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ABSTRACT

Electro-optical (EO) images are essential to a wide range of remote sensing ap-
plications. With the advent of data-driven models, the efficiency of EO image
analysis has significantly improved, enabling faster and more effective outcomes
in these applications. However, EO images have inherent limitations—they can-
not penetrate cloud cover and are unable to capture imagery at night. To overcome
these challenges, synthetic aperture radar (SAR) images are employed, as they can
operate effectively regardless of weather conditions or time of day. Despite this
advantage, SAR images come with their own difficulties: they are affected by
speckle noise, complicating analysis, and existing algorithms developed for EO
imagery are not directly transferable to SAR data. To address these issues, we
introduce SAR2Earth, a benchmark dataset specifically designed for SAR-to-EO
translation. By translating SAR images into EO-like representations, SAR2Earth
allows the extensive range of algorithms developed for EO imagery to be applied
effectively to SAR data. The dataset consists of 18 spatially aligned pairs of SAR
and EO images, collected from 8 distinct regions encompassing both urban and
rural. We provide comprehensive evaluations, detailed model analyses, and exten-
sive experimental results. All codes and datasets will be made publicly available
at https://sar2earth.github.io.

1 INTRODUCTION

Remote sensing images provide the capability to observe the Earth on a large scale, making them
invaluable for analysis in various applications such as transportation (Ball et al., 2017), defense (Xu
et al., 2024), natural resource management (Kumar et al., 2015), disaster response (AlAli & Alabady,
2022), and environmental monitoring. However, the vast amount of data generated poses significant
challenges for manual analysis due to the time and expertise required. The advent of data-driven
models (Wang et al., 2021; Oh et al., 2023; Kuckreja et al., 2024) has enabled more efficient and
effective analysis of these images. Electro-optical (EO) imagery has been the primary modality for
remote sensing applications due to its intuitive representation of the Earth. However, EO imagery
has significant limitations: it cannot penetrate cloud cover and is unable to capture images at night,
restricting its utility in many scenarios (Seo et al., 2023; Low et al., 2023b). For instance, dur-
ing natural disasters like floods—which are often accompanied by heavy cloud cover—EO imagery
becomes ineffective for timely disaster assessment and response. To overcome these limitations,
synthetic aperture radar (SAR) imagery is employed. SAR sensors can operate independently of
daylight and weather conditions, providing consistent imaging capabilities. However, SAR im-
ages suffer from speckle noise due to the coherent nature of radar signal processing, which intro-
duces granular interference patterns. This speckle noise makes SAR images challenging to interpret
(Spigai et al., 2011; Zhang et al., 2015), especially for non-experts, and complicates the applica-
tion of algorithms developed for EO imagery. To bridge this gap, SAR-to-EO translation methods
(Fuentes Reyes et al., 2019; Wang et al., 2022a; Yang et al., 2022; Lee et al., 2023) have been pro-
posed, aiming to translate SAR images into EO-like images that are more accessible for analysis
using existing EO-based algorithms.

Despite these efforts, there has been a lack of comprehensive analysis of these methods, and they
often remain isolated applications without standardized benchmarks. Existing SAR and EO multi-
modal datasets (Schmitt et al., 2018; Wang & Zhu, 2018; Shermeyer et al., 2020; Low et al., 2023a;
2024) are limited in both quantity and diversity, often being captured within specific regions. This

1

https://sar2earth.github.io


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of SAR2Earth dataset with existing SAR and EO multi-modality datasets. P,
MS, and PS represent Panchromatic (P), Multi-Spectral (MS), and Pan-Sharpened (PS) image types.
Tasks (DF, BE, I2I) denote Data Fusion, Building Extraction, and Image-to-Image translation.

Modality Dataset Year Sensors Resolution (m) Types Task Domain Regions TemporalUrban / Rural

SAR

SEN12 (Schmitt et al., 2018) 2018 Sentinel-1 10 VV DF Both ≥ 80 Dec 2016 – Nov 2017
SARptical (Wang & Zhu, 2018) 2018 TerraSAR-X 1 Unknown DF Urban 1 Jan 2009 – Dec 2013

SpaceNet6 (Shermeyer et al., 2020) 2020 Capella 0.5 HH, HV, VH, VV BE Urban 1 Aug 2019
MAVIC-T (Low et al., 2023a) 2023 GOTCHA Unknown Unknown I2I Unknown 1 Aug 2008

MAGIC (Low et al., 2024) 2024 GOTCHA, Umbra Unknown Unknown I2I Unknown 4 Unknown
SAR2Earth (ours) 2024 Capella 0.3 – 0.6 HH I2I Both 8 Feb 2021 – Sep 2024

EO

SEN12 (Schmitt et al., 2018) 2018 Sentinel-2 10 RGB DF Both ≥ 80 Dec 2016 – Nov 2017
SARptical (Wang & Zhu, 2018) 2018 Aerial 0.2 RGB DF Urban 1 Jan 2009 – Dec 2013

SpaceNet6 (Shermeyer et al., 2020) 2020 WorldView-2 0.5 P, MS, PS BE Urban 1 Aug 2019
MAVIC-T (Low et al., 2023a) 2023 Aerial Unknown RGB I2I Unknown 1 Aug 2008

MAGIC (Low et al., 2024) 2024 Aerial Unknown RGB I2I Unknown 4 Unknown
SAR2Earth (ours) 2024 Google Earth 0.15 – 0.6 RGB I2I Both 8 Nov 2016 – Apr 2024

lack of diversity restricts the ability to generalize the performance of SAR-to-EO translation models
across varying geographical contexts. Additionally, many of these datasets feature only one-day
temporal differences between SAR and EO image pairs, which fails to reflect real-world data col-
lection scenarios where temporal discrepancies can be substantial. Such discrepancies can arise
from various factors, including satellite revisit intervals, cloud cover in EO imagery, and nighttime
acquisition conditions.

As shown in Table 1, we present a summary of the characteristics of existing SAR and EO multi-
modality datasets. These datasets are either not publicly available (Low et al., 2023a; 2024), limited
in the number of regions they cover (Wang & Zhu, 2018; Shermeyer et al., 2020; Low et al., 2023a),
have very low resolutions (Schmitt et al., 2018) that hinder generalization to objects like buildings,
or do not consider real-world environments (Shermeyer et al., 2020; Low et al., 2023a; 2024).

To address these challenges, we introduce SAR2Earth, a comprehensive benchmark dataset for
SAR-to-EO translation. SAR2Earth consists of spatially aligned SAR and EO images collected
from 8 regions, encompassing both urban and rural environments. The dataset accounts for varying
temporal differences between image pairs, reflecting realistic conditions encountered in practical
applications. All codes and datasets are being made publicly available to support future research in
this domain.

2 RELATED WORK

2.1 APPLICATIONS OF SAR IMAGERY

Numerous applications have been proposed to leverage SAR images across various domains. For
instance, (Li et al., 2024) collected and labeled 100,000 SAR images to perform object detection
directly on SAR data. Similarly, (Rambour et al., 2020) utilized spatially aligned SAR and EO
images for multi-modal segmentation tasks, such as analyzing disasters like floods. Additionally,
(Low et al., 2023b) focused on the classification of objects such as cars and buses within SAR im-
agery. Despite these efforts, SAR datasets face significant limitations. SAR data collection is costly
and technically complex due to advanced radar technology, making SAR sensors more expensive
and challenging than EO sensors. Processing SAR data is difficult due to speckle noise and other
artifacts, requiring specialized expertise. These challenges hinder researchers and limit the creation
of public datasets. Additionally, the lack of standardized datasets complicates widespread use, as
SAR data varies in format and resolution depending on the provider, unlike standardized EO images.

2.2 CLOUD REMOVAL USING SAR IMAGERY

EO imagery cannot be used effectively when clouds are present, and to address this limitation, a
cloud removal task using SAR data has been proposed. (Schmitt et al., 2019; Xu et al., 2023; Xia
et al., 2024) introduced a benchmark dataset for cloud removal that uses multi-temporal EO images
along with SAR imagery to remove clouds from EO data. However, this approach still cannot be
used at night since EO imagery is unavailable during nighttime. Moreover, since SAR imagery is
used as a condition or reference from an EO perspective, dynamic objects cannot be restored due
to the time difference between SAR and EO acquisitions. To address these issues, the SAR-to-EO
translation task is used, which aims to generate EO images using only the current SAR data.
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Figure 1: Geographic overview of the SAR2Earth dataset. This dataset highlights the diversity of
geographic locations and environments, covering eight distinct regions—including Chicago, San
Francisco, Charleston, Savannah, Paris, Bengbu, Weifang, and Sittwe—spanning both urban and
rural areas across North America, Europe, and Asia. (As seen on the right, the consecutive columns
represent SAR imagery, EO imagery, and OSM-based label maps.)

2.3 SAR-TO-EO TRANSLATIONS

To overcome the limitations of SAR datasets, SAR-to-EO translation techniques have been pro-
posed. For instance, (Low et al., 2023a) introduced a method to utilize SAR images by translat-
ing them into EO images. To enhance the performance of SAR-to-EO translation, models such
as Pix2Pix (Isola et al., 2017), Pix2PixHD (Wang et al., 2018), and CycleGAN (Zhu et al., 2017)
have been employed. In applications such as Amazon deforestation monitoring (Cha et al., 2023),
diffusion-based approaches (Rombach et al., 2022; Li et al., 2023) and generative adversarial net-
works (Isola et al., 2017; Wang et al., 2018) have been widely used for SAR-to-EO translation.
Despite the numerous SAR-to-EO translation methods proposed, there has not been a rigorous com-
parison among paired methods, unpaired methods, and diffusion-based approaches. Furthermore,
because the pre-processing and post-processing pipelines differ across studies, accurate analysis and
benchmarking have been lacking.

2.4 REMOTE SENSING APPLICATIONS

Recent advancements in large foundation models and generalization models have brought signif-
icant benefits to satellite image analysis. GeoChat (Kuckreja et al., 2024) has demonstrated an
EO (Electro-Optical) image-based language model by efficiently fine-tuning large language mod-
els. Segment Anything (Kirillov et al., 2023) introduced a segmentation model that can be utilized
across any domain by training on billion-scale general vision datasets. These technologies have also
been applied in the remote sensing domain, being used in various tasks such as change detection (Oh
et al., 2023; Ding et al., 2024) and building segmentation (Osco et al., 2023). However, as revealed
in the study (Yan et al., 2023), models based on Segment Anything and large language models like
GeoChat do not perform effectively on SAR images due to their training on EO images, which have
significantly different characteristics. Consequently, in the context of SAR imagery, the benefits of
advancements in large foundation models and generalization models have not been fully harnessed.

3 SAR2EARTH DATASET

In this section, we provide a detailed description of the SAR2Earth dataset. The SAR2Earth dataset
has the following key characteristics:

• Global Data Collection for Generalization: To evaluate generalization performance, the
SAR2Earth dataset includes data collected from 8 regions across North America, Europe,
and Asia.

3
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Figure 2: Statistics for the topological distribution and temporal differences in the dataset. (a)
Distribution of urban and rural areas by topological elements. (b) Time differences between SAR
and EO image captures across regions, indicating the satellite revisit cycles.

• High Resolution Imagery: The dataset consists of high resolution images, ranging from
0.15m to 0.6m, offering a diverse mix of spatial resolutions.

• Consideration of Temporal Shifts: The dataset accounts for a variety of temporal shifts,
ranging from as close as a 1-month difference to as far as a 5-year gap, providing a wide
spectrum of temporal scenarios.

• Structural Diversity: To address structural shifts, the data is divided into urban and ru-
ral categories. The classification is based on the ratio of buildings, amenities, and other
structural elements, ensuring a balanced representation of diverse environments.

For sample images and detailed statistics of the dataset, please refer to Figure 1 and Figure 2.

3.1 DATASET DESIGN

Data acquisition SAR imagery is sourced from the Capella Space Open Data Program, with a
resolution ranging from 0.3 to 0.6 meters per pixel. Its capability to capture detailed information
irrespective of weather, cloud cover, or lighting makes it reliable for continuous monitoring.

EO imagery is obtained from Google Earth, with resolutions between 0.15 and 0.6 meters per pixel.

SAR Pre-processing SAR images require significant pre-processing to address noise (such as
speckle), geometric distortions, and the wide dynamic range of pixel values. One of the critical
steps is translating the raw amplitude or intensity values into decibels (dB), which enhances inter-
pretability by compressing the dynamic range and providing a logarithmic representation suitable
for further analysis. The conversion to decibels is performed using the following equation:

σ0
dB = 10 log10(S ·D2) (1)

where σ0
dB is the backscatter coefficient in decibels, S is a scaling factor specific to the sensor, and D

is the calibrated digital number (DN) values in geocoded format. Note that D is typically the square
root of the intensity value, as SAR data is often represented in amplitude.

This conversion provides several benefits: it compresses the dynamic range for enhanced visualiza-
tion, reduces the influence of extreme pixel values, and improves overall data interpretability, which
are crucial for subsequent analysis steps.

Co-registration of SAR and EO A significant challenge in SAR-to-EO translation is achieving
precise co-registration between the two image modalities due to inherent differences in both spatial
resolution and coordinate systems. Accurate spatial alignment is essential to ensure that correspond-
ing features in both modalities are matched correctly. To address the georeferencing discrepancies,
both SAR and EO data are reprojected to a unified coordinate system, specifically the World Geode-
tic System 1984 (WGS84), which is the most widely adopted geodetic reference framework in re-
mote sensing and geospatial applications. This reprojection guarantees spatial consistency, enabling
accurate overlay and comprehensive analysis across both data types.
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(a) SAR (b) Denoised SAR (c) Synthetic EO (d) Refined EO (e) EO

Figure 3: The results of SAR-to-EO translation at each step. (a) the original SAR image, (b) the
denoised SAR, (c) the SAR-to-EO translation result, (d) the output from the refinement model, and
(e) the EO image.

The co-registration process is performed using QGIS, a robust geographic information system plat-
form. By leveraging the longitude and latitude coordinates inherent to WGS84, we executed image
spatial alignment to achieve pixel-level precision. This procedure facilitated the precise synchro-
nization of spatial features across SAR and EO imagery, thus enabling more effective translation
and interpretation between the two data sources.

3.2 DATASET STATISTICS

To obtain detailed topological information, we utilized OpenStreetMap (OSM), classifying a total
of 25 distinct land cover classes across all regions. The entire dataset covers a combined area of
1444.91 km2. The dataset comprises a total of 99,998 images, each sized 256x256, generated with
a stride of 128. For each region, the dataset is divided into training, validation, and test sets in a
7:1:2 ratio, as detailed further in the Appendix A. The regions are classified as urban if residential
areas cover at least 25% of the total area. Additionally, if non-residential human-made areas, such
as commercial, industrial, or retail spaces, occupy at least 5% of the total area, the region is also
categorized as urban (Pesaresi et al., 2013; Esch et al., 2017; Wang et al., 2021).

As shown in Figure 2-(a), this classification provides an overview of the topological distribution of
urban and rural areas. Specifically, rural areas predominantly consist of natural landscapes, such
as vegetation and bodies of water, while urban areas are marked by the presence of human-made
structures, including residential, commercial, and industrial buildings.

To assess the temporal diversity of our dataset, Figure 2-(b) illustrates the temporal differences
between SAR and EO imagery acquisition across various regions. These temporal gaps vary sig-
nificantly between regions, offering a wide range of temporal shifts. To the best of our knowledge,
this makes our dataset the first to incorporate such diverse temporal differences across a broad set
of geographic locations. Acquiring temporally aligned SAR-EO pairs without time discrepancies
is particularly challenging in real-world settings, making this diversity crucial for practical applica-
tions.

4 SAR2EO PIPELINES

In this section, we provide a detailed explanation of our proposed SAR-to-EO pipeline. The SAR-
to-EO baseline consists of three main stages: first, a de-noising step to remove the speckle noise in-
herent in SAR images, as shown in Figure 3-(b); second, an image-to-image translation module that
translates SAR images into EO images, as illustrated in Figure 3-(c); and finally, a post-processing
structure that refines the generated images for enhanced quality, as demonstrated in Figure 3-(d).

4.1 DE-NOISING

SAR images inherently contain speckle noise due to the interference of radar signals interacting with
multiple scatterers. This noise has a multiplicative nature and is closely linked to the signal itself.
Since speckle noise strongly correlates with neighboring pixels, conventional methods that assume
noise and signal independence are less effective in removing it.

To address this, we adopt a blind-spot method, which predicts the clean value of a pixel based
on its surrounding pixels rather than the noisy pixel itself. Given the high correlation of speckle

5
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noise among neighboring pixels in SAR images, the blind-spot method is particularly effective at
distinguishing and removing noise. This de-noising process enhances image quality for SAR-to-EO
translation tasks.

In our work, we compare two blind-spot-based de-noising methods: (Lehtinen et al., 2018) and
(Zhang et al., 2023).

4.2 IMAGE TO IMAGE TRANSLATION

SAR-to-EO image translation poses a complex challenge, requiring the handling of both paired
and unpaired settings. Due to changes in ground conditions over time, achieving perfect temporal
alignment between SAR and EO images is nearly impossible. For instance, while buildings and
fixed structures remain relatively constant, elements like vegetation, moving objects, and lighting
conditions vary, complicating precise registration.

Considering these factors, SAR-to-EO translation must effectively address both spatial alignment
and temporal misalignment. In this paper, we compare paired and unpaired image-to-image trans-
lation approaches. Additionally, we propose a partially-paired image-to-image translation method
by incorporating objective functions, such as MSE or MAE loss, into the unpaired setting. Given a
SAR image Isar and an EO image Ieo, the modified loss function is defined as:

Ltotal(G,Deo, Isar, Ieo) = αLd(Deo, Ieo, G(Isar)) + βLg(G, Isar) + γLmse(G(Isar), Ieo) (2)

Here, Ld is the discriminator loss, responsible for distinguishing real EO images Ieo from generated
EO images G(Isar). The discriminator Deo learns this differentiation. Lg is the generator loss,
applied to various unpaired image-to-image translation models such as CycleGAN (Zhu et al., 2017)
and CUT (Park et al., 2020).

The term Lmse represents the MSE or MAE loss, which aims to minimize the reconstruction error
between G(Isar) and Ieo. By leveraging partially-paired data, this loss encourages the generator to
produce EO images that closely resemble the real EO data, thereby reducing the differences between
the generated and real images.

The terms α, β and γ are all hyperparameters, and in all of our experiments, we set α and β to 1,
and γ to 0.5.

4.3 POST-PROCESSING

After performing SAR-to-EO translation, the generated images may exhibit blurring or artifacts,
especially when the data distribution differs from what is seen during training. However, models
such as GeoChat or SAM often struggle to perform well on blurred or artifact-affected objects.
Therefore, a refinement process is necessary to eliminate these artifacts.

We adopt Restormer as our refinement model. Let D(.) represent the SAR-to-EO translation model,
G(.) the generator, and R(.) the refinement network. The objective of the refinement step is defined
as follows:

Lrefinement = Lmae(R(G(D(Isar))), Ieo) (3)

5 EXPERIMENTS

In this section, we validate the SAR2Earth dataset using various image-to-image translation methods
and experiment with different preprocessing and postprocessing techniques.

5.1 IMPLEMENTATION DETAILS

Baselines We selected Pix2Pix (Isola et al., 2017), Pix2PixHD (Wang et al., 2018), and the
diffusion-based BBDM (Li et al., 2023) as paired baselines for image-to-image translation. Ad-
ditionally, we chose CycleGAN (Zhu et al., 2017), CUT (Park et al., 2020), and StegoGAN (Wu
et al., 2024) as unpaired baselines. All hyperparameters strictly followed the default settings of the

6
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Table 2: Results for image-to-image translation baselines on the test set of SAR2Earth. We break
down results by training data type: paired training data and unpaired training data. All models are
trained on the train set of SAR2Earth.

Model Type MAE ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
Pix2Pix (Isola et al., 2017) pair 0.172 0.051 13.818 0.085 173.751 0.569

Pix2PixHD (Wang et al., 2018) pair 0.151 0.041 15.319 0.162 155.073 0.564
BBDM (Li et al., 2023) pair 0.161 0.047 14.772 0.163 123.051 0.477

CycleGAN (Zhu et al., 2017) unpair 0.244 0.062 12.529 0.101 142.532 0.590
CUT (Park et al., 2020) unpair 0.236 0.086 11.172 0.094 144.312 0.592

StegoGAN (Wu et al., 2024) unpair 0.214 0.073 12.041 0.152 158.930 0.595
CycleGAN (Zhu et al., 2017) pair+unpair 0.189 0.063 13.592 0.109 142.532 0.540

CUT (Park et al., 2020) pair+unpair 0.132 0.039 16.500 0.199 140.227 0.350
StegoGAN (Wu et al., 2024) pair+unpair 0.197 0.059 14.213 0.161 166.325 0.593

respective methods 1234. We refer to the output of SAR-to-EO models as SynEO, and the approach
combining paired and unpaired methods is termed the hybrid method.

Experiments settings Table 2 presents results obtained without applying de-noising or post-
processing, providing a baseline for comparison. From Table 3 onward, de-noising and post-
processing steps are consistently applied, utilizing Hybrid CUT to enhance model performance. This
progression demonstrates the impact of these additional steps, ensuring clarity in the experimental
setup and the effects of de-noising and post-processing on SAR-to-EO translation performance.

We use the official codes for OpenEarthMap (Xia et al., 2023) and GeoChat, where the Unet-
Former (Wang et al., 2022b) model are used for land cover segmentation, and the 7B model are
used for GeoChat. For further details on the experimental setup of land cover segmentation, please
refer to Appendix C. We strictly followed all the hyperparameters and settings from the original
code.

Evaluation metrics To evaluate the performance of the SAR-to-EO image translation task, we use
MAE (Mean Absolute Error), MSE (Mean Squared Error), PSNR (Peak Signal-to-Noise Ratio), and
SSIM (Structural Similarity Index Measure) to measure pixel-level accuracy and structural similar-
ity. These metrics capture the absolute and squared differences between the generated and real EO
images, assess image quality in terms of noise (PSNR), and ensure structural consistency (SSIM),
which are crucial for maintaining fidelity in pixel values and structures in SAR-to-EO translation.

Additionally, we use FID (Fréchet Inception Distance) and LPIPS (Learned Perceptual Image Patch
Similarity) to evaluate the perceptual quality and realism of the generated EO images. FID assesses
the similarity in feature distributions between the generated and real EO images, while LPIPS fo-
cuses on perceptual differences based on deep feature representations, ensuring that the generated
images visually resemble real EO data.

5.2 COMPARISON OF BASELINE

Table 2 presents the results of comparing image-to-image translation methods on the SAR2Earth
dataset. As observed in the comparison table, methods under the paired setting achieved high accu-
racy results (MSE, MAE). In contrast, methods under the unpaired setting showed lower accuracy
(MSE, MAE) but attained higher perceptual scores (FID).

The SAR2Earth task aims to accurately predict the correct EO image rather than simply generate
plausible images. Therefore, metrics such as perceptual scores and MSE, MAE are both impor-
tant. Accordingly, we combined unpaired baselines that achieved high perceptual scores with paired
methods that obtained high MSE and MAE performance. We conducted experiments by applying
Eq. 2 on the paired images using existing unpaired methods such as CycleGAN, CUT, and Ste-
goGAN.

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
2https://github.com/taesungp/contrastive-unpaired-translation
3https://github.com/xuekt98/BBDM
4https://github.com/sian-wusidi/StegoGAN

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Experimental results showed that the hybrid CUT in Table 2 achieved the highest performance. This
is because the SAR2Earth dataset is spatially aligned but temporally unaligned. As a result, objects
like buildings are in a paired setting, while moving objects are in an unpaired setting. Therefore, a
baseline that considers both settings achieved the best performance.

5.3 COMPARISON OF PROCESSING

Table 3: Ablation study on de-noising preprocessing methods.
Model De-noising MAE ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

CUT
(pair+unpair)

MedianBlur 0.122 0.037 16.907 0.219 140.530 0.342
GaussianBlur 0.126 0.032 16.526 0.222 140.172 0.348

Noise2Noise (Lehtinen et al., 2018) 0.114 0.029 16.683 0.225 144.230 0.344
MM-BSN (Zhang et al., 2023) 0.107 0.022 17.431 0.236 136.684 0.332

Comparison of de-noising SAR images contain a large amount of speckle noise. This noise ap-
pears as granular interference, obscuring important features and textures in the image. It complicates
the feature extraction process in data-driven models by introducing high-frequency artifacts, making
it challenging to learn accurate mappings between SAR and EO images. To address this issue, de-
noising methods have been applied, but because elements in SAR images that appear as noise can
actually be important signals, de-noising methods need to be applied carefully. Table 3 shows the
performance variations of SAR-to-EO translation according to different de-noising methods.

The results in Table 3 demonstrate that as the de-noising methods become more advanced, per-
formance improves. These experimental results indicate that in the SAR-to-EO translation task,
employing more advanced de-noising methods positively impacts performance.

Comparison of refinement We compared the performance of SAR-to-EO translation with respect
to post-processing. For post-processing, we used (Zamir et al., 2022), and during training, we aimed
for refinement by adding random deformations (affine transforms, random Gaussian noise) to the
EO images. After that, we applied a refinement model to the images translated from SAR-to-EO.
We observed that the FID score decreased from 136 to 128, indicating an improvement in perceptual
quality, while the other scores did not change significantly. As observed in the results, we confirmed
that the performance improved slightly. Figure 3 illustrates (a) the original SAR, (b) the denoised
SAR, (c) the synthetic EO, (d) the refined EO, and (e) the ground truth EO. As shown in Figure 3, we
confirmed that the artifacts present in (c) disappeared in (d) through refinement. These experimental
results indicate the cause of the performance improvement due to refinement.

5.4 MODEL GENERALIZATION EVALUATION

The characteristics of SAR images vary significantly by region due to radar backscatter, making
it difficult to distinguish between surfaces with similar structures, like oceans and flat areas. As a
result, domain gaps in SAR data are often larger than in EO imagery. To evaluate this, we conduct
in-domain experiments by training and testing models within the same region.

Urban areas, with their complex structures, present larger domain gaps compared to rural areas,
which tend to have more uniform natural features. As shown in Table 4, rural regions generally
outperform urban areas in in-domain evaluations across all metrics. Notably, training on combined
urban regions often yields better results than training on a single region, likely due to increased
data diversity. However, for rural regions, training on individual regions produces better results,
suggesting that localized models perform better for natural features.

In cross-domain experiments (Urban → Rural and Rural → Urban), we observe significant perfor-
mance drops, emphasizing the large differences between these domains. Thus, for practical applica-
tions, collecting and training data tailored to specific regional characteristics is more beneficial than
simply expanding the dataset without considering regional uniqueness.

5.5 QUALITATIVE RESULTS

Figure 4 qualitatively compares the results of SAR-to-EO translation across different baselines. As
shown in the figure, CUT (hybrid) produces the most visually plausible results. Specifically, in the
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Table 4: Results for regional test set when trained with 10 regions or the entire urban (Charleston-
U, Chicago, Paris, Savannah, Sittwe-U) and rural regions (Bengbu, Charleston-R, San Francisco,
Sittwe-R, Weifang).

Experiment Setting Region MAE ↓ MSE ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

In-Domain
(Single region)

Charleston-U 0.108 0.030 17.235 0.230 130.582 0.320
Chicago 0.112 0.033 16.983 0.225 132.467 0.327

Paris 0.105 0.029 17.301 0.235 128.430 0.315
Savannah 0.115 0.034 16.875 0.222 135.098 0.330
Sittwe-U 0.109 0.031 17.102 0.229 131.744 0.322
Bengbu 0.098 0.025 18.512 0.240 120.320 0.300

Charleston-R 0.101 0.027 18.301 0.238 123.982 0.308
San Francisco 0.097 0.024 18.734 0.242 118.567 0.295

Sittwe-R 0.099 0.026 18.589 0.239 121.765 0.305
Weifang 0.096 0.023 18.852 0.245 117.231 0.292

In-Domain Urban→Urban 0.106 0.028 17.478 0.240 125.345 0.310
Rural→Rural 0.097 0.024 18.715 0.241 115.984 0.298

Cross-Domain Urban→Rural 0.135 0.043 16.253 0.210 145.450 0.360
Rural→Urban 0.132 0.041 16.438 0.218 143.890 0.355

U
rb

a
n

R
u

ra
l

SAR Pix2Pix Pix2Pix HD

CycleGAN 

(hybrid)

StegoGAN

(hybrid)

CUT

(hybrid) EO

Figure 4: Qualitative comparison of various image-to-image translation methods for SAR-to-EO
translation in rural and urban cases.

second row, indicated by the green dotted box, the SAR image does not contain an airplane signal,
and all baselines succeed to generate an airplane in their corresponding SAR-to-EO translation out-
puts. This experiment demonstrates that, despite the temporally unaligned nature of the SAR-to-EO
setting, combining paired and unpaired training approaches effectively mitigates this challenge.

In the rural example (third row), all baselines produce more plausible images compared to their urban
counterparts. However, as highlighted by the red dotted line, fully paired methods like pix2pix and
pix2pixHD tend to distort features. This is due to the differing imaging angles between SAR and
EO data, where SAR images are often captured from a perspective distinct from that of EO imagery.
As a result, the paired models attempt to generate EO-like angles, even for features not present in
the original SAR image, creating non-existent structures in the SynEO output. In contrast, baselines
that combine paired and unpaired approaches do not exhibit this distortion tendency, maintaining
consistency with the original SAR imagery. These results suggest that if the goal is to generate EO-
like angles from SAR data, a paired setting is optimal. However, if the aim is to faithfully replicate
the appearance of SAR imagery, a combined paired and unpaired training approach is more effective.

5.6 APPLICATION

GeoChat Figure 5 illustrates the results of testing SAR images, synthetic EO (SynEO) images
obtained through SAR-to-EO translation, and actual EO images using the GeoChat large language
model (LLM). As shown in the figure, when a SAR image is input into GeoChat, the responses
from the model contain entirely incorrect content. This indicates a failure to interpret the SAR data
accurately, primarily because SAR images are excessively noisy and differ significantly from the
EO or RGB images on which LLMs are predominantly trained. In contrast, when the SynEO and
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(b) Synthetic EO Image

User : Where is the biggest building located 
and what is their type? 

(c) EO Image(a) SAR Image

GeoChat : The biggest building is located at 
{<1><76><17><92>|<90>}. It is a residential 
building.

User : Where is the biggest building located 
and what is their type? 

User : Where is the biggest building located 
and what is their type? 

GeoChat : The biggest building is located at 
{<78><85><86><93>|<90>}. It is a residential 
building.

GeoChat : The biggest building is located at 
{<0><70><24><90>|<90>}. It is a residential 
building.

Figure 5: Comparison of visual grounding tasks using SAR, EO, and SynEO. (a) is the SAR image,
(b) is SynEO, and (c) is EO.

0.0448

0.1275

0.1312

0.0613

0.0881

0.0208

0.2059

0.3196

0.1350

SAR Synthetic EO EO GT

Figure 6: Inference results of SAR, SynEO, and EO images using UnerFormer trained on grayscale
OpenEarthMap. The bottom-right corner of each prediction shows the mIoU score.

EO images are provided as input, GeoChat generates correct answers, demonstrating its ability to
understand and analyze these images effectively.

Land Cover Segmentation As shown in Figure 6, the results of land cover segmentation demon-
strate that using synthetic EO (SynEO) images achieves higher accuracy than SAR images for
classes such as buildings or roads. However, as observed in the third row, SAR images outper-
form SynEO in classes related to natural landscapes, such as grass. We hypothesize that this is
because models trained on grayscale images, when applied to SAR images, interpret the textures in
SAR images as being similar to natural elements like trees or grass.

6 CONCLUSION

In this paper, we present SAR2Earth, a novel public benchmark dataset for Synthetic Aperture Radar
to Electro-Optical (SAR-to-EO) translation, aiming to support a wide range of remote sensing appli-
cations. We systematically evaluate SAR2Earth by applying various state-of-the-art image-to-image
translation models and provide comprehensive benchmark results. Furthermore, we conduct exten-
sive ablation studies—from SAR data pre-processing to model architecture design—to offer valu-
able insights into the effective utilization of SAR data. Additionally, we validate the versatility of
SAR2Earth through experiments with GeoChat and SegmentAnything, demonstrating the potential
of SAR-to-EO translation in enhancing data accessibility and utility. Finally, we publicly release
our dataset and code to facilitate and encourage future research in this domain. We hope that our
research will be widely utilized in tasks such as disaster response and AI for social good.
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Marc Spigai, Céline Tison, and Jean-Claude Souyris. Time-frequency analysis in high-resolution
sar imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(7):2699–2711, 2011.

Haixia Wang, Zhigang Zhang, Zhanyi Hu, and Qiulei Dong. Sar-to-optical image translation with
hierarchical latent features. IEEE Transactions on Geoscience and Remote Sensing, 60:1–12,
2022a.

Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zhong. Loveda: A remote sens-
ing land-cover dataset for domain adaptive semantic segmentation. Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, 1, 2021.

Libo Wang, Rui Li, Ce Zhang, Shenghui Fang, Chenxi Duan, Xiaoliang Meng, and Peter M Atkin-
son. Unetformer: A unet-like transformer for efficient semantic segmentation of remote sensing
urban scene imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 190:196–214,
2022b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 8798–8807, 2018.

Yuanyuan Wang and Xiao Xiang Zhu. The sarptical dataset for joint analysis of sar and optical image
in dense urban area. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing
Symposium, pp. 6840–6843, 2018.

Sidi Wu, Yizi Chen, Samuel Mermet, Lorenz Hurni, Konrad Schindler, Nicolas Gonthier, and
Loic Landrieu. Stegogan: Leveraging steganography for non-bijective image-to-image transla-
tion. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7922–7931, 2024.

Junshi Xia, Naoto Yokoya, Bruno Adriano, and Clifford Broni-Bediako. Openearthmap: A bench-
mark dataset for global high-resolution land cover mapping. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 6254–6264, 2023.

Yu Xia, Wei He, Qi Huang, Guoying Yin, Wenbin Liu, and Hongyan Zhang. Crformer: Multi-
modal data fusion to reconstruct cloud-free optical imagery. International Journal of Applied
Earth Observation and Geoinformation, 128:103793, 2024.

Fang Xu, Yilei Shi, Patrick Ebel, Wen Yang, and Xiao Xiang Zhu. Multimodal and multiresolution
data fusion for high-resolution cloud removal: A novel baseline and benchmark. IEEE Transac-
tions on Geoscience and Remote Sensing, 62:1–15, 2023.

Hang Xu, Sylvain Barbot, and Teng Wang. Remote sensing through the fog of war: Infrastructure
damage and environmental change during the russian-ukrainian conflict revealed by open-access
data. Natural Hazards Research, 4(1):1–7, 2024.

Zhiyuan Yan, Junxi Li, Xuexue Li, Ruixue Zhou, Wenkai Zhang, Yingchao Feng, Wenhui Diao,
Kun Fu, and Xian Sun. Ringmo-sam: A foundation model for segment anything in multimodal
remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 61:1–16, 2023.

Xi Yang, Jingyi Zhao, Ziyu Wei, Nannan Wang, and Xinbo Gao. Sar-to-optical image translation
based on improved cgan. Pattern Recognition, 121:108208, 2022.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5728–5739, 2022.

Dan Zhang, Fangfang Zhou, Yuwen Jiang, and Zhengming Fu. Mm-bsn: Self-supervised im-
age denoising for real-world with multi-mask based on blind-spot network. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4189–4198, 2023.

Yueting Zhang, Chibiao Ding, Xiaolan Qiu, and Fangfang Li. The characteristics of the multi-
path scattering and the application for geometry extraction in high-resolution sar images. IEEE
Transactions on Geoscience and Remote Sensing, 53(8):4687–4699, 2015.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DATASET DETAILS

lon: -85.3866

lat: 0.05891

gsd: 0.6  

sar year: 2024 

sar month: 9 

sar day: 2 

eo year: 2022 

eo month: 2 

eo day: 14 

lon: -91.4497 

lat: 0.0438 

gsd: 0.6  

sar year: 2024 

sar month: 6 

sar day: 7 

eo year: 2024 

eo month: 4 

eo day: 22 

lon: -85.3671

lat: 0.0669

gsd: 0.6  

sar year: 2024 

sar month: 9 

sar day: 2 

eo year: 2022 

eo month: 2 

eo day: 14 

lon: -91.4359

lat: 0.0300

gsd: 0.6  

sar year: 2024 

sar month: 6 

sar day: 7 

eo year: 2024 

eo month: 4 

eo day: 22 

(a) SAR Image (b) EO Image (c) Label map (d) Metadata

Figure 7: Overview of the SAR2Earth dataset components.

A.1 DATA SPLITS

The SAR2Earth dataset is divided into train, validation, and test sets based on spatial regions to
ensure unbiased evaluation and consistency. The splits are defined as 70% for training, 10% for
validation, and 20% for testing, considering the spatial distribution of each region to ensure robust
generalization. This structured splitting approach ensures robust performance evaluation in SAR-to-
EO translation tasks.
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A.2 LABEL MAPS AND METADATA

The label maps and metadata in the SAR2Earth dataset offer vital information for interpreting
and analyzing the data. The label maps represent topological information, categorizing land cover
classes derived from OpenStreetMap (OSM) data. Each label map is spatially aligned with its cor-
responding SAR and EO image pair, facilitating comprehensive spatial and semantic analysis.

The metadata includes fields such as geographic coordinates (based on the image center), ground
sampling distance (GSD), and acquisition dates for both SAR and EO images. These components
provide detailed context for each image pair, supporting diverse remote sensing applications. Fig-
ure 7 presents examples of dataset components, including label maps and metadata, for better un-
derstanding.

B TASK OVERVIEW AND PIPELINE

B.1 TASK DEFINITION

Table 5 presents a taxonomy of tasks utilizing SAR. As shown in the table, image-to-image transla-
tion (I2I) and cloud removal (CR) produce the same output, ISynEO, but differ in their inputs and the
point in time at which inference is made. For instance, I2I takes SAR as input to generate the corre-
sponding synthetic EO (SynEO), while CR typically uses past SAR data along with multi-temporal
EO and cloudy EO inputs to generate a CleanEO output. Thus, the inference point of time for CR
aligns with EO. In contrast, for all other tasks, the inference point of time aligns with SAR.

Table 5: Taxonomy of tasks utilizing SAR
Task Input Multi-tmporal Models Output Inference point of time
I2I ISAR - Generator ISynEO SAR
CR ISAR , IEO ✓ Generator ISynEO EO
OD ISAR - Detector BBOX SAR
SEG ISAR - Segmenter MASK SAR

B.2 FLOW CHART

Figure 8 shows the pipeline of our SAR-to-Earth approach along with image samples from each
step. As depicted in the figure, all our models are connected sequentially, and during actual infer-
ence, only SAR images are used.

SAR Image ApplicationsDe-noising
Image 

translation

Image 

refinement

Denoised 

SAR Image

Synthetic

EO Image
Input

Refined

EO Image

Figure 8: Overview of the SAR-to-EO translation pipeline.

C DETAILS OF LAND COVER SEGMENTATION

We utilized the official code 5 and dataset provided by OpenEarthMap (OEM). The model was
trained on the entire dataset, including the xView2 Dataset, while adhering to the data splits defined

5https://github.com/bao18/open earth map
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(b) Synthetic EO Image (c) EO Image(a) SAR Image

User : Please describe the image in detail.

GeoChat : The image contains a single 
gray ship at the bottom of the scene.

GeoChat : In the satellite image, there are
some buildings located close to each other 
at the bottom right part of the scene. These 
buildings are likely part of a city or urban 
area, and their presence indicates a high 
degree of human activity and development 
in the region. The presence of buildings can 
also provide insight into the local economy, 
infrastructure, and population density.

User : Please describe the image in detail. User : Please describe the image in detail.

GeoChat : In the satellite image, there are
some buildings located close to each other 
at the bottom right part of the scene. These 
buildings are likely part of a city or urban 
area, and their presence indicates a high 
degree of human activity and development 
in the region. The presence of buildings can 
also provide insight into the local economy, 
infrastructure, and population density.

Figure 9: Interpretation differences between SAR and EO images. The SAR image (a) leads to an
incorrect identification of objects in the scene, such as mislabeling a ship, while the synthetic EO
(b) and real EO (c) images accurately capture key urban features, including clusters of buildings.

in the official code. To adapt the training process for our target dataset, the images were resized to
256×256 and converted to grayscale before training.

C.1 CLASS MAPPING

Due to the differences between the labels in our dataset and those provided by the OEM dataset used
for training, we performed a class mapping process. The detailed mapping scheme is as follows:

• Cropland: Includes allotments, farmland, greenhouse horticulture, orchard,
plant nursery, and vineyard.

• Pavement: Includes apron, and runway.

• Bareland: Includes bare, bare rock, and sand.

• Water: Includes bay, salt pond, and water.

• Buildings: Includes construction, commercial, industrial, residential, retail and farmyard.

• Grass: Includes flowerbed, grass, grassland, heath, meadow, national park, and scrub.

• Tree: Includes forest and wood.

D ADDITIONAL QUALITATIVE RESULTS

This section presents additional qualitative results that can not be included in the main manuscript.

D.1 IMAGE INTERPRETATION

Figure 9 presents the results of image interpretation. As shown in the figure, GeoChat, trained
on large-scale EO images, failed to provide accurate results for SAR images but generated correct
responses for SynEO images. These findings indicate that SynEO can enhance the applicability of
models trained on large-scale EO datasets, bridging the gap between SAR and EO data.

D.2 SEGMENT ANYTHING

We tested the Segment Anything model (Kirillov et al., 2023) on SAR, SynEO, and EO images. As
shown in Figure 10, the model struggled to perform effectively on SAR images due to the presence
of speckle noise and irregular patterns, which significantly hindered segmentation performance.
In contrast, the SynEO images led to successful segmentation by the Segment Anything model.
Although the results were still not on par with the EO images, the performance showed substantial
qualitative improvement. Improving the SAR-to-EO translation quality could enable generalized
models like Segment Anything to be more effectively utilized on SAR data.
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(a) SAR Image (b) Synthetic EO Image (c) EO Image

Figure 10: Segmentation results using SAM (Segment Anything Model) for different modalities.

E LIMITATIONS AND BORDER IMPACT

E.1 LIMITATIONS AND FUTURE WORKS

While SAR images may appear visually similar across regions, their actual representations can differ
significantly due to variations in surface roughness. Therefore, regional characteristics play a critical
role in SAR-to-EO translation. However, in this work, we do not leverage extra modalities, such as
OSM-based label maps or metadata (longitude, latitude, ground sample distance, and date), which
can be used to better account for these regional differences.

The SAR2Earth dataset does provide metadata information for each image pixel level, allowing for
future research to utilize this additional data. As part of our future work, we plan to incorporate extra
modality-based regional features to enhance the performance of SAR-to-EO translation models by
making them more sensitive to regional variations.

E.2 BORDER IMPACT

Our work holds significant implications for remote sensing and related fields. By providing a public
benchmark dataset, we aim to accelerate research in SAR-to-EO translation, facilitating advance-
ments in environmental monitoring, disaster response, and urban development. SAR2Earth is par-
ticularly valuable in disaster scenarios like floods, where heavy cloud cover renders traditional EO
imagery less effective. Since SAR can penetrate clouds and is unaffected by weather conditions or
daylight, translating SAR-to-EO images can provide critical information when it is most needed. By
translating SAR images into EO-like images, we facilitate the application of advanced AI models
developed for EO imagery to SAR data, potentially maximizing the utility of established method-
ologies.
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