
LEAP: Learnable Pruning for Transformer-based Models

Anonymous ACL submission

Abstract
Pruning is an effective method to reduce the001
memory footprint and computational cost asso-002
ciated with large natural language processing003
models. However, current pruning algorithms004
either only focus on one pruning category, e.g.,005
structured pruning and unstructured, or need006
extensive hyperparameter tuning in order to get007
reasonable accuracy performance. To address008
these challenges, we propose LEArnable Prun-009
ing (LEAP), an effective method to gradually010
prune the model based on thresholds learned011
by gradient descent. Different than previous012
learnable pruning methods, which utilize L0 or013
L1 penalty to indirectly affect the final pruning014
ratio, LEAP introduces a novel regularization015
function, that directly interacts with the preset016
target pruning ratio. Moreover, in order to re-017
duce hyperparameter tuning, a novel adaptive018
regularization coefficient is deployed to control019
the regularization penalty adaptively. With the020
new regularization term and its associated adap-021
tive regularization coefficient, LEAP is able022
to be applied for different pruning granular-023
ity, including unstructured pruning, structured024
pruning, and hybrid pruning, with minimal hy-025
perparameter tuning.026

1 Introduction027

Since the development of transformer mod-028

els (Vaswani et al., 2017), the number of parameters029

for natural language processing (NLP) models has030

become much larger, e.g., BERTlarge (330M) (De-031

vlin et al., 2019), Megatron-LM (8.3B) (Shoeybi032

et al., 2019), T5 (11B) (Raffel et al., 2019),033

GPT3 (170B) (Brown et al., 2020), and MT-NLG034

(530B) (Microsoft and Nvidia, 2021). Although035

larger models tend to exhibit better generalization036

ability for downstream tasks, the inference time037

and associated power consumption become critical038

bottlenecks for deploying those models on both039

cloud and edge devices.040

One promising approach to address the inference041

time and power consumption issues of these large042

models is pruning (Sanh et al., 2020; Michel et al., 043

2019; Wang et al., 2020a). As the nature of neu- 044

ral networks (NNs), different pruning granularity 045

exists, e.g., structured pruning (head pruning for 046

transformers and block-wise pruning for weight 047

matrices) and unstructured pruning (purely sparse- 048

based pruning). Different pruning methods are 049

proposed, but they generally only target one set 050

of pruning granularity. As such, when a new sce- 051

nario comes, e.g., hybrid pruning, a combination 052

of structured pruning and unstructured pruning, it 053

is unclear how to choose the proper method. 054

Meanwhile, existing work sometimes sets the 055

same pruning ratio for all layers. However, it is 056

challenging to prune the same amount of param- 057

eters of all weights of a general NNs to ultra-low 058

density without significant accuracy loss. This is 059

because not all the layers of an NN allow the same 060

pruning level. A possible approach to address this 061

is to use different pruning ratios. A higher den- 062

sity ratio is needed for certain “sensitive” layers 063

of the network, and a lower density ratio for “non- 064

sensitive” layers. However, manually setting such 065

multi-level pruning ratios is infeasible. Regulariza- 066

tion method, e.g., (Sanh et al., 2020), is proposed to 067

address multi-level pruning ratio issue. However, it 068

introduces two drawbacks: (i) a careful hand-tuned 069

threshold schedule is needed to improves the per- 070

formance; and (ii) the regularization needs heavy 071

tuning to get the desired density ratio in that the 072

regularization term is not directly applied to the 073

pruning ratio, 074

Motivated by these issues, we propose an effec- 075

tive LEArnable Pruning (LEAP) method to grad- 076

ually prune the weight matrices based on corre- 077

sponding thresholds that are learned by gradient 078

descent. We summarize our contributions below, 079

• LEAP sets a group of learnable pruning ratio pa- 080

rameters, which can be learned by the stochastic 081

gradient descent, for the weight matrices, with 082

a purpose to set a high pruning ratio for insen- 083

1

sitive layers and vice versa. As the NN prefers084

a high-density ratio for higher accuracy and low085

loss, we introduce a novel regularization func-086

tion that can directly control the preset target087

pruning ratio. As such, LEAP can easily achieve088

the desired compression ratio unlike those L0 or089

L1 penalty-based regularization methods, whose090

target pruning ratio needs careful tuning.091

• To ease hyperparameter search, we design an092

adaptive regularization magnitude λreg to adap-093

tively control the contribution to the final loss094

from the regularization penalty. The coefficient095

λreg is automatically adjusted to be large (small)096

when the current pruning ratio is far away (close097

to) the target ratio.098

• We apply LEAP for BERTbase on three datasets,099

i.e., QQP/MNLI/SQuAD, under different prun-100

ing granularity, including structured, hybrid, and101

unstructured pruning, with various pruning ra-102

tios. Our results demonstrate that LEAP can con-103

sistently achieve on-par or better performance104

as compared to previous heavily tuned methods,105

with minimal hyperparameter tuning. Moreover,106

by analyzing the pruned models, two observa-107

tions are made: (1) early layers are more sensi-108

tive to pruning, which results in a higher density109

ratio at the end; and (2) fully connected layers are110

less sensitive to pruning, which results in higher111

pruning ratios than multi-head attention layers.112

2 Methodology113

2.1 Background and Problems114

Regardless of pruning granularity, in order to prune115

a neural network (NN) there are two approaches:116

(i) one-time pruning (Yu et al., 2021; Michel et al.,117

2019) and (ii) multi-stage pruning (Han et al., 2016;118

Lagunas et al., 2021). The main difference between119

the two is that one-time pruning directly prunes120

the NN to a target ratio within one pruning cycle.121

However, one-time pruning oftentimes requires a122

pre-trained model on downstream tasks and leads123

to worse performance as compared to multi-stage124

pruning. For multi-stage pruning, two main cate-125

gories are used: (i) one needs multiple rounds for126

pruning and finetuing (Han et al., 2016); and (ii) an-127

other gradually increases pruning ratio within one128

run (Sanh et al., 2020; Lagunas et al., 2021). Here,129

we focus on the latter case, where the pruning ratio130

gradually increases until it reaches the target.131

Assume the NN consists of n weight matrices,132

W = {W1, . . . ,Wn}. To compress W , gradual133

pruning consists of the following two stages: 134

• (S1) For each Wi, we initialize a correspond- 135

ing all-one mask Mi and denote M = 136

{M1, . . . ,Mn} as the whole set of masks. 137

• (S2) We train the network with the objective: 138

minW Lpure(M ⊙ W), where M ⊙ W means 139

Wi ⊙ Mi for all i = 1, . . . n, and Lpure is the 140

standard training objective function of the as- 141

sociated task, e.g., the finite sum problem with 142

cross-entropy loss. As the training proceeds, Mi 143

is gradually updated with more zero, i.e., the 144

cardinality |Mi| = sit becomes smaller. 145

Here sit in (S2) could be a simple linear decaying 146

function or more generally a polynomial function 147

based on the user’s requirement. Such method is 148

called hard/soft-threshold pruning. For both thresh- 149

old pruning, users have to design sparsity schedul- 150

ing which raises hyperparameters search issues. 151

Hard-threshold pruning can hardly extend to dif- 152

ferent pruning granularity, which likely leads to 153

sub-optimal solutions by setting the same pruning 154

ratio for all layers. While soft threshold methods 155

could be a possible solution to resolve part of the 156

problems, it introduces another extra hyperparame- 157

ter, λreg, and there are critical concerns on how to 158

obtain the target sparse ratio. See Appendix B for 159

detailed description. 160

We address the above challenges in the coming 161

section by designing learnable thresholds with (i) a 162

simple yet effective regularization function that can 163

help the users to achieve their target sparse ratio, 164

and (ii) an adaptive regularization magnitude, λreg 165

to alleviate the hyperparameter tuning. 166

2.2 LEAP with A New Regularization 167

We denote the learnable threshold vector σ = 168

[σi, . . . , σn] and each σi associates with the tu- 169

ple (Wi,Mi, Si). With the score S and learnable 170

threshold vector σ, LEAP can be smoothly incor- 171

porated to Top-k pruning method (Zhu and Gupta, 172

2017; Sanh et al., 2020).1 173

Recall the Top-K pruning uses the score matrix 174

set S to compute M, i.e., Mi = Top-K(Si) with 175

K ∈ [0, 100] in a unit of percentage. By sorting the 176

elements of the matrix Si, Top-K set the mask Mi 177

for the top K% to be 1, and the bottom (100−K)% 178

to 0. Mathematically, it expresses as 179

Top-K(x) = 1{x∈sort(Si,K%)} (1) 180

1Our methods can thus be easily applied to magnitude-
based pruning methods by setting S to be identical to W (Han
et al., 2015).

2

where sort(Si,K%) contains the Top K% of the181

sorted matrix Si. Here K is determined by the182

users, and thus follows various kinds of sched-183

ules such as the cubic sparsity scheduling, Eq. 6.184

As described in Section 2.1, such a schedule usu-185

ally requires extensive engineering tuning in or-186

der to achieve state-of-the-art performance. More-187

over, in (Zhu and Gupta, 2017), the Top-K(·)188

threshold is fixed for all weight matrices. How-189

ever, different weight matrices have different toler-190

ances/sensitivities to pruning, meaning that a low191

pruning ratio needs to be applied for sensitive lay-192

ers, and vice versa. In order to resolve those is-193

sues, we propose an algorithm to automatically ad-194

just their thresholds for all weight matrices. More195

specifically, we define K(σi) := 100 · k(σi) for196

i = 1, . . . , n with197

k(σi) = Sigmoid(σi/T) (2)198

where the Sigmoid function is used to map σ to199

be in the range of (0, 1). T is a temperature value200

which critically controls the speed of k transition-201

ing from 1 to 0 as σ decreases. We remark that202

Sigmoid could be replaced with any continuous203

function that maps any positive or negative values204

to [0, 1]. Investigating for various such functions205

could be an interesting future direction.206

For a mask Mi ∈ Rdiin×diout , its density ratio207

|Mi|/(diin × diout) = k(σi) is uniquely determined208

by σi. However, directly applying this for our ob-209

jective function will tend to make k(σi) always210

close to 1, since the model prefers no pruning to211

achieve lower training loss. Therefore, we intro-212

duce a novel regularization term to compensate for213

this. Denote R(σ) the remaining ratio of weight214

parameter, which is a function of σ (more details215

of how to calculate R(σ) are given later). Suppose216

that our target pruning ratio is Rtarget. We propose217

the following regularization loss,218

Lreg(σ) =

{
(R(σ)−Rtarget)

2 R(σ) ≥ Rtarget,

0 else.
(3)219

Equipped with Eq. 1, 2, and 3, we then rewrite the220

training objective as221

Lobj = Lpure(Mσ ⊙W) + λregLreg(σ) (4)222

where the masks Mσ is written in an abstract man-223

ner, meaning that each mask Mi is determined by224

Top-K (defined in Eq. 1). As the Top-k opera-225

tor is not a smooth operator, we use the so-called226

Straight-through Estimator (Bengio et al., 2013) to 227

compute the gradient with respect to both σ and S . 228

That is to say, the gradient through Top-K operator 229

is artificially set to be 1. With such a regulariza- 230

tion defined in Eq. 4, there exits “competition" 231

between σi in Lpure and σi in Lreg. Particularly, σi 232

in Lpure tends to make k(σi) close to 1 as the dense 233

model generally gives better accuracy performance, 234

while σi in Lreg makes k(σi) close to the target ra- 235

tio Rtarget. Notably, our regularization method is 236

fundamentally different from those soft-threshold 237

methods by using L0 or L1 regularization. While 238

they apply a penalty to the score matrices with in- 239

direct control on final sparsity, our method focus 240

on learnable sparsity thresholds σi. Thus, we could 241

easily achieve our target compression ratios. On the 242

other hand, one may add L0 or L1 regularization 243

to Eq. 4 as the two are complementary. 244

Critical term R(σ) We now delve into the 245

calculation of R(σ). For simplicity, we con- 246

sider that all three matrices Mi, Wi, and Si 247

follow the same dimensions diin × diout. Then 248

R(σ) = Nremain(σ)/Ntotal, where the total num- 249

ber of weight parameters Ntotal =
∑n

i=1(d
i
in × 250

diout), and the number of remaining parameters 251

Nremain(σ) =
∑n

i=1 k(σi)(d
i
in × diout). 252

Adaptive regularization coefficient λreg Gener- 253

ally, for regularization-based (e.g., L1 or L0 regu- 254

larization) pruning methods, λreg needs to be care- 255

fully tuned (Sanh et al., 2020). To resolve this 256

tuning issue, we propose an adaptive formula to 257

choose the value: 258

λreg = max
{
λmaxLreg/(1−Rtarget)

2, λmin

}
,

(5) 259

where λmax and λmin are pre-chosen hyperparam- 260

eters.We found that our results are not sensitive 261

to the choice of these hyper-parameters. The idea 262

is that when R(σ) is far away from the Rtarget, 263

the new coefficient λreg in Eq. 5 is close to λmax 264

(when R(σ) = 1, it is indeed λmax) so that we can 265

have a strong regularization effect; and when R is 266

close to Rtarget, the penalty can be less heavy in 267

Eq. 4. Detailed comparison between constant and 268

our proposed adaptive regularization are referred 269

to Section 3. 270

3 Experimental Setup and Results 271

We apply LEAP with task-specific pruning for 272

BERTbase, a 12-layer encoder-only Transformer 273

model (Devlin et al., 2019) on three tasks QQP, 274

MNLI and SQUAD for unstructured, hybrid and 275

3

Methods Density 1 Density 2 Density 3

9∼10% 3∼4% 1∼2%
Soft MvP 90.2/86.8 89.1/85.5 N/A
LEAP 90.4/87.1 90.3/87.0 89.6/86.0

Q
Q

P

LEAP-l 90.9/87.9 90.6/87.4 90.4/87.1

12∼13% 10∼11% 2∼3%
Soft MvP N/A 81.2/81.8 79.5/80.1
LEAP 81.3/81.5 80.6/81.0 79.0/79.3

M
N

L
I

LEAP-l 82.2/82.2 81.7/81.7 80.3/80.2

9∼10% 5∼6% 3∼4%
Soft MvP 76.6/84.9 N/A 72.7/82.3
LEAP 77.0/85.4 74.3/83.3 72.9/82.5

SQ
uA

D

LEAP-l 78.7/86.7 75.9/84.5 75.7/84.5

Table 1: Different density ratios for unstructured prun-
ing. Here Soft MvP is referred to (Lagunas et al., 2021).
Here LEAP uses exactly training strategies as (Lagunas
et al., 2021) and LEAP-l doubles the training epochs.
We report accuracy/F1 socre for QQP, accuracy of match
and mis-match sets for for MNLI, exact match/F1 score
for SQuAD.

structured block-wise pruning. Please see the de-276

tailed experimental setup in Appendix C). We com-277

pare with (Sanh et al., 2020; Lagunas et al., 2021)278

but not other methods for the two reasons: (1) our279

training setup are close to them and they are the280

current stat-of-the-art methods for BERT models.281

(2) in (Sanh et al., 2020; Lagunas et al., 2021),282

there already exist extensive comparisons between283

different methods, including hard-threshold and L0284

regularization.285

Unstructured pruning We show the results of286

LEAP under different density ratios of BERTbase287

on QQP/MNLI/SQuAD. As can be seen, compared288

to Soft MvP, LEAP achieves better performances289

on 4 out of 6 direct comparisons (as Soft MvP only290

provides two pruning ratios per task). Particularly,291

for QQP, LEAP is able to reduce the density ratio292

to 1∼2% while achieving similar performance as293

Soft MvP with 3∼4% density ratio; for MNLI,294

although LEAP is slightly worse than Soft MvP,295

the performance gap is within 0.6 for all cases.296

We also list the results of LEAP-l, which utilizes297

more training epochs to boost the performance,298

in Table 1. One hypothesis to explain why longer299

training can significantly boost the performance of300

LEAP is that LEAP introduces both more learn-301

able hyperparameters and the adaptive regulariza-302

tion magnitude. As such, those extra parameters303

need more iterations to reach the “optimal” values304

(which is also illustrated in Section E).305

Hybrid and structure pruning We start with hy-306

brid pruning and compare LEAP-1 with Soft MvP-307

Methods Density 1 Density 2 Density 3

27∼30% 21∼25% 11∼15%
soft MvP-1 (H32) NA/87.6 NA/87.1 NA/86.8

Q
Q

P

LEAP-1 (H32) 91.2/88.0 91.0/87.9 90.7/85.5
LEAP-1 (S32) 91.0/87.9 90.9/87.7 90.5/87.3

27∼30% 17∼21% 11∼15%
soft MvP-1 (H32) 83.0/83.6 82.3/82.7 81.1/81.5

M
N

L
I

LEAP-1 (H32) 83.0/83.2 82.2/82.4 81.5/81.5
LEAP-1 (S32) 82.0/82.1 81.0/81.0 80.0/80.0

27∼30% 21∼25% 15∼19%
soft MvP-1 (H32) 80.5/88.7 79.3/86.9 78.8/86.6
LEAP-1 (H32) 80.1/87.6 79.3/87.0 78.2/86.1
soft MvP-1 (S32) 77.9/85.6 77.1/85.2 N/A

SQ
uA

D

LEAP-1 (S32) 77.9/85.9 77.2/86.4 N/A

Table 2: Hybrid and structured pruning comparison
between LEAP and Soft MvP (Lagunas et al., 2021).See
Table 1 for task metrics and reading instructions

1. The results are shown in Table 2. Again, as can 308

be seen, for different tasks with various pruning 309

ratio, the overall performance of LEAP-1 is similar 310

to Soft MvP-1, which demonstrates the easy adop- 311

tion feature of LEAP. We also present structured 312

pruning results in Table 2. The first noticeable 313

finding as expected here is that the accuracy drop 314

of structured pruning is much higher than hybrid 315

mode, especially for a low density ratio. Compared 316

to Soft MvP-1, LEAP-1 achieves slightly better 317

performance on SQuAD. 318

We reiterate that Table 1 and Table 2 are not 319

about beating the state-of-the-art results but em- 320

phasizing that LEAP requires much less hyper- 321

parameter tuning but achieves similar performance 322

as Soft MvP that involved a large set of the 323

hyper-parameter sweep. For details about hyper- 324

parameter tuning of Soft MvP-1 and LEAP, see 325

Appendix D. In addition, we provide in-depth anal- 326

ysis of LEAP in Appendix E. 327

4 Conclusions 328

In this work, we present LEAP, a learnable prun- 329

ing framework for transformer-based models. To 330

alleviate the hyperparameter tuning effort, LEAP 331

introduces a novel regularization function and de- 332

signs an adaptive regularization magnitude coeffi- 333

cient. By combining these two techniques, LEAP 334

achieves on-par or even better performance for var- 335

ious pruning scenarios as compared to previous 336

methods. LEAP is less sensitive to the newly intro- 337

duced hyperparameters and show the advance of 338

the proposed adaptive regularization coefficient. Fi- 339

nally, we show that there exists pruning sensitivity 340

associated with the depth of the network. 341

4

References342

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing343
Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin344
King. 2020. BinaryBERT: Pushing the limit of BERT345
quantization. arXiv preprint arXiv:2012.15701.346

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.347
2013. Estimating or propagating gradients through348
stochastic neurons for conditional computation.349
arXiv preprint arXiv:1308.3432.350

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,351
Vivek Menon, Sun Choi, Kushal Datta, and Vikram352
Saletore. 2019. Efficient 8-bit quantization of trans-353
former neural machine language translation model.354
arXiv preprint arXiv:1906.00532.355

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie356
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind357
Neelakantan, Pranav Shyam, Girish Sastry, Amanda358
Askell, et al. 2020. Language models are few-shot359
learners. arXiv preprint arXiv:2005.14165.360

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Si-361
jia Liu, Yang Zhang, Zhangyang Wang, and362
Michael Carbin. 2020. The lottery ticket hypoth-363
esis for pre-trained BERT networks. arXiv preprint364
arXiv:2007.12223.365

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and366
Kristina Toutanova. 2019. BERT: Pre-training of367
deep bidirectional transformers for language under-368
standing. In NAACL-HLT.369

Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learn-370
ing to prune deep neural networks via layer-wise371
optimal brain surgeon. In Advances in Neural Infor-372
mation Processing Systems, pages 4857–4867.373

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,374
Rathinakumar Appuswamy, and Dharmendra S375
Modha. 2019. Learned step size quantization. arXiv376
preprint arXiv:1902.08153.377

Angela Fan, Edouard Grave, and Armand Joulin. 2019.378
Reducing transformer depth on demand with struc-379
tured dropout. arXiv preprint arXiv:1909.11556.380

Angela Fan, Pierre Stock, Benjamin Graham, Edouard381
Grave, Remi Gribonval, Herve Jegou, and Armand382
Joulin. 2020. Training with quantization noise for383
extreme fixed-point compression. arXiv preprint384
arXiv:2004.07320.385

Jonathan Frankle and Michael Carbin. 2018. The lottery386
ticket hypothesis: Finding sparse, trainable neural387
networks. arXiv preprint arXiv:1803.03635.388

Song Han, Huizi Mao, and William J Dally. 2016. Deep389
compression: Compressing deep neural networks390
with pruning, trained quantization and huffman cod-391
ing. International Conference on Learning Represen-392
tations.393

Song Han, Jeff Pool, John Tran, and William Dally. 394
2015. Learning both weights and connections for 395
efficient neural network. In Advances in neural infor- 396
mation processing systems, pages 1135–1143. 397

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, 398
and Song Han. 2018. Amc: Automl for model com- 399
pression and acceleration on mobile devices. In Pro- 400
ceedings of the European Conference on Computer 401
Vision (ECCV), pages 784–800. 402

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014. 403
Distilling the knowledge in a neural network. Work- 404
shop paper in NIPS. 405

Zehao Huang and Naiyan Wang. 2018. Data-driven 406
sparse structure selection for deep neural networks. 407
In Proceedings of the European conference on com- 408
puter vision (ECCV), pages 304–320. 409

Forrest N Iandola, Albert E Shaw, Ravi Krishna, and 410
Kurt W Keutzer. 2020. SqueezeBERT: What can 411
computer vision teach NLP about efficient neural 412
networks? arXiv preprint arXiv:2006.11316. 413

Shankar Iyer, Nikhil Dandekar, and Kornl Csernai. 2017. 414
First quora dataset release: Question pairs, 2017. 415
URL https://data. quora. com/First-Quora-Dataset- 416
Release-Question-Pairs. 417

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 418
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019. 419
TinyBERT: Distilling BERT for natural language un- 420
derstanding. arXiv preprint arXiv:1909.10351. 421

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 422
2020. Reformer: The efficient transformer. arXiv 423
preprint arXiv:2001.04451. 424

François Lagunas, Ella Charlaix, Victor Sanh, and 425
Alexander M Rush. 2021. Block pruning for faster 426
transformers. In Proceedings of the 2021 Conference 427
on Empirical Methods in Natural Language Process- 428
ing, pages 10619–10629. 429

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 430
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 431
2019. ALBERT: A lite bert for self-supervised learn- 432
ing of language representations. In International 433
Conference on Learning Representations. 434

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS 435
Torr. 2018. Snip: Single-shot network pruning 436
based on connection sensitivity. arXiv preprint 437
arXiv:1810.02340. 438

Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, 439
Feiyue Huang, and Baochang Zhang. 2018. Acceler- 440
ating convolutional networks via global & dynamic 441
filter pruning. In IJCAI, pages 2425–2432. 442

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. 443
Thinet: A filter level pruning method for deep neural 444
network compression. In Proceedings of the IEEE 445
international conference on computer vision, pages 446
5058–5066. 447

5

Paul Michel, Omer Levy, and Graham Neubig. 2019.448
Are sixteen heads really better than one? arXiv449
preprint arXiv:1905.10650.450

Microsoft and Nvidia. 2021. Using DeepSpeed and451
Megatron to Train Megatron-Turing NLG 530B, the452
World’s Largest and Most Powerful Generative Lan-453
guage Model. https://developer.nvidia454
.com/blog/using-deepspeed-and-mega455
tron-to-train-megatron-turing-nlg-456
530b-the-worlds-largest-and-most-p457
owerful-generative-language-model/.458

Sharan Narang, Eric Undersander, and Gregory Diamos.459
2017. Block-sparse recurrent neural networks. arXiv460
preprint arXiv:1711.02782.461

Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo462
Shin. 2020. Lookahead: a far-sighted alterna-463
tive of magnitude-based pruning. arXiv preprint464
arXiv:2002.04809.465

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.466
When BERT plays the lottery, all tickets are winning.467
arXiv preprint arXiv:2005.00561.468

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine469
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,470
Wei Li, and Peter J Liu. 2019. Exploring the limits471
of transfer learning with a unified text-to-text trans-472
former. arXiv preprint arXiv:1910.10683.473

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and474
Percy Liang. 2016. Squad: 100,000+ questions475
for machine comprehension of text. arXiv preprint476
arXiv:1606.05250.477

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and478
Preslav Nakov. 2020. Poor man’s BERT: Smaller479
and faster transformer models. arXiv preprint480
arXiv:2004.03844.481

Victor Sanh, Lysandre Debut, Julien Chaumond, and482
Thomas Wolf. 2019. DistilBERT, a distilled version483
of bert: smaller, faster, cheaper and lighter. arXiv484
preprint arXiv:1910.01108.485

Victor Sanh, Thomas Wolf, and Alexander M Rush.486
2020. Movement pruning: Adaptive sparsity by fine-487
tuning. arXiv preprint arXiv:2005.07683.488

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei489
Yao, Amir Gholami, Michael W Mahoney, and Kurt490
Keutzer. 2020. Q-BERT: Hessian based ultra low491
precision quantization of bert. In AAAI, pages 8815–492
8821.493

Sheng Shen, Zhewei Yao, Douwe Kiela, Kurt Keutzer,494
and Michael W Mahoney. 2021. What’s hidden in495
a one-layer randomly weighted transformer? arXiv496
preprint arXiv:2109.03939.497

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,498
Patrick LeGresley, Jared Casper, and Bryan Catan-499
zaro. 2019. Megatron-LM: Training multi-billion500
parameter language models using gpu model paral-501
lelism. arXiv preprint arXiv:1909.08053.502

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. 503
Patient knowledge distillation for bert model com- 504
pression. arXiv preprint arXiv:1908.09355. 505

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, 506
Yiming Yang, and Denny Zhou. 2020. MobileBERT: 507
a compact task-agnostic BERT for resource-limited 508
devices. arXiv preprint arXiv:2004.02984. 509

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga 510
Vechtomova, and Jimmy Lin. 2019. Distilling task- 511
specific knowledge from BERT into simple neural 512
networks. arXiv preprint arXiv:1903.12136. 513

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 514
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 515
Kaiser, and Illia Polosukhin. 2017. Attention is all 516
you need. In Advances in neural information pro- 517
cessing systems, pages 5998–6008. 518

Hanrui Wang, Zhekai Zhang, and Song Han. 2020a. 519
Spatten: Efficient sparse attention architecture with 520
cascade token and head pruning. arXiv preprint 521
arXiv:2012.09852. 522

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, 523
and Hao Ma. 2020b. Linformer: Self-attention with 524
linear complexity. arXiv preprint arXiv:2006.04768. 525

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019. 526
Structured pruning of large language models. arXiv 527
preprint arXiv:1910.04732. 528

Adina Williams, Nikita Nangia, and Samuel R Bow- 529
man. 2017. A broad-coverage challenge corpus for 530
sentence understanding through inference. arXiv 531
preprint arXiv:1704.05426. 532

Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. 533
2019. Autoprune: Automatic network pruning 534
by regularizing auxiliary parameters. In Advances 535
in Neural Information Processing Systems, pages 536
13681–13691. 537

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S 538
Morcos. 2019. Playing the lottery with rewards and 539
multiple languages: lottery tickets in rl and nlp. arXiv 540
preprint arXiv:1906.02768. 541

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I 542
Morariu, Xintong Han, Mingfei Gao, Ching-Yung 543
Lin, and Larry S Davis. 2018. Nisp: Pruning net- 544
works using neuron importance score propagation. 545
In Proceedings of the IEEE Conference on Computer 546
Vision and Pattern Recognition, pages 9194–9203. 547

Shixing Yu, Zhewei Yao, Amir Gholami, Zhen Dong, 548
Michael W Mahoney, and Kurt Keutzer. 2021. 549
Hessian-aware pruning and optimal neural implant. 550
arXiv preprint arXiv:2101.08940. 551

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, 552
and Andreas Moshovos. 2020. Gobo: Quantiz- 553
ing attention-based nlp models for low latency and 554
energy efficient inference. In 2020 53rd Annual 555
IEEE/ACM International Symposium on Microarchi- 556
tecture (MICRO), pages 811–824. IEEE. 557

6

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe558
Wasserblat. 2019. Q8BERT: Quantized 8bit bert.559
arXiv preprint arXiv:1910.06188.560

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao561
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:562
Distillation-aware ultra-low bit bert. arXiv preprint563
arXiv:2009.12812.564

Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,565
Wenjun Zhang, and Qi Tian. 2019. Variational con-566
volutional neural network pruning. In Proceedings567
of the IEEE Conference on Computer Vision and Pat-568
tern Recognition, pages 2780–2789.569

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-570
rich Schütze. 2020. Masking as an efficient alter-571
native to finetuning for pretrained language models.572
arXiv preprint arXiv:2004.12406.573

Michael Zhu and Suyog Gupta. 2017. To prune, or not574
to prune: exploring the efficacy of pruning for model575
compression. arXiv preprint arXiv:1710.01878.576

7

A Related Work577

Different approaches have been proposed to compress large pre-trained NLP models. These efforts can578

be generally categorized as follows: (i) knowledge distillation (Jiao et al., 2019; Tang et al., 2019; Sanh579

et al., 2019; Sun et al., 2019); (ii) quantization (Bhandare et al., 2019; Zafrir et al., 2019; Shen et al.,580

2020; Fan et al., 2020; Zadeh et al., 2020; Zhang et al., 2020; Bai et al., 2020; Esser et al., 2019); (iii)581

new architecture design (Sun et al., 2020; Iandola et al., 2020; Lan et al., 2019; Kitaev et al., 2020; Wang582

et al., 2020b); and (iv) pruning. Pruning can be broadly categorized into unstructured pruning (Dong583

et al., 2017; Lee et al., 2018; Xiao et al., 2019; Park et al., 2020; Han et al., 2016; Sanh et al., 2020) and584

structured pruning (Luo et al., 2017; He et al., 2018; Yu et al., 2018; Lin et al., 2018; Huang and Wang,585

2018; Zhao et al., 2019; Yu et al., 2021; Michel et al., 2019). Here, we briefly discuss the related pruning586

work in NLP.587

For unstructured pruning, (Yu et al., 2019; Chen et al., 2020; Prasanna et al., 2020; Shen et al., 2021)588

explore the lottery-ticket hypothesis (Frankle and Carbin, 2018) for transformer-based models; (Zhao589

et al., 2020) shows that pruning is an alternative effective way to fine-tune pre-trained language models on590

downstream tasks; and (Sanh et al., 2020) proposes the so-called movement pruning, which considers591

the changes in weights during fine-tuning for a better pruning strategy, and which achieves significant592

accuracy improvements in high sparsity regimes. However, as an extension of (Narang et al., 2017), (Sanh593

et al., 2020) requires non-trivial hyperparameter tuning to achieve better performance as well as desired594

pruning ratio.595

For structured pruning, (Fan et al., 2019; Sajjad et al., 2020) uses LayerDrop to train the model and596

observes that small/efficient models can be extracted from the pre-trained model; (Wang et al., 2019) uses597

a low-rank factorization of the weight matrix and adaptively removes rank-1 components during training;598

and (Michel et al., 2019) tests head drop for multi-head attention and concludes that a large percentage of599

attention heads can be removed during inference without significantly affecting the performance. More600

recently, (Lagunas et al., 2021) extends (Sanh et al., 2020) from unstructured pruning to block-wise601

structured pruning. As a continuing work of (Sanh et al., 2020; Narang et al., 2017), hyperparameter602

tuning is also critical for (Lagunas et al., 2021).603

Although fruitful pruning algorithms are proposed, most methods generally only work for specific604

pruning scenarios, e.g., unstructured or structured pruning. Also, a lot of algorithms either (i) need a hand-605

tuned threshold (aka pruning ratio) to achieve good performances; or (ii) require careful regularization606

magnitude/schedule to control the final pruning ratio and retain the model quality. Our LEAP is a607

general pruning algorithm that achieves on-par or even better performance under similar pruning ratio608

across various pruning scenarios as compared to previous methods, and LEAP achieves this with very609

minimal hyperparameter tuning by introducing a new regularization term and a self-adaptive regularization610

magnitude.611

B Problems of Existing Hard/Soft-threshold Pruning Methods612

In this section, we continue a more detailed description on problems of existing hard/soft-threshold613

pruning methods. In (Zhu and Gupta, 2017; Sanh et al., 2020; Lagunas et al., 2021), sit in (S2) Section 2.1614

is set to be the same across all the weight matrices, i.e., sit := st and they use a cubic sparsity scheduling615

for the target sparsity sf given a total iterations of tf :616

st =

s0 0 ≤ t < t0,

sf + (s0 − sf)(1− t−(t0+tc)
tf−(t0+tc)

)3 t0 ≤ t < tf − tc,

sf t ≥ tc.

(6)617

Although threshold methods achieve reasonably advanced pruning ratios along with high model qualities,618

they also exhibit various issues.619

Common issues Both hard- and soft- threshold pruning introduce three hyperparameters: the initial620

sparsity value s0, the warmup step t0, and the cool-down steps tc. As a common practical issue, more621

hyperparameters need more tuning efforts, and the question, how to choose the hyperparameters v0, t0622

and tf , is by no means resolved.623

8

Issues of hard-threshold pruning It is natural for weight matrices to have different toler- 624

ances/sensitivities to pruning, which means that a high pruning ratio needs to be applied for insensitive 625

layers, and vice versa. However, for hard-threshold pruning, which sorts the weight in one layer by 626

absolute values and masks the smaller portion (i.e., sit) to zero, it uses the same pruning ratio across all 627

layers. That oftentimes leads to a sub-optimal solution for hard-threshold pruning. 628

As such instead of using a single st schedule, a more suitable way is to use different sit, i = 1, . . . n for 629

each weight matrix Wi. However, this leads the number of tuning hyperparameters to be a linear function 630

as the number of weight matrices, i.e., 3n. For instance, there are 3× 6× 12 = 216 hyperparameters for 631

the popular NLP model–BERTbase, a 12-layer encoder-only Transformer of which each layer consists of 6 632

weight matrices (Devlin et al., 2019). Extensively searching for these many hyperparameters over a large 633

space is impractical. 634

Except for the single threshold issue, the hard-threshold method is hard to extend to different pruning 635

scenarios, e.g., block-pruning, head pruning for attention heads, and filter pruning for fully connected 636

layers. The reason is that the importance of those structured patterns cannot be simply determined by 637

their sum of absolute values or other norms such as the Euclidean norm. 638

Issues of soft-threshold pruning One way to resolve the above issues is through soft-threshold methods. 639

Instead of using the magnitude (aka absolute value) of the weight matrix to generate the mask, soft- 640

threshold methods introduce a regularization (penalty) function Lreg(S) to control the sparsity of the 641

weight parameters (for instance, Lp-norm, Lreg = ∥ · ∥p, with p = 0 or p = 1). Here, S := {Si}ni=1 642

and each Si refers to the associated importance score matrix of Wi, which is learnable during training. 643

Particularly, (i) this Si can be adopted to different pruning granularity, e.g., structured and unstructured 644

pruning, and (ii) the final pruning ratio of each weight matrix can be varied thanks to the learnable nature 645

of Si. 646

For soft-threshold pruning, the mask, Mi, is generated by the learnable importance score Si and st
2 647

using the comparison function, Mi = f(Si) > st.3 Where f(·) is any function that maps real values 648

to [0, 1]. As f(Si) will prefer larger values as smaller loss will be introduced to training procedure, a 649

regularization term is added to the training objective, 650

Lobj(M⊙W) = Lpure(M⊙W) + λregLreg(f(S)) (7) 651

The coefficient λreg is used to adjust the magnitude of the penalty (the larger λreg, the sparser the W). 652

Although soft-threshold pruning methods achieve better performance as compared to hard-threshold 653

pruning methods, it introduces another hyperparameter λreg. More importantly, as the final sparsity is 654

controlled indirectly by the regularization term, it requires sizable laborious experiments to achieve the 655

desired compression ratio. 656

C Experimental Setup 657

We apply LEAP with task-specific pruning for BERTbase, a 12-layer encoder-only Transformer model (De- 658

vlin et al., 2019), with approximately 85M parameters excluding the first embedding layer. We focus 659

on three monolingual (English) tasks: question answer (SQuAD v1.1) (Rajpurkar et al., 2016); sentence 660

similarity (QQP) (Iyer et al., 2017); and natural language inference (MNLI) (Williams et al., 2017). For 661

SQuAD, QQP, and MNLI, there are 88K, 364K, 392K training examples respectively. 662

In order to do a fair comparison with Soft MvP (Lagunas et al., 2021), for all tasks, we perform logit 663

distillation to boost the performance (Hinton et al., 2014). That is, 664

Lobj = αLds + (1− α)Lce(M(σ)⊙W) + λregLreg(σ) (8) 665

Here, Lds is the KL-divergence between the predictions of the student and the teacher, Lce is the original 666

cross entropy loss function between the student and the true label, and α is the hyperparameter that 667

balances the cross-entropy loss and the distillation loss. We let α = 0.9 by default for fair comparison 668

2When all sit are the same, we drop the superscript for simplicity.
3Here both the function f(·) and the comparison are element wise and the comparison returns either 1 or 0.

9

Pruning Settings MHA FC

Hybrid (H32) 32× 32 1× 1
Structure (S32) 32× 32 32× 32
Structure (S16) 16× 16 16× 16
Structure (S8) 8× 8 8× 8
Unstructure (S1) 1× 1 1× 1

Table 3: Summary of different pruning settings. Here the first column shows the abbreviate name we will refer to
later, the second column shows the block size used for multi-head attention (MHA), and the third column shows the
block size used for fully-connected layers (FC).

(One might be able to improve the results further with more careful hyperparameter tuning and more669

sophisticated distillation methods).670

Training Details For all three tasks, the temperature parameter T for k(σi) is chosen between671

{16, 32, 48, 64} and λmax varies between {40, 80, 160, 320} with λmin = 10. For initialization of672

σi, we set it to be 5T . We use a batch size 32, a sequence 128 for QQP/MNLI and 11000/12000 warmup673

steps (about 1 epoch) for learning rate. As for SQuAD, we use a batch size 16 and a sequence 384, and674

we use 5400 warmup steps (about 1 epoch). We use a learning rate of 3e-5 (1e-2) for the original weights675

(for pruning-rated parameters, i.e., S and σ). We set all the training to be deterministic with the random676

seed of 17. All the models are trained using FP32 with PyTorch on a single V100 GPU. Note that these677

configurations strictly follow the experimental setup in (Sanh et al., 2020; Lagunas et al., 2021); readers678

could check more details there. For the results in Table 1, the entire epoch using LEAP is 10, 6, and679

10, respectively, for QQP, MNLI, and SQuAD. For the results of LEAP-1 and the results in Table 2, we680

simply double training epochs correspondingly (i.e., 20, 12, and 20).681

Structured/Unstructured/Hybrid pruning The basic ingredients of the transformer-based layer consist682

of multi-headed attention (MHA) and fully connected (FC) sub-layers. We denote the sets of weight683

matrices Watt for MHA and Wfc for FC. Before we give details on the three pruning settings (Structured,684

Unstructured, and Hybrid), we first explain square d× d block-wise pruning. Consider an output matrix685

as W ∈ Rdin×dout , where din = dr and dout = dc (here r and c are integer by design). We will define a686

mask M and a score S with the dimension of r × c for the matrix W . Given a score [S]i,j , if the Top-K687

operator returns [M]i,j = 0, then all d2 elements in the (i, j)-th block of W will be set to 0; otherwise,688

[M]i,j = 1 means keeping those elements.689

In our experiments, structured pruning refers to applying block-wise pruning to both sets, i.e., Watt and690

Wfc. In addition, we make the square block size the same in both MHA and FC sub-layers and we choose691

d = 32. Unstructured pruning is using d = 1 for MHA and FC. Hybrid pruning means using structured692

pruning for MHA (setting the block size to be d = 32) and using unstructured one for FC (d = 1). As693

such, there are three different sets of experiments and we summarize them in Table 3. We test our methods694

with the scores S described in movement pruning (Sanh et al., 2020; Lagunas et al., 2021) over three695

datasets across unstructured, hybrid, and structured pruning setups. Moreover, we follow strictly (Lagunas696

et al., 2021) (referred to as Soft Pruning in later text) on the learning rate including warm-up and decaying697

schedules as well as the total training epochs to make sure the comparison is fair. Let LEAP-l and soft698

MvP-1 denote a double-epoch training setup compared to LEAP and Soft Pruning (Sanh et al., 2020). For699

more training details, see Appendix C.700

D More Results Details701

Smaller tasks Note larger datasets (QQP/MNLI/SQuAD) to evaluate the performance of the pruning702

method is very common due to the evaluation robustness. However, to illustrate the generalization ability703

of LEAP, we also tested its performance on two smaller datasets STS-B and MPRC, using block pruning704

with size 32x32. The results are shown in Table 1. As can be seen, with around 20% density ratio, LEAP705

10

still achieves marginal accuracy degradation compared to baseline. 706

Spearman correlation Density ratio
STS-B T=1 T=2 T=4 T=1 T=2 T=4
λmax =80 85.68 85.86 85.96 20.0 20.1 22.5
λmax =160 85.73 85.91 86.19 20.0 20.1 26.0
λmax =320 85.72 86.01 86.46 20.0 20.3 28.5

Accuracy Density ratio
MRPC T=1 T=2 T=4 T=1 T=2 T=4
λmax =80 82.1 82.6 79.16 20.0 20.0 20.3
λmax =160 81.37 82.35 79.65 20.0 20.0 21.3
λmax =320 80.88 81.37 78.67 20.0 20.0 22.7

Table 4: Results for STS-B (baseline is 88.71) and MRPC (baseline is 87.01%) with different temperature T and
adaptive λmax for structure pruning (block size 32x32).

Hyper-parameter We emphasize again the results of soft mvp is a strong baseline, and our goal 707

is not to purely beat soft mvp from accuracy perspective. However, their results require extensive 708

hyperparameter tuning (see directory), while ours require to only tune T . To show the generalization of 709

the best hyperparameter, we include the results for various λmax and T on multiple tasks in Table 2. Note 710

that when T is fixed, different λmax gives similar results over various tasks. 711

Accuracy Density ratio
QQP T=16 T=32 T=48 T=16 T=32 T=48
λmax=160 90.68 90.87 90.7 20.07 20.07 20.1
λmax=320 90.79 90.78 90.6 20.08 20.06 20.1

Accuracy (MNLI/MNLI-MM) Density ratio
MNLI T=16 T=32 T=48 T=16 T=32 T=48
λmax=40 80.41/81.06 80.79/81.12 80.87/81.22 21.07 21.52 22.25
λmax=160 80.56/80.98 80.88/80.81 81.02/81.17 21.07 21.46 22.15

Table 5: Results for QQP and MRPC with different temperature T and adaptive λmax for structure pruning (block
size 32x32).

E Analysis 712

As mentioned, LEAP is a learnable pruning method with a minimal requirement of hyperparameter 713

tuning. In order to demonstrate this, we analyze LEAP by delving into the key components of LEAP: the 714

initialization of our thresholds σ, the temperature T , and the regularization term λreg. 715

Temperature T As T defined in Eq. 2, it plays a critical role in determining the rate at which the 716

threshold curve k(σi) falls. In addition, T also directly links to the initialization of σi which is set to 717

be 5T for all i such that Sigmoid(σi/T) ≈ 1. This allows the model to have sufficient time to identify 718

the layers which are insensitive for aggressive pruning and vice versa. To understand how T influences 719

the performances of the Bert model, we conduct an unstructured pruning on the QQP dataset by varying 720

T ∈ {64, 48, 32, 16} and keeping all other hyperparameters to be the same. We plot the objective loss 721

Lobj (loss), the regularization loss Lreg (regu_loss), the density ratio R(σ), and F1 accuracy, with respect 722

to the iterations in Figure 1. 723

Temperature
λreg = 50 λreg = 160 λreg = 320

acc/f1 density acc/f1 density acc/f1 density

T = 16 76.58/84.94 10.66 76.49/85.01 10.27 76.33/84.85 10.2
T = 32 77.11/85.49 11.46 76.97/85.47 10.39 76.96/85.36 10.23

Table 6: Unstructured pruning on SQuAD with epoch 10 using various values of regularization coefficient λreg

in Eq. 4. It shows that our LEAP is not too sensitive to the hyper-parameter choices T and λreg .

11

https://github.com/huggingface/nn_pruning/tree/main/analysis/article/files

Figure 1: Effect of temperature T for unstructured pruning on QQP. The density ratio is set to be 1%.

Among the four curves in Figure 1, T = 48 gives the best F1 accuracy while achieving ∼1% density,724

which clearly demonstrates the significance of T for LEAP. Meanwhile, we see that the gaps between725

the performance for all T except 64 are close, thus it shows that LEAP is not sensitive to T . A possible726

explanation why T = 64 gives the worse performance is that the density ratio of T = 64 decays relatively727

slower compared to rest curves. As such, when it is close to the desired pruning regime, the learning rate728

is relatively small and so it cannot be able to recover the accuracy. On the other hand, it is interesting to729

note that using the temperature T = 16 (orange curve), the density ratio increases after around five epochs730

and keeps increasing to the end4, which results in a much better performance even though it experiences731

the most accuracy drop in the beginning. This in some scenes illustrates the “competition" between σi732

in Lpure and σi in Lreg mentioned in Section 2.2: the accuracy increases at epoch 5 meaning that Lpure733

is decreasing effectively and the Lreg increases (compromises). Compared to those manual scheduling734

thresholds, this increasing phenomena of σi also shows the advantage of learnable thresholds verifying735

that the model can figure out automatically when to prune and when not.736

Robustness of hyper-parameter tuning T and λreg We see in the previous section that given the same737

λreg, various values of the temperature T lead to similar results although tuning is necessary to achieve738

the best one. Here we study how robust the coefficient of λreg in our proposed regularization Lreg. We739

prune BERTbase on the SQuAD task with a target ratio 10% with a combination of λreg ∈ {50, 160, 320}740

and T ∈ {16, 32}, for which the results is in Table 6.741

For a given T , it indicates that the results are not highly sensitive to different λregs as there is only742

about 0.1 variation for accuracy. It is worth noticing that a smaller λreg (here λreg = 50) can indeed affect743

achieving our target sparse ratio. However, the most off pruning ratio is 11.46%, which is reasonably744

close to the desired target of 10%.745

For a given λreg, larger T leads both the accuracy and the density ratio higher as expected. The reason746

is that the density ratio function, i.e., Sigmoid(σi/T), becomes flatter for larger T , which leads to a higher747

density ratio by using the same value of σ (Generally, σ is negative to achieve < 50% density ratio). And748

higher density ratio results in higher accuracy.749

Overall, we can see that LEAP is robust to λreg. Although one still needs to tune T to obtain the most750

competitive performance, the tuning efforts are much less than the half/soft-thresthod pruning methods as751

discussed in Appendix 2.1.752

4Please note that the y-axis of the density plot is in logarithmic scale. Even T = 16 slightly increases the density ratio, it is
still very close to 1%.

12

Figure 2: Effect of adaptive regularization T for Hybrid pruning (H32) on MNLI with a target dense ratio of 30%.
Note that in the plot of density ratio with respect to epochs (left bottom), the purple (blue) and orange (green) curves
are overlapped. Also in the right top bottom, blue and green curves are overlapped.

Figure 3: The density ratio k(σi) to all the weight matrices for structured, hybrid and unstructured pruning on
SQuAD, of which the total density ratios are respectively 20% , 16%, and 8%.

The regularization coefficient λreg To better understand the effect of adaptive λreg (Eq. 5), we set 753

λmax ∈ {160, 320} and fix λmin = 10 (same as Section 3) to prune BERTbase on the MNLI task with a 754

target ratio 30%. In addition, we also compare this adaptive coefficient with their constant counterparts 755

λreg ∈ {160, 320}. We plots the λreg (lambda_reg), the regularization loss Lreg (regu_loss), the density 756

ratio R(σ), and accuracy, with respect to the iterations in Figure 2. First of all, we see that our adaptive 757

coefficient λreg decreases in a quadratic manner and reaching to the λmin = 10 after 4 epochs, which 758

slows down the pruning activities after 4 epochs. Also, note that the curves of different λmax are actually 759

overlapped with each other, which also indicates that LEAP is not vulnerable to λreg. Meanwhile, as λreg 760

quickly reaches λmin, the importance score S has more time to figure out the pruning parameters for the 761

last small portion. As such, this slowness can in turn decrease the drop of accuracy and thus eventually 762

recover a much better accuracy than that of the constant regularization. 763

The effect of learnable pruning for different weight matrices As mentioned, the sensitivities of 764

different weight matrices are different. Therefore, a high pruning ratio should be set for insensitive layers, 765

and a low pruning ratio needs to be used for sensitive layers. To demonstrate LEAP can automatically 766

achieve this, we plot the remaining parameters per layer for different pruning granularity on SQuAD 767

in Figure 3. As can be seen, different layers receive different pruning ratios. Particularly, (i) as compared 768

to MHA layers, FC layers are generally pruned more, which results in a lower density ratio. This might 769

indicate that FC layers are less sensitive as compared to MHA layers; (ii) there is a clear trend that shallow 770

layers (close to inputs) have higher density ratios as compared to deep layers (close to outputs). This 771

13

finding is very intuitive. If the pruning ratio is too high for shallow layers, the information loss might772

be too high, and it is hard for the model to propagate the information to the output layer successfully.773

Therefore, the pruning ratio of shallow layers is smaller.774

14

