
Under review as a conference paper at ICLR 2021

CROSS-STATE SELF-CONSTRAINT FOR FEATURE GEN-
ERALIZATION IN DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Representation learning on visualized input is an important yet challenging task
for deep reinforcement learning (RL). The feature space learned from visualized
input not only dominates the agent’s generalization ability in new environments
but also affect the data efficiency during training. To help the RL agent learn
more general and discriminative representation among various states, we present
cross-state self-constraint(CSSC), a novel technique that regularizes the represen-
tation feature space by comparing representation similarity across different pairs
of state. Based on the implicit feedback between state and action from the agent’s
experience, this constraint helps reinforce the general feature recognition during
the learning process and thus enhance the generalization to unseen environment.
We test our proposed method on the OpenAI ProcGen benchmark and see signifi-
cant improvement on generalization performance across most of Procgen games.

1 INTRODUCTION

Deep Reinforcement learning has achieved tremendous success on mastering video games(Mnih
et al., 2015) and the game of GO(Silver et al., 2017). While training agent by using deep reinforce-
ment learning algorithms, we usually assume that the agent could extract appropriate and effective
features from different states and take actions accordingly. However, as more and more research
works(Zhang et al. (2018), Song et al. (2019), Dabney et al. (2020)) have pointed out, even well-
trained RL agents that learns from visualized input tend to memorizing spurious pattern rather than
understanding the essential generic features of a given state. For example, an agent might pay more
attention to the change of irrelevant background rather than noticing the obstacles or enemies(Song
et al., 2019).

To improve generalization in the new environment, various kinds of regularization method like
dropout(Farebrother et al., 2018) and data augmentation(Laskin et al., 2020) has been proposed
and tested in combination with reinforcement learning. Conventional methods like dropout and
batch-norm has been proven to be effective in supervised-learning, and for self-supervised learning
like RL we see multiple related applications across various environments. Data augmentation like
random crop(Laskin et al., 2020) or random convolution(Lee et al., 2019) have also been proposed
recently and provide considerable generalization enhancement to the unseen levels of various tested
environment(Tassa et al. (2018), Cobbe et al. (2018), Cobbe et al. (2020)). The agent is acting on
multiple augmented views of the same input and learn from these prior injected data. However,
modifying state information(injecting prior to the data) may be risky or even detrimental for rep-
resentation learning because vital features may be altered or lost (ex: flipping state image might
change the corresponding behavioral meaning, cropping the input image might lose critical features
like the enemy position in the game).

To avoid losing informative features of the visualized input, we choose a different approach. As
a human learner, we rarely depend on multiple augmented views of the same input to discriminate
important or fictitious features. Instead, human learners try to recognize general patterns across mul-
tiple states and act accordingly. In other words, if the same action(or behavior) has been conducted
by a well-trained agent in two different states, we would infer that the agent has conceived similar
feature patterns in these states. For example, if one car stops for ninety seconds at two different
intersections, we would guess that the car might be stopped by the red light at both places(Figure
1b).

1

Under review as a conference paper at ICLR 2021

From here we get the intuition about the relation between action(or behavior) and representation
feature space learned by the agent: for a RL agent acting rationally across sequence of states, its
behavior would be similar if it perceives similar critical patterns while acting differently if it per-
ceives different patterns. Based on this intuition, we designed a novel constraint that performs
regularization directly in the representation feature space of the learning agent. Our hypothesis for
this constraint is simple: states in which the rational agent behaves identically should share more
representation resemblance than states the agent behave differently.

We test this novel constraint in combination with Rainbow(Hessel et al., 2017), the state-of-the-
art Q-learning method that combines numerous improvements with the original DQN model(Mnih
et al., 2015). Inspired by the pair-wise structure used in BPR-opt(Rendle et al., 2012), we design
the self-constraint based on the agent’s behavior and utilize implicit feedback between positive and
negative state pairs in the replay buffer. One thing worth noticing is that no change is needed for
the underlying RL algorithm or model to adapt the proposed method, and it can be easily applied to
other models with minimal effort(Figure 1a).

(a) Rainbow + CSSC model structure (b) Intuition for cross-state feature matching

Figure 1: Model structure and CSSC concept

To measure the improvement on generalization to unseen environment levels, We test CSSC across
16 games on the OpenAI ProcGen benchmark(Cobbe et al., 2020). We see significant improvement
on generalization capability for most ProcGen games in comparison with base Rainbow model.

We highlight the main contributions of CSSC as follows:

• Directly optimize feature generalization across various input states

• Requires no additional modification on the input data and the base model

• Enhance generalization and data efficiency on existing RL methods

2 RELATED WORK

2.1 AUXILIARY TASK FOR REPRESENTATION LEARNING IN RL

Representation Learning has been a vital part for deep RL algorithms. Even though the main goal
of RL is to find the optimal value function, Mccallum & Ballard (1996) and Li et al. (2006) show
that a representation specialized to this function may not be suitable for the sequence of value func-
tions leading to it. On the other hand, Dabney et al. (2020) argue that the path toward optimal
value function might be hindered by overfitting the representation to any intermediate value func-
tion during training. One popular and effective method to address this challenge is by using auxiliary
tasks(Jaderberg et al. (2016), Bellemare et al. (2019)). Dabney et al. (2020) also propose new auxil-
iary tasks by considering the value-improvement path holistically.

2.2 REGULARIZATION ON RL

2.2.1 ADDING STOCHASTICITY TO RL

Conventional practices like stochastic policy(Hausknecht & Stone, 2015), random starts(Mnih et al.,
2015), sticky actions(Hausknecht & Stone, 2015) and frame skipping are wildly used for popular

2

Under review as a conference paper at ICLR 2021

tasks like Atari(Machado et al., 2017). By adding stochasticity to the environments during train-
ing and testing, we would prevent simple algorithms like trajectory tree(Kearns et al., 1999) and
brute(Machado et al., 2017) from optimizing over open-loop sequences of actions without even
considering the input states. However, as Zhang et al. (2018) has pointed out, injecting stochasticity
to the maze-like environments does not necessarily prevent the deep RL agents from overfitting.

2.2.2 CONVENTIONAL REGULATIZATION ON RL

For deep supervised learning, regularizations has long been a major issue as generalization from
training to test set is the major concern. Common regularization practices like L2 regularization,
dropout, batch-normalization from supervised learning has also been tested in the reinforcement
learning scenario. Cobbe et al. (2018) and Farebrother et al. (2018) show that dropout and L2
regularization improve generalization to test environments in Coinrun(Cobbe et al., 2018) and Atari
2600(Bellemare et al., 2013) respectively.

2.2.3 DATA AUGMENTATION ON RL

For supervised learning related to images or computer vision, data augmentation is a popular way
to enhance performance by injecting useful priors on the training data. In recent years, we see
numerous data augmentation methods for RL that improve generalization or data efficiency. Lee
et al. (2019) introduce a randomized convolution network that randomly perturbs input features.
Srinivas et al. (2020) utilize contrastive learning and show considerable performance gains in terms
of sample-efficiency. Kostrikov et al. (2020) uses augmented data and weighted Q-functions to
achieve state-of-the-art data-efficiency on the DMControl(Tassa et al., 2018). Laskin et al. (2020)
investigate ten different data augmentation on RL and point out that random crop is the most effective
on DMControl(Tassa et al., 2018)

3 BACKGROUND

CSSC is a general framework of cross-state representation regularization for RL. In principle, one
can apply CSSC to other variation of DQN or policy-based models for discrete action-space envi-
ronments. In this work we pick Rainbow (Hessel et al., 2017) and PPO (Schulman et al., 2017) as
our base model to show that CSSC is compatible with the original Nature DQN(Mnih et al., 2015),
its multiple improvements and policy-based algorithms. In the following subsections we will review
Rainbow DQN and introduce the concept of implicit feedback in Bayesian Personalized Ranking
(BPR) proposed by Rendle et al. (2012).

3.1 RAINBOW

In combination with a convolutional neural network as visualized input encoder, Deep Q net-
work(Mnih et al., 2015) demonstrates that it is possible to use neural network as a function ap-
proximator that maps raw pixels to Q values. Since then, multiple improvements such as Double
Q Learning(van Hasselt et al., 2015), Dueling Network Architecture(Wang et al., 2015), Prioritized
Experience Replay(Schaul et al., 2015) and Noisy Networks(Fortunato et al., 2017) have been pro-
posed. In addition, Bellemare et al. (2017) proposed the method of predicting a distribution over
possible value support through the C51 algorithm. By combining all the above techniques into a sin-
gle off-policy algorithm, Rainbow DQN showcases the state-of-the-art sample-efficiency on Atari
Benchmarks. The resulting loss function for Rainbow DQN is as follows:

LRainbow = DKL(Φzd
(n)
t ||dt) (1)

where Φz is the projection onto fixed support z. d(n)
t and dt are the n-step target return distribution

and the model-predicted return distribution respectively.

3.2 BPR-OPT

As opposed to explicit feedback like user ratings, implicit feedback in recommendation systems
focuses on interactions like click or view between users and items. In implicit feedback system only

3

Under review as a conference paper at ICLR 2021

positive observations are available, and non-observed user-item pairs -e.g. a user has not view an
item yet - are considered as negative observations. Instead of rating prediction, BPR-opt(Rendle
et al., 2012) is designed for direct ranking optimization based on the implicit feedback between
users and items. BPR extends the user preference from observed interaction pairs to non-observed
data by ranking the preference of positive observation and negatived observation across the training
data. The formulation of the maximum posterior estimator for the personalized ranking optimization
(BPR-opt) can be written as follows:

ln p(Θ| >u) =
∑

(u,i,j)∈Ds

lnσ(x̂uij)− λΘ||Θ||2 (2)

where Θ represents the parameter vector of the base model. Ds represent the batch samples from
training data. p(Θ| >u) is the posterior probability conditioned on latent preference structure >u
for user u, λΘ is the model specific regularization parameter, σ is the sigmoid function, and x̂uij(Θ)
is the real-valued function model Θ which captures the preference relationship between user u, item
i and item j. Rendle et al. (2012) use x̂uij := x̂ui − x̂uj to indicate that the user u prefers item i
over item j.

4 METHOD

The main idea of CSSC is to extend the similarity ranking across various state representation based
on our hypothesis: representations motivating identical behavior should share more similarity than
those motivating different behavior. We name this method as ”self-constraint” to emphasize that the
state pairing is decided by the agent’s behavior rather than pre-defined fixed labels. In the following
subsection below, we introduce the following concepts to provide further explanation and insight:
(i) definition of the behavior of an agent at a given state (ii) implicit feedback between state and
behavior (iii) cross-state self-constraint as an auxiliary loss for representation regularization

4.1 BEHAVIOR DEFINITION

We describe a typical Markov Decision Process(MDP) as (X , A, R, P, γ) with state space as X ,
action space as A, reward function as R, state transition function as P and discount factor as γ. The
agent would take an action ai at state xi and then being transited to xi+1 by the environment with
a given step reward ri. Here we define the behavior set Bni = {(ai, ai+1, ..., ai+n−1)|a ∈ A} as
a set of action series of length n taken by the agent since state xi. For bni ∈ Bni and bnj ∈ Bnj ,
bni = bnj only if ai+p = aj+p for 0 ≤ p ≤ n − 1. With this definition in mind, we can infer that if
the agent conduct the behavior b2i = (left, fire) at state xi, it would move left in state xi and fire
in the next state xi+1. In the following paragraph we coin names like unigram, bigram and trigram
for behaviors of length one, two and three respectively.

4.2 IMPLICIT FEEDBACK IN REINFORCEMENT LEARNING

In the traditional deep Q-learning scenario, each state representation is highly correlated to neighbor-
ing states by the Bellman equation during the training process. However, observational overfitting
could still happen as long as the representation of neighboring states can fit to specific sub-optimal
version of Q-function indefinitely as mentioned in Dabney et al. (2020). Besides the base RL al-
gorithm, we can view the interaction between state and behavior as an implicit feedback system
by regarding states sharing same action as positive observation. The general feature among these
positive observation would be reinforced if we compare their similarity with negative observation
-e.g. states sharing different action. Through this “ranking” procedure the pair-wise relationship
would be extended across non-neighboring states and therefore preventing observational overfitting
to specific Q-function.

4

Under review as a conference paper at ICLR 2021

4.3 IMPLEMENTATION OF CROSS-STATE SELF-CONSTRAINT IN COMBINATION WITH
RAINBOW AND PPO

For each sample of state triples(xp, xq, xr) ∈ X with (bnp , b
n
q , b

n
r) ∈ Bn and bnp = bnq 6= bnr , we

decompose the estimator x̂pqr and define it as:

x̂pqr := x̂pq − x̂pr = eθ(xp) · eθ(xq)− eθ(xp) · eθ(xr) (3)

where eθ is the encoder function with weight θ that maps the pixel input to 1-D array feature vector
with shape like [element 0, element 1, ..., element n] as the state representation. We directly perform
inner-product on eθ(xp) and eθ(xq) to calculate the representation similarity x̂pq between xp and
xq . Please note that the encoder function is the same part of the original base model used for
feature extraction on visualized input. For more details about neural network structures used in this
paper, please refer to Figure 7 and Figure 8. To sample these state triplets without modifying the
base DQN or PPO algorithm, we collect these state triples in the same batch of transitions used
to calculate Bellman loss or policy loss. For policy-based algorithms and DQN without prioritized
replay (Schaul et al., 2015), we pair up the state triples for each transition in the sample and calculate
the CSSC loss as follows:

LCSSC = − 1

NDs

∑
(p,q,r)∈Ds

lnσ(x̂pqr) (4)

where Ds represents the sample batch of size NDs from the replay buffer and σ is the sigmoid
function. Then, we train the base algorithm in combination with the auxiliary CSSC loss as follows:

Ltotal = Lbase + βcssc · LCSSC (5)

where βcssc is the hyperparameter to control the contribution of CSSC during training. For pseu-
docode of PPO with unigram CSSC, please refer to Algorithm 2 in the appendix.

In the case of Rainbow with CSSC, we design the loss function in combination with the importance
sampling (IP) weight as follows:

L̂total = (̂LRainbow
⊕

(βcssc · L̂CSSC))� ŴIP (6)

where
⊕

and � are element-wise add and multiplication respectively. For pseudocode of Rainbow
with unigram CSSC, please refer to Algorithm 1 in the appendix.

We find that setting βcssc to 0.01 works quite well in most cases, so we stick with this setting for all
the experiment conducted in the next section.

5 EXPERIMENT

Our primary goal for CSSC is to enhance the generalization capability of RL algorithm to unseen
levels that share similar mechanism. Fortunately, OpenAI ProcGen(Cobbe et al., 2020) presents a
collection of game-like environments where the training and testing environments differs in visual
appearance and structure. Therefore, we evaluate CSSC in three different ways:(i) generalization
improvement on 12 easy-mode games and 8 hard-mode games with Rainbow on OpenAI Proc-
Gen (ii) generalization improvement on 16 easy-mode games with PPO on OpenAI ProcGen (iii)
performance improvement on 32 games with Rainbow on Gym Atari (iv) visualization on the repre-
sentation space learned with CSSC.

Table 1: Mean normalized score of Rainbow in OpenAI ProcGen Easy Mode

Mode Rainbow Rainbow + uni-CSSC Rainbow + bi-CSSC
easy(train)@25M (12 Games) 0.2862 0.3832 0.4030
easy(test)@25M (12 Games) 0.1018 0.1670 0.1892

Improve. for train(%) 0.0 33.89 40.81
Improve. for test(%) 0.0 64.05 85.85

5

Under review as a conference paper at ICLR 2021

(a) Easy mode (b) Hard mode

Figure 2: Mean normalized score curve on OpenAI ProcGen environment. We normalized the
episodic return of each game by the constants from Cobbe et al. (2020) and report the mean score.
Every curve is smoothed with an exponential moving average of 0.95 to improve readability.

Table 2: Mean normalized scores of Rainbow bigram-CSSC

Mode Rainbow Rainbow + bi-CSSC Improvement(%)
easy(train)@25M (12 Games) 0.2862 0.4030 40.81
easy(test)@25M (12 Games) 0.1018 0.1892 85.85
hard(train)@30M (8 Games) 0.1085 0.1699 56.63
hard(test)@30M (8 Games) 0.0512 0.1199 133.94

5.1 ENVIRONMENT AND MODEL SETTING

For the following experiments, we use the IMPALA CNN architecture recommended by Cobbe et al.
(2020) for the Rainbow and PPO model on ProcGen benchmark. For the Gym Atari benchmark, we
stay with the Nature CNN as mentioned in Hessel et al. (2017) for the Rainbow model. All the
experiments in this paper are conducted in the single-agent setting. For all hyperparameter used on
ProcGen and Atari benchmark, please refer to Table 3 in the Appendix. We use “unigram CSSC” or
“bigram CSSC” to indicate the behavior length used to pair up the state triples for CSSC.

5.2 GENERALIZATION ON PROCGEN IN EASY MODE WITH RAINBOW

As Cobbe et al. (2020) have suggested, we conduct the training of 25 million timesteps on 200
training levels and evaluate the generalization improvement on the full distribution of testing levels
across 12 ProcGen games. We test both the unigram and bigram CSSC in comparison with vanilla
Rainbow and see significant improvement on testing performance. To evaluate the mean normalized
score for bigram and unigram CSSC across 12 games, we follow the normalization method used in
Cobbe et al. (2020) and show the result in Figure 2a and Figure 12a respectively. We also display
the learning curve of bigram-CSSC in Figure 3 and unigram-CSSC in Figure 13. In the following
we summarize the main findings below:

• In supervised learning, posing regularization or constraint to the model would usually im-
prove its testing performance on unseen data at the expense of hurting training performance.
However, we see that the proposed self-constraint improves both training and testing per-
formance across most of the 12 game tested.

6

Under review as a conference paper at ICLR 2021

Figure 3: Learning Curve of Rainbow with bigram CSSC in 12 ProcGen Games. We report the raw
episodic return for both training and testing. All final scores are listed in Table 5. Every curve is
smoothed with an exponential moving average of 0.95 to improve readability.

• For games like Starpilot, Chaser and Bigfish, we see that the testing performance is even
better than the training performance of vanilla Rainbow.

• For the mean normalized score in Table 1, Bigram-CSSC and Unigram-CSSC bring 85%
and 64% improvement respectively on the testing performance in comparison with base
Rainbow model.

5.3 GENERALIZATION ON PROCGEN IN HARD MODE WITH RAINBOW

Figure 4: Learning Curve of Rainbow with bigram CSSC in 8 ProcGen Games. We report the mean
raw episodic return for training and testing. Every mean return is shown across 3 seeds and all final
scores are listed in Table 6. Every curve is smoothed with an exponential moving average of 0.95 to
improve readability.

To further explore the generalization capability in more complicated and challenging tasks, we ex-
amine the generalization improvement brought by CSSC on 8 ProcGen games.We use 500 training
levels for 30 million timesteps of training across 3 seeds and evaluate generalization on the full
distribution of testing levels. We test the bigram CSSC in comparison with the normal version of
Rainbow across three different seeds and see significant improvement on testing performance. The
learning curve of bigram CSSC is summarized in Figure 4. To evaluate the mean normalized score
for bigram CSSC across 8 games in hard mode, we also follow the normalization method used in

7

Under review as a conference paper at ICLR 2021

Cobbe et al. (2020) and show the result in Figure 2b. In the following we summarize the main
findings below:

• As shown in Figure4, CSSC substantially improves both training and testing performance
in Bigfish, Dodgeball, Starpilot, Fruitbot and Bossfight.

• In particular, we see nearly 4x performance jump in Bigfish at 30M timestep in comparison
with the base Rainbow model. The mean episodic return at 30M timestep of bigram CSSC
is even higher than that of PPO at 200M timestep as shown in Figure 4 of Cobbe et al.
(2020).

• In the case of Heist (a puzzle-solving task in maze-like layout), coinrun(a 2-D scroll plat-
form game) and Plunder(a challenging shooting game), the gain from CSSC is not as obvi-
ous because all these games require careful manipulation and planning. Add constraint that
modifies state representation directly would be risky or even detrimental for the learning
process of the base RL algorithm.

5.4 GENERALIZATION ON PROCGEN IN EASY MODE WITH PPO

We test the CSSC with PPO on all the 16 games of the Procgen benchmark in Easy mode. We
conduct the training of 25 million timesteps across 3 seeds on 200 training levels and evaluate the
generalization improvement on the full distribution of testing levels across all 16 ProcGen games.
From the normalized learning curve shown in Figure 5a we can tell that CSSC helps reduce the gap
between training and testing performance. For detailed final scores and learning curves, please refer
to Table 7 and Figure 14, 15 in the Appendix.

5.5 PERFORMANCE ON GYM ATARI WITH RAINBOW

We take Gym Atari benchmark (Brockman et al., 2016) as our second set of environments to measure
the effectiveness of CSSC. Even though this classic benchmark does not explicitly split the training
levels out of the training levels in all environments, we still see significant improvement on 23 out
of 38 games tested as shown in Figure 5b. For training hyperparameters and scoreboard on Gym
Atari benchmark, please refer to Table 3 and 8 in the Appendix.

5.6 VISUALIZATION OF REPRESENTATION EMBEDDING

To give a more tangible explanation about the effectiveness of CSSC, we plot the representation
distribution in the embedding feature space across 4096 states from the replay buffer. We first
perform dimension reduction on these state embeddings using principal decomposition analysis and
label each embedding point with the index of corresponding action. Here we show the embedding
space of both Rainbow and bigram-CSSC models trained to play the Bigfish game. In figure 6 we can
see that states of the same action are more clustered in bigram-CSSC than that of the vanilla Rainbow
model. We believe this is the possible reason behind the significant improvement on generalization
as shown in Figure 4. For representation visualization in other ProcGen games, please refer to A.4.

6 CONCLUSION

In this paper we propose a novel regularization on state representation learning based on the con-
nection between agent behavior and the visual input. Our hypothesis is derived from the observation
that the behavior of a rational agent would have certain relationship with general cross-state features
or patterns. We see significant improvement on generalization brought by the proposed cross-state
self-constraint(CSSC) on most of the games in OpenAI ProcGen benchmark. The connection be-
tween behavior and conceived visual input can be considered as some kind of “motivation” that
acts as a decisive factor behind the learned policy. It worth further study to better understand the
derivation and transformation of agent’s ”motivation” during the Markov Decision Process, and we
believe the concept proposed in this work would facilitate more research in this direction.

8

Under review as a conference paper at ICLR 2021

(a) PPO CSSC in easy mode

(b) Log-Scale Improvement on Gym Atari using Rain-
bow with bigram CSSC

Figure 5: Left: Mean normalized score curve on OpenAI ProcGen environment. We normalized the
episodic return of each game by the constants from Cobbe et al. (2020) and report the mean score.
Every curve is averaged across 3 seeds and is smoothed with an exponential moving average of 0.95
to improve readability. Right: the performance improvement of bigram CSSC with Rainbow on 38
games from the Gym Atari benchmark. All scores are recorded using the same random seed.

(a) Bigfish: Rainbow + bigram CSSC (b) Bigfish: Rainbow

Figure 6: Representation embedding projected to 2D space by PCA. We use the same 4096 state
frames to extract representation using the bigram-CSSC and vanilla Rainbow model and display the
distribution across all state representation.

9

Under review as a conference paper at ICLR 2021

REFERENCES

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
Jun 2013. ISSN 1076-9757. doi: 10.1613/jair.3912. URL http://dx.doi.org/10.1613/
jair.3912.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning, 2017.

Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nico-
las Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on
optimal representations for reinforcement learning, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning, 2018.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning, 2020.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning, 2020.

Jesse Farebrother, Marlos C. Machado, and Michael Bowling. Generalization and regularization in
dqn, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy networks for exploration, 2017.

Matthew Hausknecht and Peter Stone. The impact of determinism on learning atari 2600 games. In
AAAI Workshop on Learning for General Competency in Video Games, Austin, Texas, USA,
January 2015. URL http://www.cs.utexas.edu/users/ai-lab?hausknecht:
aaai15.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning, 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks, 2016.

Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate planning in large pomdps via
reusable trajectories. In Proceedings of the 12th International Conference on Neural Information
Processing Systems, NIPS’99, pp. 1001–1007, Cambridge, MA, USA, 1999. MIT Press.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data, 2020.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple technique
for generalization in deep reinforcement learning, 2019.

L. Li, T. Walsh, and M. Littman. Towards a unified theory of state abstraction for mdps. In ISAIM,
2006.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents, 2017.

10

http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
http://www.cs.utexas.edu/users/ai-lab?hausknecht:aaai15
http://www.cs.utexas.edu/users/ai-lab?hausknecht:aaai15

Under review as a conference paper at ICLR 2021

Andrew Kachites Mccallum and Dana Ballard. Reinforcement Learning with Selective Perception
and Hidden State. PhD thesis, 1996. AAI9618237.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529—533, February 2015. ISSN 0028-0836. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback, 2012.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 550(7676):354—359, October 2017. ISSN 0028-
0836. doi: 10.1038/nature24270. URL https://doi.org/10.1038/nature24270.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational over-
fitting in reinforcement learning, 2019.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. Deepmind control suite, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning, 2015.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning, 2015.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning, 2018.

11

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature24270

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 NEURAL NETWORK ARCHITECTURE

Figure 7: Neural network architecture used for the Rainbow CSSC experiment. The output of the
feature vector for each input state is taken as the state embedding for CSSC loss.

Figure 8: Neural network architecture used for the PPO CSSC experiment. The output of the feature
vector for each input state is taken as the state embedding for CSSC loss.

12

Under review as a conference paper at ICLR 2021

A.2 HYPERPARAMTERS AND MODEL SETTING FOR OPENAI PROCGEN AND GYM ATARI
BENCHMARK

Table 3: Hyperparameters of Rainbow for OpenAI ProcGen

Env ProcGen(Easy) ProcGen(Hard) Atari

Use stacked Frames False False True
Image size(Channel, Height, Width) (3, 64, 64) (3, 64, 64) (4, 84, 84)
CNN network IMPALA CNN IMPALA CNN Nature CNN
state feature vector size 2048 2048 3136
Training levels 200 500 None
Training start Level 123 123 None
Testing levels 0 0 None
Testing start level 0 0 None
Batch size 128 128 32
CSSC type unigram, bigram bigram bigram
CSSC constant βCSSC 0.01 0.01 0.01
Multi step return 3 3 3
gamma 0.99 0.99 0.99
Learning rate 0.00025 0.00025 0.0000625
Replay buffer size 500000 500000 1000000
Replay alpha 0.5 0.5 0.5
Replay beta start 0.4 0.4 0.4
Minimum replay size for sampling 20000 20000 80000
Replay frequency 16 16 4
Target network update period 8000 8000 8000
Total timesteps 25M 30M 50M

Table 4: Hyperparameters of PPO for OpenAI ProcGen

Env ProcGen(Easy)

Use stacked Frames False
Image size(Channel, Height, Width) (3, 64, 64)
state feature vector size 256
Training levels 200
Training start Level 0
Testing levels 0
Testing start level 0
Batch size 2048
number of epoch 3
vf coef 0.25
entropy coef 0.01
gamma 0.999
lambda 0.95
clip range 0.2
clip range vf 0.2
max grad norm 0.5
CSSC type unigram, bigram, trigram
CSSC constant βCSSC 0.01
Learning rate 0.0005
rollout buffer size 16384
number of envs 64
steps per env 256
Total timesteps 25M

13

Under review as a conference paper at ICLR 2021

A.3 SCOREBOARDS ON OPENAI PROCGEN

Table 5: Rainbow: Easy mode scores evaluated after 25M timesteps of training on 1 seed.

Train Test
Game Rainbow Unigram Bigram Rainbow Unigram Bigram
Starpilot 27.79 43.75 46.13 26.37 39.72 43.40
Caveflyer 9.70 10.63 11.43 5.83 7.22 7.23
Dodgeball 5.46 9.08 9.48 2.74 4.25 5.04
Fruitbot 26.25 29.27 29.68 20.75 23.81 22.91
Chaser 1.71 2.33 2.74 1.34 2.07 2.43
Jumper 8.96 8.73 8.62 4.54 4.99 4.97
Leaper 8.81 9.58 9.39 5.42 5.83 5.88
Maze 0.41 0.71 0.45 0.21 0.50 0.38
Bigfish 14.80 26.60 26.04 13.16 14.87 16.91
Bossfight 8.26 8.16 8.57 7.52 6.90 7.32
Heist 0.77 0.77 1.06 0.26 0.34 0.42
Plunder 4.34 4.51 5.58 3.32 2.75 3.95

Table 6: Rainbow: Hard mode scores evaluated after 30M timesteps of training on 3 seeds.

Train (mean ± std) Test (mean ± std)
Game Rainbow Bigram Rainbow Bigram
Coinrun 5.99±0.18 5.78±0.28 5.13±0.15 5.46±0.37
Starpilot 5.63±0.23 7.30±0.27 5.17±0.15 6.16±0.26
Bossfight 4.42±0.43 5.64±0.52 3.89±0.24 5.38±0.28
Bigfish 1.88±0.41 7.22±4.27 1.24±0.38 5.26±3.28
Dodgeball 3.74±0.15 5.23±0.28 3.09±0.21 4.26±0.08
Fruitbot 1.33±0.14 1.65±0.19 0.12±0.60 0.69±0.22
Heist 0.38±0.06 0.39±0.03 0.21±0.01 0.20±0.03
Plunder 2.43±0.08 2.38±0.07 1.81±0.03 1.91±0.04

Table 7: PPO: Easy mode scores evaluated after 25M timesteps of training on 3 seeds.

Train (mean ± std) Test (mean ± std)
Game PPO Unigram Bigram PPO Unigram Bigram
Bigfish 3.96 ±1.35 6.77 ±1.86 6.30 ±1.93 1.45 ±0.30 3.29 ±1.45 2.33 ±0.66
Bossfight 8.36 ±0.24 7.21 ±0.51 7.51 ±0.38 7.64 ±0.14 6.79 ±0.42 6.38 ±0.61
caveflyer 1.59 ±0.29 2.53 ±0.48 1.97 ±0.87 0.76 ±0.40 1.78 ±0.33 1.34 ±0.27
Chaser 1.98 ±0.23 1.93 ±0.14 1.77 ±0.14 1.73 ±0.08 1.63 ±0.11 1.51 ±0.07
Climber 2.63 ±0.07 3.22 ±0.82 2.52 ±0.47 1.42 ±0.17 1.53 ±0.24 1.70 ±0.19
Coinrun 7.34 ±0.67 6.84 ±1.03 6.69 ±0.52 6.35 ±0.34 6.16 ±0.62 5.12 ±0.36
Dodgeball 1.37 ±0.30 1.33 ±0.20 1.31 ±0.03 0.89 ±0.10 0.88 ±0.07 0.80 ±0.02
Fruitbot 29.27±0.51 29.86±0.43 30.05±0.38 24.99±0.71 27.00±0.45 25.63±0.13
Heist 1.38 ±0.21 1.77 ±0.03 2.42 ±0.45 0.27 ±0.11 0.39 ±0.16 0.35 ±0.05
Jumper 7.90 ±0.09 7.23 ±0.20 6.99 ±0.27 4.16 ±0.15 4.04 ±0.51 3.98 ±0.60
Leaper 4.38 ±0.33 4.58 ±0.27 4.86 ±0.34 4.39 ±0.18 4.03 ±0.12 4.75 ±0.35
Maze 6.10 ±0.77 4.75 ±0.97 5.79 ±0.42 2.55 ±0.36 2.70 ±0.37 2.58 ±0.15
Miner 7.37 ±1.62 2.22 ±0.58 3.59 ±0.45 1.80 ±0.45 1.24 ±0.06 1.21 ±0.08
Ninja 3.76 ±0.54 3.76 ±0.26 4.40 ±0.37 2.86 ±0.07 2.53 ±0.36 3.63 ±0.29
Plunder 3.37 ±0.36 3.71 ±0.36 3.21 ±0.26 2.96 ±0.34 3.17 ±0.16 2.94 ±0.24
Starpilot 27.19±2.42 26.19±1.77 28.41±2.23 19.82±0.85 22.12±1.87 22.28±1.37

14

Under review as a conference paper at ICLR 2021

(a) Dodgeball: Rainbow bigram CSSC (b) Dodgeball: Rainbow

Figure 9: Dodgeball: representation embedding projected to 2D space by PCA

(a) Starpilot: Rainbow bigram CSSC (b) Starpilot: Rainbow

Figure 10: Starpilot: representation embedding projected to 2D space by PCA

(a) Coinrun: Rainbow bigram CSSC (b) Coinrun: Rainbow

Figure 11: Coinrun: representation embedding projected to 2D space by PCA

A.4 VISUALIZATION OF REPRESENTATION EMBEDDING ON OPENAI PROCGEN GAMES

A.5 GENERALIZATION ON PROCGEN IN EASY MODE FOR RAINBOW UNIGRAM-CSSC

A.6 GENERALIZATION ON PROCGEN IN EASY MODE FOR PPO WITH CSSC

A.7 PSEUDOCODE FOR CSSC EXPERIMENT

A.8 EVALUATION OF BIGRAM CSSC WITH RAINBOW ON GYM ATARI BENCHMARK

15

Under review as a conference paper at ICLR 2021

Algorithm 1 Rainbow + CSSC (unigram)

1: Input: minibatch size k, multi-step return n, replay period K and buffer size N , exponents α
and β, gamma γ, CSSC coefficient βcssc, total-timesteps T .

2: Initialize replay memoryH = Ø, feature extractor θ, return distribution predictor Θ, p1 = 1
3: Observe state s0 and choose action a0 ∼ πθ(s0)
4: for t = 1 to T do
5: Observe state st, reward r(n)

t , done flag dt, new state st+n
6: Store transition jt = (st, at, r

(n)
t , dt, st+n) inH with maximal priority pt = maxi<t pi

7: if t mod K ≡ 0 then
8: Sample batch of transition J = [j0, j1, ..., jk|j ∼ P (j) = pαj /Σip

α
i]

9: Compute importance-sampling weight: Ŵ = [w0, w1, ..., wk|wj = (N ·
P (j))−β/maxi wi]

10: Predict state feature vector eθ(sj), eθ(sj+n) and return distribution dj , d
(n)
j =

Θ(eθ(sj)),Θ(eθ(sj+n)) for each transition in the batch
11: Compute ̂LRainbow = [l0, l1, ..., lk|lj = DKL(Φzd

(n)
j ||dj)] using distribution projec-

tion function Φz
12: Update transition priority pj ← lj for each transition in the batch
13: Sample positive pair (sp, sq), p 6= q with jp, jq ∈ J and behavior b1p = b1q for each

transition jp in J
14: Sample negative pair (sp, sr), p 6= r with jp, jr ∈ J and behavior b1p 6= b1r for each

transition jp in J
15: Compute L̂CSSC = [ŝ0p0q0r0 , ..., ŝkpkqkrk |ŝjpjqjrj := −1.0 × σ(eθ(spj) · eθ(sqj) −

eθ(spj) · eθ(srj))]

16: Compute L̂total = (̂LRainbow
⊕

(βCSSC · L̂CSSC))� Ŵ where
⊕

and � are element-
wise add and multiplication respectively

17: Fit Θ and θ with Adam optimizer to minimize L̂total.mean()
18: end if
19: end for

16

Under review as a conference paper at ICLR 2021

(a) unigram-CSSC (b) bigram-CSSC

Figure 12: Mean normalized score on OpenAI ProcGen environment in easy mode. Every curve is
smoothed with an exponential moving average of 0.95 to improve readability.

Figure 13: Learning Curve of Rainbow with unigram CSSC in 12 ProcGen Games. We report the
raw episodic return for both training and testing. Every curve is smoothed with an exponential
moving average of 0.95 to improve readability.

17

Under review as a conference paper at ICLR 2021

Figure 14: Learning Curves of PPO in 16 ProcGen Games on training levels. Every curve is averaged
across 3 seeds and smoothed with an exponential moving average of 0.95 to improve readability.

Figure 15: Learning Curves of PPO with CSSC in 16 ProcGen Games on testing levels. Every curve
is averaged across 3 seeds and smoothed with an exponential moving average of 0.95 to improve
readability.

18

Under review as a conference paper at ICLR 2021

Algorithm 2 PPO + CSSC (unigram)

1: Input: minibatch size k, CSSC coefficient βcssc, total-timesteps T , clip range
2: Initialize rollout buffer H = Ø, feature extractor θ, policy parameters Θ, value function param-

eters φ
3: for t = 0 to T do
4: Collect set of trajectories Dk = {Ti} by running policy πk = π(θk) in the environment
5: Compute advantages estimates Ât using current value function Vφ
6: Store transition jt = (st, at, rt, dt, Ât, log(π(θk))) inH
7: if rollout bufferH is full then
8: for each batch inH do
9: Predict state feature vector eθ(sj), log prob, values using πθ and Vφ for transitions

in the batch
10: Compute ratio = exp(log prob - batch.old log prob)
11: Compute policy loss = batch.advantages · clamp(ratio, 1 - clip range, 1 + clip range)
12: Compute Lpolicy = policy loss.mean()
13: Sample positive pair (sp, sq), p 6= q with jp, jq ∈ J and behavior b1p = b1q for each

transition jp in batch transitions J
14: Sample negative pair (sp, sr), p 6= r with jp, jr ∈ J and behavior b1p 6= b1r for each

transition jp in batch transitions J
15: Compute cssc loss = [ŝ0p0q0r0 , ..., ŝkpkqkrk |ŝjpjqjrj := −1.0×σ(eθ(spj)·eθ(sqj)−

eθ(spj) · eθ(srj))]
16: Compute LCSSC = cssc loss.mean()
17: Fit Θ, θ and φwith Adam optimizer to minimize Ltotal = LRainbow+βcssc ·LCSSC
18: end for
19: end if
20: end for

19

Under review as a conference paper at ICLR 2021

Table 8: Gym Atari scores evaluated after 50M timesteps of training on 1 seed.

Train (mean)
Game Rainbow Bigram
alien 3,738.3 4,659.5

amidar 1,951.2 1,579.2
assault 18,292.2 19,690.2
asterix 480,431.1 647,559.0

asteroids 2,041.0 296,158.1
atlantis 2,419,949.7 3,090,829.1

bankheist 1,292.9 1,595.3
battlezone 77,924.6 62,216.0
beamrider 35,120.4 27,937.9

berzerk 2,974.7 3,130.8
bowling 55.5 74.0
boxing 94.8 99.6

breakout 417.9 413.5
centipede 18,103.3 19,926.0

chopper command 28,468.0 30,509.5
crazy climber 243,610.0 221,021.5
demon attack 506,716.2 535,951.2
double dunk -22.6 -22.8

enduro 7069.1 6391.6
fishing derby 36.18 50.4

freeway 32.0 33.8
frostbite 11688.2 10268.2

gopher 151,072.1 34,115.3
gravitar 2,084.5 1,426.3

hero 33,534.5 33,965.5
icehockey 4.9 -0.125

Jamesbond 36,417.5 47,388.5
kangaroo 14,525.0 14,740.5

krull 7,843.5 8,913.0
kungfumaster 51,319.0 42,107.0

mspacman 3,468.2 4,420.7
namethisgame 11,525.2 13,574.9

phoenix 479,379.5 488,284.2
pong 20.7 20.9

privateeye 99.5 100.0
qbert 26,394.9 27,159.0

timepilot 22930.0 27053.0
tutankham 170.4 150.7

20

	Introduction
	Related Work
	Auxiliary Task for Representation Learning in RL
	Regularization on RL
	Adding stochasticity to RL
	Conventional Regulatization on RL
	Data Augmentation on RL

	Background
	Rainbow
	BPR-opt

	Method
	Behavior Definition
	Implicit Feedback in Reinforcement Learning
	Implementation of Cross-State Self-Constraint in combination with Rainbow and PPO

	Experiment
	Environment and Model Setting
	Generalization on Procgen in Easy mode with Rainbow
	Generalization on Procgen in Hard mode with Rainbow
	Generalization on Procgen in Easy mode with PPO
	Performance on Gym Atari with Rainbow
	Visualization of Representation Embedding

	Conclusion
	Appendix
	Neural Network Architecture
	Hyperparamters and Model setting for OpenAI ProcGen and Gym Atari Benchmark
	Scoreboards on OpenAI ProcGen
	Visualization of Representation Embedding on OpenAI ProcGen Games
	Generalization on ProcGen In Easy Mode for Rainbow unigram-CSSC
	Generalization on ProcGen in Easy Mode for PPO with CSSC
	Pseudocode for CSSC experiment
	Evaluation of bigram CSSC with Rainbow on Gym Atari Benchmark

