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Abstract

This paper presents a novel geometric interpre-
tation of LayerNorm and explores how Layer-
Norm influences the norm and orientation of
hidden vectors in the representation space. We
show that the definition of LayerNorm is in-
nately linked to the uniform vector, defined as
1 = [1, 1, 1, 1, · · · , 1]T ∈ Rd. We then show
that the standardization step in LayerNorm can
be understood in three simple steps: (i) remove
the component of a vector along the uniform
vector, (ii) normalize the remaining vector, and
(iii) scale the resultant vector by

√
d, where

d is the dimensionality of the representation
space. Finally, we compare the hidden rep-
resentations of LayerNorm-based LLMs with
models trained using RMSNorm and show that
all LLMs naturally operate orthogonal to the
uniform vector both during training and infer-
ence, that is, on average they do not have a
component along the uniform vector during
training or inference. This presents the first
mechanistic evidence that removing the compo-
nent along the uniform vector in LayerNorm is
a redundant step. These results advocate for us-
ing RMSNorm over LayerNorm which is also
more computationally efficient.

1 Introduction

The transformer architecture (Vaswani et al., 2017)
has been the cornerstone of most recent advances
in artificial intelligence and has rapidly become
the architecture of choice in natural language pro-
cessing, computer vision, speech, and various other
domains. Layer normalization, a crucial yet often
overlooked component of the transformer architec-
ture, plays an integral role in stabilizing the training
process in transformer-based models. Introduced
by Ba et al. (2016), layer normalization standard-
izes the features at each layer, adjusting and scaling
the activations to have zero mean and unit variance
within a vector. This normalization is performed
independently for each hidden vector in contrast

to batch normalization (Ioffe and Szegedy, 2015),
which relies on statistics (mean and variance) from
a batch of data points. Layer normalization is espe-
cially effective when working with long sequences
of variable lengths. While the benefits of layer nor-
malization, such as improved training speed and
better convergence, are well documented (Ba et al.,
2016; Xu et al., 2019; Zhang and Sennrich, 2019;
Jiang et al., 2024), its specific effects on the hidden
vectors within a model and the global properties
of the resulting representations remain surprisingly
underexplored.

In this paper, we first discuss the global effects of
layer normalization on a vector. The conventional
explanation of the LayerNorm operation is usually
as follows: standardize each vector by subtracting
the mean of its elements, divide by the standard
deviation. While this is an accurate procedural def-
inition, we ask a more global question: How does
the LayerNorm operation transform a vector in
representation space?

We present a novel interpretation of LayerNorm
and show that it can be understood in three steps:
(i) throw away the component of the given vector
along 1 = [1, 1, 1, 1, · · · , 1]T ∈ Rd, (ii) normalize
the resultant vector; and (iii) scale the resulting
vector by

√
d, where d is the dimensionality of the

vector space. This process is illustrated in Figure 1.
This operation throws away the information along
1 = [1, 1, 1, 1, · · · 1]T , which we call the uniform
vector, indicating that the information along the
uniform vector may not be important.

We then present the property of “irreversibility,"
where we show that the information lost in the
LayerNorm process cannot be recovered. These
results naturally lead to discussion about the im-
portance of information along the uniform vector,
which is removed by LayerNorm irreversibly, and
its comparison with RMSNorm (Zhang and Sen-
nrich, 2019), a variant of LayerNorm that doesn’t
remove the component along the uniform vector



(a) This figure shows the original vector
(in blue) and the uniform vector (in red)
in a 3-D space.

(b) This figure shows the projection of the
original vector along the uniform vector,
(x.1̂)1̂, and the remaining component,
x1

⊥.

(c) The component of the original vector,
after removing the projection along the
uniform vector, is kept ( x1

⊥, shown in
yellow).

(d) Normalizing perpendicular compo-
nent to the uniform vector (x1

⊥) to unit
norm.

(e) Scale of resultant vector by
√
d, where

d is the dimensionality of the representa-
tion space.

(f) Finally, the scale-and-shift step, which
scales and shifts the resulting vector ac-
cording to learnt parameters.

Figure 1: Visualization of LayerNorm operation on a random original vector

Figure 2: A diagrammatic explanation of LayerNorm and RMSNorm.

and is used to train the latest Llama models (Tou-
vron et al., 2023a,b; Dubey et al., 2024). Figure 2
shows the difference between the two normaliza-
tion methods. In high dimension representations
spaces like the ones transformers operate in, two
vectors chosen at random are orthogonal to each
other on average. To justify removing the compo-
nents of hidden vectors along the uniform vectors,
the hidden representations should have non-trivial
components along it.

We empirically show that LayerNorm-based
models naturally produce hidden representations or-
thogonal to the uniform vector during both training
and inference time, thus rendering the removal of
the uniform vector in LayerNorm inconsequential
in practice. This is true even for RMSNorm-based
models, where hidden vectors on average operate

othogonal to the uniform vector. With these results,
we provide both theoretical and empirical justifica-
tions for the redundancy of removing the compo-
nent of hidden representations along the uniform
vector, thus supporting the usage of RMSNorm
over LayerNorm, which is also more computation-
ally efficient.

2 Re-Introducing Layer Normalization

Let x ∈ Rd represent an intermediate hidden repre-
sentation in a transformer-based model, on which
the LayerNorm operation is applied. Then the fol-
lowing steps summarize the layer normalization
operation:

1. Calculate the mean, µ = 1
d

∑d
i=1 xi, and

standard deviation, σ =
√

1
d

∑d
i=1(xi − µ)2,



where xi are the components of x

2. Standardize the components of the hidden vec-
tor x to get y, such that yi = xi−µ

σ , ∀xi ∈ x

3. Scale and shift to get z = α⊙ y + β, where
⊙ represents element-wise multiplication of
two vectors, and α, β are scaling and shifting
vector parameters learned during training.

In this paper, we refer to the combination of step-
1 and step-2 as the "standardization step", whereas
step-3 is referred to as the "scale-and-shift" step.
The removal of the mean of components from each
component in step-1 is referred to as the "mean
subtraction" step in this paper. For an overview of
the computations happening within a decoder layer
in modern LLMs, we refer the reader to section
A.1.

While the original definition of LayerNorm gives
us an operational description, it tells us very little
about the global properties of the resulting vectors.
For example, with the steps described above, we get
very little insight into the norm or the orientation
of the standardized vector (y). All we know is that
the components of the vector y are standardized
to have zero mean and unit variance within the
vector. But how is this standardized vector oriented
compared to the original vector and what are its
norms? Such an explanation was also absent in
the original formulation of layer normalization (Ba
et al., 2016).

Initial explorations into the geometry of layer
normalization by Brody et al. (2023) demon-
strated that y maintains a norm of

√
d and is

oriented orthogonal to the constant vector 1 =
[1, 1, 1, 1, · · · , 1]T ∈ Rd, where d represents the
dimensionality of the vector space of hidden vec-
tors. Furthermore, a popular variant of LayerNorm,
known as RMSNorm (Zhang and Sennrich, 2019),
which omits the “mean subtraction" in the standard-
ization step, has come out as a viable alternative to
LayerNorm. In this paper, we expand upon these
foundational studies by presenting a novel interpre-
tation of the global effects of LayerNorm on a vec-
tor, which we argue provides a more intuitive and
informative description of how LayerNorm modi-
fies a hidden vector in representation space. Addi-
tionally, we analyze the representations of models
using RMSNorm, showing that despite omitting
the "mean subtraction step", RMSNorm produces
hidden representations with similar orientations.

To understand the global effect of LayerNorm
on a vector x, we need to represent the standard-
ization steps in terms of the vector x and not its
components. A neat way to write the mean of the
components of a vector x is:

µ =
1

d
1Tx (1)

where 1 = [1, 1, 1, 1, · · · 1]T such that 1 ∈ Rd,
which we refer to as the uniform vector in this paper.
Using the scalar mean value calculated above, we
define the mean vector as

µ = µ1 (2)

where µ is a scalar mean as calculated in equa-
tion 1. Thus, the mean vector is a vector with each
component equal to the mean of the components
of vector x. Using this, we can also rewrite the
standard deviation of the components of x as:

σ =

√
1

d
(x− µ)T (x− µ) (3)

Once we do this, we can now write the standard-
ize step in the LayerNorm algorithm (step-2) in
vector form as follows:

y =
1

σ
(x− µ) (4)

In the above equation, we are assuming that the
standard deviation is non-zero. As can be seen
in equation 3, the standard deviation is zero only
when x = µ, which happens when all components
of the hidden vector are equal. In practice, the
authors of LayerNorm add an error term in the
denominator to prevent this from happening. In the
discussion that follows, we will assume that x ̸= µ,
which is the same as saying that all components of
x are not equal. This assumption does not lead to
any loss of generality, as will be evident in later
discussions. If the standard deviation is zero or
x = µ, then LayerNorm outputs a vector with all
its components equal to zero.

2.1 The Uniform Vector and the Mean Vector

The vector definition of layer normalization in equa-
tion 4 requires us to define two new vectors: the
uniform vector and the mean vector. Since these
are non-standard vectors, it is important to under-
stand the properties of these vectors.

The uniform vector or 1 = [1, 1, 1, 1, · · · 1]T ,
is called so because all its components are equal



or uniform and set to 1. This vector plays a very
important role in the formulation and understand-
ing of layer normalization. An important thing
to note here is the norm of the uniform vector:
∥1∥2 =

√
1T1 =

√
d.

The mean vector in the context of LayerNorm is
defined in a non-traditional manner. Traditionally,
a mean vector is the sum of a few vectors. But
in our definition, the mean vector, µ = µ1, is a
scaled version of the uniform vector. It is scaled
by a value that is the mean or the average of all the
components of the hidden vector and is oriented
in the direction of the uniform vector. An interest-
ing property of the mean vector is its norm. Let’s
define θx1 as the angle between vectors x and the
uniform vector. Then taking the L2 norm of the
mean vector:

∥µ∥2 = ∥µ1∥2 = µ∥1∥2 =
(
1

d
1Tx

)
∥1∥2

=
1

d
∥1∥22∥x∥2 cos θx1 = ∥x∥2 cos θx1

(5)

Here we replace the formula for the mean from
equation 1, expand the inner product between the
uniform vector and x in terms of their norms and
the angle between them, and use the fact that
∥1∥2 =

√
d.

The norm of the mean vector gives us very im-
portant insights about what’s going on in the layer
normalization process. Equation 5 shows that the
norm of the mean vector is nothing but the pro-
jection of the underlying vector x along the
uniform vector. By definition, the mean vector,
µ = µ1, is oriented along the direction of the uni-
form vector. In other words, given that θ is the
angle between vectors x and the uniform vector,

∥µ∥2 = ∥x∥2 cos θx1 =
x · 1
∥1∥2

= x · 1̂ (6)

and

µ = (x.1̂)1̂ (7)

Note that 1̂ is the unit vector corresponding to
the uniform vector 1. To the best of our knowledge,
the geometrical meaning of the mean vector has
not been discussed in literature before our work. In
the next section, we incorporate this information
to explain the LayerNorm process, giving a very
intuitive and informative description of the process.

2.2 Explanation of Layer Normalization
If we go through the steps of layer normalization
as discussed in the beginning of section 2, the
component-wise subtraction of the mean of all com-
ponents of a vector can now be written completely
in terms of the vector x. We define x1

⊥ as the com-
ponent of x orthogonal to the uniform vector as
follows:

x1
⊥ = x− µ = x− (x.1̂)1̂ (8)

Thus, subtracting the mean of the compo-
nents of a vector is the same as the removal of
the projection of the vector along the uniform
vector. The complete standardization step of the
layer normalization operation can now be written
as:

y =
√
d

x1
⊥

∥x1
⊥∥2

(9)

where d is the dimensionality of the vector being
normalized. This shows that layer normalization
can be simply defined as the normalization of
the component of a vector orthogonal to the uni-
form vector, accompanied by a scaling factor.
With this, we present the simple and elegant defini-
tion of the layer normalization process with a deep
geometric meaning. The most intuitive recipe of
the layer normalization process is shown in Algo-
rithm 1.

Algorithm 1 : The Standardization Step in
Layer Normalization

1: Throw away the component of a vector along
the uniform vector, 1 = [1, 1, 1, 1, · · · 1]T

2: Normalize the remaining vector
3: Scale the resulting vector by

√
d, where d is

the dimensionality of the vector space

Equation 9 also shows that the norm of the stan-
dardized vector is

√
d and is oriented orthogonal to

the direction of the uniform vector, which means
it exists in a subspace orthogonal to the uniform
vector.

2.3 The Irreversibility of Layer Normalization
The idea of reversibility is discussed briefly
while introducing batch normalization (Ioffe and
Szegedy, 2015), which normalizes each feature di-
mension in the input vector x independently by cal-
culating the mean and standard deviation statistics
over a large sample of such vectors. Specifically,



let x1,x2, . . .xb be a set of b vectors in the train-
ing set, each vector of dimension d. Then, both
the batch normalization and layer normalization
processes for each component can be represented
in the following two-step process:

yi =
xi − E[xi]√
V ar(xi)

(standardization) (10)

zi = αixi + βi (scale-and-shift) (11)

The key difference between batch normaliza-
tion and layer normalization lies in how the ex-
pectation values and variance are calculated for
each component. In the case of batch normaliza-
tion, the mean and variance for each dimension are
calculated over the training set. This means that
E[xi] and V ar(xi) are the same for each vector
xj ∈ {x1,x2, . . .xb}, but different for each com-
ponent of the vector. In total, for a d-dimensional
hidden vector space, there are 2d statistics in batch
normalization, d for the mean and d for variance.
Due to this, the information lost during the stan-
dardization step in batch normalization, if impor-
tant, can be recovered in the scale-and-shift step by
simply learning αi =

√
V ar(xi) and βi = E[xi],

since we have 2d learnable parameters in batch
normalization. The scale-and-shift step was a very
conscious design choice of the inventors of batch
normalization to allow for batch normalization to
represent an identity transformation if the original
hidden representations were optimal for the net-
work.

A subtle but very important difference with layer
normalization is how the expectation and variances
are calculated for each component. For layer nor-
malization, these statistics are calculated for each
vector independently. E[xi] and V ar(xi) in layer
normalization are the same for each component
xi within a vector but are different for different
vectors. This means that two variables are created
in LayerNorm per hidden vector. As LLMs will
normalize way more than d vectors throughout the
course of their training, thus creating more than 2d
statistics, the number of statistic variables used in
LayerNorm is very high. Thus, the information lost
during layer normalization cannot be recovered by
learning just 2d components of the α and β learn-
able parameters. This shows that information once
lost during layer normalization cannot be recov-
ered during the scale-and-shift step, making the
layer normalization process irreversible.

3 LayerNorm versus RMSNorm

Above analysis shows a critical aspect of Layer-
Norm - its ability to orient incoming hidden vectors
orthogonal to the uniform vector. In section 2.2,
we see that the definition of LayerNorm is innately
linked with the uniform vector, possibly unintended
by the original authors. Since the information along
the uniform vector is being removed irreversibly
during layer normalization (section 2.3), the layer
normalization process implicitly assumes that the
information along the uniform vector is either not
important or that the model should not store in-
formation along that direction. Since the “mean
subtraction" step in LayerNorm removes the com-
ponent along the arbitrarily chosen direction of the
uniform vector, the need for such a step would be
justified if the hidden representations created by
the model had unnaturally significant components
along this vector. However, there seems to be no
justification given in the literature for the mean sub-
traction step, including the original paper (Ba et al.,
2016). RMSNorm, on the other hand, does not per-
form this step and simply normalizes the existing
vector (Zhang and Sennrich, 2019). The Llama
model series (Touvron et al., 2023a,b) is the most
prominent family of LLMs that use RMSNorm.
The simple fact that Llama models achieve state-
of-the-art results across multiple measures (Dubey
et al., 2024) shows that using RMSNorm instead
of LayerNorm does not hurt performance. This
provides a strong motivation to explore the need
for the “mean subtraction" step in LayerNorm.

Two randomly chosen vectors in high-
dimensional spaces are nearly orthogonal to each
other with a very small spread. While the choice of
uniform vector as one of the two vectors may seem
random, the hidden representations generated by
a transformer during a computation belong to a
specific distribution which lie in specific regions
in the representation space. Thus, the uniform
vector and vectors belonging to the distribution of
hidden representations may or not be orthogonal.
Thus, we ask the question - do intermediate hidden
representations have a non-trivial component along
the uniform vector that justifies its removal? If
this is true, it may present a case for removing the
component along the uniform vector. We answer
this question empirically.



(a) Hidden GPT-J (b) Hidden Pythia 6.9 (c) Hidden Llama-3

(d) Post-LN1 GPTJ (e) Post-LN1 Pythia 6.9 (f) Post-LN1 Llama-3

Figure 3: Error bars of angles (in degrees) between Hidden vectors (a-c) and post-normalization vectors (d-f) with
the uniform vector for GPT-J, Pythia 6.9, Llama-3 for all layers.

Model Model Num Num Norm.
Name Dim (d) Params Layers Type

GPT-2 XL 1600 1.5B 48 Layer
GPT-Neo 1.3B 2048 1.3B 24 Layer
Pythia-1.4B 2048 1.4B 24 Layer
GPT-J 6B 4096 6.0B 28 Layer
Pythia-6.9B 4096 6.9B 32 Layer
Llama-2-7B 4096 7.0B 32 RMS
Llama-3-8B 4096 8.0B 32 RMS

Table 1: List of models used in experiments.

3.1 Experimental Setup

We study the angle between the hidden represen-
tations generated within a model and the uniform
vector both during training and inference. To do
so, we pass one million tokens from Wikipedia ar-
ticles through various models and study how the
hidden representations corresponding to these vec-
tors align with the uniform vector.

Methods and Models We study the impact of
LayerNorm on the hidden representations for 7
decoder-only LLMs across two size categories. The
models used are listed in Table 1. GPT2XL, GPT-
Neo-1.3B, and Pythia-1.4B represent the small
LLM size category, whereas GPT-J-6B, Pythia-
6.9B, Llama-2-7B, and Llama-3-8B represent the
medium LLM size category. We pass one mil-
lion tokens from Wikipedia articles through each
model and capture the hidden representations for
all tokens before and after each normalization layer.

This is done for each layer inside the model, which
creates many terabytes of data to be analyzed.

3.2 Orthogonality to Uniform Vector at
Inference time

To answer the question of alignment of the uniform
vector at inference time, we measure the angle be-
tween the hidden vector and the uniform vector
just before and after the normalization operations
for LayerNorm and RMSNorm-based models. To
justify the mean subtraction step, the following
scenarios should be true:

• Scenario-1: In LayerNorm-based models,
the intermediate hidden vectors have a large
component along the uniform vector pre-
normalization, which gets removed post-
normalization.

• Scenario-2: In RMSNorm-based models,
which are trained without the mean subtrac-
tion step, the hidden vectors consistently have
a large component along the uniform vector.

More specifically, we find the angle between the
hidden vectors hl−1 (equation 12) with the uniform
vectors, which represent the hidden vectors before
normaliztion. And then we also find the angle be-
tween the post normalization vectors f l (equation
12), which represents the activation vector post nor-
malization.



(a) Angle with the uniform vector for 1B
with LayerNorm

(b) Angle with random vector ã for 1B
with LayerNorm

(c) Angle with random vector b̃ for 1B
with LayerNorm

(d) Angle with the uniform vector for 1B
with RMSNorm

(e) Angle with random vector ã for 1B
with RMSNorm

(f) Angle with random vector b̃ for 1B
with RMSNorm

Figure 4: Error bars of angles (in degrees) between Hidden vectors with the uniform vector and random vector
ã, b̃ for 1B with LayerNorm (a-c) and RMSNorm (d-f) for a randomly selected layer(Layer 10). The results are
independent of the choice of layers.

The results are shown in Figure 3 for GPT-J
(6B), Pythia (6.9B), and Llama-3 (8B) and Figure
6 for the remaining models. We see that for all
models in Figure 3, the angle between the hidden
vectors and the uniform vectors is 90 degrees on
average even before normalization, with a very
small spread. This remains true post-normalization
as well for all three models. This result is surprising
because the hidden representations for LayerNorm-
based models (GPT-J and Pythia) are themselves
orthogonal to the uniform vector even before the
LayerNorm operation. This is true for 4 out of the
5 LayerNorm-based models studied in this paper
except for GPT2-XL (Figure 6 in the appendix).
This shows that the “mean subtracting" operation
of LayerNorm is redundant during inference, as
there is nothing to remove.

For RMSNorm-based LLMs, the result for
Llama-3 (8B) in Figure 3 represents scenraio -2.
We see that even for Llama-3 (8B) trained using
RMSNorm, the hidden representations before nor-
malization are also on average orthogonal to the
uniform vector with a very small spread. After RM-
SNorm, the hidden representations continue to be
orthogonal to the uniform vector. This is also true
for Llama-2 (7B) (Figure 6 in the appendix). This
shows that even without the “mean subtraction"

step during training as in RMSNorm, the hidden
vectors operate orthogonal to the uniform vector,
underscoring the redundancy of the “mean subtrac-
tion" step.

3.3 Orthogonality to Uniform Vector during
Training

Next, we study whether hidden vectors are orthogo-
nal to the uniform vector during pretraining. While
we see this orthogonality at inference time, we
want to study if this orthogonality is a by prod-
uct of model training. To do so, we train a GPT2
architecture with identical data and training con-
ditions, with the only difference being the use of
LayerNorm versus RMSNorm, and compare the
angle between intermediate hidden representations
at each layer and the uniform vector. We use the
OpenWebtext dataset to train models with different
sizes, 70M, 160M, 410M and 1B. (Training details
can be found in APPENDIX A.2)

We pass one million tokens from Wikipedia arti-
cles through multiple checkpoints during the train-
ing process of models to capture hidden representa-
tions of all tokens before each normalization layer,
following the previous evaluation method. The re-
sults are shown in Figure 4. We present the results
for the 1B model in the main paper while the rest



of the results can be found in the appendix. The
first row of figures presents the angles of the hidden
representations with the uniform vectors and two
randomly chosen vectors ã and b̃ for the 1B model
trained using LayerNorm. The second row shows
the same for RMSNorm models. For LayerNorm,
angles between hidden vectors and the uniform
vector before normalization are 90 degrees on aver-
age for all checkpoints, which indicates that mean
subtraction is dispensable during the pre-training
step as well. The same pattern can be observed for
RMSNorm. Even without mean subtraction, hid-
den vectors are already orthogonal to the uniform
vector during training.

Furthermore, we aim to investigate whether the
randomly chosen direction of the uniform vector in
LayerNorm exhibits any distinctive characteristics.
To evaluate this, we calculate angles between hid-
den vectors and with 2 randomly chosen vectors in
the representation space. Figure 4 shows the results
for 1B with LayerNorm and RMSNorm, where ran-
dom vector ã is arbitrarily chosen with the same
norm as the uniform vector and random vector b̃
is arbitrarily chosen with different norm from the
uniform vector. As can be seen in Figure 4, an-
gles with arbitrarily chosen vectors remain at an
average of 90 degrees, exhibiting no significant dif-
ference compared to those with the uniform vector.
These experiments clearly show that the uniform
vector behaves quite similar to arbitrarily chosen
vectors in the representation space. The reiterates
the needlessness of removing the component along
the uniform vector as done during LayerNorm.

With this, we provide the first mechanistic evi-
dence that the “mean subtraction" step in Lay-
erNorm is dispensable. This line of investigation
was made possible by our novel geometrical inter-
pretation of LayerNorm (section 2.2), which pre-
sented the global implications of the mean subtrac-
tion step in LayerNorm - removing the component
of intermediate hidden representations along the
uniform vector. Due to these results, we advocate
for using RMSNorm over LayerNorm, which is
also computationally more efficient and leads to
comparable downstream performance.

4 Conclusion

We present a detailed theoretical and empirical anal-
ysis of layer normalization on hidden vectors in
representation space, with a focus on the global
effects of the LayerNorm operation on a vector.

We first show that the LayerNorm operation can
be understood in three simple steps: removing the
component of a vector along the uniform vector
(1 = [1, 1, 1, 1, · · · , 1]T ∈ Rd), normalizing the
remaining vector, and scaling the resultant vector
by

√
d. We then show that LayerNorm is an irre-

versible process—information along the uniform
vector is removed during LayerNorm and cannot be
recovered using the learnable parameters available
in the formulation. This is in contrast with Batch-
Norm, where the network has the option of learn-
ing an identity operation. Finally, we show that
the “mean subtraction" operation in LayerNorm is
dispensable both during inference and for training.

5 Limitations

This study provides valuable insights into the the-
oretical and empirical effects of layer normaliza-
tion. Although the study empirically tests 7 models
across two sizes and multiple language model fam-
ilies, the size of the models tested is restricted to 8
billion parameters. Since we wanted our results to
have a large enough sample size, we chose to store
hidden representations of 1 million tokens. Even
for a small model like GPT2-XL, this requires 2TB
of data, and for larger models like Llama3-8B, it
requires storing approximately 4TB of data. Stor-
ing such large amounts of hidden representations
pushed the capacity of the computational resources
available to us. Because of this restriction, we
leave testing our findings for larger models to fu-
ture works and groups that have access to larger
amounts of computing.
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A Appendix

A.1 Computations in Decoder-only LLMs
In this paper, we study the hidden representations
of modern decoder-only large language models
(LLMs). Let hl represent the intermediate hidden
state vectors between each decoder layer. As de-
picted in Figure 5, the computations within a layer
of most decoder-only LLMs proceed as follows:

f l = LN1(hl−1) (12)

al = Att(f l) (13)

gl = LN2(hl−1 + al) (14)

ml = W l
projσ(W

l
fcg

l + blfc) + bproj (15)

hl = hl−1 + al +ml (16)

The intermediate hidden vectors between each
layer, hl, are also sometimes called the residual
stream. Let LN1 represent the first LayerNorm func-
tion that acts just before the attention module and

Figure 5: A high-level diagram representing the compu-
tation within one decoder block of an LLM.

LN2 represent the second LayerNorm just before
the MLP module. We abstract out the computations
of the attention and MLP modules to focus on the
layer normalization blocks.

As the vectors computed in the attention and
MLP modules get added to the residual stream at
each layer, the residual stream represents a sum-
mation of an increasing number of vectors. A non-
recursive formula for the residual stream depicts
this clearly:

hl = h0 +

i=l∑
i=0

ai +

i=l∑
i=0

mi (17)

The residual stream thus represents a continuous
summation of vectors computed at the attention
and MLP modules in each layer with the incom-
ing residual stream. This leads to an increasing
norm of the residual stream, thus necessitating a
normalization operation.

A.2 Training Configurations
For all models, we use OpenWebText(Gokaslan
and Cohen, 2019) to train with AdamW optimizer,
which is an opensource recreation of the WebText
corpus and extensively utilized for GPT2 pretrain-
ing. For 70M and 160M, the total training steps
is 100000 and checkpoints are saved at 1K, 2K,...,
10K, 20K,..., 100K. For 410M and 1B, the total
training steps is 50000 and checkpoints are saved
at 1K, 2K,..., 10K, 20K,..., 50K. The max sequence
length is set to 1024 and batch size is set to 64. The
learning rate schedule integrates a linear warm-up
phase, followed by a cosine decay scheduler with
a minimum of 10% the initial learning rate. For
70M and 160M, we use 4 NVIDIA A6000 GPUs
with 48GB of GPU memory. For 410M, we use 2



Model Size Layers Embed Dim Heads Learning Rate

70M 6 512 8 10.0× 10−4

160M 12 768 12 6.0× 10−4

410M 24 1024 16 3.0× 10−4

1B 16 2048 8 3.0× 10−4

Table 2: Model Configurations

NVIDIA A100 GPUs with 80GB of GPU memory.
For 1B, we use 4 NVIDIA A100 GPUs with 80GB
of GPU memory. Model configurations including
number of layers, attention heads, embedding di-
mensions and initial learning rate can be found in
Table 2.

A.3 Computational Resource for experiments
at inference time

All experiments at inference time were conducted
using NVIDIA A6000 GPUs with 48GB of GPU
memory. This setup provided the necessary com-
putational power to handle large-scale models and
extensive data processing required for our study.

A.4 Supplementary figures
Figure 7, 8, 9, 10, 11, 12 and 13 show the error
bars of angles between hidden vectors and post-
normalization vectors with the uniform vector and
random vector a, b for all models listed in Table 1,
where random vector a is arbitrarily chosen with
the same norm as the uniform vector and random
vector b is arbitrarily chosen with different norm
from the uniform vector. Figure 14, 15 and 16 show
the error bars of angles between hidden vectors
with the uniform vector and random vector a,b for
all layers in 70M with LayerNorm during training.
With the same meaning, Figure 17, 18 and 19 are
for 70M with RMSNorm, Figure 20, 21 and 22 are
for 160M with LayerNorm, Figure 23, 24 and 25
are for 160M with RMSNorm, Figure 26, 27 and
28 are for 410M with LayerNorm, Figure 29, 30
and 31 are for 410M with RMSNorm, Figure 32,
33 and 34 are for 1B with LayerNorm and Figure
35, 36 and 37 are for 1B with RMSNorm.



(a) Hidden GPT-2 XL (b) Hidden GPT-Neo (c) Hidden Pythia 1.4 (d) Hidden Llama-2

(e) Post-LN1 GPT-2 XL (f) Post-LN1 GPT-Neo (g) Post-LN1 Pythia 1.4 (h) Post-LN1 Llama-2
Figure 6: Error bars of angles (in degrees) between Hidden vectors (a-d) and post-normalization vectors (e-h) with
the uniform vector for GPT-2 XL, GPT-Neo, Pythia 1.4, and Llama-2 for all layers



Figure 7: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in GPT-2 XL

Figure 8: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in GPT-J



Figure 9: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in GPT-Neo

Figure 10: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Llama-2



Figure 11: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Llama-3

Figure 12: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Pythia-1.4B



Figure 13: Error bars of angles (in degrees) between Hidden vectors and post-normalization vectors with the uniform
vector and random vector ã, b̃ for all layers in Pythia-6.9B

Figure 14: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 70M
with LayerNorm during training



Figure 15: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 70M with
LayerNorm during training

Figure 16: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 70M with
LayerNorm during training



Figure 17: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 70M
with RMSNorm during training

Figure 18: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 70M with
RMSNorm during training



Figure 19: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 70M with
RMSNorm during training

Figure 20: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 160M
with LayerNorm during training



Figure 21: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 160M
with LayerNorm during training

Figure 22: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 160M
with LayerNorm during training



Figure 23: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 160M
with RMSNorm during training

Figure 24: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 160M
with RMSNorm during training



Figure 25: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 160M
with RMSNorm during training



Figure 26: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 410M
with LayerNorm during training



Figure 27: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 410M
with LayerNorm during training



Figure 28: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 410M
with LayerNorm during training



Figure 29: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 410M
with RMSNorm during training



Figure 30: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 410M
with RMSNorm during training



Figure 31: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 410M
with RMSNorm during training



Figure 32: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 1B with
LayerNorm during training



Figure 33: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 1B with
LayerNorm during training



Figure 34: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 1B with
LayerNorm during training



Figure 35: Error bars of angles (in degrees) between Hidden vectors and the uniform vector for all layers in 1B with
RMSNorm during training



Figure 36: Error bars of angles (in degrees) between Hidden vectors and random vector ã for all layers in 1B with
RMSNorm during training



Figure 37: Error bars of angles (in degrees) between Hidden vectors and random vector b̃ for all layers in 1B with
RMSNorm during training
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