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Abstract001

Large language models (LLMs) have become002
crucial across various domains, yet it comes003
at the expense of considerable computational004
and memory resources. Model pruning refines005
deep learning models by excising redundant006
elements. However, current pruning methods007
often fail to substantially achieve end-to-end008
acceleration. In this paper, we propose MI-009
PRUN, a novel approach that uses mutual in-010
formation to identify low impact blocks for011
efficient model pruning. Furthermore, we in-012
corporate the Data Processing Inequality (DPI)013
to elucidate the relationship between the im-014
portance of contiguous blocks and that of in-015
dividual blocks. We utilize an iterative block016
selection algorithm to continuously update the017
combination of blocks that have the minimal018
impact on model performance, thereby obtain-019
ing a globally optimal solution. To enhance020
the efficiency of pruning, we develop the Fast-021
Block-Select algorithm to accelerate the prun-022
ing process. Comprehensive experiments on a023
wide range of models and datasets have demon-024
strated the rationality and effectiveness of our025
method.026

1 Introduction027

Large language models (LLMs) have made signif-028

icant strides, showing notable language skills in029

both comprehension and creation (Brown et al.,030

2020; Touvron et al., 2023a; Chiang et al., 2023;031

Zhu et al., 2023; Li et al., 2023a; Zhang et al., 2023;032

Huang et al., 2023; Wang et al., 2023). However, as033

the scale of models expands, the challenges faced034

in practical deployment also increase. The large035

size and computational requirements of the models036

lead to high deployment costs and inference delays.037

The exponential growth of parameters in large lan-038

guage models has become a striking phenomenon.039

For instance, the size of the LLaMA series models040

has soared from several billion parameters to hun-041

dreds of billions, and it may even go higher. These042

enormous leaps in numbers deeply reveal that as 043

the models grow in size, the complexity of their 044

deployment and application in practical scenarios 045

also increases. 046

In pursuit of lightweight deployment for large 047

language models, the research community has de- 048

veloped an array of model compression strategies, 049

such as model pruning (Ma et al., 2023; Ashkboos 050

et al., 2024; Li et al., 2023c; Han et al., 2015a), 051

quantization (Zhou et al., 2023; Cai et al., 2023; 052

Zhou et al., 2024) and knowledge distillation (Yang 053

et al., 2021; Zhang et al., 2024). These approaches 054

aim to lighten the computational load of large lan- 055

guage models, enhancing their deployability across 056

platforms with constrained resources. 057

Model pruning is essential for enhancing the ef- 058

ficiency of deep learning models by eliminating 059

redundant weights or neurons without compromis- 060

ing performance. Depending on the granularity 061

of the pruning operation, pruning techniques can 062

be categorized into structured and unstructured 063

pruning. Structured pruning removes entire neu- 064

rons, attention heads or layers, which is more hard- 065

ware friendly and preserves the efficiency of matrix 066

multiplication (Ashkboos et al., 2024; Yang and 067

Zhang, 2022). Unstructured pruning removes indi- 068

vidual weights based on criteria such as magnitude, 069

achieving high compression rates but complicat- 070

ing hardware acceleration due to irregular sparsity 071

patterns (Liao et al., 2023; Anonymous, 2024). 072

While the benefits of pruning are clear, apply- 073

ing it to large language models still remains a 074

formidable challenge (Ma et al., 2023; Ashkboos 075

et al., 2024; Li et al., 2023c; Han et al., 2015b; Fang 076

et al., 2023). Current pruning techniques often fail 077

to deliver significant acceleration. To address this 078

issue, some studies have proposed pruning entire 079

blocks rather than individual components (Men 080

et al., 2024; Yang et al., 2024b; Chen et al., 2024; 081

Song et al., 2024; Kim et al., 2024). For instance, 082

methods that utilize cosine similarity to evaluate 083
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block importance and adopt greedy pruning strate-084

gies have emerged (Men et al., 2024). However,085

these greedy approaches tend to converge to lo-086

cally optimal solutions, rather than identifying the087

globally optimal combination of blocks for prun-088

ing. Other techniques, such as LaCo (Yang et al.,089

2024b), attempt to reduce model size by merging090

subsequent layers into preceding ones. Unfortu-091

nately, this method often underperforms compared092

to direct layer removal in terms of effectiveness.093

LLM-Streamline achieves pruning by consolidat-094

ing several blocks with the highest cosine similarity095

into a single block (Chen et al., 2024). However,096

distilling too many blocks can sometimes degrade097

the model’s accuracy and necessitates fine-tuning098

training strategies, thereby introducing additional099

training overhead. Moreover, it remains a greedy100

selection method. Meanwhile, methods like SLEB101

(Song et al., 2024) and Shortened LLaMA (Kim102

et al., 2024) iteratively prune layers based on im-103

portance metrics. Nevertheless, the need to mea-104

sure corresponding indicators using a calibration105

set after each layer removal often results in high106

computational complexity.107

To design a method that can achieve the globally108

optimal combination of pruned blocks, we propose109

a Mutual Information Based Pruning (MI-PRUN)110

method designed for large language models. MI-111

PRUN uses mutual information to identify and re-112

move non essential weight blocks by evaluating113

the transitions of hidden states. Furthermore, we114

incorporate the Data Processing Inequality (DPI)115

(Beaudry and Renner, 2011; Merhav, 2012; Braver-116

man et al., 2016) to elucidate the relationship be-117

tween the importance of contiguous blocks and118

that of individual blocks. We utilize an iterative119

block selection algorithm to continuously update120

the combination of blocks that have the minimal121

impact on model performance, thereby obtaining122

a globally optimal solution. To enhance efficiency,123

we develop the Fast-Block-Select algorithm, which124

utilizes heuristic methods to efficiently pinpoint125

optimal candidates for pruning and streamline the126

pruning process.127

The main contributions of our paper can be sum-128

marized as follows:129

• We leverage mutual information to quantify130

the transition of hidden states between dif-131

ferent blocks, thereby identifying and prun-132

ing weight blocks that contribute less to the133

model’s performance.134

• We incorporate the Data Processing Inequality 135

(DPI) (Beaudry and Renner, 2011; Merhav, 136

2012; Braverman et al., 2016) to elucidate 137

the relationship between the importance of 138

contiguous and individual blocks, and utilize 139

an iterative block selection algorithm to con- 140

tinuously update the combination of blocks 141

with minimal impact on model performance, 142

thereby achieving a globally optimal solution. 143

• We develop the Fast-Block-Select algorithm 144

to significantly enhance the efficiency of the 145

pruning process. 146

2 Related Work 147

Mutual information is a powerful metric that 148

quantifies the dependency between two variables 149

by measuring the amount of information about one 150

variable that can be inferred from the other (Liu 151

and Motani, 2022; Nguyen et al., 2014; Veyrat- 152

Charvillon and Standaert, 2009). Its ability to de- 153

tect non-linear relationships sets it apart from con- 154

ventional linear measurement techniques, making 155

it an essential tool for uncovering intricate data pat- 156

terns and understanding complex model dynamics 157

(Vinh et al., 2012; Pascoal et al., 2017). This al- 158

lows it to delve into the complex interplays within 159

data, surpassing traditional methods in capturing 160

nuanced relationships (Pluim et al., 2003; Steuer 161

et al., 2002). The application of mutual information 162

is remarkably broad, extending to the assessment 163

of complex connections among multiple variables. 164

In the field of feature selection, mutual information 165

plays a particularly crucial role (Battiti, 1994; Liu 166

et al., 2009; Vergara and Estévez, 2014). 167

Some studies determine whether to prune neu- 168

rons or activations between layers by calculating 169

the mutual information between neurons (Fan et al., 170

2021; Huang et al., 2024; Westphal et al., 2024; 171

Ganesh et al., 2021). If the mutual information 172

value exceeds a certain threshold, it indicates that 173

their information overlaps, and some of them can 174

be pruned without causing significant performance 175

loss. However, these methods still have several 176

drawbacks. Pruning based on measuring the corre- 177

lation between neurons does not always lead to sub- 178

stantial acceleration, as the inference speed is far 179

lower than that of block pruning. Moreover, simply 180

measuring the correlation between two units (neu- 181

rons or blocks) is often insufficient. It is necessary 182

to consider the relationships among multiple units 183

using the Data Processing Inequality. Addition- 184
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ally, calculating the mutual information for each185

pair of neurons individually is computationally in-186

tensive. Therefore, it is essential to design more187

efficient methods to reduce the computational load.188

Our method fully overcomes the aforementioned189

challenges.190

3 Methodology191

3.1 Mutual Information Measures Block192

Importance193

During the inference phase of LLMs, the sequence194

outputs of the Transformer layers exhibit a high de-195

gree of similarity. This similarity primarily stems196

from a crucial design feature of the model: the use197

of residual connections. Specifically, the output of198

each layer is added to the output of the previous199

layer through these residual connections, thereby200

enabling the continuous transfer and accumulation201

of information across different layers of the model.202

Mathematically, the output of the (i+ 1)-th Trans-203

former layer can be represented as follows:204

hi+1 = Transformeri+1 (hi) + hi (1)205

Here, hi and hi+1 denote the outputs of the206

i-th and (i + 1)-th layers, respectively, while207

Transformeri+1 represents the transformation208

function of the (i+1)-th layer. This additive mech-209

anism ensures that the information from previous210

layers is retained and built upon, contributing to211

the overall robustness and depth of the model’s212

representations.213

Some studies identify less important blocks us-214

ing cosine similarity (Men et al., 2024). How-215

ever, the effectiveness of cosine similarity often216

decreases when dealing with non-linear relation-217

ships or complex, skewed data distributions, and it218

may not delve deeply into the specific interactions219

between variables. In contrast, mutual informa-220

tion (Liu and Motani, 2022; Nguyen et al., 2014;221

Veyrat-Charvillon and Standaert, 2009) presents a222

more robust and in-depth analytical approach. Un-223

like cosine similarity, which primarily focuses on224

the directionality of hidden states, mutual informa-225

tion delves into the actual information flow and226

dependency relationships between hidden states.227

This holistic perspective allows for a richer under-228

standing of the underlying interactions within the229

model, thereby providing a more effective basis for230

optimization and deeper insights into model perfor-231

mance. This is also demonstrated in Section 4 of232

our work.233
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Figure 1: The relationship between the mutual infor-
mation of the global continuous block and the local
individual blocks.

When the mutual information (Liu and Motani, 234

2022; Nguyen et al., 2014; Veyrat-Charvillon and 235

Standaert, 2009) between the input and output 236

states is unusually high, this typically indicates 237

that the block’s output is largely a direct reflection 238

of its input state. This suggests that the block holds 239

lower importance within the model. In other words, 240

the output state does not significantly add new or 241

important information but rather largely replicates 242

the information from the input state, thereby in- 243

troducing redundancy. In this case, the block may 244

play a minor role in the overall functionality of the 245

model. 246

The transformation effect of the blocki+1 is max- 247

imized when hi and hi+1 are independent, and 248

the mutual information is zero. Conversely, the 249

transformation function is minimal when hi+1 is 250

completely determined by hi, such that for any 251

hi there exists a corresponding hi+1 for which 252

P (hi+1 | hi) = 1, and the mutual information 253

is maximal. Beyond these two extreme cases, as 254

the transformation function exerts a greater effect, 255

H(hi+1 | hi) increases, while the mutual informa- 256

tion I(hi, hi+1) decreases. 257

3.2 Importance of Continuous Blocks 258

In the previous section, we analyze the importance 259

of blocks from the perspective of individual, iso- 260

lated blocks. A potential issue arises: some individ- 261

ual blocks may appear unimportant on their own, 262

but when considered in the context of the surround- 263

ing blocks as a whole, they can significantly con- 264

tribute to the model performance. To gain a clearer 265

understanding of this issue, we introduce the Data 266

Processing Inequality (DPI) (Beaudry and Renner, 267

2011; Merhav, 2012; Braverman et al., 2016). The 268

DPI states that when input hi passes through a first- 269

level block to obtain information hi+1, and then 270

3



24 25 26 27 28

alternative set 20 21 22 23 29

pruning  set

24 25 26 27 28

alternative set 20 21 22 23 29

pruning  set

23 24 26 27 28

alternative set 20 21 22 25 29

pruning  set
23 24 26 27 28

24 25 26 27 28

26,27

27,28

25,26

23,24

24,25

28,29

22,23

21,22

20,21

26,27,28

25,26,27

24,25,26

27,28,29

23,24,25

22,23,24

21,22,23

20,21,22

22,23,24,25,26

21,22,23,24,25

20,21,22,23,24

23,24,25,26,27

24,25,26,27,28

26,27

27,28

25,26

24,25

23,24

26,27,28

25,26,27

24,25,26

23,24,25

22,23,24

27,28,29

24,25,26,27,28

23,24,25,26,27

22,23,24,25,26

21,22,23,24,25

20,21,22,23,24

27

26

24

28

23

…

LLM

(LLaMA

2- 7B)

Calibration 

set

Step 1

Step 2

Step 3

Step 3

Step 4

Step 4

Step 5

Step 5

Stop iterating if the pruning set is unchanged.

Iteration-1

Step 6

Step 6

Iteration-2

Figure 2: An overview of our method. The process of pruning 5 blocks in the LLaMA2-7B model. We provide a
detailed description of the implementation for each step in Section 3.3.

hi+1 is processed further by a second-level block271

to produce the output hi+2, the mutual information272

(Liu and Motani, 2022; Nguyen et al., 2014; Veyrat-273

Charvillon and Standaert, 2009) between hi and274

hi+2 (Ihi+2

hi
) satisfies the following relationship:275

I
hi+2

hi
≤ min(I

hi+1

hi
, I

hi+2

hi+1
) (2)276

As illustrated in Figure 1, consider the combination277

of two blocks as an example. Suppose the impor-278

tance of any block on the left (hi → hi+1 → hi+2)279

is lower than that of any block on the right (hj →280

hj+1 → hj+2). Under this scenario, the mutual281

information follows the following characteristics:282

min(I
hi+1

hi
, I

hi+2

hi+1
) ≥ max(I

hj+1

hj
, I

hj+2

hj+1
) (3)283

Based on the DPI (Beaudry and Renner, 2011; Mer-284

hav, 2012; Braverman et al., 2016), the following285

formula can be derived:286

I
hi+2

hi
≥ I

hj+2

hj
(4)287

Here, Ihj+2

hj
(min(I

hj+1

hj
, I

hj+2

hj+1
)) denotes the upper288

bound of Ihj+2

hj
, and the same applies to the I

hi+2

hi
289

(min(I
hi+1

hi
, I

hi+2

hi+1
)). The mutual information I

hi+2

hi
290

is only guaranteed to have a higher upper bound291

than I
hj+2

hj
, but it is still possible that Ihi+2

hi
is less292

than I
hj+2

hj
. Thus, a continuous block that follows293

two unimportant blocks is more likely to be unim-294

portant as well. Nevertheless, the possibility that295

it could be important still exists. The same rea- 296

soning applies to the case of multiple continuous 297

blocks, extending from the scenario of two contin- 298

uous blocks. 299

To enhance the accuracy of block selection, we 300

assess the importance of continuous blocks as a 301

whole rather than individually. This approach pre- 302

vents the unintended removal of blocks that, while 303

seemingly less important on their own, significantly 304

contribute to the overall performance of the model. 305

For example, consider the LLaMA3.1-8B model, 306

which consists of 32 blocks. When pruning 5 307

blocks, we need to evaluate the mutual information 308

of 150 blocks, including both individual blocks and 309

continuous block. We will elaborate on our detailed 310

iterative block selection algorithm in Section 3.3. 311

3.3 Fast-Block-Select (Iterative Updates) 312

In practical applications, calculating the impor- 313

tance (measured by mutual information) of all con- 314

tiguous blocks can be highly time consuming and 315

resource intensive. For example, in the LLaMA2- 316

7B model, there are as many as 528 possible com- 317

binations of contiguous blocks, making the task 318

extremely complex. Therefore, it is crucial to 319

explore methods that can accelerate the block se- 320

lection process. A straightforward idea might be 321

to use dynamic programming to tackle this prob- 322

lem. However, since the importance of contigu- 323

ous blocks does not have a strict quantitative rela- 324

tionship with the importance of their sub-blocks, 325

this approach is not viable. To address this chal- 326
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lenge, we have designed a heuristic block selection327

method called Fast-Block-Select to significantly328

enhance the speed of block selection. Assuming329

the model consists of a total of T blocks, we aim330

to prune N blocks. The process can be broken331

down into the following steps (Figure 2 provides332

a detailed illustration of our process for pruning 5333

blocks in the LLaMA2-7B model):334

Step 1 : We employ a calibration set to obtain the335

importance of each independent block within the336

model and subsequently rank them in ascending337

order of importance. In Figure 2, we employ a338

calibration set to perform inference on LLaMA2-339

7B and obtain a list of blocks sorted in ascending340

order of importance (27, 26, 24, 28, 23 ...).341

Step 2 : We select the top N blocks according342

to their importance ranking to form the pruning set.343

Additionally, we identify the M least important344

blocks that are outside the pruning set to form the345

alternative set, where M satisfies the following346

conditions:347

M = min(N,T −N) (5)348

The number of elements in the alternative set (M ),349

is typically set to match the number of elements in350

the pruning set (N ), and should not exceed the total351

number of remaining blocks (T − N ). In Figure352

2, both N and M are set to 5. The pruning set is353

defined as {23, 24, 26, 27, 28}, and the alternative354

set is defined as {20, 21, 22, 25, 29}.355

Step 3 : We categorize the blocks in the pruning356

set into groups to form contiguous block sets. In357

Figure 2, in Iteration-1, we group the pruning set358

into {23, 24} and {26, 27, 28}. In Iteration-2, since359

all elements in the pruning set are contiguous, there360

is only one group: {24, 25, 26, 27, 28}.361

Step 4 : For each contiguous block within the362

contiguous blocks set, we generate all possible363

contiguous block sets of matching lengths by364

utilizing blocks from both the pruning set and365

the alternative set. We assess the importance of366

each contiguous block by summing the importance367

values of its constituent individual blocks, and368

subsequently sort these contiguous blocks in369

ascending order of their estimated importance.370

This method provides a reasonable approximation371

of the importance of contiguous blocks, as372

a sequence composed of multiple important373

individual blocks is more likely to be significant.374

Importantly, this approach eliminates the need to375

directly compute the mutual information between376

the inputs and outputs of the contiguous blocks; 377

instead, it simply involves aggregating the mutual 378

information of the individual blocks. In Figure 2, 379

during Iteration-1 (with contiguous block lengths 380

of 2 and 3), we construct possible contiguous block 381

sets using elements from the pruning set and the 382

candidate set. We also estimate the importance of 383

these contiguous blocks and sort them, resulting 384

in the sets {{26, 27}, {27, 28}, {25, 26} . . .} for 385

the set {23, 34}. For the set {26, 27, 28}, 386

we construct the contiguous block sets 387

{{26, 27, 28}, {25, 26, 27} . . .}. In Iteration- 388

2 (with contiguous block length of 5), 389

we construct the contiguous block sets 390

{{22, 23, 24, 25, 26} . . .}. 391

Step 5 : For each group, we compute the exact 392

mutual information of the top K contiguous blocks, 393

and subsequently rank these blocks based on their 394

mutual information. Here, K is determined by the 395

following conditions: 396

K = min(⌊logL⌋+ k, l) (6) 397

Here, L denotes the length of the corresponding 398

contiguous block, while l represents the number 399

of elements in the continuous block set. Addition- 400

ally, k signifies the number of extra elements we 401

consider (a hyperparameter). As L increases, the 402

error in measuring the importance of a continuous 403

block based solely on the sum of the importance 404

of individual blocks also increases. Therefore, we 405

incorporate logL into the calculation of K, en- 406

suring that K increases with L. Additionally, the 407

upper bound of K cannot exceed l. In Figure 2, 408

in Iteration-1, L is 2 and 3, while K is 5 and 6, 409

respectively. In Iteration-2, L is 5, and K is 5. 410

Step 6 : For each group of contiguous blocks, 411

we select the combination with the highest sum 412

of mutual information that does not conflict as 413

the updated block combination for this iteration. 414

In Figure 2, in Iteration-1, we select {24, 25} 415

and {26, 27, 28}, resulting in a new pruning set 416

{24, 25, 26, 27, 28}. In Iteration-2, we select 417

{24, 25, 26, 27, 28}. The pruning set changes be- 418

tween before and after Iteration-1, so the itera- 419

tive algorithm continues. However, the pruning 420

set remains unchanged between before and after 421

Iteration-2, so the iteration stops. 422

The steps 3, 4, 5, and 6 are executed in each 423

iteration. This process continues until the selected 424

blocks remain unchanged from one iteration to the 425

next. Our method takes into account the influence 426
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of blocks more comprehensively and thoroughly427

both before and after each iteration, which enables428

it to obtain either better or equivalent solutions429

(never worse). This provides a significant guarantee430

of convergence. Extensive testing on a wide range431

of models and data also show that our method does432

not exhibit oscillation phenomena, further demon-433

strating its effectiveness.434

4 Experiments435

4.1 Experimental Setup436

Models and Benchmarks. To demonstrate the437

effectiveness of our method, we conduct exten-438

sive evaluations on four representative LLMs439

with diverse architectures and scales, including440

LLaMA3.1-8B (Grattafiori et al., 2024), LLaMA2-441

13B (Touvron et al., 2023b), Qwen2.5-7B (Yang442

et al., 2024a) and Qwen2.5-14B (Yang et al.,443

2024a). In some experiments, we also use mod-444

els like LLaMA2-7B (Touvron et al., 2023b). We445

employ a wide range of benchmarks. These446

benchmarks include MMLU (Hendrycks et al.,447

2020), CMMLU (Li et al., 2023b), PIQA (Bisk448

et al., 2020b), Winogrande (ai2, 2019), HellaSwag449

(Zellers et al., 2019), BoolQ (Clark et al., 2019),450

MathQA (Amini et al., 2019), ARC-Easy and ARC-451

Challenge (Clark et al., 2018), RTE (Wang et al.,452

2018), WNLI (Wang et al., 2018), CB (Wang et al.,453

2019) and SST-2 (Wang et al., 2018). All bench-454

mark results are reported using accuracy as the455

evaluation metric. More details can be found in456

Appendix A.1.457

Baselines. We conduct extensive comparative458

evaluations against other pruning algorithms, in-459

cluding LLM-Pruner (Ma et al., 2023), FLAP (An460

et al., 2024), Shortened LLaMA (abbreviated as461

Shortened)(Kim et al., 2024), ShortGPT (Men462

et al., 2024) and SLEB (Song et al., 2024). Ad-463

ditionally, we also use SliceGPT to test inference464

speed (Ashkboos et al., 2024). Through these com-465

prehensive comparisons, we thoroughly assess the466

strengths of our approach. More details can be467

found in Appendix A.2.468

Implementation Details. We implement our ap-469

proach using PyTorch (Paszke et al., 2019) and the470

HuggingFace Transformers library (Wolf, 2020),471

conducting experiments on NVIDIA A100 GPUs472

with 80GB memory. If the product of a model’s473

total Transformer blocks and target sparsity is not474

an integer, we round up to determine the number475

of blocks to prune. We set the value of the hyperpa-476

rameter k to 5. For performance comparisons, we 477

maintain consistent experimental settings, includ- 478

ing the calibration set and pruning rate. 479

4.2 Main Results 480

To validate the effectiveness of our proposed 481

method, comparative experiments are conducted on 482

the LLaMA3.1, LLaMA2 and Qwen2.5 series, em- 483

ploying standard benchmarks and baselines com- 484

monly utilized in the assessment of large language 485

models. Dense denotes an unpruned model. The 486

experimental results are shown in Table 1. These 487

results suggest that the models pruned via our pro- 488

posed method demonstrate enhanced overall perfor- 489

mance when compared with the baseline methods, 490

maintaining most of the large language model’s ca- 491

pabilities. Although our method performs slightly 492

worse on a small subset of datasets, this is still 493

acceptable. The average accuracy across all tasks 494

further highlights the effectiveness of our approach. 495

4.3 Ablation Study 496

Iterative Update Blocks. We investigate the im- 497

pact of incorporating the DPI into the MI-PRUN 498

method for iterative pruning block updates by 499

meticulously comparing two pruning strategies. 500

The experiment begins with an assessment of the 501

mutual information of each block and employs a 502

greedy strategy to prune the block with the high- 503

est mutual information value. Meanwhile, the MI- 504

PRUN method calculates the mutual information 505

between continuous blocks, ensuring that the col- 506

lective impact of these blocks on the overall model 507

performance is considered. An iterative optimiza- 508

tion algorithm enhances the selection process, guar- 509

anteeing that the pruning results are both compre- 510

hensive and accurate. We prune 15.32% parameter 511

on LLaMA2-7B. As shown in Figure 3, the results 512

compare the model accuracy under the two strate- 513

gies, vividly demonstrating the significant impact 514

of considering iterative update blocks on enhancing 515

model performance. 516

Fast-Block-Select. We set out to compare two 517

distinct block selection methods: the Brute Force 518

approach and our heuristic based Fast-Block-Select 519

algorithm. The Brute Force approach is exhaustive 520

in nature, calculating the importance of all indi- 521

vidual and contiguous blocks by evaluating every 522

possible combination. While this method ensures 523

no potential solution is overlooked, it is highly com- 524

plex and resource-intensive, requiring an enormous 525

number of solution attempts to identify the opti- 526
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Models Methods Ratios Benchmarks
MMLU CMMLU ARC-E ARC-C PIQA Winogrande HellaSwag BoolQ MathQA WNLI SST-2 RTE CB Avg

LLaMA3.1-8B

Dense 0.00% 63.35 50.85 81.52 51.28 80.30 74.03 60.05 82.26 39.56 59.15 76.83 71.12 60.71 65.46
LLM-Pruner 13.62% 52.01 41.12 67.36 42.06 74.54 69.32 51.50 73.78 32.35 50.78 69.37 49.40 55.28 56.07

FLAP 13.21% 52.11 41.13 67.42 42.15 74.63 69.36 51.56 73.82 32.39 50.82 69.41 49.44 55.34 56.11
Shortened 13.58% 33.54 34.28 72.31 42.15 72.63 69.61 47.96 45.23 34.27 56.34 52.52 67.15 69.64 53.66
ShortGPT 13.58% 51.92 41.11 67.34 42.06 74.48 69.38 51.56 73.76 32.50 50.70 69.31 49.50 55.36 56.08

SLEB 13.58% 28.35 25.51 71.04 36.18 75.46 62.98 49.70 57.89 27.30 46.48 55.85 57.04 35.71 48.42
Ours 13.58% 60.74 46.65 73.06 43.83 76.97 73.47 53.71 69.76 32.61 60.48 82.96 70.72 73.16 62.93

LLaMA2-13B

Dense 0.00% 52.10 34.73 79.42 48.38 79.05 72.22 60.07 80.61 32.09 66.20 87.61 69.31 80.36 64.78
LLM-Pruner 24.18% 50.11 33.57 61.16 37.67 71.38 70.71 47.37 62.53 24.41 43.24 65.37 59.19 51.38 52.16

FLAP 24.16% 49.89 33.91 60.90 37.65 71.44 70.69 47.54 62.43 24.78 43.26 64.91 59.19 51.34 52.15
Shortened 24.37% 26.71 25.50 26.26 22.61 51.14 48.22 25.76 38.93 18.89 43.66 46.56 52.71 37.50 35.73
ShortGPT 24.37% 50.13 33.97 61.32 37.88 71.44 70.80 47.71 62.54 24.82 43.66 65.37 59.57 51.79 52.38

SLEB 24.37% 23.76 25.41 67.85 33.87 75.41 63.77 48.76 62.42 25.46 45.07 50.92 58.84 41.07 47.89
Ours 24.37% 51.89 33.73 64.33 38.44 72.93 69.97 48.55 58.36 26.74 54.05 59.79 63.79 50.64 53.32

Qwen2.5-7B

Dense 0.00% 71.92 81.69 80.56 48.21 78.73 72.93 59.92 84.46 43.22 71.83 91.86 81.23 87.50 73.39
LLM-Pruner 15.21% 36.96 36.71 71.33 38.20 74.86 55.79 47.71 55.67 31.08 60.43 70.79 54.42 38.81 51.75

FLAP 15.36% 37.17 36.39 71.47 37.83 76.21 55.65 47.47 57.23 30.11 61.61 70.68 54.59 37.32 51.82
Shortened 15.30% 24.90 25.08 25.25 20.31 53.65 50.99 25.69 37.83 19.50 53.52 50.92 46.21 19.64 34.88
ShortGPT 15.30% 36.89 31.07 71.46 37.80 76.12 55.80 48.67 63.21 30.59 42.25 80.62 54.87 41.07 51.57

SLEB 15.30% 38.56 38.25 71.84 39.42 76.77 55.96 47.98 57.49 31.12 61.97 72.25 56.32 39.29 52.86
Ours 15.30% 52.78 50.90 71.03 38.67 76.90 56.89 50.87 72.09 30.60 66.17 63.15 65.31 57.14 58.09

Qwen2.5-14B

Dense 0.00% 77.45 84.44 82.37 56.31 81.12 75.37 63.37 85.23 53.03 77.46 89.11 79.78 80.36 75.80
LLM-Pruner 18.52% 43.09 42.01 73.33 40.54 73.58 58.47 47.79 61.89 31.53 48.79 54.26 56.88 49.27 52.42

FLAP 18.89% 44.86 44.77 50.29 31.00 60.72 51.44 34.14 65.16 25.65 65.28 89.95 76.87 68.74 54.53
Shortened 18.64% 24.63 25.31 25.04 20.14 52.88 50.43 25.69 37.92 18.93 52.11 48.62 51.99 37.50 36.25
ShortGPT 18.64% 45.75 45.63 50.63 31.40 61.81 52.64 34.41 65.72 26.16 66.20 91.28 78.34 69.64 55.35

SLEB 18.64% 43.77 42.90 74.07 41.04 74.37 58.96 48.43 62.57 32.23 49.30 54.93 57.40 50.00 53.07
Ours 18.64% 71.26 76.07 67.92 44.11 71.08 69.94 47.72 64.05 34.68 61.47 81.95 73.71 69.52 64.11

Table 1: Comparison of pruning techniques in large language models through benchmark testing. We compare
various pruning methods applied to four large language models using a diverse set of benchmark tests. For each
combination of model and pruning technique, we document the pruning ratio, the accuracy scores for specific tasks,
and the average accuracy across all tasks.

Method Dense SliceGPT LLM-Pruner FLAP MI-PRUN
Time (ms) 330.33 297.40 307.15 294.98 258.59

Table 2: Inference time comparison of LLaMA3.1-8B model using different pruning methods.

Figure 3: Performance comparison between Greedy
Strategy and Iterative Update.

mal blocks for pruning. On the other hand, the527

Fast-Block-Select algorithm takes a more strate-528

gic approach. By employing a heuristic strategy,529

it efficiently identifies the most promising blocks530

for pruning without the need to evaluate every pos-531

sible combination. This significantly reduces the532

computational burden and enhances the overall effi-533

ciency of the block selection process. Our primary534

focus is on comparing the computational efficiency535

of the two methods. We prune 15.32% parameter536

on LLaMA3.1-8B and 24.37% on LLaMA2-13B.537

As shown in Table 3, the Fast-Block-Select algo-538

rithm is significantly more efficient, highlighting539

its practicality and superiority over the Brute Force540

approach. 541

Models Methods Time (s)

LLaMA3.1-8B
Brute Force 183.88

Fast-Block-Select 56.12

LLaMA2-13B
Brute Force 433.17

Fast-Block-Select 67.35

Table 3: Comparison of pruning efficiency between Brute
Force and Fast-Block-Select. The last line indicates that
when pruning on LLaMA2-13B, the time required by
Brute Force and Fast-Block-Select is 433.17s and 67.35s,
respectively. The same applies to the above line.

4.4 Hyperparameter Impact Analysis 542

We evaluate the impact of the hyperparameter k 543

in Step 6 of our method on performance. Here, k 544

signifies the number of additional elements consid- 545

ered. As k increases, the consideration of blocks 546

becomes more comprehensive, though this also in- 547

troduces a higher computational load. We prune 548

24.37% parameter on LLaMA2-13B. As shown in 549

Table 4, we experiment with several different con- 550

figurations of k, and all achieve satisfactory results. 551

This demonstrates the effectiveness and robustness 552

of our approach. 553
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k MMLU CMMLU ARC-C Avg
3 51.72 33.39 38.06 41.06
4 51.89 33.73 38.44 41.36
5 51.89 33.73 38.44 41.36

Table 4: Evaluation of the influence of the number of
additional elements considered k on the LLaMA2-13B.

4.5 Comparison of Inference Time554

We evaluate the execution time for a single prefill555

forward inference of the LLaMA3.1-8B model, us-556

ing an input tensor of shape [1, 1024] in the fp32557

format. The remaining experimental settings are558

consistent with the details provided above. We559

apply a pruning strategy that reduces the model560

parameters by 13.58%. For comparison, we also561

include the Dense (unpruned) model as a baseline.562

Additionally, we test our approach against other563

non-block pruning methods, including SliceGPT564

(Ashkboos et al., 2024), LLM-Pruner (Ma et al.,565

2023), and FLAP (An et al., 2024). Table 2566

presents a comparison of inference time between567

our method and the aforementioned approaches.568

Our method achieves the fastest runtime, signifi-569

cantly reducing the inference time. These results570

underscore the substantial acceleration achieved by571

our method.572

4.6 Pruning Overhead Analysis573

We compare the computational overhead of our574

proposed pruning method with that of SLEB when575

pruning 15.63% blocks on LLaMA3.1-8B. SLEB576

(Song et al., 2024) is also a strategy that considers577

the global optimal solution for block pruning, but it578

requires multiple calibration set tests in each itera-579

tion of pruning. The experimental settings are kept580

consistent with those described in the preceding581

section. We conduct inference on the PIQA (Bisk582

et al., 2020a) calibration set of the same scale using583

both methods. As shown in Table 5, our method584

has an average inference time of 56.12 seconds.585

In contrast, SLEB has an average inference time586

of 288.6 seconds. This efficiency improvement is587

attributed to our Fast-Block-Select strategy, which588

can more rapidly converge to an effective pruning589

configuration.590

4.7 Additional Results591

We test our method using various calibration sets592

and consistently achieve the same results, demon-593

strating the stability of our approach (Appendix594

Method Time (s)
SLEB 288.6
Ours 56.12

Table 5: Comparison of pruning time between our
method and SLEB on LLaMA3.1-8B.

B). We also evaluate the performance under dif- 595

ferent pruning ratios and find that the decrease 596

in accuracy is relatively small as the pruning ra- 597

tio increases (Appendix C). This indicates that by 598

appropriately adjusting the pruning ratio, we can 599

achieve a favorable balance between efficiency and 600

performance. Moreover, we conduct extensive test- 601

ing on the pruned model using a variety of specific 602

generation prompts to thoroughly evaluate its per- 603

formance. The results are highly encouraging, as 604

we find that the quality of the generated content 605

remains consistently high across different scenarios 606

(Appendix D). 607

5 Discussion 608

In this study, we focus on optimizing LLMs by 609

pruning intermediate blocks (layers) through the 610

use of skip-connections. Specifically, we replace 611

certain operations with identity matrices, thereby 612

streamlining the network structure and significantly 613

reducing computational overhead while maintain- 614

ing performance. The versatility of our method is 615

noteworthy, as it can be applied to a wide range 616

of models, including those that already employ 617

skip-connections, such as ResNet. Moreover, our 618

approach supports fine-grained pruning, which 619

not only enables flexible optimization but also en- 620

hances efficiency in models. 621

6 Conclusion 622

In this paper, we propose MI-PRUN, a struc- 623

tured pruning approach for large language models. 624

MI-PRUN leverages mutual information and the 625

Data Processing Inequality to iteratively refine the 626

blocks that contribute less to the model’s perfor- 627

mance. Furthermore, it employs the Fast-Block- 628

Select strategy to augments the efficiency. Our ex- 629

perimental results show that MI-PRUN effectively 630

prunes the model, alleviating computational load 631

without compromising its performance capabilities. 632

Employing the strategy of eliminating entire blocks, 633

MI-PRUN effectively enhances the inference speed 634

of end-to-end LLM inference. 635
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7 Limitations636

Extensive experiments on a wide range of datasets637

and models demonstrate that our method outper-638

forms other baselines in terms of performance.639

However, it is worth noting that our method may640

exhibit slightly inferior performance on a small641

number of datasets, although the results are still642

acceptable. As far as we know, this issue of vary-643

ing performance across different datasets is also644

observed in current pruning methods, which may645

be attributed to differences in the distribution char-646

acteristics of the data. This is one of the key aspects647

that we will focus on in our future work.648
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A Experimental Setup937

A.1 Benchmarks938

In order to comprehensively assess the impact of939

pruning on the capabilities of large language mod-940

els, we conduct an evaluation using widely preva-941

lent benchmarks. Winogrande (ai2, 2019) is a com-942

prehensive dataset designed to assess models’ abil-943

ity to reason with common sense. It consists of944

over 45,000 question-answer pairs that challenge945

models with complex, real-world scenarios. PIQA946

(Bisk et al., 2020a) is an innovative dataset that947

focuses on understanding physical interactions. It948

requires models to comprehend the relationships949

between objects to answer questions about their950

physical interactions. The WSC dataset (Kocijan951

et al., 2020) presents a series of text entailment952

tasks where models must discern whether one sen-953

tence logically implies another, with a focus on954

pronoun resolution and contextual understanding.955

WNLI (ai2, 2019) is a subset of the WinoGrande956

dataset, concentrating on natural language infer-957

ence tasks. It tests models’ capabilities in identify-958

ing whether one sentence entails another within a959

given context. SST-2 (Socher et al., 2013) is a sen-960

timent analysis benchmark that includes movie re-961

views. Models are tasked with determining the sen-962

timent expressed in the reviews, whether positive963

or negative. RTE (Poliak, 2020) challenges mod-964

els to evaluate the logical relationships between965

sentences. It is a critical test for models’ ability966

to understand textual entailment. QNLI (Wang967

et al., 2018) combines question answering with nat-968

ural language inference, requiring models to assess969

the logical relationship between a given question970

and a set of candidate answers. CB (Talmor et al.,971

2019) is a question answering dataset that taps into972

general knowledge. It requires models to lever-973

age common sense to provide accurate answers974

to a variety of questions. ARC-e (Yadav et al.,975

2019) is tailored for elementary-level science and976

math questions, designed to test models’ under-977

standing and reasoning abilities in these domains.978

ARC-c (Yadav et al., 2019) extends the challenge979

to college-level complexity, assessing models’ pro-980

ficiency in advanced scientific and mathematical981

reasoning. These datasets serve as critical bench-982

marks for evaluating the performance of language983

models across a spectrum of NLP tasks, includ-984

ing question answering, text entailment, sentiment985

analysis, and commonsense reasoning.986

A.2 Baselines 987

We now introduce the pruning methods for com- 988

parison. Shortened LLaMA (Kim et al., 2024) se- 989

lectively removes less important blocks based on 990

block level importance scores, thereby accelerating 991

model inference without significantly impacting 992

performance. ShortGPT (Men et al., 2024) defines 993

a BI metric to measure the importance of each layer 994

within the model and directly removes those layers. 995

SLEB (Song et al., 2024) employs a logit based 996

approach to identify unnecessary transformer lay- 997

ers and updates the importance scores after each 998

layer removal. Through these comprehensive com- 999

parisons, we thoroughly assess the strengths of our 1000

approach. SliceGPT (Ashkboos et al., 2024) is a 1001

post-training sparsification scheme which replaces 1002

each weight matrix with a smaller matrix. LLM- 1003

Pruner (Ma et al., 2023) adopts structural pruning 1004

that selectively removes non-critical coupled struc- 1005

tures based on gradient information. FLAP (An 1006

et al., 2024) is a structured pruning framework that 1007

reduces storage by leveraging fluctuation based 1008

metrics and adaptive model compression. 1009

B Results on Different Calibration Sets 1010

In order to evaluate the impact of different calibra- 1011

tion sets on pruning outcomes, we conduct exper- 1012

iments on Qwen-7B and Qwen-14B, pruning five 1013

and seven blocks, respectively. We test the pruned 1014

blocks under varying sizes using the WikiText-2 1015

and Alpaca datasets. As illustrated in Table 6, de- 1016

spite the differences in experimental conditions, we 1017

achieve consistently stable pruning results. This 1018

demonstrates that our approach maintains robust- 1019

ness across diverse datasets. 1020

C Sensitivity Analysis of Different 1021

Pruning Ratios 1022

Figure 4 provides a comprehensive illustration of 1023

the influence of varying pruning ratios on the per- 1024

formance of LLaMA2-7B. As the pruning ratio 1025

escalates, the accuracy of the majority of tasks 1026

exhibits a relatively stable profile, albeit with a gen- 1027

eral tendency to decline. This stability underscores 1028

the remarkable robustness of our proposed method. 1029

The observed increase in perplexity at certain prun- 1030

ing levels is considered tolerable, given its inher- 1031

ently exponential correlation with loss. This phe- 1032

nomenon serves as compelling validation of the effi- 1033

cacy of our redundancy-aware iterative block prun- 1034

ing strategy. By selectively excising non-essential 1035
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Figure 4: Performance of LLaMA2-7B with different
pruning ratios (blocks).

blocks while meticulously preserving the model’s1036

core functional capabilities, our approach demon-1037

strates its ability to maintain model performance1038

even under significant pruning conditions.1039

D Case Study1040

We present a comprehensive comparison of sen-1041

tences generated by the model both before and after1042

pruning using our proposed method. The results1043

clearly demonstrate that the sentences produced by1044

the compressed model are of comparable quality1045

to those generated by the original model. Table 71046

presents the quality of the generated content after1047

pruning 15.32% of the parameters on LLaMA2-1048

7B. These sentences maintain fluency, relevance,1049

and informativeness with respect to the given top-1050

ics, thereby confirming that our pruning method1051

effectively retains the model’s ability to generate1052

high-quality text while significantly reducing its1053

complexity.1054
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Models Calibration set Size Results of pruning blocks

Qwen-7B

WikiText-2
256

[24, 25, 26, 27, 28]512
1024

Alpaca
256

[24, 25, 26, 27, 28]512
1024

Qwen-14B

WikiText-2
256

[29, 30, 31, 32, 33, 34, 35]512
1024

Alpaca
256

[29, 30, 31, 32, 33, 34, 35]512
1024

Table 6: Results of pruning blocks with varying sizes on diverse calibration sets.

Original Model Pruned Model
10 steps to build an ios app: 1. Determine the pur-
pose of your app: What problem does it solve or
what goal does it achieve? Who is the audience and
what features will they need? 2. Research the market:
Look at similar apps in the Apple App Store and see
what features they offer, what features are missing,
and what can be improved. 3. Design the user ...

10 steps to build an ios app: 1. Determine the pur-
pose of your app: Before starting to build an iOS app,
you need to determine its purpose and what problem
it will solve for the users. 2. Choose the right pro-
gramming language: Swift and Objective-C are the
two most popular programming languages used for
iOS app development. Swift is recommended ...

Explain what artificial intelligence is. Artificial in-
telligence (AI) refers to the development of computer
systems able to perform tasks that typically require
human intelligence, such as visual perception, speech
recognition, decision-making, and language transla-
tion. AI systems use machine learning, deep learning,
and natural language processing to analyze ...

Explain what artificial intelligence is. Artificial in-
telligence (AI) is a branch of computer science ded-
icated to creating intelligent machines that can per-
form tasks that typically require human intelligence,
such as understanding language, recognizing images,
reasoning, and decision-making. AI is a rapidly grow-
ing field that is transforming many industries...

List the equipment needed for rock climbing. Rock
climbing is a popular adventure sport that requires
specific equipment to ensure safety and success. Here
are some of the essential pieces of equipment needed
for rock climbing:1. Climbing Shoes: Climbing
shoes are specifically designed to provide a snug
fit and good grip on the rock. They are usually ...

List the equipment needed for rock climbing. Rock
climbing is a popular adventure sport that involves
climbing a rock wall using a variety of techniques and
equipment. The equipment needed for rock climbing
includes: 1. Climbing shoes: These are specialized
shoes designed specifically for rock climbing. They
are typically tight-fitting and provide good grip ...

Table 7: Some examples of the generations obtained with the original model and the pruned model. The content
marked with a line is the user’s question.
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