320.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Song Han, Huizi Mao, and William J Dally. 2016. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. International Conference on Learning Represen-
tations.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in neural infor-
mation processing systems, pages 1135-1143.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,
and Song Han. 2018. Amc: Automl for model com-
pression and acceleration on mobile devices. In Pro-

ceedings of the European Conference on Computer
Vision (ECCV), pages 784-800.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the knowledge in a neural network. Work-
shop paper in NIPS.

Zehao Huang and Naiyan Wang. 2018. Data-driven
sparse structure selection for deep neural networks.
In Proceedings of the European conference on com-
puter vision (ECCV), pages 304-320.

Forrest N Iandola, Albert E Shaw, Ravi Krishna, and
Kurt W Keutzer. 2020. SqueezeBERT: What can
computer vision teach NLP about efficient neural
networks? arXiv preprint arXiv:2006.11316.

Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. 2017.
First quora dataset release: Question pairs, 2017.
URL https://data. quora. com/First-Quora-Dataset-
Release-Question-Pairs.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
TinyBERT: Distilling BERT for natural language un-
derstanding. arXiv preprint arXiv:1909.10351.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Francois Lagunas, Ella Charlaix, Victor Sanh, and
Alexander M Rush. 2021. Block pruning for faster
transformers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10619—-10629.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite bert for self-supervised learn-
ing of language representations. In International
Conference on Learning Representations.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint
arXiv:1810.02340.

Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu,
Feiyue Huang, and Baochang Zhang. 2018. Acceler-
ating convolutional networks via global & dynamic
filter pruning. In IJCAI, pages 2425-2432.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017.
Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE
international conference on computer vision, pages

5058-5066.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650.

Microsoft and Nvidia. 2021. Using DeepSpeed and
Megatron to Train Megatron-Turing NLG 530B, the
World’s Largest and Most Powerful Generative Lan-
guage Model. https://developer.nvidia
.com/blog/using-deepspeed-and-mega
tron-to-train-megatron-turing-nlg-
530b-the-worlds—-largest—-and-most-p
owerful-generative-language-model/.

Sharan Narang, Eric Undersander, and Gregory Diamos.
2017. Block-sparse recurrent neural networks. arXiv
preprint arXiv:1711.02782.

Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo
Shin. 2020. Lookahead: a far-sighted alterna-
tive of magnitude-based pruning. arXiv preprint
arXiv:2002.04809.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When BERT plays the lottery, all tickets are winning.
arXiv preprint arXiv:2005.00561.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. Poor man’s BERT: Smaller
and faster transformer models. arXiv preprint
arXiv:2004.03844.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. arXiv preprint arXiv:2005.07683.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of bert. In AAAI, pages 8815—
8821.

Sheng Shen, Zhewei Yao, Douwe Kiela, Kurt Keutzer,
and Michael W Mahoney. 2021. What’s hidden in
a one-layer randomly weighted transformer? arXiv
preprint arXiv:2109.03939.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-LM: Training multi-billion
parameter language models using gpu model paral-
lelism. arXiv preprint arXiv:1909.08053.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. arXiv preprint arXiv:2004.02984.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. arXiv preprint arXiv:1903.12136.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Hanrui Wang, Zhekai Zhang, and Song Han. 2020a.
Spatten: Efficient sparse attention architecture with
cascade token and head pruning. arXiv preprint
arXiv:2012.09852.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020b. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran.
2019. Autoprune: Automatic network pruning
by regularizing auxiliary parameters. In Advances
in Neural Information Processing Systems, pages
13681-13691.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S
Morcos. 2019. Playing the lottery with rewards and
multiple languages: lottery tickets in rl and nlp. arXiv
preprint arXiv:1906.02768.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung
Lin, and Larry S Davis. 2018. Nisp: Pruning net-
works using neuron importance score propagation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9194-9203.

Shixing Yu, Zhewei Yao, Amir Gholami, Zhen Dong,
Michael W Mahoney, and Kurt Keutzer. 2021.
Hessian-aware pruning and optimal neural implant.
arXiv preprint arXiv:2101.08940.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad,
and Andreas Moshovos. 2020. Gobo: Quantiz-
ing attention-based nlp models for low latency and
energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 811-824. IEEE.

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit bert. arXiv preprint
arXiv:2009.12812.

Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,
Wenjun Zhang, and Qi Tian. 2019. Variational con-
volutional neural network pruning. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 2780-2789.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schiitze. 2020. Masking as an efficient alter-
native to finetuning for pretrained language models.
arXiv preprint arXiv:2004.12406.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

A Related Work

Different approaches have been proposed to compress large pre-trained NLP models. These efforts can
be generally categorized as follows: (i) knowledge distillation (Jiao et al., 2019; Tang et al., 2019; Sanh
et al., 2019; Sun et al., 2019); (ii) quantization (Bhandare et al., 2019; Zafrir et al., 2019; Shen et al.,
2020; Fan et al., 2020; Zadeh et al., 2020; Zhang et al., 2020; Bai et al., 2020; Esser et al., 2019); (iii)
new architecture design (Sun et al., 2020; Iandola et al., 2020; Lan et al., 2019; Kitaev et al., 2020; Wang
et al., 2020b); and (iv) pruning. Pruning can be broadly categorized into unstructured pruning (Dong
et al., 2017; Lee et al., 2018; Xiao et al., 2019; Park et al., 2020; Han et al., 2016; Sanh et al., 2020) and
structured pruning (Luo et al., 2017; He et al., 2018; Yu et al., 2018; Lin et al., 2018; Huang and Wang,
2018; Zhao et al., 2019; Yu et al., 2021; Michel et al., 2019). Here, we briefly discuss the related pruning
work in NLP.

For unstructured pruning, (Yu et al., 2019; Chen et al., 2020; Prasanna et al., 2020; Shen et al., 2021)
explore the lottery-ticket hypothesis (Frankle and Carbin, 2018) for transformer-based models; (Zhao
et al., 2020) shows that pruning is an alternative effective way to fine-tune pre-trained language models on
downstream tasks; and (Sanh et al., 2020) proposes the so-called movement pruning, which considers
the changes in weights during fine-tuning for a better pruning strategy, and which achieves significant
accuracy improvements in high sparsity regimes. However, as an extension of (Narang et al., 2017), (Sanh
et al., 2020) requires non-trivial hyperparameter tuning to achieve better performance as well as desired
pruning ratio.

For structured pruning, (Fan et al., 2019; Sajjad et al., 2020) uses LayerDrop to train the model and
observes that small/efficient models can be extracted from the pre-trained model; (Wang et al., 2019) uses
a low-rank factorization of the weight matrix and adaptively removes rank-1 components during training;
and (Michel et al., 2019) tests head drop for multi-head attention and concludes that a large percentage of
attention heads can be removed during inference without significantly affecting the performance. More
recently, (Lagunas et al., 2021) extends (Sanh et al., 2020) from unstructured pruning to block-wise
structured pruning. As a continuing work of (Sanh et al., 2020; Narang et al., 2017), hyperparameter
tuning is also critical for (Lagunas et al., 2021).

Although fruitful pruning algorithms are proposed, most methods generally only work for specific
pruning scenarios, e.g., unstructured or structured pruning. Also, a lot of algorithms either (i) need a hand-
tuned threshold (aka pruning ratio) to achieve good performances; or (ii) require careful regularization
magnitude/schedule to control the final pruning ratio and retain the model quality. Our LEAP is a
general pruning algorithm that achieves on-par or even better performance under similar pruning ratio
across various pruning scenarios as compared to previous methods, and LEAP achieves this with very
minimal hyperparameter tuning by introducing a new regularization term and a self-adaptive regularization
magnitude.

B Problems of Existing Hard/Soft-threshold Pruning Methods

In this section, we continue a more detailed description on problems of existing hard/soft-threshold
pruning methods. In (Zhu and Gupta, 2017; Sanh et al., 2020; Lagunas et al., 2021), 3% in (S2) Section 2.1
is set to be the same across all the weight matrices, i.e., 5| := s; and they use a cubic sparsity scheduling
for the target sparsity sy given a total iterations of ¢ ¢:

S0 0§t<t0,
s = sf+(so—sf)(1—ff*_<f§%)3 to <t <ty —te, (6)
Sf t > te.

Although threshold methods achieve reasonably advanced pruning ratios along with high model qualities,
they also exhibit various issues.

Common issues Both hard- and soft- threshold pruning introduce three hyperparameters: the initial
sparsity value sg, the warmup step £g, and the cool-down steps t.. As a common practical issue, more
hyperparameters need more tuning efforts, and the question, how to choose the hyperparameters vg, g
and t 7, is by no means resolved.

Issues of hard-threshold pruning It is natural for weight matrices to have different toler-
ances/sensitivities to pruning, which means that a high pruning ratio needs to be applied for insensitive
layers, and vice versa. However, for hard-threshold pruning, which sorts the weight in one layer by
absolute values and masks the smaller portion (i.e., s¢) to zero, it uses the same pruning ratio across all
layers. That oftentimes leads to a sub-optimal solution for hard-threshold pruning.

As such instead of using a single s; schedule, a more suitable way is to use different s¢, i = 1,...n for
each weight matrix ;. However, this leads the number of tuning hyperparameters to be a linear function
as the number of weight matrices, i.e., 3n. For instance, there are 3 X 6 x 12 = 216 hyperparameters for
the popular NLP model-BERTh,ge, a 12-layer encoder-only Transformer of which each layer consists of 6
weight matrices (Devlin et al., 2019). Extensively searching for these many hyperparameters over a large
space is impractical.

Except for the single threshold issue, the hard-threshold method is hard to extend to different pruning
scenarios, e.g., block-pruning, head pruning for attention heads, and filter pruning for fully connected
layers. The reason is that the importance of those structured patterns cannot be simply determined by
their sum of absolute values or other norms such as the Euclidean norm.

Issues of soft-threshold pruning One way to resolve the above issues is through soft-threshold methods.
Instead of using the magnitude (aka absolute value) of the weight matrix to generate the mask, soft-
threshold methods introduce a regularization (penalty) function £,.4(S) to control the sparsity of the
weight parameters (for instance, Ly-norm, L,y = || - ||p, withp = 0 or p = 1). Here, S := {S;}",
and each S; refers to the associated importance score matrix of W;, which is learnable during training.
Particularly, (i) this S; can be adopted to different pruning granularity, e.g., structured and unstructured
pruning, and (ii) the final pruning ratio of each weight matrix can be varied thanks to the learnable nature
of SZ

For soft-threshold pruning, the mask, M;, is generated by the learnable importance score S; and s;>
using the comparison function, M; = f(S;) > s;.> Where f(-) is any function that maps real values
to [0, 1]. As f(S;) will prefer larger values as smaller loss will be introduced to training procedure, a
regularization term is added to the training objective,

Lobj(MOW) = Loue (M OW) + AregLreg(f(S)))

The coefficient A4 is used to adjust the magnitude of the penalty (the larger A..g4, the sparser the WV).
Although soft-threshold pruning methods achieve better performance as compared to hard-threshold
pruning methods, it introduces another hyperparameter \,..,. More importantly, as the final sparsity is
controlled indirectly by the regularization term, it requires sizable laborious experiments to achieve the
desired compression ratio.

C Experimental Setup

We apply LEAP with task-specific pruning for BERTye, a 12-layer encoder-only Transformer model (De-
vlin et al., 2019), with approximately 85M parameters excluding the first embedding layer. We focus
on three monolingual (English) tasks: question answer (SQuAD v1.1) (Rajpurkar et al., 2016); sentence
similarity (QQP) (Iyer et al., 2017); and natural language inference (MNLI) (Williams et al., 2017). For
SQuAD, QQP, and MNLLI, there are 88K, 364K, 392K training examples respectively.

In order to do a fair comparison with Soft MvP (Lagunas et al., 2021), for all tasks, we perform logit
distillation to boost the performance (Hinton et al., 2014). That is,

£obj = a['ds + (1 - Oé)Lce(M(O') O] W) +)\Tcgﬁreg (0') (8)

Here, L4, is the KL-divergence between the predictions of the student and the teacher, L. is the original
cross entropy loss function between the student and the true label, and « is the hyperparameter that
balances the cross-entropy loss and the distillation loss. We let o = 0.9 by default for fair comparison

“When all s! are the same, we drop the superscript for simplicity.
3Here both the function f(-) and the comparison are element wise and the comparison returns either 1 or 0.

Pruning Settings MHA FC

Hybrid (Hs2) 32x32 1x1
Structure (S392) 32 x32 32x32
Structure (S1g) 16 x 16 16 x 16
Structure (Sg) 8 x 8 8 x 8
Unstructure (S57) 1x1 1x1

Table 3: Summary of different pruning settings. Here the first column shows the abbreviate name we will refer to
later, the second column shows the block size used for multi-head attention (MHA), and the third column shows the
block size used for fully-connected layers (FC).

(One might be able to improve the results further with more careful hyperparameter tuning and more
sophisticated distillation methods).

Training Details For all three tasks, the temperature parameter 7' for k(o;) is chosen between
{16,32,48,64} and A\ varies between {40, 80,160,320} with A, = 10. For initialization of
o, we set it to be 57". We use a batch size 32, a sequence 128 for QQP/MNLI and 11000/12000 warmup
steps (about 1 epoch) for learning rate. As for SQuAD, we use a batch size 16 and a sequence 384, and
we use 5400 warmup steps (about 1 epoch). We use a learning rate of 3e-5 (1e-2) for the original weights
(for pruning-rated parameters, i.e., S and o). We set all the training to be deterministic with the random
seed of 17. All the models are trained using FP32 with PyTorch on a single V100 GPU. Note that these
configurations strictly follow the experimental setup in (Sanh et al., 2020; Lagunas et al., 2021); readers
could check more details there. For the results in Table 1, the entire epoch using LEAP is 10, 6, and
10, respectively, for QQP, MNLI, and SQuAD. For the results of LEAP-1 and the results in Table 2, we
simply double training epochs correspondingly (i.e., 20, 12, and 20).

Structured/Unstructured/Hybrid pruning The basic ingredients of the transformer-based layer consist
of multi-headed attention (MHA) and fully connected (FC) sub-layers. We denote the sets of weight
matrices Wy, for MHA and Wk, for FC. Before we give details on the three pruning settings (Structured,
Unstructured, and Hybrid), we first explain square d x d block-wise pruning. Consider an output matrix
as W € Rinxdow where d;, = dr and doy = dc (here r and ¢ are integer by design). We will define a
mask M and a score S with the dimension of x ¢ for the matrix . Given a score [S]; ;, if the Top-K
operator returns [M]; ; = 0, then all d* elements in the (4, j)-th block of W will be set to 0; otherwise,
[M]; ; = 1 means keeping those elements.

In our experiments, structured pruning refers to applying block-wise pruning to both sets, i.e., Way and
Wk. In addition, we make the square block size the same in both MHA and FC sub-layers and we choose
d = 32. Unstructured pruning is using d = 1 for MHA and FC. Hybrid pruning means using structured
pruning for MHA (setting the block size to be d = 32) and using unstructured one for FC (d = 1). As
such, there are three different sets of experiments and we summarize them in Table 3. We test our methods
with the scores S described in movement pruning (Sanh et al., 2020; Lagunas et al., 2021) over three
datasets across unstructured, hybrid, and structured pruning setups. Moreover, we follow strictly (Lagunas
et al., 2021) (referred to as Soft Pruning in later text) on the learning rate including warm-up and decaying
schedules as well as the total training epochs to make sure the comparison is fair. Let LEAP-1 and soft
MvP-1 denote a double-epoch training setup compared to LEAP and Soft Pruning (Sanh et al., 2020). For
more training details, see Appendix C.

D More Results Details

Smaller tasks Note larger datasets (QQP/MNLI/SQuAD) to evaluate the performance of the pruning
method is very common due to the evaluation robustness. However, to illustrate the generalization ability
of LEAP, we also tested its performance on two smaller datasets STS-B and MPRC, using block pruning
with size 32x32. The results are shown in Table 1. As can be seen, with around 20% density ratio, LEAP

10

still achieves marginal accuracy degradation compared to baseline.

Spearman correlation Density ratio
STS-B T=1 T=2 T=4 T=1 T=2 T=4
Amaz =80 | 85.68 85.86 85.96 200 20.1 225
Amaz =160 | 85.73 8591 86.19 20.0 20.1 26.0
Amaz =320 | 85.72 86.01 86.46 20.0 203 285
Accuracy Density ratio
MRPC T=1 T=2 T=4 T=1 T=2 T=4
Amaz =80 | 82.1 82,6 79.16 20.0 20.0 203
Amaz =160 | 81.37 82.35 79.65 20.0 20.0 213
Amaz =320 | 80.88 81.37 78.67 20.0 20.0 22.7

Table 4: Results for STS-B (baseline is 88.71) and MRPC (baseline is 87.01%) with different temperature T and
adaptive A4, for structure pruning (block size 32x32).

Hyper-parameter We emphasize again the results of soft mvp is a strong baseline, and our goal
is not to purely beat soft mvp from accuracy perspective. However, their results require extensive
hyperparameter tuning (see directory), while ours require to only tune 7. To show the generalization of
the best hyperparameter, we include the results for various A4, and 7" on multiple tasks in Table 2. Note
that when 7' is fixed, different A4, gives similar results over various tasks.

Accuracy Density ratio
QQP T=16 T=32 T=48 T=16 T=32 T=48
Amaz=160 | 90.68 90.87 90.7 20.07 20.07 20.1
Amaz=320 | 90.79 90.78 90.6 20.08 20.06 20.1
Accuracy (MNLI/MNLI-MM) Density ratio
MNLI T=16 T=32 T=48 T=16 T=32 T=48
Amaz=40 | 80.41/81.06 80.79/81.12 80.87/81.22 21.07 21.52 2225
Amaz=160 | 80.56/80.98 80.88/80.81 81.02/81.17 21.07 2146 22.15

Table 5: Results for QQP and MRPC with different temperature 7" and adaptive A, for structure pruning (block
size 32x32).

E Analysis

As mentioned, LEAP is a learnable pruning method with a minimal requirement of hyperparameter
tuning. In order to demonstrate this, we analyze LEAP by delving into the key components of LEAP: the
initialization of our thresholds o, the temperature 7", and the regularization term A...

Temperature 7' As 7' defined in Eq. 2, it plays a critical role in determining the rate at which the
threshold curve k(o;) falls. In addition, 7" also directly links to the initialization of o; which is set to
be 57 for all ¢ such that Sigmoid(c;/T") ~ 1. This allows the model to have sufficient time to identify
the layers which are insensitive for aggressive pruning and vice versa. To understand how 7" influences
the performances of the Bert model, we conduct an unstructured pruning on the QQP dataset by varying
T € {64,48,32,16} and keeping all other hyperparameters to be the same. We plot the objective loss
Loy (loss), the regularization loss Ly, (regu_loss), the density ratio R(o), and F1 accuracy, with respect
to the iterations in Figure 1.

Areg = 50 Areg = 160 Areg = 320
Temperature acc/fl density acc/fl density acc/fl density
T=16 76.58/84.94 10.66 | 76.49/85.01 10.27 | 76.33/84.85 10.2
T =232 77.11/85.49 11.46 | 76.97/85.47 10.39 | 76.96/85.36 10.23

Table 6: Unstructured pruning on SQuAD with epoch 10 using various values of regularization coefficient A,.cq
in Eq. 4. It shows that our LEAP is not too sensitive to the hyper-parameter choices T and A,.c.

11

https://github.com/huggingface/nn_pruning/tree/main/analysis/article/files

10?

10t

loss

10°

10° Ty

Density Ratio
=
(=
P

——
—_——

0 5 10 15 20 0 5 10 15 20
epoch epoch

Figure 1: Effect of temperature 7' for unstructured pruning on QQP. The density ratio is set to be 1%.

Among the four curves in Figure 1, 7' = 48 gives the best F1 accuracy while achieving ~1% density,
which clearly demonstrates the significance of 7' for LEAP. Meanwhile, we see that the gaps between
the performance for all 7" except 64 are close, thus it shows that LEAP is not sensitive to 7. A possible
explanation why 7' = 64 gives the worse performance is that the density ratio of 7' = 64 decays relatively
slower compared to rest curves. As such, when it is close to the desired pruning regime, the learning rate
is relatively small and so it cannot be able to recover the accuracy. On the other hand, it is interesting to
note that using the temperature 7' = 16 (orange curve), the density ratio increases after around five epochs
and keeps increasing to the end*, which results in a much better performance even though it experiences
the most accuracy drop in the beginning. This in some scenes illustrates the “competition” between o;
in Lpyre and o5 in L., mentioned in Section 2.2: the accuracy increases at epoch 5 meaning that Lpyre
is decreasing effectively and the £, increases (compromises). Compared to those manual scheduling
thresholds, this increasing phenomena of o; also shows the advantage of learnable thresholds verifying
that the model can figure out automatically when to prune and when not.

Robustness of hyper-parameter tuning 7" and \,., We see in the previous section that given the same
Areg, various values of the temperature 7" lead to similar results although tuning is necessary to achieve
the best one. Here we study how robust the coefficient of)., in our proposed regularization £;.,. We
prune BERT, on the SQUAD task with a target ratio 10% with a combination of \,., € {50, 160, 320}
and T' € {16, 32}, for which the results is in Table 6.

For a given T, it indicates that the results are not highly sensitive to different \,..4s as there is only
about 0.1 variation for accuracy. It is worth noticing that a smaller ;.4 (here .., = 50) can indeed affect
achieving our target sparse ratio. However, the most off pruning ratio is 11.46%, which is reasonably
close to the desired target of 10%.

For a given A4, larger T" leads both the accuracy and the density ratio higher as expected. The reason
is that the density ratio function, i.e., Sigmoid(c; /T"), becomes flatter for larger 7', which leads to a higher
density ratio by using the same value of o (Generally, o is negative to achieve < 50% density ratio). And
higher density ratio results in higher accuracy.

Overall, we can see that LEAP is robust to 4. Although one still needs to tune 7" to obtain the most
competitive performance, the tuning efforts are much less than the half/soft-thresthod pruning methods as
discussed in Appendix 2.1.

“Please note that the y-axis of the density plot is in logarithmic scale. Even T" = 16 slightly increases the density ratio, it is
still very close to 1%.

12

adaptive - Apax = 160 adaptive - Apay = 320
Areg =160 Areg =320

g
g

lambda_re

Density Ratio
Ac
®
~
.

3Ix107 A ———— §
0o 2 4 6 8 10 12 0 2 4 6 8 10 12
epoch epoch

Figure 2: Effect of adaptive regularization T for Hybrid pruning (H32) on MNLI with a target dense ratio of 30%.
Note that in the plot of density ratio with respect to epochs (left bottom), the purple (blue) and orange (green) curves
are overlapped. Also in the right top bottom, blue and green curves are overlapped.

o
)

wwew Struture -+ Hibrid Unstructure

e
n

wle
=i

0.4

remaining ratio
o
w

0.0 e
MHA FC1l MHA FC2 MHA FC3 MHA FC4 MHA FC5 MHA FC6 MHA FC7 MHA FC8 MHA FC9 MHA FCO0 MHA FQl MHA FQ2

sublayers in BERTpz:e

Figure 3: The density ratio k(o;) to all the weight matrices for structured, hybrid and unstructured pruning on
SQuAD, of which the total density ratios are respectively 20% , 16%, and 8%.

The regularization coefficient \,., To better understand the effect of adaptive A4 (Eq. 5), we set
Amaz € {160,320} and fix Ay, = 10 (same as Section 3) to prune BERTh,se on the MNLI task with a
target ratio 30%. In addition, we also compare this adaptive coefficient with their constant counterparts
Areg € {160, 320}. We plots the A, (lambda_reg), the regularization loss L;eg (regu_loss), the density
ratio R(o), and accuracy, with respect to the iterations in Figure 2. First of all, we see that our adaptive
coefficient .., decreases in a quadratic manner and reaching to the \,,,;;, = 10 after 4 epochs, which
slows down the pruning activities after 4 epochs. Also, note that the curves of different A, are actually
overlapped with each other, which also indicates that LEAP is not vulnerable to A,.,. Meanwhile, as A4
quickly reaches Ay, the importance score S has more time to figure out the pruning parameters for the
last small portion. As such, this slowness can in turn decrease the drop of accuracy and thus eventually
recover a much better accuracy than that of the constant regularization.

The effect of learnable pruning for different weight matrices As mentioned, the sensitivities of
different weight matrices are different. Therefore, a high pruning ratio should be set for insensitive layers,
and a low pruning ratio needs to be used for sensitive layers. To demonstrate LEAP can automatically
achieve this, we plot the remaining parameters per layer for different pruning granularity on SQuAD
in Figure 3. As can be seen, different layers receive different pruning ratios. Particularly, (i) as compared
to MHA layers, FC layers are generally pruned more, which results in a lower density ratio. This might
indicate that FC layers are less sensitive as compared to MHA layers; (ii) there is a clear trend that shallow
layers (close to inputs) have higher density ratios as compared to deep layers (close to outputs). This

13

finding is very intuitive. If the pruning ratio is too high for shallow layers, the information loss might
be too high, and it is hard for the model to propagate the information to the output layer successfully.
Therefore, the pruning ratio of shallow layers is smaller.

14

