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Figure 1: We present a unified humanoid motion interface and a zero-shot sim-to-real reinforcement learning
framework, so that humanoid robots can successfully perform extreme contact-agnostic motion in the real world.

Abstract: Previous humanoid robot research works treat the robot as a bipedal mo-
bile manipulation platform, where only the feet and hands contact the environment.
However, we humans use all body parts to interact with the world, e.g., we sit in
chairs, get up from the ground, or roll on the floor. Contacting the environment
using body parts other than feet and hands brings significant challenges in both
model-predictive control and reinforcement learning-based methods: an unpre-
dictable contact sequence makes it almost impossible for model-predictive control
to plan ahead in real time; the success of sim-to-real reinforcement learning for
humanoids heavily depends on the acceleration of the rigid-body physical simulator
and the simplification of collision detection. On the other hand, lacking extreme
torso movement of humanoid data makes all other components non-trivial to design,
such as dataset distribution, motion commands, and task rewards. To address these
challenges, we propose a general humanoid motion framework that takes discrete
motion commands and controls the robot’s motor actions in real time. Using a
GPU-accelerated simulator, we train a humanoid whole-body control policy that
follows the high-level motion command in the real world in real time, even with
stochastic contacts and extremely large robot base rotation and not-so-feasible
motion commands.
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1 Introduction

Humans do not only walk and manipulate objects—they sit, lie down, get up from the ground, and
transition between various postures. However, contemporary humanoid research largely defines
humanoid robots as bipedal mobile manipulation platforms, focusing on walking or dexterous hand
use while neglecting the full range of human motions. This limited perspective overlooks the
advantages of humanoid morphology in whole-body control. This work enables humanoid robots to
execute motions that are difficult or impossible for other morphologies, such as getting up from lying
down, recovering from a prone position, or transitioning through kneeling postures.

Achieving such a set of general humanoid motions presents significant challenges: (1) designing
an effective motion command interface that supports a wide range of humanoid postures, and (2)
constructing a general pipeline that trains a policy in simulation and deploys it in the real world.

1.1 Challenges in Motion Command Interface

Previous locomotion controllers define motion commands in terms of horizontal movement, typi-
cally using velocity commands (e.g., forward-lateral speed, heading angular velocity) or waypoint
sequences that guide the robot over short time horizons. For example, when a quadruped robot stands
from a crawling pose, the linear velocity command switches from the positive x-axis of the base
frame to the negative z-axis of the base frame [1]. However, such representations become ambiguous
when the robot undergoes significant roll or pitch rotations. When commanding a humanoid to switch
between standing and crawling, defining movement as linear velocity in the base frame becomes
impractical, requiring extensive manual coding.

Unlike locomotion commands [2, 3, 4, 5, 6, 7, 8], general motion commands lack a straightforward
parameterization. The high-dimensional sampling space makes it difficult to generate feasible motions
without extensive filtering. A more reasonable option is to use human motions as a reference, together
with a re-targeting algorithm for a training humanoid policy. However, commonly used human motion
datasets such as AMASS [9] predominantly contain standing postures, limiting their applicability to
extreme motion scenarios. Additionally, kinematic differences between humans and humanoid robots
cause many recorded motions to be infeasible. To address this issue, we construct an extreme-action
dataset that includes motions with rich contact interactions.

1.2 Challenges in Producing a Deployable Humanoid Control Policy

Deploying complex humanoid motions on robot hardware faces multiple constraints. Most recent
works on reinforcement learning (RL)-based locomotion [2, 3, 4, 5, 6, 7, 10, 11] rely on GPU-
accelerated rigid-body simulation to train robust policies that can be transferred to the real world.
However, they only focus on bipedal locomotion, assuming foot-only contact with the ground, where
the upper-body interactions are typically ignored. To enable general contact interactions, determining
the optimal level of collision simplification in simulation remains a non-trivial question.

Apart from reinforcement learning, model-based control methods also simplify the robot model when
planning the contact sequences. Khatib et al. [12], Chignoli et al. [13], Nelson et al. [14] assume
only feet are contacting the ground and optimize the control function with a manually built kinematic
model. Even for quadruped locomotion, motion planners divide movement into swing and contact
phases [15], significantly constraining possible motions. Introducing additional future contacts brings
whole-body motion planning to the next level of difficulty, not to mention optimizing a collection of
perception, state estimation, planning, and control systems that run accurately and in real time.

In this work, we propose a general framework that enables humanoid robots to execute a broad
spectrum of extreme motions. Specifically, we express all motion targets in the base frame of the
robot, no matter whether the robot is standing or lying down. We use a keyframe-based method to
express future motion targets, so that the robot receives information about future motion expectations.
To fully investigate the possibility of training a humanoid control policy that handles extreme motions,
we curate an extreme-action dataset where the torsos are in extreme roll and pitch orientations. With



this training pipeline, we show that using simplified collision estimation and domain randomization
techniques in the physical simulator, the control policy can be successfully deployed in the real world
to follow real-time target motion commands.

Apart from the novel problem setting, dataset, and the whole pipeline design, we identify three
additional technical contributions in this work:

* Designing a transformer-based motion encoder with key-frame-based future motion command.
 Using advantage mixing to bridge the gap between sparse motion reward and dense regularization
reward.

* Verifying that removing the short-term odometry is tolerable for humanoid motion command, even
for general motions with base movement.

2 Related Works

Humanoid Whole-Body Control Whole-body control for robots with multiple parts is a long-
standing challenging problem. For humanoid robots, whole-body control with only feet contacting
the ground is already a state-of-the-art research topic, due to the number of multiple rigid bodies
attached to the system. Traditional methods depend on modeling the dynamics of the entire humanoid
skeleton [13, 16, 17, 18, 19, 20]. However, these methods significantly limit the possibility of
contacting the environments with components other than feet and potentially lead to failure when the
contacting sequence becomes unpredictable.

In learning-based methods, whole-body control is still a challenging topic. Most of them can be
viewed as a combination of lower-body and upper-body [21, 22, 4, 6]. More integrated humanoid
algorithms control all the joints on the humanoid robot, but they only involve the contacts of a fixed
set of body positions [2, 3, 11, 7, 23, 6, 24, 25, 26, 27]. Unexpected contact sequence situations are
still not being explicitly investigated.

General Motion Interface for Humanoid To design a unified interface for large models to control
the humanoid robot without real-time requirements, whole-body control algorithms for humanoid
robots design the interface depending on how the general motion is defined. For mobile manipulation
tasks, the general interface can be described as a locomotion goal and upper-body joint position
goal, such as [28, 2, 4]. Specifically, locomotion can also be defined as a short-range navigation
task [29, 30, 31]. However, all these interfaces intrinsically limit the potential of more complex
behaviors, resulting in less flexibility to meet the fine-detailed motion targets.

In humanoid motion generation research, Peng et al. [32], Tessler et al. [33], Luo et al. [34] defines
all joint orientation and base position sequences as the interface. The robot has to follow the motion
target at each timestep, leading to less tolerance when the motion target is not physically feasible for
the current robot model. Although lots of works apply them in the real world [23, 22, 25, 35, 36, 24,
37, 23, 25], they still use global odometry to provide feedback to the policy, which is expensive to
acquire and deploy in the wild. To what extent the accumulated error in odometry can be tolerated
remains unclear.

Sim-to-Real for Legged Robots Due to the over-complication of search and conditioning of
traditional model-based planning, reinforcement learning and training in simulation have been widely
used recently in control for legged robots. By simplifying the collision shapes and using efficient
GPU-accelerated rigid-body physics simulations, quadruped robots [38, 39, 40] and humanoid
robots [3, 41,42, 4,23, 10, 43] can perform various extremely difficult tasks, such as walking through
rough terrain [44, 45, 29], overcoming extreme challenging obstacles [46, 28, 47, 2, 7]. Although
humanoid motion with multiple contact points is being researched [24, 22, 26, 27], these motions
involve fairly predictable contact sequences.

In this work, our aim is to investigate motions with stochastic and even unpredictable contact
sequences and show that it is possible to train using simplified collision shapes while successfully
deploying the policy on the real robot.
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Figure 2: Overview of the framework. We curate an extreme-action dataset from the AMASS
dataset and internet videos. We re-target the human motion to the joint-level target of the humanoid
robot. We then feed the motion command as a streaming sequence to a Transformer-based encoder.
Concatenated with a stack of history proprioceptive observation, an MLP actor network outputs the
joint-level actions. A PD controller finally computes the torque for each joint motor.

3 Methods and Implementations

3.1 Pipeline Overview

We define the task as learning a humanoid control policy that reaches the target motion in a specified
future time. Figure 2 gives an overview of the framework. First, we curate an extreme-action human
motion dataset in the SMPL format for use as motion reference. We then re-target the human motion
reference into the humanoid robot frame and use it as the motion command input of the policy
network. The policy network consists of a command encoder and an actor. The command encoder
consumes the motion command, which is represented in a sequence of concatenated joint positions,
target link positions, and target base transform under the base when the motion target is refreshed,
combined with the time passed from the motion target refreshing and the time to the specific frame.
The actor takes the encoded feature, together with a stack of proprioception history as input, and
outputs expected joint-level actions. Finally, a PD controller computes the torque of each joint motor.
We train the whole-body control policy to reach the target motion positions as closely as possible in
specific frames.

3.2 Addressing the Data Challenges

Curating diverse and unpredictable motion references Human motions serve as an important
reference for humanoid robots. We start by sampling motion commands from an existing human
motion dataset, AMASS [9]. However, most of the trajectories in AMASS are collected when the
subjects are standing instead of sitting or lying on the ground. So, there are not many contact-rich
motions presented in the dataset. We provide statistics and a histogram in the Supplement. Therefore,
we build an extreme-action dataset, which is a combination of extreme motions from the AMASS
dataset and extreme human motions extracted from Internet videos using 4D-Human [48].

Dealing with physically infeasible motion commands While sampling from humanoid motion
commands from a pre-collected human motion capture dataset is a good way to start the training
pipeline, the motion trajectories from the dataset still suffer from inconsistencies after rescaling the
size between the human subject and the real humanoid robot. In Figure 3, the height trajectory of the



Figure 3: We show a challenging task where the robot is performing a breaking dance move on the
ground. The hip, knee, thigh, elbow, and hands are contacting the ground, expected or unexpectedly.
Note that the rubber hands on the robot cannot be simulated in the simulator, so we use the rigid-body

collision shape by making a convex hull of the hands’ mesh. The re-targeted base-pose reference is
physically infeasible, as they are floating over the ground.

motion reference is inconsistent when the motion reference is in the standing position. To address
this issue, we set a loose termination condition while training the policy in the simulator. Specifically,
we terminate an episode only when the robot is far from the reference trajectory over 0.5m or the
base rotation to the target rotation is greater than 1.0 rads.

3.3 Network Design and Model Training

Based on our extreme-action dataset, we re-
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Figure 4: To handle variable lengths of input mo-
tion commands, the command encoder adopts the _; .
form of a Transformer encoder. We select the em-  1b)» tpassed tiett]- tpassea and tiere denote the time
bedding whose source has the smallest positive from the refresh of the motion reference and the
tier. Then, we concatenate the embedding with the time left to this motion target frame, respectively.
stack of history proprioception and feed it to the Considering that link position errors and joint
actor MLP to acquire the action output. position errors are both in the local (robot’s base)

frame, we refresh these quantities in real-time
in both simulation and real-world deployment.

To adapt to the needs of enabling an arbitrary number of motion targets being fed into the network,
we use a Transformer-based motion reference encoder as shown in Figure 4. We select the frame
that has the smallest positive ¢ from the Transformer encoder’s embedding as the input to the actor.
Specifically, we concatenate the latent embedding with a stack of history proprioception and feed it
into the actor MLP to obtain the joint action output.

To train the humanoid motion based on the motion command sequence, while leaving enough
flexibility to control policy, we compute the motion target reward only when the frame of the motion
target is expected to reach, ti.f == 0. Therefore, some regularization reward terms must be used. For
example the action rate, joint acceleration, energy, joint position out-of-limits, etc. However, these
regularization terms are dense while the motion target reward is sparse. The robot’s action spikes
when the expected motion target is reached if all reward terms are combined. In this case, we use
multiple critic networks and perform the advantage mixing technique [49] in addition to the PPO
algorithm [50].



3.4 Advantage Mixing for Sparse Task Rewards

Different from conventional actor-critic architecture, we use one actor network as the policy and 3
critic networks for 3 different groups of rewards (r(l), r2, r(3)). Each reward groups have multiple
reward terms. Following Martinez-Piazuelo et al. [49], each critic network Vi) (s;) is supervised
independently by their reward group () with temporal difference error,

£(90) =& [Ilr” + AVageo (s041) = Vo (s0)1I] M

where £ is the empirical average and -y is the discount factor. For the policy gradient part, the
advantages are combined by weighted average after the general advantage estimation [51],

n
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where {A;}7, are advantages estimated by the 3 individual critic networks. p4, and o4, are the
batch-wise statistics from each individual reward groups.

3.5 Real-world Deployment

One of the key statements of this work is to train

a deployable sim-to-real controller to perform High-Level Command Sender

contact-agnostic motion. We deploy the policy ﬁ Wi (Playing a rosbag)
onboard to test the entire pipeline. Our system is 5 }.’\

designed as a low-level controller commanded . - Jihi Q

by a high-level motion generator. As shown
in Figure 5, we use another laptop to record R
the testing data and visualize the robot motion. ¢ \ 2 =
The low-level controller policy is running on the At
Nvidia Jetson Orin inside the Unitree G1’s torso.
We use ROS2 messages to communicate with
the hardware onboard. We use ONNX [52] to Showir\l/ésgg;ﬁeegpc'%man ’ G -
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link positions, and target base positions into a Jevel motion commands, which are visualized in
rosbag file. Then we replay these commands in  the bottom right of the figure. No motion capture
the real world in an open-loop manner. system is used.

4 Experiments

We set up 3 experiments to verify the effectiveness of the designs and components of our method.
We run quantitative results in the simulator. First, we show the effectiveness of the multi-critic, a.k.a
advantage mixing technique, through a specific case study of the robot behavior. Then, we explain
through the robot’s behavior why we have to train using an extreme-action dataset to address the
significance of training a sim-to-real-possible motion in the simulator.

To verify the successful deployment of our proposed pipeline, we build the extreme-action dataset
with 3 types of motions. 2 of them are some extremely difficult motions because they introduce
unexpected contacts between robot parts and the ground.

Getting up from the ground The first type of motion is getting up from the ground, such as subject
140 CMU mocap [53] and subject 3 in KIT [54].



Deployable Task Smoothness

Successt mpjpe(m)|  Action Jitter| Max Joint Acc(rad/s?))

1. Getting up from the ground

H20 [23] X 0% 0.48 8.23 548
w/o selected motions X 5.75% 0.42 5.25 357
w/o multi-critic v 83.50% 0.18 0.83 402
Embrace-Contacts v 94.30% 0.21 0.61 86
2. Ground interactions

H20 [23] X 0% 0.46 9.10 601
w/o selected motions X 25.25% 0.38 6.91 483
w/o multi-critic v 92.50% 0.12 1.42 452
Embrace-Contacts v 98.25% 0.16 0.63 120
3. Standing dance

H20 [23] v 100 % 0.06 0.57 20
w/o selected motions v 98.50% 0.12 0.61 44
w/o multi-critic v 89.25% 0.07 0.62 36
Embrace-Contacts v 97.75% 0.09 0.56 24

Table 1: Comparison with the humanoid motion tracking baseline and ablations. In “w/o selected
motions” option, we train the policy on the entire AMASS dataset. In “w/o multi-critic” option, we
train the policy on the selected motion dataset but sum all the reward terms from the multi-critic
setting to form a single reward.

Ground interactions Another type of motion is ground interaction motion. We collect the motion
example from internet videos and track the human motion using 4D-Human [48]. We then retarget
these human motion in SMPL format to the joint positions of the Unitree G1 robot.

Standing dance The last type of motion is mostly standing and dancing. We also test our pipeline
by tracking a sequence of human motions from internet video using 4D-Human [48] and re-targeting
the motion to the humanoid robot and playing in the simulator.

We test the success rate of these 3 types of motions by generating 1000 robots with uniformly
sampled domain randomization parameters and run 10 times in the simulation. We count the number
of trajectories being run and the number of trajectories being terminated because of the failure.

4.1 Importance of using an Extreme-Action dataset

Here we explain through a specific case study why we only select a handful of mo-
tions to train and achieve these extremely difficult motions in the real humanoid robot.
As shown in Figure 6, if we train on the entire

Policy Motion AMASS dataset, the lowest position the robot can
Behavior Command

(1)

reach is squatting. The data bias leads to the “safer
motion for the policy, which refuses to contact the
ground using its hands. Since the main focus of this
work is to train a deployable policy that performs
extreme humanoid motion in the real world, general-
Ext;rﬂg_ggtion » ization ability is not the primary concern. We trained
Dataset ) $ Y on an extreme—gctlon d'ataset, which is d§scr1bed in
s supplementary in detail. Also, shown in Table 1,
Figure 6: The comparison between to policy the policy trained on the full dataset only masters
behaviors of crawling from a standing pose, the skills when the robot is standing. However, our
using the AMASS dataset and the extreme- method presents generalization ability when training
action dataset. on standing motions, even though we aim at training
full-body ground interaction motions. The detailed humanoid behavior will be presented in the
supplementary video.

Train on
Whole Dataset




4.2 Effectiveness of Multi-Critic

We verify the effectiveness of training RL with multi-critic. In implementing the single-critic
technique, we sum all rewards together with the same weights as for the multi-critic setting. Shown
in Table 1, training without multi-critic leads to higher joint jitter and lower performance in massive
tests in simulation. We hypothesize that the weights for the discrete task reward are hard to tune,
which makes the policy focus more on meeting the motion target rather than the smoothness.

4.3 Importance of Adding Future Motion as Command

Reference -

Single Frame
Command

Multi Frame
Command

Figure 7: The effectiveness of feeding a sequence of motion commands rather than a single frame of
motion command.

In Section 3.3, we choose to use a sequence of motion commands as the general command input
instead of the command history as Fu et al. [22]. For these full-body contact motions, the motion
reference retargeted on the humanoid morphology deviates from the robot’s kinematics too much, as
stated in Section 1.2. Shown in Figure 7, when the policy receives only one future motion command,
it consistently maintains tracking accuracy but fails to achieve the final goal, such as standing up.

5 Conclusion

In this work, we embrace full-body contacts that have rarely been discussed in recent humanoid
research. We overcome the exponential searching issue in model-based control for humanoid robots
using zero-shot sim-to-real reinforcement learning. We propose a general motion command for
humanoids so that locomotion, manipulation and whole-body control tasks can be unified in a single
interface. Based on this motion command, we adopt a transformer-based encoder to process the
command input with a variable input length. By diving deep into the motions where humanoids
contact with the environments with components not limited to hands and feet, we show the potential
of training in simulation using reinforcement learning can make such complex and extremely difficult
motion realizable in the real world, even if the motion command is not physically feasible for the
given robot model.

Limitations: Even though this work shows the potential of training complex motions only in a
simulator and making them possible in the real world, training a low-level controller that performs
full humanoid motion still requires a high-quality motion dataset that is not only limited to standing
motions. Or we need a way of bridging the gap between robot models and human subjects among
these collected human motion datasets. For high-level commands, for example, large action models,
they do not consider leg motions. We need to build an abstraction such as masking on the lower legs
command to make the entire general humanoid motion system possible in the future. Addressing
these limitations and training a general humanoid whole-body control system that allows a high-level
large action model to reason and send general motion commands to the real humanoid robots will be
our future work.
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6 Appendix
We attach a video describing the main idea and the real-world experiments in real-time with no

accelerations. We perform real-world tests on all three types of motions. We encourage readers to see
the video for a more comprehensive understanding of this work.

A More Results
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Figure 8: The success rate reported during training when trained on all 4 extreme difficult contact-
agnostic motion.

Figure 8 shows the training progress comparing multi-critic technique and single-critic technique.
Using multi-critic setting leads to faster training speed as well as faster convergence rate.

B Simulation Details

Considering these extreme difficult humanoid motion reference data may lead to physically infeasible
situations, such as body parts penetrating the ground or robot base floating in the air, we set the
robot’s joint positions as the retarget robot pose in the first motion reference frame. We initialize
the robot’s base position by first adding a positive height to all motion reference frame so that no
motion reference frame is penetrating the ground. Then we add a tiny height offset to spawn the
robot, typically 0.06m. Also, to help the policy experience more states if the policy stuck as some
place, for example if it does not get up from the ground, we sample the initial pose of the robot not
only from the first frame of the motion reference trajectory, but from the start of the motion reference
to the 60% of it.

During each rollout, we select one motion reference to generate the motion command. At time ¢, we
use a pre-sampled time interval ¢, and sample the motion reference at ¢ + tin, ¢ + 2tine, t + 3tine, ¢ +
4tine, t + Stine respectively. We also compute the base reference position and orientation in the base
frame at time .

C Training Details
As described in the main text, we select a handful of motion commands to train the humanoid whole-

body controller to overcome the unbalanced issue of the precollected dataset. Shown in Table 3, we
train our policy in simulation by extracting motion command from these motion references.
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Names Value
Environments Number of robots 4096

Scaling body mass 0.8 ~1.2

Center of mass position -0.02m ~0.02m
Domain randomization | Scaling motor stiffness 09 ~1.1

Scaling motor damping 0.9 ~1.1

Motor delays 0.0s ~0.03s
Initialize pose Height offset 0.04m

Sampling frame ratio from the trajectory 0.0 ~0.6

Table 2: Detailed parameters for running the system in the simulator

Dataset Subject Motion names
CMU 140 Get up from ground
KIT 3 Crawling

Internet Video Bilibili BV1L34y1t71x Popping dance movement
Internet Video | BiliBili BVINm4ylk7wP  Breaking dance movement
Internet Video | Bilibili BVImv411G7WM Jiu-jitsu movement

Table 3: The motion reference we select to build tine motion command dataset.

Reward group Reward term Expression
Base position tracking ~ ¥(A(pp),0.4)
Task Base orientation tracking  ¥(A(gp),0.8)
Joint position tracking ~ W([|67 — 67|, 0.3)
Action rate T(lla; — aj_4][,1.0)
Regularization Joint acceleration U(]|67],500)
Joint velocity W(||67]],15)
Safety Joi1.1t position .liII.lit U(max (07 — Ohax, Hﬁnn —67),0.1)
Joint torque limit U(max (|77| — 0.9 T{hax, 0),0.1)

Table 4: Reward terms and their expressions

In Table 4, the function ¥ is a Gaussian kernel where,
U (a,b) = exp (—a/b?) 3)

Shown in Table 4, we build these reward functions in the range of 0 1 so that everything is positive,
potentially preventing active termination behavior. Then we multiply all reward terms in each reward
group so that the algorithm will not completely ignore any of these terms. For the experiment variant
using single critic, the reward terms within each group are multiplied and the reward groups are sum
together weighted by the same weight parameters of the advantage mixing to get the scalar reward.

The policy network consist of actor and multiple critics with the same structure. We use a transformer-
based encoder block to encoder all motion command. The encoder outputs a sequence of embedding,
which we select the embedding whose ‘time-to-target® attribute is the smallest positive value. We
then concatenate this embedding with a stacked history proprioception observation and feed them
to a Multi-Layer Perceptron. The MLP layers outputs the 29-dof action as the target position to the
robot motors. Detailed parameters for the network are shown in Table 6.

We train our algorithm on a Nvidia 4090D GPU with 4096 robots in parallel for about 72 hours from
scratch. We build the simulation environment using IsaacLab and modify the reinforcement learning
framework based on rsl_rl.

D Deployment and Real-World Experiment Details

To run the trained policy on the real robot, we deploy the entire system on an Nvidia Jetson Orin NX
and a laptop running Intel i5 CPU. We export the policy (including the transformer-based encoder) as
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Hyperparameters Value
Optimizer AdamW
B1, Ba 0.9, 0.999
Learning rate le—4
Batch size 4096
Clip param 0.2
Entropy coefficient 0
min_std clip 0.2
Desired KL 0.01
Maximum gradient norm 1
Num minibatches 4
y 0.99
A 0.95
Advantage mixing weights | [0.7, 0.1, 0.2]

Table 5: Parameters in Algorithm implementation

Hyperparameters Value
Encoder Activation GELU
Encoder Project Activation ReLU
Encoder num heads 1
Encoder num layers 2
Encoder d_model 128
Encoder feedforward dimension 128
Encoder output size 128
MLP hidden sizes [512, 256, 256]
MLP Activation ELU

Table 6: The detailed network parameters for the low-level policy, which runs onboard

Joint name Stiffness (kp) Damping (kd)
Left/right shoulder pitch/roll/yaw 25 1.0
Left/right elbow 25 1.0
Left/right wrist roll 25 1.0
Left/right wrist pitch/yaw 5 0.5
Waist roll/pitch 60 2.5
Waist yaw 90 25
Left/right hip pitch/roll/yaw 90 2.0
Left/right knee 140 2.5
Left/right ankle pitch/roll 20 1.0

Table 7: Parameters that runs on the hardware

an ONNX program. All components communicate using ROS2 in the network of Unitree G1 robot.
We then run the policy on the Jetson board at S0Hz. Since the policy outputs the action as the target
joint position of each motor on the robot, we use the built-in PD controller on the Unitree G1 robot,
which runs at 1000Hz, with the kp/kd setting as shown in Table 7. These kp/kd parameters are also
the same when training in simulator.

To acquire the target link position and their error respectively, we use Pytorch_Kinematics [55] and
ONNX [52] to export the forward kinematics computation as an ONNX program. The exported
ONNX program gets the joint positions and outputs the target link positions in the robot’s base frame,
which runs in real time on Nvidia Jetson Orin NX.

Since this work is also a proof-of-concept for building a hierarchical general humanoid controller,
with a low-level whole-body control policy and a high-level command sender, we use another laptop
to send the high-level command which simultaneously test the communication latency. Considering
our high-level motion command is defined with base pose sequence under the robot frame when the
command is generated, the high-level motion command for the real-world testing cannot be played
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directly from SMPL-based motion file. We play each motion in simulation using the well-trained
low-level policy and record the motion command, as well as the base pose command under the robot’s
base frame in simulation. We then play this base pose command in the real world and ignore the
difference between the robot trajectory in the simulator and in the real world.

In the real-world testing, it is important to determine whether the testing motion succeeded, while we
don’t install additional motion capture system. For each extreme motion, we determine the success of
each motion as finishing the entire motion command sequence with no unexpected head contacting
the ground. For getting-up-from-ground task, we terminate the test when the robot’s torso orientation
significantly deviate from the motion command. In our real-world experiment, we also visualize the
motion command in the laptop that sends the motion command sequence.

E Data distribution analysis
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Figure 9: Histogram of the number of motions in terms of their maximum roll/pitch and the minimum
base height.

As shown in Figure 9, we count the number of frames and the number of files whose maximum base
orientation and minimum base heights. Figure 9c counts the number of motion files whose minimum
base height reaches a certain range. As shown in Figure 9a and Figure 9b, most of the motion files
are performed when the base position is standing straight. As shown in Figure 9c and Figure 9d, most
of the motions are performed when the robot base is over 0.4m. In this case, not many contact-rich
motion is presented in the dataset.
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