
LayerNorm vs RMSNorm: A Geometric Perspective and
the Case Against Mean Subtraction

Anonymous ACL submission

Abstract001

This paper presents a novel geometric interpre-002
tation of LayerNorm and explores how Layer-003
Norm influences the norm and orientation of004
hidden vectors in the representation space. We005
show that the definition of LayerNorm is in-006
nately linked to the uniform vector, defined as007
1 = [1, 1, 1, 1, · · · , 1]T ∈ Rd. We then show008
that the standardization step in LayerNorm can009
be understood in three simple steps: (i) remove010
the component of a vector along the uniform011
vector, (ii) normalize the remaining vector, and012
(iii) scale the resultant vector by

√
d, where013

d is the dimensionality of the representation014
space. Finally, we compare the hidden rep-015
resentations of LayerNorm-based LLMs with016
models trained using RMSNorm and show that017
all LLMs naturally operate orthogonal to the018
uniform vector both during training and infer-019
ence, that is, on average they do not have a020
component along the uniform vector during021
training or inference. This presents the first022
mechanistic evidence that removing the compo-023
nent along the uniform vector in LayerNorm is024
a redundant step. These results advocate for us-025
ing RMSNorm over LayerNorm which is also026
more computationally efficient.027

1 Introduction028

The transformer architecture (Vaswani et al., 2017)029

has been the cornerstone of most recent advances030

in artificial intelligence and has rapidly become031

the architecture of choice in natural language pro-032

cessing, computer vision, speech, and various other033

domains. Layer normalization, a crucial yet often034

overlooked component of the transformer architec-035

ture, plays an integral role in stabilizing the training036

process in transformer-based models. Introduced037

by Ba et al. (2016), layer normalization standard-038

izes the features at each layer, adjusting and scaling039

the activations to have zero mean and unit variance040

within a vector. This normalization is performed041

independently for each hidden vector in contrast042

to batch normalization (Ioffe and Szegedy, 2015), 043

which relies on statistics (mean and variance) from 044

a batch of data points. Layer normalization is espe- 045

cially effective when working with long sequences 046

of variable lengths. While the benefits of layer nor- 047

malization, such as improved training speed and 048

better convergence, are well documented (Ba et al., 049

2016; Xu et al., 2019; Zhang and Sennrich, 2019; 050

Jiang et al., 2024), its specific effects on the hidden 051

vectors within a model and the global properties 052

of the resulting representations remain surprisingly 053

underexplored. 054

In this paper, we first discuss the global effects of 055

layer normalization on a vector. The conventional 056

explanation of the LayerNorm operation is usually 057

as follows: standardize each vector by subtracting 058

the mean of its elements, divide by the standard 059

deviation. While this is an accurate procedural def- 060

inition, we ask a more global question: How does 061

the LayerNorm operation transform a vector in 062

representation space? 063

We present a novel interpretation of LayerNorm 064

and show that it can be understood in three steps: 065

(i) throw away the component of the given vector 066

along 1 = [1, 1, 1, 1, · · · , 1]T ∈ Rd, (ii) normalize 067

the resultant vector; and (iii) scale the resulting 068

vector by
√
d, where d is the dimensionality of the 069

vector space. This process is illustrated in Figure 1. 070

This operation throws away the information along 071

1 = [1, 1, 1, 1, · · · 1]T , which we call the uniform 072

vector, indicating that the information along the 073

uniform vector may not be important. 074

We then present the property of “irreversibility," 075

where we show that the information lost in the 076

LayerNorm process cannot be recovered. These 077

results naturally lead to discussion about the im- 078

portance of information along the uniform vector, 079

which is removed by LayerNorm irreversibly, and 080

its comparison with RMSNorm (Zhang and Sen- 081

nrich, 2019), a variant of LayerNorm that doesn’t 082

remove the component along the uniform vector 083

1

(a) This figure shows the original vector
(in blue) and the uniform vector (in red)
in a 3-D space.

(b) This figure shows the projection of the
original vector along the uniform vector,
(x.1̂)1̂, and the remaining component,
x1

⊥.

(c) The component of the original vector,
after removing the projection along the
uniform vector, is kept (x1

⊥, shown in
yellow).

(d) Normalizing perpendicular compo-
nent to the uniform vector (x1

⊥) to unit
norm.

(e) Scale of resultant vector by
√
d, where

d is the dimensionality of the representa-
tion space.

(f) Finally, the scale-and-shift step, which
scales and shifts the resulting vector ac-
cording to learnt parameters.

Figure 1: Visualization of LayerNorm operation on a random original vector

Figure 2: A diagrammatic explanation of LayerNorm and RMSNorm.

and is used to train the latest Llama models (Tou-084

vron et al., 2023a,b; Dubey et al., 2024). Figure 2085

shows the difference between the two normaliza-086

tion methods. In high dimension representations087

spaces like the ones transformers operate in, two088

vectors chosen at random are orthogonal to each089

other on average. To justify removing the compo-090

nents of hidden vectors along the uniform vectors,091

the hidden representations should have non-trivial092

components along it.093

We empirically show that LayerNorm-based094

models naturally produce hidden representations or-095

thogonal to the uniform vector during both training096

and inference time, thus rendering the removal of097

the uniform vector in LayerNorm inconsequential098

in practice. This is true even for RMSNorm-based099

models, where hidden vectors on average operate100

othogonal to the uniform vector. With these results, 101

we provide both theoretical and empirical justifica- 102

tions for the redundancy of removing the compo- 103

nent of hidden representations along the uniform 104

vector, thus supporting the usage of RMSNorm 105

over LayerNorm, which is also more computation- 106

ally efficient. 107

2 Re-Introducing Layer Normalization 108

Let x ∈ Rd represent an intermediate hidden repre- 109

sentation in a transformer-based model, on which 110

the LayerNorm operation is applied. Then the fol- 111

lowing steps summarize the layer normalization 112

operation: 113

1. Calculate the mean, µ = 1
d

∑d
i=1 xi, and 114

standard deviation, σ =
√

1
d

∑d
i=1(xi − µ)2, 115

2

where xi are the components of x116

2. Standardize the components of the hidden vec-117

tor x to get y, such that yi = xi−µ
σ , ∀xi ∈ x118

3. Scale and shift to get z = α⊙ y + β, where119

⊙ represents element-wise multiplication of120

two vectors, and α, β are scaling and shifting121

vector parameters learned during training.122

In this paper, we refer to the combination of step-123

1 and step-2 as the "standardization step", whereas124

step-3 is referred to as the "scale-and-shift" step.125

The removal of the mean of components from each126

component in step-1 is referred to as the "mean127

subtraction" step in this paper. For an overview of128

the computations happening within a decoder layer129

in modern LLMs, we refer the reader to section130

A.1.131

While the original definition of LayerNorm gives132

us an operational description, it tells us very little133

about the global properties of the resulting vectors.134

For example, with the steps described above, we get135

very little insight into the norm or the orientation136

of the standardized vector (y). All we know is that137

the components of the vector y are standardized138

to have zero mean and unit variance within the139

vector. But how is this standardized vector oriented140

compared to the original vector and what are its141

norms? Such an explanation was also absent in142

the original formulation of layer normalization (Ba143

et al., 2016).144

Initial explorations into the geometry of layer145

normalization by Brody et al. (2023) demon-146

strated that y maintains a norm of
√
d and is147

oriented orthogonal to the constant vector 1 =148

[1, 1, 1, 1, · · · , 1]T ∈ Rd, where d represents the149

dimensionality of the vector space of hidden vec-150

tors. Furthermore, a popular variant of LayerNorm,151

known as RMSNorm (Zhang and Sennrich, 2019),152

which omits the “mean subtraction" in the standard-153

ization step, has come out as a viable alternative to154

LayerNorm. In this paper, we expand upon these155

foundational studies by presenting a novel interpre-156

tation of the global effects of LayerNorm on a vec-157

tor, which we argue provides a more intuitive and158

informative description of how LayerNorm modi-159

fies a hidden vector in representation space. Addi-160

tionally, we analyze the representations of models161

using RMSNorm, showing that despite omitting162

the "mean subtraction step", RMSNorm produces163

hidden representations with similar orientations.164

To understand the global effect of LayerNorm 165

on a vector x, we need to represent the standard- 166

ization steps in terms of the vector x and not its 167

components. A neat way to write the mean of the 168

components of a vector x is: 169

µ =
1

d
1Tx (1) 170

where 1 = [1, 1, 1, 1, · · · 1]T such that 1 ∈ Rd, 171

which we refer to as the uniform vector in this paper. 172

Using the scalar mean value calculated above, we 173

define the mean vector as 174

µ = µ1 (2) 175

where µ is a scalar mean as calculated in equa- 176

tion 1. Thus, the mean vector is a vector with each 177

component equal to the mean of the components 178

of vector x. Using this, we can also rewrite the 179

standard deviation of the components of x as: 180

σ =

√
1

d
(x− µ)T (x− µ) (3) 181

Once we do this, we can now write the standard- 182

ize step in the LayerNorm algorithm (step-2) in 183

vector form as follows: 184

y =
1

σ
(x− µ) (4) 185

In the above equation, we are assuming that the 186

standard deviation is non-zero. As can be seen 187

in equation 3, the standard deviation is zero only 188

when x = µ, which happens when all components 189

of the hidden vector are equal. In practice, the 190

authors of LayerNorm add an error term in the 191

denominator to prevent this from happening. In the 192

discussion that follows, we will assume that x ̸= µ, 193

which is the same as saying that all components of 194

x are not equal. This assumption does not lead to 195

any loss of generality, as will be evident in later 196

discussions. If the standard deviation is zero or 197

x = µ, then LayerNorm outputs a vector with all 198

its components equal to zero. 199

2.1 The Uniform Vector and the Mean Vector 200

The vector definition of layer normalization in equa- 201

tion 4 requires us to define two new vectors: the 202

uniform vector and the mean vector. Since these 203

are non-standard vectors, it is important to under- 204

stand the properties of these vectors. 205

The uniform vector or 1 = [1, 1, 1, 1, · · · 1]T , 206

is called so because all its components are equal 207

3

or uniform and set to 1. This vector plays a very208

important role in the formulation and understand-209

ing of layer normalization. An important thing210

to note here is the norm of the uniform vector:211

∥1∥2 =
√
1T1 =

√
d.212

The mean vector in the context of LayerNorm is213

defined in a non-traditional manner. Traditionally,214

a mean vector is the sum of a few vectors. But215

in our definition, the mean vector, µ = µ1, is a216

scaled version of the uniform vector. It is scaled217

by a value that is the mean or the average of all the218

components of the hidden vector and is oriented219

in the direction of the uniform vector. An interest-220

ing property of the mean vector is its norm. Let’s221

define θx1 as the angle between vectors x and the222

uniform vector. Then taking the L2 norm of the223

mean vector:224

∥µ∥2 = ∥µ1∥2 = µ∥1∥2 =
(
1

d
1Tx

)
∥1∥2

=
1

d
∥1∥22∥x∥2 cos θx1 = ∥x∥2 cos θx1

(5)225

Here we replace the formula for the mean from226

equation 1, expand the inner product between the227

uniform vector and x in terms of their norms and228

the angle between them, and use the fact that229

∥1∥2 =
√
d.230

The norm of the mean vector gives us very im-231

portant insights about what’s going on in the layer232

normalization process. Equation 5 shows that the233

norm of the mean vector is nothing but the pro-234

jection of the underlying vector x along the235

uniform vector. By definition, the mean vector,236

µ = µ1, is oriented along the direction of the uni-237

form vector. In other words, given that θ is the238

angle between vectors x and the uniform vector,239

∥µ∥2 = ∥x∥2 cos θx1 =
x · 1
∥1∥2

= x · 1̂ (6)240

and241

µ = (x.1̂)1̂ (7)242

Note that 1̂ is the unit vector corresponding to243

the uniform vector 1. To the best of our knowledge,244

the geometrical meaning of the mean vector has245

not been discussed in literature before our work. In246

the next section, we incorporate this information247

to explain the LayerNorm process, giving a very248

intuitive and informative description of the process.249

2.2 Explanation of Layer Normalization 250

If we go through the steps of layer normalization 251

as discussed in the beginning of section 2, the 252

component-wise subtraction of the mean of all com- 253

ponents of a vector can now be written completely 254

in terms of the vector x. We define x1
⊥ as the com- 255

ponent of x orthogonal to the uniform vector as 256

follows: 257

x1
⊥ = x− µ = x− (x.1̂)1̂ (8) 258

Thus, subtracting the mean of the compo- 259

nents of a vector is the same as the removal of 260

the projection of the vector along the uniform 261

vector. The complete standardization step of the 262

layer normalization operation can now be written 263

as: 264

y =
√
d

x1
⊥

∥x1
⊥∥2

(9) 265

where d is the dimensionality of the vector being 266

normalized. This shows that layer normalization 267

can be simply defined as the normalization of 268

the component of a vector orthogonal to the uni- 269

form vector, accompanied by a scaling factor. 270

With this, we present the simple and elegant defini- 271

tion of the layer normalization process with a deep 272

geometric meaning. The most intuitive recipe of 273

the layer normalization process is shown in Algo- 274

rithm 1. 275

Algorithm 1 : The Standardization Step in
Layer Normalization

1: Throw away the component of a vector along
the uniform vector, 1 = [1, 1, 1, 1, · · · 1]T

2: Normalize the remaining vector
3: Scale the resulting vector by

√
d, where d is

the dimensionality of the vector space

Equation 9 also shows that the norm of the stan- 276

dardized vector is
√
d and is oriented orthogonal to 277

the direction of the uniform vector, which means 278

it exists in a subspace orthogonal to the uniform 279

vector. 280

2.3 The Irreversibility of Layer Normalization 281

The idea of reversibility is discussed briefly 282

while introducing batch normalization (Ioffe and 283

Szegedy, 2015), which normalizes each feature di- 284

mension in the input vector x independently by cal- 285

culating the mean and standard deviation statistics 286

over a large sample of such vectors. Specifically, 287

4

let x1,x2, . . .xb be a set of b vectors in the train-288

ing set, each vector of dimension d. Then, both289

the batch normalization and layer normalization290

processes for each component can be represented291

in the following two-step process:292

yi =
xi − E[xi]√
V ar(xi)

(standardization) (10)293

zi = αixi + βi (scale-and-shift) (11)294

The key difference between batch normaliza-295

tion and layer normalization lies in how the ex-296

pectation values and variance are calculated for297

each component. In the case of batch normaliza-298

tion, the mean and variance for each dimension are299

calculated over the training set. This means that300

E[xi] and V ar(xi) are the same for each vector301

xj ∈ {x1,x2, . . .xb}, but different for each com-302

ponent of the vector. In total, for a d-dimensional303

hidden vector space, there are 2d statistics in batch304

normalization, d for the mean and d for variance.305

Due to this, the information lost during the stan-306

dardization step in batch normalization, if impor-307

tant, can be recovered in the scale-and-shift step by308

simply learning αi =
√

V ar(xi) and βi = E[xi],309

since we have 2d learnable parameters in batch310

normalization. The scale-and-shift step was a very311

conscious design choice of the inventors of batch312

normalization to allow for batch normalization to313

represent an identity transformation if the original314

hidden representations were optimal for the net-315

work.316

A subtle but very important difference with layer317

normalization is how the expectation and variances318

are calculated for each component. For layer nor-319

malization, these statistics are calculated for each320

vector independently. E[xi] and V ar(xi) in layer321

normalization are the same for each component322

xi within a vector but are different for different323

vectors. This means that two variables are created324

in LayerNorm per hidden vector. As LLMs will325

normalize way more than d vectors throughout the326

course of their training, thus creating more than 2d327

statistics, the number of statistic variables used in328

LayerNorm is very high. Thus, the information lost329

during layer normalization cannot be recovered by330

learning just 2d components of the α and β learn-331

able parameters. This shows that information once332

lost during layer normalization cannot be recov-333

ered during the scale-and-shift step, making the334

layer normalization process irreversible.335

3 LayerNorm versus RMSNorm 336

Above analysis shows a critical aspect of Layer- 337

Norm - its ability to orient incoming hidden vectors 338

orthogonal to the uniform vector. In section 2.2, 339

we see that the definition of LayerNorm is innately 340

linked with the uniform vector, possibly unintended 341

by the original authors. Since the information along 342

the uniform vector is being removed irreversibly 343

during layer normalization (section 2.3), the layer 344

normalization process implicitly assumes that the 345

information along the uniform vector is either not 346

important or that the model should not store in- 347

formation along that direction. Since the “mean 348

subtraction" step in LayerNorm removes the com- 349

ponent along the arbitrarily chosen direction of the 350

uniform vector, the need for such a step would be 351

justified if the hidden representations created by 352

the model had unnaturally significant components 353

along this vector. However, there seems to be no 354

justification given in the literature for the mean sub- 355

traction step, including the original paper (Ba et al., 356

2016). RMSNorm, on the other hand, does not per- 357

form this step and simply normalizes the existing 358

vector (Zhang and Sennrich, 2019). The Llama 359

model series (Touvron et al., 2023a,b) is the most 360

prominent family of LLMs that use RMSNorm. 361

The simple fact that Llama models achieve state- 362

of-the-art results across multiple measures (Dubey 363

et al., 2024) shows that using RMSNorm instead 364

of LayerNorm does not hurt performance. This 365

provides a strong motivation to explore the need 366

for the “mean subtraction" step in LayerNorm. 367

Two randomly chosen vectors in high- 368

dimensional spaces are nearly orthogonal to each 369

other with a very small spread. While the choice of 370

uniform vector as one of the two vectors may seem 371

random, the hidden representations generated by 372

a transformer during a computation belong to a 373

specific distribution which lie in specific regions 374

in the representation space. Thus, the uniform 375

vector and vectors belonging to the distribution of 376

hidden representations may or not be orthogonal. 377

Thus, we ask the question - do intermediate hidden 378

representations have a non-trivial component along 379

the uniform vector that justifies its removal? If 380

this is true, it may present a case for removing the 381

component along the uniform vector. We answer 382

this question empirically. 383

5

(a) Hidden GPT-J (b) Hidden Pythia 6.9 (c) Hidden Llama-3

(d) Post-LN1 GPTJ (e) Post-LN1 Pythia 6.9 (f) Post-LN1 Llama-3

Figure 3: Error bars of angles (in degrees) between Hidden vectors (a-c) and post-normalization vectors (d-f) with
the uniform vector for GPT-J, Pythia 6.9, Llama-3 for all layers.

Model Model Num Num Norm.
Name Dim (d) Params Layers Type

GPT-2 XL 1600 1.5B 48 Layer
GPT-Neo 1.3B 2048 1.3B 24 Layer
Pythia-1.4B 2048 1.4B 24 Layer
GPT-J 6B 4096 6.0B 28 Layer
Pythia-6.9B 4096 6.9B 32 Layer
Llama-2-7B 4096 7.0B 32 RMS
Llama-3-8B 4096 8.0B 32 RMS

Table 1: List of models used in experiments.

3.1 Experimental Setup384

We study the angle between the hidden represen-385

tations generated within a model and the uniform386

vector both during training and inference. To do387

so, we pass one million tokens from Wikipedia ar-388

ticles through various models and study how the389

hidden representations corresponding to these vec-390

tors align with the uniform vector.391

Methods and Models We study the impact of392

LayerNorm on the hidden representations for 7393

decoder-only LLMs across two size categories. The394

models used are listed in Table 1. GPT2XL, GPT-395

Neo-1.3B, and Pythia-1.4B represent the small396

LLM size category, whereas GPT-J-6B, Pythia-397

6.9B, Llama-2-7B, and Llama-3-8B represent the398

medium LLM size category. We pass one mil-399

lion tokens from Wikipedia articles through each400

model and capture the hidden representations for401

all tokens before and after each normalization layer.402

This is done for each layer inside the model, which 403

creates many terabytes of data to be analyzed. 404

3.2 Orthogonality to Uniform Vector at 405

Inference time 406

To answer the question of alignment of the uniform 407

vector at inference time, we measure the angle be- 408

tween the hidden vector and the uniform vector 409

just before and after the normalization operations 410

for LayerNorm and RMSNorm-based models. To 411

justify the mean subtraction step, the following 412

scenarios should be true: 413

• Scenario-1: In LayerNorm-based models, 414

the intermediate hidden vectors have a large 415

component along the uniform vector pre- 416

normalization, which gets removed post- 417

normalization. 418

• Scenario-2: In RMSNorm-based models, 419

which are trained without the mean subtrac- 420

tion step, the hidden vectors consistently have 421

a large component along the uniform vector. 422

More specifically, we find the angle between the 423

hidden vectors hl−1 (equation 12) with the uniform 424

vectors, which represent the hidden vectors before 425

normaliztion. And then we also find the angle be- 426

tween the post normalization vectors f l (equation 427

12), which represents the activation vector post nor- 428

malization. 429

6

(a) Angle with the uniform vector for 1B
with LayerNorm

(b) Angle with random vector ã for 1B
with LayerNorm

(c) Angle with random vector b̃ for 1B
with LayerNorm

(d) Angle with the uniform vector for 1B
with RMSNorm

(e) Angle with random vector ã for 1B
with RMSNorm

(f) Angle with random vector b̃ for 1B
with RMSNorm

Figure 4: Error bars of angles (in degrees) between Hidden vectors with the uniform vector and random vector
ã, b̃ for 1B with LayerNorm (a-c) and RMSNorm (d-f) for a randomly selected layer(Layer 10). The results are
independent of the choice of layers.

The results are shown in Figure 3 for GPT-J430

(6B), Pythia (6.9B), and Llama-3 (8B) and Figure431

6 for the remaining models. We see that for all432

models in Figure 3, the angle between the hidden433

vectors and the uniform vectors is 90 degrees on434

average even before normalization, with a very435

small spread. This remains true post-normalization436

as well for all three models. This result is surprising437

because the hidden representations for LayerNorm-438

based models (GPT-J and Pythia) are themselves439

orthogonal to the uniform vector even before the440

LayerNorm operation. This is true for 4 out of the441

5 LayerNorm-based models studied in this paper442

except for GPT2-XL (Figure 6 in the appendix).443

This shows that the “mean subtracting" operation444

of LayerNorm is redundant during inference, as445

there is nothing to remove.446

For RMSNorm-based LLMs, the result for447

Llama-3 (8B) in Figure 3 represents scenraio -2.448

We see that even for Llama-3 (8B) trained using449

RMSNorm, the hidden representations before nor-450

malization are also on average orthogonal to the451

uniform vector with a very small spread. After RM-452

SNorm, the hidden representations continue to be453

orthogonal to the uniform vector. This is also true454

for Llama-2 (7B) (Figure 6 in the appendix). This455

shows that even without the “mean subtraction"456

step during training as in RMSNorm, the hidden 457

vectors operate orthogonal to the uniform vector, 458

underscoring the redundancy of the “mean subtrac- 459

tion" step. 460

3.3 Orthogonality to Uniform Vector during 461

Training 462

Next, we study whether hidden vectors are orthogo- 463

nal to the uniform vector during pretraining. While 464

we see this orthogonality at inference time, we 465

want to study if this orthogonality is a by prod- 466

uct of model training. To do so, we train a GPT2 467

architecture with identical data and training con- 468

ditions, with the only difference being the use of 469

LayerNorm versus RMSNorm, and compare the 470

angle between intermediate hidden representations 471

at each layer and the uniform vector. We use the 472

OpenWebtext dataset to train models with different 473

sizes, 70M, 160M, 410M and 1B. (Training details 474

can be found in APPENDIX A.2) 475

We pass one million tokens from Wikipedia arti- 476

cles through multiple checkpoints during the train- 477

ing process of models to capture hidden representa- 478

tions of all tokens before each normalization layer, 479

following the previous evaluation method. The re- 480

sults are shown in Figure 4. We present the results 481

for the 1B model in the main paper while the rest 482

7

of the results can be found in the appendix. The483

first row of figures presents the angles of the hidden484

representations with the uniform vectors and two485

randomly chosen vectors ã and b̃ for the 1B model486

trained using LayerNorm. The second row shows487

the same for RMSNorm models. For LayerNorm,488

angles between hidden vectors and the uniform489

vector before normalization are 90 degrees on aver-490

age for all checkpoints, which indicates that mean491

subtraction is dispensable during the pre-training492

step as well. The same pattern can be observed for493

RMSNorm. Even without mean subtraction, hid-494

den vectors are already orthogonal to the uniform495

vector during training.496

Furthermore, we aim to investigate whether the497

randomly chosen direction of the uniform vector in498

LayerNorm exhibits any distinctive characteristics.499

To evaluate this, we calculate angles between hid-500

den vectors and with 2 randomly chosen vectors in501

the representation space. Figure 4 shows the results502

for 1B with LayerNorm and RMSNorm, where ran-503

dom vector ã is arbitrarily chosen with the same504

norm as the uniform vector and random vector b̃505

is arbitrarily chosen with different norm from the506

uniform vector. As can be seen in Figure 4, an-507

gles with arbitrarily chosen vectors remain at an508

average of 90 degrees, exhibiting no significant dif-509

ference compared to those with the uniform vector.510

These experiments clearly show that the uniform511

vector behaves quite similar to arbitrarily chosen512

vectors in the representation space. The reiterates513

the needlessness of removing the component along514

the uniform vector as done during LayerNorm.515

With this, we provide the first mechanistic evi-516

dence that the “mean subtraction" step in Lay-517

erNorm is dispensable. This line of investigation518

was made possible by our novel geometrical inter-519

pretation of LayerNorm (section 2.2), which pre-520

sented the global implications of the mean subtrac-521

tion step in LayerNorm - removing the component522

of intermediate hidden representations along the523

uniform vector. Due to these results, we advocate524

for using RMSNorm over LayerNorm, which is525

also computationally more efficient and leads to526

comparable downstream performance.527

4 Conclusion528

We present a detailed theoretical and empirical anal-529

ysis of layer normalization on hidden vectors in530

representation space, with a focus on the global531

effects of the LayerNorm operation on a vector.532

We first show that the LayerNorm operation can 533

be understood in three simple steps: removing the 534

component of a vector along the uniform vector 535

(1 = [1, 1, 1, 1, · · · , 1]T ∈ Rd), normalizing the 536

remaining vector, and scaling the resultant vector 537

by
√
d. We then show that LayerNorm is an irre- 538

versible process—information along the uniform 539

vector is removed during LayerNorm and cannot be 540

recovered using the learnable parameters available 541

in the formulation. This is in contrast with Batch- 542

Norm, where the network has the option of learn- 543

ing an identity operation. Finally, we show that 544

the “mean subtraction" operation in LayerNorm is 545

dispensable both during inference and for training. 546

References 547

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E 548
Hinton. 2016. Layer normalization. arXiv preprint 549
arXiv:1607.06450. 550

Shaked Brody, Uri Alon, and Eran Yahav. 2023. On 551
the expressivity role of layernorm in transformers’ 552
attention. arXiv preprint arXiv:2305.02582. 553

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 554
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 555
Akhil Mathur, Alan Schelten, Amy Yang, Angela 556
Fan, and 1 others. 2024. The llama 3 herd of models. 557
arXiv preprint arXiv:2407.21783. 558

Aaron Gokaslan and Vanya Cohen. 2019. Open- 559
webtext corpus. http://Skylion007.github.io/ 560
OpenWebTextCorpus. 561

Sergey Ioffe and Christian Szegedy. 2015. Batch nor- 562
malization: Accelerating deep network training by 563
reducing internal covariate shift. In International 564
conference on machine learning, pages 448–456. 565
pmlr. 566

Zixuan Jiang, Jiaqi Gu, Hanqing Zhu, and David 567
Pan. 2024. Pre-rmsnorm and pre-crmsnorm trans- 568
formers: equivalent and efficient pre-ln transform- 569
ers. Advances in Neural Information Processing 570
Systems, 36. 571

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 572
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 573
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 574
Azhar, and 1 others. 2023a. Llama: Open and ef- 575
ficient foundation language models. arXiv preprint 576
arXiv:2302.13971. 577

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 578
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 579
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 580
Bhosale, and 1 others. 2023b. Llama 2: Open foun- 581
dation and fine-tuned chat models. arXiv preprint 582
arXiv:2307.09288. 583

8

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob584
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz585
Kaiser, and Illia Polosukhin. 2017. Attention is586
all you need. Advances in neural information587
processing systems, 30.588

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang589
Zhao, and Junyang Lin. 2019. Understanding and590
improving layer normalization. Advances in neural591
information processing systems, 32.592

Biao Zhang and Rico Sennrich. 2019. Root mean593
square layer normalization. Advances in Neural594
Information Processing Systems, 32.595

A Appendix596

A.1 Computations in Decoder-only LLMs597

In this paper, we study the hidden representations598

of modern decoder-only large language models599

(LLMs). Let hl represent the intermediate hidden600

state vectors between each decoder layer. As de-601

picted in Figure 5, the computations within a layer602

of most decoder-only LLMs proceed as follows:603

f l = LN1(hl−1) (12)604

al = Att(f l) (13)605

gl = LN2(hl−1 + al) (14)606

ml = W l
projσ(W

l
fcg

l + blfc) + bproj (15)607

hl = hl−1 + al +ml (16)608

The intermediate hidden vectors between each609

layer, hl, are also sometimes called the residual610

stream. Let LN1 represent the first LayerNorm func-611

tion that acts just before the attention module and612

LN2 represent the second LayerNorm just before613

the MLP module. We abstract out the computations614

of the attention and MLP modules to focus on the615

layer normalization blocks.616

As the vectors computed in the attention and617

MLP modules get added to the residual stream at618

each layer, the residual stream represents a sum-619

mation of an increasing number of vectors. A non-620

recursive formula for the residual stream depicts621

this clearly:622

hl = h0 +
i=l∑
i=0

ai +
i=l∑
i=0

mi (17)623

The residual stream thus represents a continuous624

summation of vectors computed at the attention625

and MLP modules in each layer with the incom-626

ing residual stream. This leads to an increasing627

norm of the residual stream, thus necessitating a628

normalization operation.629

Figure 5: A high-level diagram representing the compu-
tation within one decoder block of an LLM.

Model Size Layers Embed Dim Heads Learning Rate

70M 6 512 8 10.0× 10−4

160M 12 768 12 6.0× 10−4

410M 24 1024 16 3.0× 10−4

1B 16 2048 8 3.0× 10−4

Table 2: Model Configurations

A.2 Training Configurations 630

For all models, we use OpenWebText(Gokaslan 631

and Cohen, 2019) to train with AdamW optimizer, 632

which is an opensource recreation of the WebText 633

corpus and extensively utilized for GPT2 pretrain- 634

ing. For 70M and 160M, the total training steps 635

is 100000 and checkpoints are saved at 1K, 2K,..., 636

10K, 20K,..., 100K. For 410M and 1B, the total 637

training steps is 50000 and checkpoints are saved 638

at 1K, 2K,..., 10K, 20K,..., 50K. The max sequence 639

length is set to 1024 and batch size is set to 64. The 640

learning rate schedule integrates a linear warm-up 641

phase, followed by a cosine decay scheduler with 642

a minimum of 10% the initial learning rate. For 643

70M and 160M, we use 4 NVIDIA A6000 GPUs 644

with 48GB of GPU memory. For 410M, we use 2 645

NVIDIA A100 GPUs with 80GB of GPU memory. 646

For 1B, we use 4 NVIDIA A100 GPUs with 80GB 647

of GPU memory. Model configurations including 648

number of layers, attention heads, embedding di- 649

mensions and initial learning rate can be found in 650

Table 2. 651

A.3 Computational Resource for experiments 652

at inference time 653

All experiments at inference time were conducted 654

using NVIDIA A6000 GPUs with 48GB of GPU 655

memory. This setup provided the necessary com- 656

putational power to handle large-scale models and 657

9

extensive data processing required for our study.658

A.4 Supplementary figures659

Figure 7, 8, 9, 10, 11, 12 and 13 show the error660

bars of angles between hidden vectors and post-661

normalization vectors with the uniform vector and662

random vector a, b for all models listed in Table 1,663

where random vector a is arbitrarily chosen with664

the same norm as the uniform vector and random665

vector b is arbitrarily chosen with different norm666

from the uniform vector. Figure 14, 15 and 16 show667

the error bars of angles between hidden vectors668

with the uniform vector and random vector a,b for669

all layers in 70M with LayerNorm during training.670

With the same meaning, Figure 17, 18 and 19 are671

for 70M with RMSNorm, Figure 20, 21 and 22 are672

for 160M with LayerNorm, Figure 23, 24 and 25673

are for 160M with RMSNorm, Figure 26, 27 and674

28 are for 410M with LayerNorm, Figure 29, 30675

and 31 are for 410M with RMSNorm, Figure 32,676

33 and 34 are for 1B with LayerNorm and Figure677

35, 36 and 37 are for 1B with RMSNorm.678

10

(a) Hidden GPT-2 XL (b) Hidden GPT-Neo (c) Hidden Pythia 1.4 (d) Hidden Llama-2

(e) Post-LN1 GPT-2 XL (f) Post-LN1 GPT-Neo (g) Post-LN1 Pythia 1.4 (h) Post-LN1 Llama-2
Figure 6: Error bars of angles (in degrees) between Hidden vectors (a-d) and post-normalization vectors (e-h) with
the uniform vector for GPT-2 XL, GPT-Neo, Pythia 1.4, and Llama-2 for all layers

11

Figure 7: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in GPT-2 XL

Figure 8: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in GPT-J

12

Figure 9: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in GPT-Neo

Figure 10: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Llama-2

13

Figure 11: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Llama-3

Figure 12: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Pythia-1.4B

14

Figure 13: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Pythia-6.9B

Figure 14: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 70M
with LayerNorm during training

15

Figure 15: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 70M with
LayerNorm during training

Figure 16: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 70M with
LayerNorm during training

16

Figure 17: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 70M
with RMSNorm during training

Figure 18: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 70M with
RMSNorm during training

17

Figure 19: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 70M with
RMSNorm during training

Figure 20: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 160M
with LayerNorm during training

18

Figure 21: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 160M
with LayerNorm during training

Figure 22: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 160M
with LayerNorm during training

19

Figure 23: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 160M
with RMSNorm during training

Figure 24: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 160M
with RMSNorm during training

20

Figure 25: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 160M
with RMSNorm during training

21

Figure 26: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 410M
with LayerNorm during training

22

Figure 27: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 410M
with LayerNorm during training

23

Figure 28: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 410M
with LayerNorm during training

24

Figure 29: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 410M
with RMSNorm during training

25

Figure 30: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 410M
with RMSNorm during training

26

Figure 31: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 410M
with RMSNorm during training

27

Figure 32: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 1B with
LayerNorm during training

28

Figure 33: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 1B with
LayerNorm during training

29

Figure 34: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 1B with
LayerNorm during training

30

Figure 35: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 1B with
RMSNorm during training

31

Figure 36: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 1B with
RMSNorm during training

32

Figure 37: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 1B with
RMSNorm during training

33

	Introduction
	Re-Introducing Layer Normalization
	The Uniform Vector and the Mean Vector
	Explanation of Layer Normalization
	The Irreversibility of Layer Normalization

	LayerNorm versus RMSNorm
	Experimental Setup
	Orthogonality to Uniform Vector at Inference time
	Orthogonality to Uniform Vector during Training

	Conclusion
	Appendix
	Computations in Decoder-only LLMs
	Training Configurations
	Computational Resource for experiments at inference time
	Supplementary figures

