MI-PRUN : Pruning the Blocks in Large Language Models with Minimal
Performance Impact

Anonymous ACL submission

Abstract

Large language models (LLMs) have become
crucial across various domains, yet it comes
at the expense of considerable computational
and memory resources. Model pruning refines
deep learning models by excising redundant
elements. However, current pruning methods
often fail to substantially achieve end-to-end
acceleration. In this paper, we propose MI-
PRUN, a novel approach that uses mutual in-
formation to identify low impact blocks for
efficient model pruning. Furthermore, we in-
corporate the Data Processing Inequality (DPI)
to elucidate the relationship between the im-
portance of contiguous blocks and that of in-
dividual blocks. We utilize an iterative block
selection algorithm to continuously update the
combination of blocks that have the minimal
impact on model performance, thereby obtain-
ing a globally optimal solution. To enhance
the efficiency of pruning, we develop the Fast-
Block-Select algorithm to accelerate the prun-
ing process. Comprehensive experiments on a
wide range of models and datasets have demon-
strated the rationality and effectiveness of our
method.

1 Introduction

Large language models (LLMs) have made signif-
icant strides, showing notable language skills in
both comprehension and creation (Brown et al.,
2020; Touvron et al., 2023a; Chiang et al., 2023;
Zhu et al., 2023; Li et al., 2023a; Zhang et al., 2023;
Huang et al., 2023; Wang et al., 2023). However, as
the scale of models expands, the challenges faced
in practical deployment also increase. The large
size and computational requirements of the models
lead to high deployment costs and inference delays.
The exponential growth of parameters in large lan-
guage models has become a striking phenomenon.
For instance, the size of the LLaMA series models
has soared from several billion parameters to hun-
dreds of billions, and it may even go higher. These

enormous leaps in numbers deeply reveal that as
the models grow in size, the complexity of their
deployment and application in practical scenarios
also increases.

In pursuit of lightweight deployment for large
language models, the research community has de-
veloped an array of model compression strategies,
such as model pruning (Ma et al., 2023; Ashkboos
et al., 2024; Li et al., 2023c; Han et al., 2015a),
quantization (Zhou et al., 2023; Cai et al., 2023;
Zhou et al., 2024) and knowledge distillation (Yang
et al., 2021; Zhang et al., 2024). These approaches
aim to lighten the computational load of large lan-
guage models, enhancing their deployability across
platforms with constrained resources.

Model pruning is essential for enhancing the ef-
ficiency of deep learning models by eliminating
redundant weights or neurons without compromis-
ing performance. Depending on the granularity
of the pruning operation, pruning techniques can
be categorized into structured and unstructured
pruning. Structured pruning removes entire neu-
rons, attention heads or layers, which is more hard-
ware friendly and preserves the efficiency of matrix
multiplication (Ashkboos et al., 2024; Yang and
Zhang, 2022). Unstructured pruning removes indi-
vidual weights based on criteria such as magnitude,
achieving high compression rates but complicat-
ing hardware acceleration due to irregular sparsity
patterns (Liao et al., 2023; Anonymous, 2024).

While the benefits of pruning are clear, apply-
ing it to large language models still remains a
formidable challenge (Ma et al., 2023; Ashkboos
etal.,2024; Lietal., 2023c; Han et al., 2015b; Fang
et al., 2023). Current pruning techniques often fail
to deliver significant acceleration. To address this
issue, some studies have proposed pruning entire
blocks rather than individual components (Men
et al., 2024; Yang et al., 2024b; Chen et al., 2024;
Song et al., 2024; Kim et al., 2024). For instance,
methods that utilize cosine similarity to evaluate

block importance and adopt greedy pruning strate-
gies have emerged (Men et al., 2024). However,
these greedy approaches tend to converge to lo-
cally optimal solutions, rather than identifying the
globally optimal combination of blocks for prun-
ing. Other techniques, such as LaCo (Yang et al.,
2024b), attempt to reduce model size by merging
subsequent layers into preceding ones. Unfortu-
nately, this method often underperforms compared
to direct layer removal in terms of effectiveness.
LLM-Streamline achieves pruning by consolidat-
ing several blocks with the highest cosine similarity
into a single block (Chen et al., 2024). However,
distilling too many blocks can sometimes degrade
the model’s accuracy and necessitates fine-tuning
training strategies, thereby introducing additional
training overhead. Moreover, it remains a greedy
selection method. Meanwhile, methods like SLEB
(Song et al., 2024) and Shortened LLaMA (Kim
et al., 2024) iteratively prune layers based on im-
portance metrics. Nevertheless, the need to mea-
sure corresponding indicators using a calibration
set after each layer removal often results in high
computational complexity.

To design a method that can achieve the globally
optimal combination of pruned blocks, we propose
a Mutual Information Based Pruning (MI-PRUN)
method designed for large language models. MI-
PRUN uses mutual information to identify and re-
move non essential weight blocks by evaluating
the transitions of hidden states. Furthermore, we
incorporate the Data Processing Inequality (DPI)
(Beaudry and Renner, 2011; Merhav, 2012; Braver-
man et al., 2016) to elucidate the relationship be-
tween the importance of contiguous blocks and
that of individual blocks. We utilize an iterative
block selection algorithm to continuously update
the combination of blocks that have the minimal
impact on model performance, thereby obtaining
a globally optimal solution. To enhance efficiency,
we develop the Fast-Block-Select algorithm, which
utilizes heuristic methods to efficiently pinpoint
optimal candidates for pruning and streamline the
pruning process.

The main contributions of our paper can be sum-
marized as follows:

* We leverage mutual information to quantify
the transition of hidden states between dif-
ferent blocks, thereby identifying and prun-
ing weight blocks that contribute less to the
model’s performance.

* We incorporate the Data Processing Inequality
(DPI) (Beaudry and Renner, 2011; Merhav,
2012; Braverman et al., 2016) to elucidate
the relationship between the importance of
contiguous and individual blocks, and utilize
an iterative block selection algorithm to con-
tinuously update the combination of blocks
with minimal impact on model performance,
thereby achieving a globally optimal solution.

* We develop the Fast-Block-Select algorithm
to significantly enhance the efficiency of the
pruning process.

2 Related Work

Mutual information is a powerful metric that
quantifies the dependency between two variables
by measuring the amount of information about one
variable that can be inferred from the other (Liu
and Motani, 2022; Nguyen et al., 2014; Veyrat-
Charvillon and Standaert, 2009). Its ability to de-
tect non-linear relationships sets it apart from con-
ventional linear measurement techniques, making
it an essential tool for uncovering intricate data pat-
terns and understanding complex model dynamics
(Vinh et al., 2012; Pascoal et al., 2017). This al-
lows it to delve into the complex interplays within
data, surpassing traditional methods in capturing
nuanced relationships (Pluim et al., 2003; Steuer
etal., 2002). The application of mutual information
is remarkably broad, extending to the assessment
of complex connections among multiple variables.
In the field of feature selection, mutual information
plays a particularly crucial role (Battiti, 1994; Liu
et al., 2009; Vergara and Estévez, 2014).

Some studies determine whether to prune neu-
rons or activations between layers by calculating
the mutual information between neurons (Fan et al.,
2021; Huang et al., 2024; Westphal et al., 2024;
Ganesh et al., 2021). If the mutual information
value exceeds a certain threshold, it indicates that
their information overlaps, and some of them can
be pruned without causing significant performance
loss. However, these methods still have several
drawbacks. Pruning based on measuring the corre-
lation between neurons does not always lead to sub-
stantial acceleration, as the inference speed is far
lower than that of block pruning. Moreover, simply
measuring the correlation between two units (neu-
rons or blocks) is often insufficient. It is necessary
to consider the relationships among multiple units
using the Data Processing Inequality. Addition-

ally, calculating the mutual information for each
pair of neurons individually is computationally in-
tensive. Therefore, it is essential to design more
efficient methods to reduce the computational load.
Our method fully overcomes the aforementioned
challenges.

3 Methodology

3.1 Mutual Information Measures Block
Importance

During the inference phase of LLMs, the sequence
outputs of the Transformer layers exhibit a high de-
gree of similarity. This similarity primarily stems
from a crucial design feature of the model: the use
of residual connections. Specifically, the output of
each layer is added to the output of the previous
layer through these residual connections, thereby
enabling the continuous transfer and accumulation
of information across different layers of the model.
Mathematically, the output of the (i 4 1)-th Trans-
former layer can be represented as follows:

hiv1 = Transformer, q (h;)+h; (1)

Here, h; and h;y; denote the outputs of the
i-th and (i + 1)-th layers, respectively, while
Transformer;,, represents the transformation
function of the (i + 1)-th layer. This additive mech-
anism ensures that the information from previous
layers is retained and built upon, contributing to
the overall robustness and depth of the model’s
representations.

Some studies identify less important blocks us-
ing cosine similarity (Men et al., 2024). How-
ever, the effectiveness of cosine similarity often
decreases when dealing with non-linear relation-
ships or complex, skewed data distributions, and it
may not delve deeply into the specific interactions
between variables. In contrast, mutual informa-
tion (Liu and Motani, 2022; Nguyen et al., 2014;
Veyrat-Charvillon and Standaert, 2009) presents a
more robust and in-depth analytical approach. Un-
like cosine similarity, which primarily focuses on
the directionality of hidden states, mutual informa-
tion delves into the actual information flow and
dependency relationships between hidden states.
This holistic perspective allows for a richer under-
standing of the underlying interactions within the
model, thereby providing a more effective basis for
optimization and deeper insights into model perfor-
mance. This is also demonstrated in Section 4 of
our work.

; hiy1 hiy2 hy hjtq Rz
Ihi+1 Ihi+2 lhj+1 Rji2
hi hit1 hj hjsq
R JEEN NN JEEN
Risa hip1 hj
I’ min(l [”2)
0 iy Unj T
L)
'[hi*'z : Ihi+1 Ihi+z
hi My Ty

Figure 1: The relationship between the mutual infor-
mation of the global continuous block and the local
individual blocks.

When the mutual information (Liu and Motani,
2022; Nguyen et al., 2014; Veyrat-Charvillon and
Standaert, 2009) between the input and output
states is unusually high, this typically indicates
that the block’s output is largely a direct reflection
of its input state. This suggests that the block holds
lower importance within the model. In other words,
the output state does not significantly add new or
important information but rather largely replicates
the information from the input state, thereby in-
troducing redundancy. In this case, the block may
play a minor role in the overall functionality of the
model.

The transformation effect of the block; 1 is max-
imized when h; and h;;; are independent, and
the mutual information is zero. Conversely, the
transformation function is minimal when h;; is
completely determined by h;, such that for any
h; there exists a corresponding h;y; for which
P(hit1 | hi) = 1, and the mutual information
is maximal. Beyond these two extreme cases, as
the transformation function exerts a greater effect,
H(hit1 | hi) increases, while the mutual informa-
tion I(h;, h;+1) decreases.

3.2 Importance of Continuous Blocks

In the previous section, we analyze the importance
of blocks from the perspective of individual, iso-
lated blocks. A potential issue arises: some individ-
ual blocks may appear unimportant on their own,
but when considered in the context of the surround-
ing blocks as a whole, they can significantly con-
tribute to the model performance. To gain a clearer
understanding of this issue, we introduce the Data
Processing Inequality (DPI) (Beaudry and Renner,
2011; Merhav, 2012; Braverman et al., 2016). The
DPI states that when input h; passes through a first-
level block to obtain information h;;1, and then

Step 1 24
‘7 28

l Step 2

26,27 26,27,28
21,28 25,26,27

26,27,28
25,26,27
Q 24,25,26

23,24,25

22,2324
27,28,29

24,25,26,27,28
23,24,25,26,27

. Iteration-1 25,26 24,25,26 L
alternative set| | | 2320 21.28
_Sten3 | Step 4 LA Step 5 25,26
5B el]| — [s 2425 | ||
pruning set| | | 2.2 22,2324 224
22,23 21,22,23 -
21,22 20,21,22
20,21
Step 6
. Iteration-2 22,23,24,25,26
alternative set| | =] 222,005
Step3 ! 24 25 [26 [27 | 28 Step4 20.21,22,23.24 e 2232312 1125129

pruning set | [[]]|

Step 6

21,22,23,24,25
20,21,22,23,24

23,24,25,26,27
24,25,26,27,28

|

alternative set| | =]

pruning set| [] 1]

Stop iterating if the pruning set is unchanged.

Figure 2: An overview of our method. The process of pruning 5 blocks in the LLaMA2-7B model. We provide a
detailed description of the implementation for each step in Section 3.3.

hi+1 is processed further by a second-level block
to produce the output h; o, the mutual information
(Liu and Motani, 2022; Nguyen et al., 2014; Veyrat-
Charvillon and Standaert, 2009) between h; and
hivo (I ;Z“) satisfies the following relationship:
h; . h; h;
Ihi+2 < mln([hiﬂ’lhiif))

As illustrated in Figure 1, consider the combination
of two blocks as an example. Suppose the impor-
tance of any block on the left (h; — h;11 — hiy2)
is lower than that of any block on the right (h; —
hjt1 — hjy2). Under this scenario, the mutual
information follows the following characteristics:

min(I), I'+2) > max(I)7H, I942) (3)

hi "7hip1/ = h; hji1

Based on the DPI (Beaudry and Renner, 2011; Mer-
hav, 2012; Braverman et al., 2016), the following
formula can be derived:

L > I,i‘;j“ (4)

Here, [Zj+2 (rnin([,{fj_'+1 : I,];Jif)) denotes the upper
bound of I, hj 2, and the same applies to the I, hi“
(mm([thrl I ’+2)) The mutual information 1, Pit2
is only guaranteed to have a higher upper bound
than Ih;_+2, but it is still possible that Ih;” is less
than I,}:JJ *2. Thus, a continuous block that follows

two unimportant blocks is more likely to be unim-
portant as well. Nevertheless, the possibility that

it could be important still exists. The same rea-
soning applies to the case of multiple continuous
blocks, extending from the scenario of two contin-
uous blocks.

To enhance the accuracy of block selection, we
assess the importance of continuous blocks as a
whole rather than individually. This approach pre-
vents the unintended removal of blocks that, while
seemingly less important on their own, significantly
contribute to the overall performance of the model.
For example, consider the LLaMA3.1-8B model,
which consists of 32 blocks. When pruning 5
blocks, we need to evaluate the mutual information
of 150 blocks, including both individual blocks and
continuous block. We will elaborate on our detailed
iterative block selection algorithm in Section 3.3.

3.3 Fast-Block-Select (Iterative Updates)

In practical applications, calculating the impor-
tance (measured by mutual information) of all con-
tiguous blocks can be highly time consuming and
resource intensive. For example, in the LLaMA2-
7B model, there are as many as 528 possible com-
binations of contiguous blocks, making the task
extremely complex. Therefore, it is crucial to
explore methods that can accelerate the block se-
lection process. A straightforward idea might be
to use dynamic programming to tackle this prob-
lem. However, since the importance of contigu-
ous blocks does not have a strict quantitative rela-
tionship with the importance of their sub-blocks,
this approach is not viable. To address this chal-

lenge, we have designed a heuristic block selection
method called Fast-Block-Select to significantly
enhance the speed of block selection. Assuming
the model consists of a total of 7" blocks, we aim
to prune NV blocks. The process can be broken
down into the following steps (Figure 2 provides
a detailed illustration of our process for pruning 5
blocks in the LLaMA2-7B model):

Step 1: We employ a calibration set to obtain the
importance of each independent block within the
model and subsequently rank them in ascending
order of importance. In Figure 2, we employ a
calibration set to perform inference on LLaMA2-
7B and obtain a list of blocks sorted in ascending
order of importance (27, 26, 24, 28, 23 ...).

Step 2 : We select the top N blocks according
to their importance ranking to form the pruning set.
Additionally, we identify the M least important
blocks that are outside the pruning set to form the
alternative set, where M satisfies the following
conditions:

M = min(N,T — N) 5)

The number of elements in the alternative set (M),
is typically set to match the number of elements in
the pruning set (/V), and should not exceed the total
number of remaining blocks (T" — V). In Figure
2, both N and M are set to 5. The pruning set is
defined as {23, 24, 26,27, 28}, and the alternative
set is defined as {20, 21, 22, 25, 29}.

Step 3 : We categorize the blocks in the pruning
set into groups to form contiguous block sets. In
Figure 2, in Iteration-1, we group the pruning set
into {23, 24} and {26, 27, 28}. In Iteration-2, since
all elements in the pruning set are contiguous, there
is only one group: {24, 25, 26, 27, 28}.

Step 4 : For each contiguous block within the
contiguous blocks set, we generate all possible
contiguous block sets of matching lengths by
utilizing blocks from both the pruning set and
the alternative set. We assess the importance of
each contiguous block by summing the importance
values of its constituent individual blocks, and
subsequently sort these contiguous blocks in
ascending order of their estimated importance.
This method provides a reasonable approximation
of the importance of contiguous blocks, as
a sequence composed of multiple important
individual blocks is more likely to be significant.
Importantly, this approach eliminates the need to
directly compute the mutual information between

the inputs and outputs of the contiguous blocks;
instead, it simply involves aggregating the mutual
information of the individual blocks. In Figure 2,
during Iteration-1 (with contiguous block lengths
of 2 and 3), we construct possible contiguous block
sets using elements from the pruning set and the
candidate set. We also estimate the importance of
these contiguous blocks and sort them, resulting
in the sets {{26,27},{27,28},{25,26}...} for
the set {23,34}. For the set {26,27,28},
we construct the contiguous block sets
{{26,27,28},{25,26,27}...}. In Iteration-
2 (with contiguous block length of 5),
we construct the contiguous block sets
{{22,23,24,25,26} ...}.

Step 5 : For each group, we compute the exact
mutual information of the top K contiguous blocks,
and subsequently rank these blocks based on their
mutual information. Here, K is determined by the
following conditions:

K = min(|log L| + k,1) (6)

Here, L denotes the length of the corresponding
contiguous block, while [represents the number
of elements in the continuous block set. Addition-
ally, k signifies the number of extra elements we
consider (a hyperparameter). As L increases, the
error in measuring the importance of a continuous
block based solely on the sum of the importance
of individual blocks also increases. Therefore, we
incorporate log L into the calculation of K, en-
suring that K increases with L. Additionally, the
upper bound of K cannot exceed [. In Figure 2,
in Iteration-1, L is 2 and 3, while K is 5 and 6,
respectively. In Iteration-2, L is 5, and K is 5.

Step 6 : For each group of contiguous blocks,
we select the combination with the highest sum
of mutual information that does not conflict as
the updated block combination for this iteration.
In Figure 2, in Iteration-1, we select {24,25}
and {26,27,28}, resulting in a new pruning set
{24,25,26,27,28}. In Iteration-2, we select
{24, 25,26,27,28}. The pruning set changes be-
tween before and after Iteration-1, so the itera-
tive algorithm continues. However, the pruning
set remains unchanged between before and after
Iteration-2, so the iteration stops.

The steps 3, 4, 5, and 6 are executed in each
iteration. This process continues until the selected
blocks remain unchanged from one iteration to the
next. Our method takes into account the influence

of blocks more comprehensively and thoroughly
both before and after each iteration, which enables
it to obtain either better or equivalent solutions
(never worse). This provides a significant guarantee
of convergence. Extensive testing on a wide range
of models and data also show that our method does
not exhibit oscillation phenomena, further demon-
strating its effectiveness.

4 Experiments

4.1 Experimental Setup

Models and Benchmarks. To demonstrate the
effectiveness of our method, we conduct exten-
sive evaluations on four representative LLMs
with diverse architectures and scales, including
LLaMA3.1-8B (Grattafiori et al., 2024), LLaMA2-
13B (Touvron et al., 2023b), Qwen2.5-7B (Yang
et al., 2024a) and Qwen2.5-14B (Yang et al.,
2024a). In some experiments, we also use mod-
els like LLaMA2-7B (Touvron et al., 2023b). We
employ a wide range of benchmarks. These
benchmarks include MMLU (Hendrycks et al.,
2020), CMMLU (Li et al., 2023b), PIQA (Bisk
et al., 2020b), Winogrande (ai2, 2019), HellaSwag
(Zellers et al., 2019), BoolQ (Clark et al., 2019),
MathQA (Amini et al., 2019), ARC-Easy and ARC-
Challenge (Clark et al., 2018), RTE (Wang et al.,
2018), WNLI (Wang et al., 2018), CB (Wang et al.,
2019) and SST-2 (Wang et al., 2018). All bench-
mark results are reported using accuracy as the
evaluation metric. More details can be found in
Appendix A.1.

Baselines. We conduct extensive comparative
evaluations against other pruning algorithms, in-
cluding LLM-Pruner (Ma et al., 2023), FLAP (An
et al., 2024), Shortened LLLaMA (abbreviated as
Shortened)(Kim et al., 2024), ShortGPT (Men
et al., 2024) and SLEB (Song et al., 2024). Ad-
ditionally, we also use SliceGPT to test inference
speed (Ashkboos et al., 2024). Through these com-
prehensive comparisons, we thoroughly assess the
strengths of our approach. More details can be
found in Appendix A.2.

Implementation Details. We implement our ap-
proach using PyTorch (Paszke et al., 2019) and the
HuggingFace Transformers library (Wolf, 2020),
conducting experiments on NVIDIA A100 GPUs
with 80GB memory. If the product of a model’s
total Transformer blocks and target sparsity is not
an integer, we round up to determine the number
of blocks to prune. We set the value of the hyperpa-

rameter k to 5. For performance comparisons, we
maintain consistent experimental settings, includ-
ing the calibration set and pruning rate.

4.2 Main Results

To validate the effectiveness of our proposed
method, comparative experiments are conducted on
the LLaMA3.1, LLaMA2 and Qwen2.5 series, em-
ploying standard benchmarks and baselines com-
monly utilized in the assessment of large language
models. Dense denotes an unpruned model. The
experimental results are shown in Table 1. These
results suggest that the models pruned via our pro-
posed method demonstrate enhanced overall perfor-
mance when compared with the baseline methods,
maintaining most of the large language model’s ca-
pabilities. Although our method performs slightly
worse on a small subset of datasets, this is still
acceptable. The average accuracy across all tasks
further highlights the effectiveness of our approach.

4.3 Ablation Study

Iterative Update Blocks. We investigate the im-
pact of incorporating the DPI into the MI-PRUN
method for iterative pruning block updates by
meticulously comparing two pruning strategies.
The experiment begins with an assessment of the
mutual information of each block and employs a
greedy strategy to prune the block with the high-
est mutual information value. Meanwhile, the MI-
PRUN method calculates the mutual information
between continuous blocks, ensuring that the col-
lective impact of these blocks on the overall model
performance is considered. An iterative optimiza-
tion algorithm enhances the selection process, guar-
anteeing that the pruning results are both compre-
hensive and accurate. We prune 15.32% parameter
on LLaMA2-7B. As shown in Figure 3, the results
compare the model accuracy under the two strate-
gies, vividly demonstrating the significant impact
of considering iterative update blocks on enhancing
model performance.

Fast-Block-Select. We set out to compare two
distinct block selection methods: the Brute Force
approach and our heuristic based Fast-Block-Select
algorithm. The Brute Force approach is exhaustive
in nature, calculating the importance of all indi-
vidual and contiguous blocks by evaluating every
possible combination. While this method ensures
no potential solution is overlooked, it is highly com-
plex and resource-intensive, requiring an enormous
number of solution attempts to identify the opti-

Models Methods Ratios) Benchmarks
MMLU CMMLU ARCE ARC-C PIQA Winogrande HellaSwag BoolQ ~ MathQA WNLI SST2 RTE CB Avg
Dense 0.00% 6335 5085 8152 5128 8030 7403 60.05 8226 3956 5015 7683 7112 6071 6546
LLM-Pruner | 13.62% | 5201 4112 6736 4206 7454 69.32 51.50 7378 3235 5078 6937 4940 5528 5607
FLAP 1321% | 5211 41.13 67.42 4215 7463 69.36 51.56 73.82 3239 50.82 6941 4944 5534 5611
LLaMA3.1-8B | Shortened 13.58% | 3354 3428 7231 4215 7263 69.61 47.96 4523 3427 5634 5252 67.05 69.64 53.66
ShortGPT | 13.58% | 51.92 4111 6734 4206 7448 69.38 51.56 73.76 3250 5070 6931 4950 5536 56.08
SLEB 13.58% | 2835 2551 71.04 36.18 7546 62.98 49.70 57.89 2730 4648 5585 5704 3571 4842
Ours 13.58% | 6074 46.65 73.06 4383 7697 7347 5371 69.76 3261 6048 8296 7072 7316 62.93
Dense 0.00% 52.10 3473 79.42 1838 79.05 7222 60.07 8061 32.00 6620 8761 6931 8036 GATS
LLM-Pruner | 24.18% | 50.11 3357 61.16 3767 7138 7071 47.37 6253 24.41 4324 6537 5919 5138 5216
FLAP 24.16% | 49.89 3391 60.90 3765 7144 70.69 47.54 6243 2478 4326 6491 5919 5134 5215
LLaMA2-13B Shortened | 24.37% | 2671 25.50 26.26 261 514 48.22 2576 38.93 18.89 4366 4656 5271 3750 3573
ShortGPT | 2437% | 50.13 3397 6132 3788 7144 70.80 47.71 62.54 24.82 4366 6537 5957 5179 5238
SLEB 2437% | 2376 25.41 67.85 3387 7541 63.77 48.76 62.42 25.46 4507 5092 5884 4107 47.89
Ours 2437% | 51.89 373 6433 3844 7293 69.97 48.55 58.36 2674 5405 5979 6379 5064 53.32
Dense 0.00% 7192 81.69 80.56 821 7873 72.93 59.02 8446 322 7183 0186 8123 8750 73.39
LLM-Pruner | 1521% | 3696 3671 71.33 3820 7486 55.79 47.71 55.67 3108 6043 7079 5442 3881 5175
FLAP 1536% | 37.17 36.39 7147 3783 7621 55.65 4747 5723 30.11 6161 7068 5459 3732 5182
Qwen2.5-7B Shortened | 15.30% | 2490 25.08 2525 2031 5365 50.99 25.69 37.83 19.50 5352 5092 4621 19.64 34.88
ShortGPT 1530% | 3689 3107 7146 3780 7612 55.80 48.67 6321 30.59 4225 8062 5487 4107 5157
SLEB 1530% | 3856 3825 71.84 3942 7677 55.96 47.98 57.49 312 6197 7225 5632 3929 52.86
Ours 1530% | 5278 50.90 71.03 3867 7690 56.89 50.87 72.09 30.60 66.17 6315 6531 5714 5809
Dense 0.00% 7745 8444 8237 5631 8L12 7537 6337 8523 5303 7746 8911 7978 8036 75.80
LLM-Pruner | 18.52% | 43.00 42,01 73.33 4054 7358 58.47 47.79 61.89 3153 4879 5426 5688 4927 5242
FLAP 18.89% | 4486 44.77 50.29 3100 6072 5144 34.14 65.16 25.65 6528 8995 7687 6874 5453
Qwen2.5-14B Shortened | 18.64% | 24.63 2531 25.04 2014 5288 50.43 25.69 37.92 18.93 5201 4862 5199 3750 3625
ShortGPT 18.64% | 4575 45.63 50.63 3140 6181 52.64 3441 65.72 26.16 6620 9128 7834 69.64 5535
SLEB 18.64% | 4377 42.90 74.07 4104 7437 58.96 4843 6257 3223 4930 5493 5740 5000 53.07
Ours 18.64% | 7126 76.07 67.92 4401 7108 69.94 41.72 64.05 34.68 6147 8195 7371 6952 6411

Table 1: Comparison of pruning techniques in large language models through benchmark testing. We compare
various pruning methods applied to four large language models using a diverse set of benchmark tests. For each
combination of model and pruning technique, we document the pruning ratio, the accuracy scores for specific tasks,

and the average accuracy across all tasks.

Method Dense

SliceGPT LLM-Pruner

FLAP MI-PRUN

Time (ms) 330.33 297.40

307.15 294.98 258.59

Table 2: Inference time comparison of LLaMA3.1-8B model using different pruning methods.

= Greedy === Iterative Update

‘Winogrande

ARC-c PIQA

69

ARC-e WSC

CB WNLI

QNLI SST-2

RTE

Figure 3: Performance comparison between Greedy
Strategy and Iterative Update.

mal blocks for pruning. On the other hand, the
Fast-Block-Select algorithm takes a more strate-
gic approach. By employing a heuristic strategy,
it efficiently identifies the most promising blocks
for pruning without the need to evaluate every pos-
sible combination. This significantly reduces the
computational burden and enhances the overall effi-
ciency of the block selection process. Our primary
focus is on comparing the computational efficiency
of the two methods. We prune 15.32% parameter
on LLaMA3.1-8B and 24.37% on LLaMA2-13B.
As shown in Table 3, the Fast-Block-Select algo-
rithm is significantly more efficient, highlighting
its practicality and superiority over the Brute Force

approach.
Models Methods Time (s)
Brute Force 183.88
LLaMA3.1-8B Fast-Block-Select 56.12
Brute Force 433.17
LLaMA2-13B Fast-Block-Select 67.35

Table 3: Comparison of pruning efficiency between Brute
Force and Fast-Block-Select. The last line indicates that
when pruning on LLaMA2-13B, the time required by
Brute Force and Fast-Block-Select is 433.17s and 67.35s,
respectively. The same applies to the above line.

4.4 Hyperparameter Impact Analysis

We evaluate the impact of the hyperparameter k
in Step 6 of our method on performance. Here, k
signifies the number of additional elements consid-
ered. As k increases, the consideration of blocks
becomes more comprehensive, though this also in-
troduces a higher computational load. We prune
24.37% parameter on LLaMA2-13B. As shown in
Table 4, we experiment with several different con-
figurations of k&, and all achieve satisfactory results.
This demonstrates the effectiveness and robustness
of our approach.

k | MMLU CMMLU ARC-C Avg
3| 51.72 33.39 38.06 41.06
41 51.89 33.73 3844 41.36
5] 51.89 33.73 38.44 41.36

Table 4: Evaluation of the influence of the number of
additional elements considered & on the LLaMA2-13B.

4.5 Comparison of Inference Time

We evaluate the execution time for a single prefill
forward inference of the LLaMA3.1-8B model, us-
ing an input tensor of shape [1,1024] in the fp32
format. The remaining experimental settings are
consistent with the details provided above. We
apply a pruning strategy that reduces the model
parameters by 13.58%. For comparison, we also
include the Dense (unpruned) model as a baseline.
Additionally, we test our approach against other
non-block pruning methods, including SliceGPT
(Ashkboos et al., 2024), LLM-Pruner (Ma et al.,
2023), and FLAP (An et al., 2024). Table 2
presents a comparison of inference time between
our method and the aforementioned approaches.
Our method achieves the fastest runtime, signifi-
cantly reducing the inference time. These results
underscore the substantial acceleration achieved by
our method.

4.6 Pruning Overhead Analysis

We compare the computational overhead of our
proposed pruning method with that of SLEB when
pruning 15.63% blocks on LLaMA3.1-8B. SLEB
(Song et al., 2024) is also a strategy that considers
the global optimal solution for block pruning, but it
requires multiple calibration set tests in each itera-
tion of pruning. The experimental settings are kept
consistent with those described in the preceding
section. We conduct inference on the PIQA (Bisk
et al., 2020a) calibration set of the same scale using
both methods. As shown in Table 5, our method
has an average inference time of 56.12 seconds.
In contrast, SLEB has an average inference time
of 288.6 seconds. This efficiency improvement is
attributed to our Fast-Block-Select strategy, which
can more rapidly converge to an effective pruning
configuration.

4.7 Additional Results

We test our method using various calibration sets
and consistently achieve the same results, demon-
strating the stability of our approach (Appendix

Method Time (s)
SLEB 288.6
Ours 56.12

Table 5: Comparison of pruning time between our
method and SLEB on LLaMA3.1-8B.

B). We also evaluate the performance under dif-
ferent pruning ratios and find that the decrease
in accuracy is relatively small as the pruning ra-
tio increases (Appendix C). This indicates that by
appropriately adjusting the pruning ratio, we can
achieve a favorable balance between efficiency and
performance. Moreover, we conduct extensive test-
ing on the pruned model using a variety of specific
generation prompts to thoroughly evaluate its per-
formance. The results are highly encouraging, as
we find that the quality of the generated content
remains consistently high across different scenarios
(Appendix D).

5 Discussion

In this study, we focus on optimizing LLMs by
pruning intermediate blocks (layers) through the
use of skip-connections. Specifically, we replace
certain operations with identity matrices, thereby
streamlining the network structure and significantly
reducing computational overhead while maintain-
ing performance. The versatility of our method is
noteworthy, as it can be applied to a wide range
of models, including those that already employ
skip-connections, such as ResNet. Moreover, our
approach supports fine-grained pruning, which
not only enables flexible optimization but also en-
hances efficiency in models.

6 Conclusion

In this paper, we propose MI-PRUN, a struc-
tured pruning approach for large language models.
MI-PRUN leverages mutual information and the
Data Processing Inequality to iteratively refine the
blocks that contribute less to the model’s perfor-
mance. Furthermore, it employs the Fast-Block-
Select strategy to augments the efficiency. Our ex-
perimental results show that MI-PRUN effectively
prunes the model, alleviating computational load
without compromising its performance capabilities.
Employing the strategy of eliminating entire blocks,
MI-PRUN effectively enhances the inference speed
of end-to-end LLM inference.

7 Limitations

Extensive experiments on a wide range of datasets
and models demonstrate that our method outper-
forms other baselines in terms of performance.
However, it is worth noting that our method may
exhibit slightly inferior performance on a small
number of datasets, although the results are still
acceptable. As far as we know, this issue of vary-
ing performance across different datasets is also
observed in current pruning methods, which may
be attributed to differences in the distribution char-
acteristics of the data. This is one of the key aspects
that we will focus on in our future work.

References

2019. Winogrande: An adversarial winograd schema
challenge at scale.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathga: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jingiao
Wang. 2024. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10865-10873.

Anonymous. 2024. Unstructured pruning and low rank
factorisation of self-supervised pre-trained speech
models. IEEE Transactions on Audio, Speech, and
Language Processing, pages 1046-1058.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Roberto Battiti. 1994. Using mutual information for
selecting features in supervised neural net learning.
IEEE Transactions on neural networks, 5(4):537-
550.

Normand J Beaudry and Renato Renner. 2011. An in-
tuitive proof of the data processing inequality. arXiv
preprint arXiv:1107.0740.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020a. Piga: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020b. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-7439.

Mark Braverman, Ankit Garg, Tengyu Ma, Huy L
Nguyen, and David P Woodruff. 2016. Communica-
tion lower bounds for statistical estimation problems
via a distributed data processing inequality. In Pro-
ceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pages 1011-1020.

T Brown, B Mann, N Ryder, M Subbiah, JD Kaplan,
P Dhariwal, A Neelakantan, P Shyam, G Sastry,
A Askell, et al. 2020. Language models are few-shot
learners advances in neural information processing
systems 33.

Yuchen Cai, Zhen Wang, Yujun Li, Sheng Wang,
Zhiyuan Liu, and Maosong Sun. 2023. Gptq:
Accurate post-training quantization for genera-

tive pre-trained transformers. arXiv preprint
arXiv:2302.06557.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang,
Cuiping Li, and Hong Chen. 2024. Streamlining
redundant layers to compress large language models.
arXiv preprint arXiv:2403.19135.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
Imsys. org (accessed 14 April 2023), 2(3):6.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Chun Fan, Jiwei Li, Xiang Ao, Fei Wu, Yuxian Meng,
and Xiaofei Sun. 2021. Layer-wise model prun-
ing based on mutual information. arXiv preprint
arXiv:2108.12594.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi,
and Xinchao Wang. 2023. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 16091-16101.

Madan Ravi Ganesh, Jason J Corso, and Salimeh Yasaei
Sekeh. 2021. Mint: Deep network compression via
mutual information-based neuron trimming. In 2020
25th International Conference on Pattern Recogni-
tion (ICPR), pages 8251-8258. IEEE.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Song Han, Huizi Mao, and William J Dally. 2015a.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Song Han, Jeff Pool, John Tran, and William Dally.
2015b. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

E. Huang et al. 2023. Evaluating large language models
in complex scenarios. Journal of Computational
Linguistics.

Hanjuan Huang, Hao-Jia Song, and Hsing-Kuo Pao.
2024. Large language model pruning. arXiv preprint
arXiv:2406.00030.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834, 11.

Vid Kocijan, Thomas Lukasiewicz, Ernest Davis, Gary
Marcus, and Leora Morgenstern. 2020. A review of
winograd schema challenge datasets and approaches.
arXiv preprint arXiv:2004.13831.

C. Li et al. 2023a. Fine-tuning techniques for efficient
model adaptation. Al Research Journal.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023b. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Yong Li, Wei Du, Liquan Han, Zhenjian Zhang,
and Tongtong Liu. 2023c. A communication-
efficient, privacy-preserving federated learning algo-
rithm based on two-stage gradient pruning and differ-
entiated differential privacy. Sensors, 23(23):9305.

Sheng Liao et al. 2023. Can unstructured pruning re-
duce the depth in deep neural networks? In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops.

Huawen Liu, Jigui Sun, Lei Liu, and Huijie Zhang. 2009.
Feature selection with dynamic mutual information.
Pattern Recognition, 42(7):1330-1339.

Shiyu Liu and Mehul Motani. 2022. Improving mu-
tual information based feature selection by boosting
unique relevance. arXiv preprint arXiv:2212.06143.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702-21720.

10

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv:2403.03853.

Neri Merhav. 2012. Data-processing inequalities based
on a certain structured class of information measures
with application to estimation theory. IEEE transac-
tions on information theory, 58(8):5287-5301.

Xuan Vinh Nguyen, Jeffrey Chan, Simone Romano,
and James Bailey. 2014. Effective global approaches
for mutual information based feature selection. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 512-521.

Claudia Pascoal, M Rosario Oliveira, Anténio Pacheco,
and Rui Valadas. 2017. Theoretical evaluation of fea-
ture selection methods based on mutual information.
Neurocomputing, 226:168—181.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Josien PW Pluim, JB Antoine Maintz, and Max A
Viergever. 2003. Mutual-information-based registra-
tion of medical images: a survey. IEEE transactions
on medical imaging, 22(8):986—1004.

Adam Poliak. 2020. A survey on recognizing tex-
tual entailment as an nlp evaluation. arXiv preprint
arXiv:2010.03061.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb:
Streamlining 1lms through redundancy verification
and elimination of transformer blocks. arXiv preprint
arXiv:2402.09025.

Ralf Steuer, Jiirgen Kurths, Carsten O Daub, Janko
Weise, and Joachim Selbig. 2002. The mutual in-
formation: detecting and evaluating dependencies be-
tween variables. Bioinformatics, 18(suppl_2):S231—
S240.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for

https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

H Touvron, T Lavril, G Izacard, X Martinet,
MA Lachaux, T Lacroix, B Roziére, N Goyal, E Ham-
bro, F Azhar, et al. 2023a. Open and efficient founda-
tion language models. Preprint at arXiv. https://doi.
org/10.48550/arXiv, 2302.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jorge R Vergara and Pablo A Estévez. 2014. A re-
view of feature selection methods based on mutual
information. Neural computing and applications,
24:175-186.

Nicolas Veyrat-Charvillon and Francois-Xavier Stan-
daert. 2009. Mutual information analysis: how, when
and why? In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages
429-443. Springer.

La The Vinh, Sungyoung Lee, Young-Tack Park, and
Brian J d’Auriol. 2012. A novel feature selection
method based on normalized mutual information. Ap-
plied Intelligence, 37:100-120.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

F. Wang et al. 2023. Practical applications of 1lms in
specialized domains. Specialized Al Applications.

Charles Westphal, Stephen Hailes, and Mirco Musolesi.
2024. Mutual information preserving neural network
pruning. arXiv preprint arXiv:2411.00147.

Thomas Wolf. 2020. Transformers:
art natural language processing.
arXiv:1910.03771.

State-of-the-
arXiv preprint

Vikas Yadav, Steven Bethard, and Mihai Surdeanu.
2019. Quick and (not so) dirty: Unsupervised selec-
tion of justification sentences for multi-hop question
answering. arXiv preprint arXiv:1911.07176.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

11

Yifei Yang, Zouying Cao, and Hai Zhao. 2024b. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

Zhen Yang, Zilun Zhang, Sheng Wang, Jie Li, Meis-
han Zhang, Zhiyuan Liu, and Maosong Sun. 2021.
Knowledge distillation: A survey. arXiv preprint
arXiv:2106.05860.

Zhengwu Yang and Han Zhang. 2022. Comparative
analysis of structured pruning and unstructured prun-
ing. In Frontier Computing, page 112. Springer.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

D. Zhang et al. 2023. Parameter-efficient fine-tuning
methods for llms. Journal of Machine Learning Re-
search.

Qifan Zhang, Yunhui Guo, and Yu Xiang. 2024.
Continual distillation learning: Knowledge distilla-
tion in prompt-based continual learning. Preprint,
arXiv:2407.13911.

Yuxiao Zhou, Zhen Wang, Yujun Li, Sheng Wang,
Zhiyuan Liu, and Maosong Sun. 2023. Smoothquant:
Accurate and efficient post-training quantization
for large language models. arXiv preprint
arXiv:2302.06557.

Yuxiao Zhou, Zhen Wang, Yujun Li, Sheng Wang,
Zhiyuan Liu, and Maosong Sun. 2024. Framequant:
Flexible low-bit quantization for transformers. arXiv
preprint arXiv:2402.06557.

B. Zhu et al. 2023. Expanding frontiers in large lan-
guage models. Al Frontier Research.

https://doi.org/10.1007/978-981-16-8052-6_112
https://doi.org/10.1007/978-981-16-8052-6_112
https://doi.org/10.1007/978-981-16-8052-6_112
https://doi.org/10.1007/978-981-16-8052-6_112
https://doi.org/10.1007/978-981-16-8052-6_112
https://arxiv.org/abs/2407.13911
https://arxiv.org/abs/2407.13911
https://arxiv.org/abs/2407.13911

A Experimental Setup

A.1 Benchmarks

In order to comprehensively assess the impact of
pruning on the capabilities of large language mod-
els, we conduct an evaluation using widely preva-
lent benchmarks. Winogrande (ai2, 2019) is a com-
prehensive dataset designed to assess models’ abil-
ity to reason with common sense. It consists of
over 45,000 question-answer pairs that challenge
models with complex, real-world scenarios. PIQA
(Bisk et al., 2020a) is an innovative dataset that
focuses on understanding physical interactions. It
requires models to comprehend the relationships
between objects to answer questions about their
physical interactions. The WSC dataset (Kocijan
et al., 2020) presents a series of text entailment
tasks where models must discern whether one sen-
tence logically implies another, with a focus on
pronoun resolution and contextual understanding.
WNLI (ai2, 2019) is a subset of the WinoGrande
dataset, concentrating on natural language infer-
ence tasks. It tests models’ capabilities in identify-
ing whether one sentence entails another within a
given context. SST-2 (Socher et al., 2013) is a sen-
timent analysis benchmark that includes movie re-
views. Models are tasked with determining the sen-
timent expressed in the reviews, whether positive
or negative. RTE (Poliak, 2020) challenges mod-
els to evaluate the logical relationships between
sentences. It is a critical test for models’ ability
to understand textual entailment. QNLI (Wang
et al., 2018) combines question answering with nat-
ural language inference, requiring models to assess
the logical relationship between a given question
and a set of candidate answers. CB (Talmor et al.,
2019) is a question answering dataset that taps into
general knowledge. It requires models to lever-
age common sense to provide accurate answers
to a variety of questions. ARC-e (Yadav et al.,
2019) is tailored for elementary-level science and
math questions, designed to test models’ under-
standing and reasoning abilities in these domains.
ARC-c (Yadav et al., 2019) extends the challenge
to college-level complexity, assessing models’ pro-
ficiency in advanced scientific and mathematical
reasoning. These datasets serve as critical bench-
marks for evaluating the performance of language
models across a spectrum of NLP tasks, includ-
ing question answering, text entailment, sentiment
analysis, and commonsense reasoning.

12

A.2 Baselines

We now introduce the pruning methods for com-
parison. Shortened LLaMA (Kim et al., 2024) se-
lectively removes less important blocks based on
block level importance scores, thereby accelerating
model inference without significantly impacting
performance. ShortGPT (Men et al., 2024) defines
a Bl metric to measure the importance of each layer
within the model and directly removes those layers.
SLEB (Song et al., 2024) employs a logit based
approach to identify unnecessary transformer lay-
ers and updates the importance scores after each
layer removal. Through these comprehensive com-
parisons, we thoroughly assess the strengths of our
approach. SliceGPT (Ashkboos et al., 2024) is a
post-training sparsification scheme which replaces
each weight matrix with a smaller matrix. LLM-
Pruner (Ma et al., 2023) adopts structural pruning
that selectively removes non-critical coupled struc-
tures based on gradient information. FLAP (An
et al., 2024) is a structured pruning framework that
reduces storage by leveraging fluctuation based
metrics and adaptive model compression.

B Results on Different Calibration Sets

In order to evaluate the impact of different calibra-
tion sets on pruning outcomes, we conduct exper-
iments on Qwen-7B and Qwen-14B, pruning five
and seven blocks, respectively. We test the pruned
blocks under varying sizes using the WikiText-2
and Alpaca datasets. As illustrated in Table 6, de-
spite the differences in experimental conditions, we
achieve consistently stable pruning results. This
demonstrates that our approach maintains robust-
ness across diverse datasets.

C Sensitivity Analysis of Different

Pruning Ratios

Figure 4 provides a comprehensive illustration of
the influence of varying pruning ratios on the per-
formance of LLaMAZ2-7B. As the pruning ratio
escalates, the accuracy of the majority of tasks
exhibits a relatively stable profile, albeit with a gen-
eral tendency to decline. This stability underscores
the remarkable robustness of our proposed method.
The observed increase in perplexity at certain prun-
ing levels is considered tolerable, given its inher-
ently exponential correlation with loss. This phe-
nomenon serves as compelling validation of the effi-
cacy of our redundancy-aware iterative block prun-
ing strategy. By selectively excising non-essential

80 ===T__ 45
70 b Sasiltzi_ |/ Aqw
~ -~
60 | \\\~// 35
= 50_——\~‘________-\\“/:_\- 30 & ‘Winogrande
5 el {255 ---prea
g40r ’ 0 B TN
H 4 i 2
<30} ’ & ~ -~ -ARCe
i 115 - = = Perplexity
20 —__’/,— 110
10 | {5
0 1 0

R T PR T T
0 1 2 3 4 5 6 7 8 9

Pruning Blocks

Figure 4: Performance of LLaMA2-7B with different
pruning ratios (blocks).

blocks while meticulously preserving the model’s
core functional capabilities, our approach demon-
strates its ability to maintain model performance
even under significant pruning conditions.

D Case Study

We present a comprehensive comparison of sen-
tences generated by the model both before and after
pruning using our proposed method. The results
clearly demonstrate that the sentences produced by
the compressed model are of comparable quality
to those generated by the original model. Table 7
presents the quality of the generated content after
pruning 15.32% of the parameters on LLaMA?2-
7B. These sentences maintain fluency, relevance,
and informativeness with respect to the given top-
ics, thereby confirming that our pruning method
effectively retains the model’s ability to generate
high-quality text while significantly reducing its
complexity.

13

Models Calibration set

Size

Results of pruning blocks

WikiText-2
Qwen-7B

256
512
1024

[24, 25, 26, 27, 28]

Alpaca

256
512
1024

[24, 25, 26, 27, 28]

WikiText-2
Qwen-14B

256
512
1024

[29, 30, 31, 32, 33, 34, 35]

Alpaca

256
512
1024

[29, 30, 31, 32, 33, 34, 35]

Table 6: Results of pruning blocks with varying sizes on diverse calibration sets.

Original Model

Pruned Model

10 steps to build an ios app: 1. Determine the pur-
pose of your app: What problem does it solve or
what goal does it achieve? Who is the audience and
what features will they need? 2. Research the market:
Look at similar apps in the Apple App Store and see
what features they offer, what features are missing,
and what can be improved. 3. Design the user ...

10 steps to build an ios app: 1. Determine the pur-
pose of your app: Before starting to build an iOS app,
you need to determine its purpose and what problem
it will solve for the users. 2. Choose the right pro-
gramming language: Swift and Objective-C are the
two most popular programming languages used for
iOS app development. Swift is recommended ...

Explain what artificial intelligence 1s. Artificial in-
telligence (Al) refers to the development of computer
systems able to perform tasks that typically require
human intelligence, such as visual perception, speech
recognition, decision-making, and language transla-
tion. Al systems use machine learning, deep learning,
and natural language processing to analyze ...

Explain what artificial intelligence is. Artificial in-
telligence (Al is a branch of computer science ded-
icated to creating intelligent machines that can per-
form tasks that typically require human intelligence,
such as understanding language, recognizing images,
reasoning, and decision-making. Al is a rapidly grow-
ing field that is transforming many industries...

List the equipment needed for rock climbing. Rock
climbing is a popular adventure sport that requires
specific equipment to ensure safety and success. Here
are some of the essential pieces of equipment needed
for rock climbing:1. Climbing Shoes: Climbing
shoes are specifically designed to provide a snug
fit and good grip on the rock. They are usually ...

List the equipment needed for rock climbing. Rock
climbing is a popular adventure sport that involves
climbing a rock wall using a variety of techniques and
equipment. The equipment needed for rock climbing
includes: 1. Climbing shoes: These are specialized
shoes designed specifically for rock climbing. They
are typically tight-fitting and provide good grip ...

Table 7: Some examples of the generations obtained with the original model and the pruned model. The content

marked with a line is the user’s question.

14

	Introduction
	Related Work
	Methodology
	Mutual Information Measures Block Importance
	Importance of Continuous Blocks
	Fast-Block-Select (Iterative Updates)

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Hyperparameter Impact Analysis
	Comparison of Inference Time
	Pruning Overhead Analysis
	Additional Results

	Discussion
	Conclusion
	Limitations
	Experimental Setup
	Benchmarks
	Baselines

	Results on Different Calibration Sets
	Sensitivity Analysis of Different Pruning Ratios
	Case Study

