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ABSTRACT

There has been an increasing interest in using symbolic models along with rein-
forcement learning (RL) problems, where these coarser abstract models are used
as a way to provide RL agents with higher level guidance. However, most of these
works are inherently limited by their assumption of having an access to a symbolic
approximation of the underlying problem. To address this issue, we introduce a
new method for learning optimistic symbolic approximations of the underlying
world model. We will see how these representations, coupled with fast diverse
planners developed by the automated planning community, provide us with a new
paradigm for optimistic exploration in sparse reward settings. We investigate the
possibility of speeding up the learning process by generalizing learned model dy-
namics across similar actions with minimal human input. Finally, we evaluate the
method, by testing it on multiple benchmark domains and compare it with other
RL strategies for sparse reward settings, including hierarchical RL and intrinsic
reward based exploration.

1 INTRODUCTION

A popular trend in recent years is using symbolic planning models with reinforcement learning (RL)
algorithms. Works have shown how these models could be used to provide guidance to RL agents
(Yang et al., 2018; Lee et al., 2022; Gehring et al., 2022), to provide explanations (Sreedharan et al.,
2022b), and as an interface to receive guidance and advice from humans (Kambhampati et al., 2022).
Coupled with the fact that advances in automated planning has made available a number of robust
tools that RL researchers could adapt directly to their problems (cf. (Francés et al., 2018; Muise
et al., 2022; Silver & Chitnis, 2020)), these methods have the potential to help addressing many
problems faced by state-of-the-art RL methods. However, a major hurdle to using these methods
is the need to access a complete and correct symbolic model of the underlying sequential-decision
problems. While there have been efforts from the planning community to learn such models (Juba &
Stern, 2022; Yang et al., 2007), most of those methods have focused on cases where the models are
synthesized from a set of plan traces, hence corresponding to the traditional offline reinforcement
learning setting. Interestingly, very few works have been done in synthesizing such models in the
arguably more prominent RL paradigm, namely, online RL.

To fill this gap, in this paper we propose a novel algorithm to learn relevant fragments of symbolic
models in an online fashion. We show how it could be used to address one of the central problems
within RL, namely effective exploration. We show how our method allows us to perform goal-
directed optimistic exploration, while providing rigorous theoretical guarantees. The exploration
mechanism leverages two distinct components: (a) a representation that captures the most optimistic
model that is consistent with the set of observations received, and (b) the use of a fast and suboptimal
diverse planner that generates multiple possible exploration paths, which are still goal-directed.

The idea of optimistic exploration is not new within the context of RL. The most prominent method
being the RMax algorithm (Brafman & Tennenholtz, 2002). RMax modifies the reward function to
develop agents that are optimistic under uncertainty. Our use of symbolic models, however, allows
us to maintain an optimistic hypothesis regarding the underlying transition function. Coupled with a
goal-directed planner, this lets us perform directed exploration in sparse reward settings, where we
have a clear specification of the goal state but no intermediate rewards. As we show in this work,
for a finite state deterministic MDP our method is guaranteed to generate a goal-reaching policy.
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Additionally, we investigate the use of a structured form of generalization rule that leverages a very
simple intuition, namely the effects of an action don’t depend on specific object labels but only on
object types. Commonly referred to as lifted representation in planning literature, we show this rule
to speed up learning with minimal human input.

The rest of the paper is structured as follows. We start with related work in Section 2. Section
3 provides a formal definition of the exact problem we are investigating and Section 5 shows the
empirical evaluation of our method against a set of baselines. Finally, Section 6 concludes the paper
with a discussion of the methods and possible future directions.

2 RELATED WORK

As mentioned earlier, one of the foundational works in optimistic exploration in the context of
reinforcement learning is R-max (Brafman & Tennenholtz, 2002). Even before the formulation in
its current popular form, the idea of optimism under uncertainty has found several uses within the
RL literature (cf. (Kaelbling et al., 1996)). R-max can be seen as an instance of a larger class
of intrinsic reward based learning (Aubret et al., 2019), but one where the reward is tied to state
novelty. Other forms of intrinsic rewards incentivizes the agent to learn potentially useful skills and
new knowledge. A context where model simplification has been used in areas related to RL is in the
context of stochasticity, where methods like certainty equivalence and hindsight optimization has
been applied (Bertsekas, 2021; Yoon et al., 2008). In Section 6, we will see how we can also apply
our methods directly in settings with stochastic dynamics. In regards to the user of symbolic models,
the most common use is in the context of hierarchical reinforcement learning. Many works (Lee
et al., 2022; Illanes et al., 2020; Yang et al., 2018; Lyu et al., 2019), have investigated the possibility
of using the symbolic model to generate potential options and then using a meta-controller to learn
policies over such options. While most of these work assume that the model is in someway an
approximation of the true model, all inferences performed at the symbolic level is performed over
the original model provided as part of the problem. While in this work, we focused on cases where
the symbolic model could in theory exactly capture the underlying model, the same techniques can
also be applied to cases where the planning model may represent some abstraction of the true model.
Another popular use of symbolic model is as source of reward shaping information (cf. (Gehring
et al., 2022)). In this context, works have also looked at symbolic models as a vehicle to precisely
specify their objective (Icarte et al., 2018; Giacomo et al., 2019).

In terms of learning symbolic model, interestingly the work has mostly focused on learning plan
or execution traces (Yang et al., 2007; Juba & Stern, 2022; Callanan et al., 2022; Cresswell et al.,
2013). In most of these works, the theoretical guarantee you are aiming for is to generate more
pessimistic models that are always guaranteed to work, but may overlook plausible plans. This is
completely antithetical to considerations one must employ when performing explorations in com-
mon online RL settings, where the agent is either operating in a safe environment or interacting with
a simulator. To the best of our knowledge, all existing online methods to acquire symbolic models
(Carbonell & Gil, 1990; Lamanna et al., 2021), focuses on extracting an exact representation of the
true underlying model. Since our primary motivation for learning this model is to drive the explo-
ration process, we do not have that limitation. Instead, we focus on learning a (more permissive)
optimistic approximation. Also it is worth noting that, the assumption that the system will be pro-
vided action arguments (something we will leverage in Section 4.3) is one commonly made by most
of these works. There are also some works that are trying to automatically acquire abstract symbolic
models from an underlying MDP (including potential symbols) like that by Konidaris et al. (2018).
This direction is orthogonal to our work, as symbols produced by them may be meaningless to the
human and we are explicitly trying to leverage human’s intuitions about the problem.

3 PROBLEM SETTING

3.1 BLOCKSWORLD

To concretize the problem, we will be using a Blocks World problem as a running example through-
out the paper. Blocks world has a long history within AI as a useful benchmark to visualize
sequential decision making problems (going all the way back to early 1970’s with Winograd’s
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SHRDLU (Winograd, 1971)). The particular problem (visualized in Figure 1) we are interested
in consists of four blocks of different colors arranged on a table. The individual blocks become
the objects over which we will be defining the predicates. The predicates will effectively cap-
ture the current position of each block (whether they are on the table, on top of another block
or being held so it can be placed somewhere). The agent can pick up a block from the ta-
ble or unstack a block from on top of another block provided no other block is blocking it and
the agent is not holding another block (the agent can only hold a single block at a time). Sim-
ilarly, the agent can put down a block it’s holding on the table or stack it on top of another
block that is free. The goal for the agent is to arrange the blocks in some pre-specified con-
figuration. Say in this case, the agent needs to place the black block on top of the green one,
which needs to be placed on top of the red one (the position of the yellow block doesn’t matter).

Figure 1: A visualization of the blocksworld prob-
lem consisting of four blocks. The goal of the do-
main is to plan the actions of the robot gripper to
pick up and place the blocks in some pre-specified
configuration. The actions of the robot gripper are
limited by different considerations like the loca-
tion and position of the block and the status of the
gripper (for example is it free to pick up a block.)

Now a problem with just four blocks cor-
responds to 33554432 total possible states
(though reachable and realizable states may be
much smaller), with potentially 8388608 goal
states (again reachable states may be much
smaller). Similarly the agent can perform up
to 32 actions at any given state. At any state,
the agent could try to put down or pick up any
of the four blocks and similarly stack and un-
stack any two pairs of blocks. However the
ability to successfully perform any of these ac-
tions would depend on the state. For example, a
block can only be put down or stacked on top of
another if the agent is already holding it. There
are other similar rules that constrain when a
block can be picked up or unstacked from an-
other block and when it can be stacked on top

of another block. We will assume that the execution of an action in a state where one of its relevant
constraints is violated would result in the invalid state.

3.2 DETERMINISTIC MDP

The central problem we are interested in addressing is that of an RL agent trying to come up with a
policy for a deterministic MDP with sparse reward. We specifically chose a setting, which forefronts
the problems related to exploration, while placing less emphasis on other aspects of an RL problem
(though in Section 6 how one could easily apply this approach to other settings). In particular, the
underlying model (which is unknown) is assumed to be of the form M = ⟨S, T,A, I,R⟩. Under
this definition, S is a finite set that represents the set of possible states that the agent could find
itself in. We will assume that this set includes a special absorbing state ⊥ ∈ S, allowing to capture
both abnormal and normal trace termination. Additionally, there is a subset of states SG ⊂ S,
which correspond to ‘goal’ states, which are desirable states for the agent. A is the set of possible
actions and given the deterministic nature of the problem, the transition function is specified as
T : S × A × S → {1, 0}. We will refer to the action that transitions from states in SG to the
absorbing state ⊥ as the goal action (aG). Given that we are interested in sparse reward setting, we
will define the reward function as follows

R(s, aG, s′) =

{
1 s ∈ SG and s′ = ⊥
0 otherwise.

We will refer to the transition to ⊥ through a non goal action, as a failure transition. Now, I ∈ S
captures the initial state from which the agent starts. To enumerate the implications of the design
choices we made in picking this model, consider the fact that reward is zero everywhere except for
the goal. This means that any policy that can help reach the goal from the initial state, would be
optimal for the agent (since the agent always starts from the initial state). Coupled with the fact
that the transition function is deterministic, once the agent identifies a goal state, constructing an
optimal policy is relatively easy as they can just reuse the path taken by the exploration strategy.
Now, this setting also renders most existing methods that may use intermediate value bootstrapping
or generalization mostly ineffective as there are no intermediate values to use. So it makes sense
to focus on tabular methods as the RL baseline. In fact, possibly the only effective methods in
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the mainstream RL repertoire we can use are curiosity driven or intrinsic reward based methods
and we will use such a method as a baseline. One of the central components we will leverage are
state action traces we can sample from the underlying model. In particular, we say that a trace
⟨s0, a1, .., ai, si, .., ak+1, sk+1⟩ is valid or equivalently goal-reaching if s0 = I, sk ∈ SG, sk+1 =
⊥, and for every 0 ≤ i ≤ k we have T (si, ai+1, si+1) > 0. The action ak+1 is the goal action.

In the course of discussion, we will use the word ‘original model’ to refer to this true but unknown
underlying MDP. The agent itself is expected to be either interacting with a generative simulator that
encodes this MDP or is acting in the true environment provided that they can reset to the initial state
at the end of each episode.

3.3 SYMBOLIC PLANNING MODELS

For the symbolic model, we will be using an a representation scheme called Planning Domain
Definition Language or PDDL. In particular, we will consider a version that will ignore object types
(Helmert, 2009). Here, a planning task is defined in relational terms, i.e., states are described in
terms of objects and relationships between objects and each action is described in terms of the
objects involved in that action and how they may affect or be affected by the relationships between
these objects. Such a model is usually defined by the tuple MS = ⟨L,O, I, G⟩, where L is a first-
order language, O a finite set of action schemas, I and G are specifications of the initial state and
the goal, respectively. The first order language describes the objects and the relationships between
these objects (captured as predicates). In the blocksworld example, the object consists of the various
blocks and on(red, green) is a predicate that captures the fact that the red block is on top of the
green block. Additionally, first order language allows specifying predicates over variables as well
as actual objects. Formally, the first order language is specified as L = ⟨B,V,P⟩, where B is the set
of all objects, V are the variable names and P are the predicates. Each predicate p ∈ P , will take
a fixed number of arguments. For the purpose of discussion in this paper, we will either have cases
where the arguments consist of only variables or only objects. We will refer to the former case as
being the lifted representation of the predicate and the latter as a grounded instance of the predicate
(or ground predicate). In general, however, predicates can be partially grounded, with some of the
arguments being actual objects while others being variables. States of the model correspond to truth
assignments to ground predicates. Each ground predicate can take either a true or a false value. Each
possible state for a given model is captured by a specific instantiation of all ground predicates. Thus,
possible states can be uniquely represented by sets of ground predicates that are true (assuming the
rest to be false under the closed world assumption). In this representation, I denotes a set of ground
predicates, capturing the unique initial state. For our purposes, G will be captured by a subset of
ground predicates, denoting all states where all of these ground predicates (and possibly some more)
are true. All such states will be considered valid goal states.

Each action schema o ∈ O provides the basic structure shared by a set of ground ac-
tions that can be actually executed by the agent. Each action schema is defined as o =
⟨params(o), pre(o), add(o), del(o)⟩, where params(o) indicates the parameters of the action
schema (variables and objects), the preconditions pre(o), the add-effects add(o), and the delete-
effects del(o). The latter three are first-order formula over the language L, specifying the conditions
that must be satisfied for the action to be executable in a state, as well as the change in a state re-
sulting from executing the action. Ground actions are obtained from the action schema by assigning
objects to variables in the parameters. The agents are executing the ground actions and therefore
it is common to describe the semantics of ground actions, henceforth simply referred to as actions.
In this work we restrict ourselves to preconditions in disjunctive normal form. For ground actions
these would be disjunctions of conjunctions of ground predicates. All states in which the formula
holds, the action is applicable. The add/delete effects are conjunctions of ground predicates, making
these predicates true respectively false in the state resulting in successful action execution.

For a given action schema o, we will denote the grounded instance obtained by replacing the pa-
rameter with an object list Θ using the function symbol Γ↑(o,Θ). We can also define an inverse
mapping function λ↑(o↓,Θ) that retrieves the lifted model given a grounded instance (we can do
this by replacing all instances of an object with a variable). This lifting function λ↑ is well defined
in all cases where we don’t have a repeating object in Θ. In this particular work, we will only
focus on applying such lifting functions in cases where they are well defined. Overloading the no-
tations a bit, we will also apply the functions Γ↑ and λ↑, to create grounded and lifted instances of
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predicates as well. Each planning problem can be represented equivalently in a grounded form as
M↓ = ⟨F↓, A↓, I, G⟩, where F↓ consists of all grounded predicates and A↓ grounded actions. At
most this model may have 2|F↓| states. A solution for a planning model is a plan π = ⟨a1, ..., an⟩,
which is a sequence of action whose execution in initial state will lead to a goal state, i.e., π(I) ⊇ G
(where π(I) = an(....a1(I))).

3.4 CONNECTING THE SYMBOLIC MODEL TO THE MDP

For any given deterministic MDP M of the form defined in Section 3.2, there must exist a symbolic
model that can exactly capture the MDP. In particular, there is a surjective function (many-to-one)
mapping the (ground) actions in the symbolic model to MDP actions. Every plan under the symbolic
model maps by this mapping to a valid trace of the MDP. Section A.2, shows by construction how
such a model will always exist. However, rather than creating an arbitrary mapping to a symbolic
model, we are interested in creating one that leverages the expertise of a human domain expert to
creating a potentially more effective representation of the problem. In particular, we start by taking
human input to learn how to symbolically represent the states of the MDP. In particular, we expect
the human to specify a set of predicates and objects that they might associate with the given problem.
We use the symbol F C

↓ to capture the set of all ground predicate possible under this specification.
Similar to previous explanatory works (Sreedharan et al., 2022b;a; Kambhampati et al., 2022) that
have tried to learn symbolic representations of RL problems, we use this to learn binary classifier
that test whether a ground predicate may be true in a given MDP state. We can learn such classifiers
by collecting positive and negative examples for each ground concept. Once the classifiers are
available, we can construct the symbolic state corresponding to each MDP state, by testing each
classifier on any given MDP state. We use the function C : S → 2F

C
↓ as a way to capture the

mapping between the states. For potential actions, we assume that every symbolic ground action
corresponds to exactly one action in the MDP. Overloading the notations a bit, we use C−1(a) to
represent the MDP action corresponding to the symbolic action a. As we will see in Section 4.3, the
agent can also potentially leverage the human’s intuitions about how they structure actions to further
improve the effectiveness of our method. Finally, we expect the human to provide a specification of
the goal states specified in terms of the ground predicates in F C

↓ . We denote this goal specification
by GC . Additionally, we require that the initial state for the symbolic model corresponds to C(I)
and for any goal state s ∈ SG, C(s) satisfies GC (or, equivalently, there is a symbolic goal action
whose precondition meets this requirement) .

4 OUR APPROACH

The basis of our approach is an observation that every deterministic MDP has a precise symbolic
representation. By precise representation, we mean that for the specific setting we consider here,
there exists a symbolic model that can exactly simulate the MDP: any transition possible under the
symbolic model must correspond to non-zero probability transition possible under the MDP and vice
versa. However, as discussed, our objective is not to learn such a precise representation but rather
only to learn an optimistic approximation. We start from a trivially optimistic representation of the
underlying model, which we iteratively refine towards the true representation. At each iteration, the
current symbolic representation is used to generate potential plans to the goal. These plans are then
tested out in the environment and the observed outcomes of the execution of such action sequences
are then used to refine our estimate towards the true representation. At every point of our model
refinement process, we ensure that every subsequent model estimate generated is an optimistic one.
By maintaining the optimistic nature of the representation, we ensure that no potential valid solution
is overlooked at any point in the learning process. So we will start the discussion of our approach
by providing a rigorous definition of what we mean by an optimistic representation. In particular,
we are interested in creating symbolic representations that allow all valid traces that are possible
under the original MDP to be possible under the new representations. Formally, we can define this
requirement as

Definition 1 For an MDP model M, a symbolic model MC defined over a symbol mapping C(·)
is said to be an optimistic representation, if for every action sequence ⟨a1, ..., ak⟩ such that there
exists a valid trace (i.e. it reaches goal), there exists a valid plan in MC of the form π = ⟨a′

1, ..., a
′

k⟩,
such that C−1(a

′

i) = ai.
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For the given set of grounded actions AC
↓ and a grounded set of predicates F C

↓ , we can create a sym-
bolic model that is guaranteed to be optimistic for any MDP whose action set is isomorphic to AC

↓
and the state space can be represented using F C

↓ . In particular, the model will have empty precondi-
tions and delete effect and the add effects would correspond to the set of all ground predicates. This
means that every action is executable in every state and an execution of any action will satisfy the
goal. We will denote this model as MC

0 = ⟨F C
↓ , A

C
↓ , I

C , GC⟩. More formally, every action a ∈ AC
↓

will be defined as follows: a = ⟨prea0 , add
a
0 , del

a
0⟩, where prea0 = dela0 = ∅ and adda

0 = F C
↓ . The

fact that its an optimistic representation for any MDP possible in this context can be trivially proved
(discussed in Section A.2).

4.1 REFINING THE MODEL

Now, of course, while all valid traces for the original model correspond to a plan in MC
0 , the sym-

bolic model may also support plans that may not correspond to any valid trace in the original model.
Our basic strategy would be to use this model as a starting point to sample potential plans, simu-
late/execute them in the environment or simulator and use the outcomes (both successful and failed
executions) to refine the current the current estimate. We will continue this process until we find
a plan that leads us to the goal. Keeping this general approach in mind, the next step would be to
define our model update rule. In particular, let us assume that we receive the following observation
from the environment ⟨s, a, s′⟩, such that s′ ̸= ⊥. Now we know this corresponds to the symbolic
observation ⟨C(s), C(a), C(s′

)⟩. Given this observation, we know that any changes made in the state
must be the result of the action. We will use this information to update action’s effects. For add ef-
fects, if the estimate previously had hypothesized the action making a predicate true, which doesn’t
hold in C(s′

) then it can be removed from the add effects. Similarly, if there was a predicate that is
made false in C(s′

) but was not part of the delete effects, it can be added to the set of delete effects.
Formally, we can set the new estimate of the action as follows a = ⟨preai+1, add

a
i+1, del

a
i+1⟩, where

preai+1 = {ϕ|ϕ ∈ preai and ϕ ⊆ C(s)} and for effects we have adda
i+1 = adda

i \ (F C
↓ \ C(s′

)) and
delai+1 = delai ∪ (C(s′

)\C(s)). If the sampled transition corresponds to a failure (⟨s, a,⊥⟩), we will
only update the precondition. Specifically, we will remove any precondition clause that satisfies the
state and replace it with a set of preconditions that includes one of the predicates that was false in
the model (this follows from the fact that the action failed because some predicate part of the true
underlying precondition wasn’t true in the given state). More formally, for any ϕ ∈ preai , such that
ϕ ⊆ C(s), we remove ϕ and add Φ = {ϕ∪ f |f ∈ (F C

↓ \ C(s))}. The proof for why this update rules
result in optimistic representations are provided as part of Proposition A.2 in Section A.2.

4.2 OVERALL ALGORITHM

Algorithm 1 presents the overall iterative algorithm we will be using to identify the action sequence
that can lead to a goal state. The algorithm starts with the initial estimate of the model. It iteratively
generates plans for the model estimate, which will then be used to progressively refining the model
until we get a plan that corresponds to a path to a goal state. These plans are derived using a diverse
planner that identifies a set of plans that are diverse in terms of the actions used. This is represented
by the procedure DiversePlanner that takes the number of diverse plans to be generated as an ar-
gument (κ). Readers can check Katz & Sohrabi (2020) for a more detailed discussion of diverse
planners. These plans are first tested on the underlying environment/simulator to check whether
they lead to the goal from the initial state and if not the experiences sampled from their execution
are used to refine the current model. Note that, given the optimistic nature of the model estimate,
the planner would generally try to use actions that haven’t been previously executed successfully.
However, each future use of the action would become progressively harder due to the growing pre-
condition set. With that said, one could further improve the planner behavior by being more careful
about the actions being used as part of plans. If an action has been tested quite frequently, it would
be better to de-prioritize its usage until no better alternative has been found. Note that this is quite
similar to the kind of exploration performed in the context of multi-armed bandits (Lattimore &
Szepesvári, 2020). In fact, one could directly apply methods like UCB (Auer, 2002) to select the
action sets to be considered by the planner. This part of the algorithm is captured by the procedure
PruneModel. To keep our implementation of the approach simple, we will use a simple queue based
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Algorithm 1 The main procedure that iteratively refines the model, until a goal reaching trace is
found
1: procedure ITERATIVE-MODEL-REFINEMENT
2: Input:MC

0 , κ
3: Output: An action sequence ⟨a1, ..., ak⟩ that will lead to the goal
4: Procedure:
5: Mcurr ←MC

0

6: execution statistics ← {}, solvability flag ← True
7: while solvability flag is True do
8: M̂curr ← PruneModel(Mcurr , execution statistics)
9: Π̂ ← DiversePlanner(M̂curr, κ)

10: if |Π̂| > 0 then
11: for π̂ ∈ Π̂ do
12: if π̂ leads to goal in the environment then return π̂
13: else
14: Mcurr, execution statistics ← UpdateModel(Mcurr, π̂, execution statistics)
15: else
16: solvability flag ← False

return No policy with non-zero Value

system to identify the actions to be included. The exact procedure we use to control the selection of
actions is described in Section A.3. The variable execution statistics keeps track of previous action
trials and the frequency of success per action. The procedure UpdateModel uses the rules described
in Section 4.1 to use the sampled traces to update the given model estimate. One could also further
improve the efficiency of the search by always testing all possible actions in every new state that is
identified as part of the procedure.

Theorem 1 Algorithm 1 will (a) terminate in a finite number of steps and (b) identify a path to a
goal (provided one exists); as long as the diverse planner used is complete (i.e., it will return a
non-empty plan set as long as there exists a valid plan).
The proof for the theorem is provided in Section A.2.
In the context of the overall RL learning process, this exploration method will be used as a way to
update the Q values (and depending on the algorithm, structures like replay buffers). Specifically,
we will first run this exploration procedure to find a valid trace to the goal. Once such a trace is
found, we can update the Q values of all the states that are part of that trace to a more informed
value. Once updated, we can employ traditional RL algorithms to identify optimal policies. One
could also leverage the proposed method in conjunction with other exploration strategies, during the
learning process. It is important to note that any consecutive use of our approach for generating goal
directed paths would be much more efficient, as the method will start from a more refined estimate
of the model.

4.3 LEVERAGING LIFTED REPRESENTATION

The algorithm described above tests each of the available actions to learn a symbolic model corre-
sponding to the observed behavior. However, one of the important points to note here is the fact
that this means that the testing and by extension learning of the model occurs at the level of ground
actions. As we had discussed earlier, a very common assumption made throughout symbolic models
is that of the existence of a lifted representation of actions. Namely, the fact that the nature of ac-
tions could be described independently of the exact objects it may be interacting with. This is a very
natural outcome that comes out of relational representations of tasks, where the state is represented
in terms of objects and relationship between objects. After all, it is very easy to see that the outcome
of picking up the red block should be quite similar to the case of picking up the green block. For ex-
ample, if we observe that the execution of the action ‘pick-up red block’ results in the agent holding
the red block in it’s gripper; then it would be quite natural to assume that the execution of ‘pick-up
green block’ should result in the agent holding the green block. We will leverage such symmetry by
asking the human to provide some additional information about each action. Specifically, the human
can provide us a basic annotation over what actions could share a lifted structure and what objects
each actions might interact with. Note that we are not asking the users to specify what the lifted
structure may be, but just a grouping of actions and an ordered list of relevant objects. The order
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may reflect the different roles played by the objects participating in the action. For example, when
an object is being placed on top of another, the annotation may list the destination object first and
then the object being placed on top of it. The exact ordering wouldn’t matter provided they remain
consistent through the annotations. Additionally, even if the grouping provided by the human may
be a subset of the true possible grouping and the human provides a superset of the objects relevant
to any given action, our generalization approach remains valid. The set of objects associated with
each action could also be automatically extracted from natural language descriptions of actions, as
performed by works like that by Feng et al. (2018).

For a given set of actions that are marked as being grounded instances of the same lifted action,
we will ensure that learned effects of all actions comply with the most refined action in the set. As
discussed earlier, the effects of an action comprises of add and delete effects and for each component
we can select the most refined set independent of each other. From the set of effect descriptions,
we select the add effect set containing the minimum number of elements and the delete effect set
containing the maximum number of elements. For each such set, we can create the lifted description
using the λ↑ function described earlier. Let min add be the lifted description corresponding to the
smallest set of adds and max del be the largest set of deletes for a given set of actions corresponding
to the same lifted action. Then we can simply replace the effect of every action with a grounding of
these lifted actions. This will still result in an optimistic model description, as we can show that the
min add and max del are still optimistic estimates

Proposition 1 Let Ā = ⟨a1, ..., am⟩ be a set of actions marked as being instances of a single lifted
action a↑. Then min add must be a superset of add effects of a↑ and max del a superset of deletes
of a↑, where min add and max del are calculated for Ā

The validity of this proposition is discussed in Section A.2. This proposition now means that, once
max del and min add are identified, then for every action a in the set of possible groundings we
can replace add effects and delete effects with the corresponding grounding of the lifted effects, i.e,
adda = Γ↑(min add,Θa) and dela = Γ↑(max del,Θa), where Θa is the object list corresponding
to the action a.
We speculate that it should be possible to perform the same kind of generalization across precondi-
tions. We leave the proof of this claim however for future work.

5 EVALUATION

We perform our evaluation in four different domains. Three of these correspond to traditional
planning domains and one a more traditional reinforcement learning benchmark. The planning
benchmarks include blocksworld, a simple gridworld type domain involving robot picking up
objects and a domain where the agent has to control elevator schedules. For the RL domain, we
looked at some variants of minigrid (Lee et al., 2022). For each planning domain, we selected
five different problems (the sizes are approximately listed in the tables in terms of the number of
grounded predicates) and two problems for the minigrid domain. We created a simulator wrapper
around pddl models for each of the problems, as it allowed us easy access to the annotation
information for lifting. For the minigrid problems, we auto generated pddl problem files from the
simulator code for each specific environment.

For our evaluation, we are interested in identifying how our proposed method stacks up against
standard RL algorithms in its ability to reach goal states as part of their exploration. In particular, we
were interested in comparing our method against three baselines. First off, we were interested in see
how it stacks up against vanilla ϵ-greedy exploration (as implemented by the SimpleRL framework
(Abel, 2019), as part of the Q learning agent). Second, we compare to an R-max based exploration
strategy (again taken from the SimpleRL framework), which as we discussed is a form of intrinsic
reward. Finally, we compare to a hierarchical RL method that learns a policy over SMDP using
PPO (as implemented by (Lee et al., 2022)). The latter is only applied to the minigrid variants and
leverages annotations from a symbolic model to identify the options.

Our interest is not only to see how well the current method performs, but also to see how much
is contributed by the action-level generalization provided by lifted representations. Our primary
metrics of evaluation are going to be, (a) do the methods consistently reach the goals, (b) the number
of samples collected from the environment as part of reaching the goal, and (c) the time taken by the
method to reach the goal. This third aspect is an important one to consider to make sure that the RL
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Problem Instance
Q learning Our method Our method

(w/o lifting) (with lifting)

Name Size solved time no of Samples solved time no of Samples solved time no of Samples

Blocks

25

3/5

0.89 9164.2

3/5

26.7 19262

5/5

5.59 592
25 11.35 115136.8 399.35 168859.6 31.96 56404.8
25 1.99 20702 46.86 18901.8 9.28 4432.4
36 - 2966996.4 - 96152.8 32.99 191451.2
36 - 3135384 - 142605.4 33.93 138203.4

Elevator

20

0/5

- 2045316.4

2/5

408.79 3394856.8

5/5

36.94 88108
20 - 2087898.2 - 3839855.6 26.73 66507
20 - 2062441.2 401.85 3053364.2 21.25 88835
20 - 2089477.6 - 3099277.6 36.12 83296
20 - 2081322 - 4117586.6 36.57 87747.2

Gripper

25

1/5

5.56 53929.8

2/5

73.52 77450.2

5/5

15.9 16523
25 - 1511944.6 328.74 252954.4 23.17 308598.6
25 - 2663695 - 83551.8 35.93 309964.8
36 - 2395190.2 - 55209.8 43.31 308598.6
36 - 2112899.6 - 37136.8 61.99 624489.6

Minigrid 94 0/2 - 2743179.4 0/2 - 310032 1/2 86.41 342981.8
593 - 334535.2 - 2458.2 - 8217319.4

Table 1: Comparison of our method with and without lifting generalization against Q learning. All
times are listed in seconds and we only report the average time and number of samples (full data is
provided in the supplementary package).

based exploration is given a fair chance when compared against planning based methods. After all,
the planning methods reason over environment model, allowing them to perform less interactions
with the environment. However, this adds a computational overhead, that might not be required for
other method, such as vanilla RL methods. We capture that tradeoff of one computation for another
by measuring the time to reaching the goal. Additionally, we set a time limit on the exploration step,
as for some of these problems the exploration might not be completed in a reasonable amount of
time. For all planning based instances we set the time limit to 10 minutes, while for the minigrid
instances we extended the time limit to 30 minutes. Every experiment is run five times, averaging the
results to account for possible randomness in the learning process. All seed values were randomly
assigned and kept constant through the all five runs.

As the underlying diverse planner, we used FI (IBM, 2022), generating ten different plans at every
step. Table 1 presents the comparison of our method against Q learning for the planning benchmarks.
Both R-max and SMDP time out on all tested instances, so we will skip reporting their values in the
table. SMDP took 188416.8 and 106821.4 samples each for the two minigrid problems. We see that
apart from Blocksworld and minigrid domain, our vanilla method is able to solve more problems
and our method equipped with the application of lifting rule outperforms both by a wide margin.
Neither R-Max or SMDP visited any of the goal state in the given time limit.

6 CONCLUSIONS AND DISCUSSION

The effectiveness of our proposed method depends on three crucial factors; (a) the possibility of
performing systematic refinements of our models while ensuring desirable properties, (b) availability
of fast diverse planners, and (c) the ability to leverage human intuition about the task. The latter is
of crucial importance: even if there were other model classes and planners we could exploit, the
ability to tap into the human knowledge gives us a significant advantage. Importantly, the same
knowledge has bee used by many of the other state of the art methods. Further, it only represent
a small subset of the information usually provided as part of a complete symbolic planning model.
One of the aspects not discussed in the paper was the fact that instead of starting with an empty
model, we could have started with a partially complete model. In such cases, the human could just
provide whatever they know about the task and the RL agent can fill in the rest. We expect such
settings to provide even more advantage to our method. For future work, a promising direction is
to support stochastic transitions. We can directly use the current method in the stochastic setting by
considering a different copy of an action for each possible transition (this is similar to the methods
used by many probabilistic planners (Yoon et al., 2007)). A more interesting extension would be to
consider how these methods could be combined with RL methods that use function approximation.
We also plan to investigate, how one could restrict the planning to a high level abstraction of the true
task and look at how we can combine our current method with other exploration mechanisms like
the one based on planning width (Lipovetzky & Geffner, 2012).
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Arthur Aubret, Laëtitia Matignon, and Salima Hassas. A survey on intrinsic motivation in reinforce-
ment learning. CoRR, abs/1908.06976, 2019.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res.,
3:397–422, 2002.

Dimitri Bertsekas. Rollout, policy iteration, and distributed reinforcement learning. Athena Scien-
tific, 2021.

Ronen I. Brafman and Moshe Tennenholtz. R-MAX - A general polynomial time algorithm for
near-optimal reinforcement learning. J. Mach. Learn. Res., 3:213–231, 2002.

Ethan Callanan, Rebecca De Venezia, Victoria Armstrong, Alison Paredes, Tathagata Chakraborti,
and Christian Muise. MACQ: A holistic view of model acquisition techniques. CoRR,
abs/2206.06530, 2022.

Jaime G Carbonell and Yolanda Gil. Learning by experimentation: The operator refinement method.
In Machine learning, pp. 191–213. Elsevier, 1990.

Stephen Cresswell, Thomas Leo McCluskey, and Margaret Mary West. Acquiring planning domain
models using LOCM. Knowl. Eng. Rev., 28(2):195–213, 2013.

Wenfeng Feng, Hankz Hankui Zhuo, and Subbarao Kambhampati. Extracting action sequences from
texts based on deep reinforcement learning. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp.
4064–4070. ijcai.org, 2018.

Guillem Francés, Miquel Ramirez, and Collaborators. Tarski: An AI planning modeling framework.
https://github.com/aig-upf/tarski, 2018.

Clement Gehring, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Pack Kaelbling, Shirin Sohrabi,
and Michael Katz. Reinforcement learning for classical planning: Viewing heuristics as dense
reward generators. In Proceedings of the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS, pp. 588–596. AAAI Press, 2022.

Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Foundations for restrain-
ing bolts: Reinforcement learning with ltlf/ldlf restraining specifications. In Proceedings of the
Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS, pp. 128–
136. AAAI Press, 2019.

Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial Intelli-
gence, 173:503–535, 2009.

IBM. Forbid-Iterative (FI) planner, 2022. URL https://github.com/IBM/
forbiditerative.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2107–2116. PMLR,
10–15 Jul 2018.

León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. McIlraith. Symbolic plans as high-level in-
structions for reinforcement learning. In Proceedings of the Thirtieth International Conference on
Automated Planning and Scheduling, Nancy, France, October 26-30, 2020, pp. 540–550. AAAI
Press, 2020.

Brendan Juba and Roni Stern. Learning probably approximately complete and safe action models
for stochastic worlds. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 9795–
9804. AAAI Press, 2022.

10

https://github.com/aig-upf/tarski
https://github.com/IBM/forbiditerative
https://github.com/IBM/forbiditerative


Under review as a conference paper at ICLR 2023

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. J. Artif. Intell. Res., 4:237–285, 1996.

Subbarao Kambhampati, Sarath Sreedharan, Mudit Verma, Yantian Zha, and Lin Guan. Symbols
as a lingua franca for bridging human-ai chasm for explainable and advisable AI systems. In
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 12262–12267. AAAI Press,
2022.

Michael Katz and Shirin Sohrabi. Reshaping diverse planning. In The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence, AAAI 2020, pp. 9892–9899. AAAI Press, 2020.

George Dimitri Konidaris, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. From skills to symbols:
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A APPENDIX

A.1 OVERVIEW

In this appendix, Section A.2 will cover the formal statements and proof sketches for various the-
oretical results, Section A.3 will cover the implementation details including hyperparameters, and
Section A.5 will provide a list of files included in the supplementary package.

A.2 THEORETICAL RESULTS

First result we are interested in establishing is the fact that for any given MDP of the form described
in Section 3.2, there exists a corresponding symbolic model that meets the criteria discussed in
Section 3.4.

Proposition 2 For an MDP of the form M = ⟨S, T,A, I,R⟩, there exists a grounded symbolic
model M↓ = ⟨F↓, A↓, I, G⟩, such that there exists

1. a mapping C from the state S of M to the states of M↓,

2. a mapping C−1 from the actions A↓ of M↓ to the actions A of M, and

3. a mapping from valid traces in M to valid plans in M↓ and vice-versa.

Proof Sketch: We can build such a model by adding one grounded predicate (each corresponding
to a unique lifted predicate of arity 0) for each state other than ⊥ into F↓. Now a state in S maps
(defined by C) exactly to the symbolic state where the corresponding predicate is true and none of
the other fluents are true. Now for the action, we will start with an action definition that includes
conditional effect, and then convert it to a form assumed by the work. A conditional effect captures
cases where an effect of an action only fires if the state meets certain criteria. Now we create one
symbolic action for each MDP action. For each possible transition between states (other than ⊥), we
will add a corresponding conditional effect that takes the predicate corresponding to source state as
condition and as effect the predicate corresponding to the target state. We will keep as precondition
of the actions a disjunctive list of all possible states where it will not fail. For the goal action, we
will have corresponding symbolic goal action whose precondition corresponds to potential states in
SG and the effect is a goal predicate. The initial state consists of only the predicate corresponding
to the state I and the goal corresponds to the goal predicate. Now we can convert the actions with
conditional effects to ones with no conditional effect (cf. (Nebel, 2000)). Now the action mapping
C−1, will map each of these new actions to the original MDP action from which it was defined. Now
a plan is only valid in this model, if there exists a sequence of transitions from initial state to goal
with non-zero probability. Similarly, for every valid trace there must exist a valid plan where each
MDP action could be replaced by one of the potential symbolic actions that maps to it.

Next we will talk about the optimism of the initial model estimate

Proposition 3 MC
0 = ⟨F C

↓ , A
C
↓ , I

C , GC⟩. More formally, every action a ∈ AC
↓ will be defined as

follows: a = ⟨prea0 , add
a
0 , del

a
0⟩, where prea0 = dela0 = ∅ and adda

0 = F C
↓ is optimistic for any

MDP model such that there exists a mapping C from MDP state to symbolic states and a function
C−1 mapping symbolic actions to MDP actions.

This can be easily shown by the fact that every possible action sequence is a possible plan here.

Moving onto the update rule.

Proposition 4 Update rule as presented in Section 4.1, will only result in an optimistic representa-
tion.

Proof Sketch: The important point to note is that at any point, the update rule is only applied to
an optimistic representation. So, in order for it to result in a non-optimistic model, it must have
removed a plan corresponding to a valid trace. Given our initial construction of MC

0 , we always
ensure that in MC

0 the execution of an action a at a state C(s) will result in a symbolic state that is a
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superset of C(s′), where T (s, a, s′) = 1. Note that an application of an update rule will only extend
the precondition if the corresponding MDP action fails and the preconditions are extended to exclude
only the current state (though the list of excluded state, action pairs grows as the number of failed
samples grows). Additionally, the effect is changed only to disallow impossible transitions. Since
the transitions are deterministic, only one sample is needed to determine that no other transitions are
possible from that state and action. This means that the above property (the fact that the resultant
symbolic state will be superset) will be preserved through updates. Which in turn means that any
plan that previously corresponded to a valid trace can become invalid.

Now coming to the theorem

Theorem 1 Algorithm 1 will (a) terminate in a finite number of steps and (b) identify a path to a
goal (provided one exists); as long as the diverse planner used is complete (i.e., it will return a
non-empty plan set as long as there exists a valid plan).

Proof Sketch The validity of this theorem follows from the fact that the update rule will re-
move any plan that doesn’t correspond to a valid trace from consideration again. If the planner
is complete then it will effectively iterate over all possible plans. Eventually finding one that
corresponds to a path that goes to the goal. This is guaranteed to exit in finite steps, as the set of
non-redundant plans is guaranteed to be finite when the state space is finite.

Now revisiting Proposition 1

Proposition 1 Let Ā = ⟨a1, ..., am⟩ be a set of actions marked as being instances of a sin-
gle lifted action a↑. Then min add must be a superset of add effects of a↑ and max del a superset
of deletes of a↑, where min add and max del are calculated for Ā

Proof Sketch The validity is trivial. The update rule makes sure that every effect estimate
will be an optimistic estimate of the true ground action effects. In the case of add effects this
estimate will be a superset and for delete effects it will be a subset. Thus, the lifted representation
of each set must correspond to optimistic estimates of the true lifted representation of the effects.

A.3 IMPLEMENTATION DETAILS

All experiments were on a laptop running Mac OS v 11.06, with 2 GHz Quad-Core Intel Core i5 and
16 GB 3733 MHz LPDDR4X. We did not use CUDA in any of the experiments. For the planner,
we used the FI-diverse-agl planner provided as part of the forbid iterative planner. As discussed
we generated 10 plans in every planing query. The search was given a maximum threshold of
1000 iterations, but we never reached that limit given our time limit. We stop an action from being
considered if it fails 10 times in a row. We will update this upperbound on number of failures if the
planner returns empty plan at any point. Since we found out that the planner was slowed down by
the introduction of disjunctive preconditions, we replaced the disjunctions with a set of actions (this
is an equivalent compilation popular within planning). To control the growth of the precondition,
we introduce an upper bound on its size, set to 10 in our experiment. Note that the true size of the
preconditions in all instances we consider here is significantly smaller than our bound. We could
make the bound adaptive to a domain, but we do not expect it to make any significant difference.
For all the RL baselines we used a discount factor of γ. For Q learning and R max, we used a
maximum of 1000000 episodes with 200 steps per episode. For exploration, the ϵ and decay rates
were set as the same as the one used by SimpleRL experiment scripts. For PPO, we used the same
default values used by Lee et al. (2022). The environment names for the two problems we tested
in minigrid where where, MazeRooms-8by8-DoorKey-v0 and MazeRooms-2by2-TwoKeys-v0.
While creating the PDDL model for minigrid we combined the turn actions with the other actions
(move, pickup, drop, etc.), to avoid potential conditional effects.
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A.4 ADDITIONAL EXPERIMENTS

A.4.1 COMPARISON WITH A SYMBOLIC BASELINE

To see how our method compares against other methods for symbolic model acquisition, we look at
how many samples are required by a popular model learning method (cf. Juba & Stern (2022)) to
generate a model that can produce a goal reaching plan. Since we don’t have access to a plan library,
we will generate one through random walks on our simulator. We focused on the Blocksworld do-
main, and for each of the five problems, we look at the number of samples required to generate a
model that allows a potential plan to the goal. Since the method generates a pessimistic approxima-
tion of the model, any plan generated by the model is guaranteed to be valid and thus the method no
longer requires the use of diverse planners to generate potential plans. We placed an upper bound
of 600000 on the number of samples originally collected from the simulator (this is nearly six times
larger than the number of samples required by our method). Out of the five problems, we found that
only the method was only able to learn a model capable of generating a valid plan in the case of the
first problem instance. Even for that problem, we found that the method took on average 548287.8
samples.

A.4.2 KITCHEN DOMAIN

As an additional experiment, we tested our method on the symbolic part of the Kitchen Domain
(Xu et al., 2019). We tested our method on the domain by creating a symbolic simulator that uses
the descriptions provided in the appendix of the paper (specifically the inter-dependencies listed
in Figure 5). The purely symbolic domain consisted of one action for each high-level goal possible
and the preconditions were built based on the relationships described in the paper. The exact domain
consisted of 15 predictions and 13 actions. The goal was the same as the one described in the paper
(i.e., both banana and cabbage is cooked, they are placed on plates and the plates are served). The
lifted version of our method was able to identify a valid plan in 61.46 sec using 24727.2 time steps
(averaged across five runs) and the non lifted version took 393.57 secs and used 140681 samples
(again averaged across five runs). Now executing the plans in the true simulator would require
an additional component an additional step to drive the simulated robot to achieve each of these
subgoal. However, as discussed in the paper, we can do that by using a motion level planner (like an
RRT based planner).

A.5 OVERVIEW OF SUPPLEMENTARY FILES

The structure of the supplementary files are as follows

1. Data.pdf - gives all the data points we collected as part of the experiments and we listed in
Table 1

2. Baselines - This directory includes all the baselines we used to compare with our system
3. model-learning-simulators - includes the code to run our system and the test files used, so

within this directory you would see
(a) Domains - The test problems we used
(b) src - the code base
(c) experiment scripts - the files to run to get the results reported in Table 1. The script

files are named in a way that they are self-explanatory.
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