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Abstract: Safety is a critical concern in motion planning for autonomous vehi-
cles. Modern autonomous vehicles rely on neural network-based perception, but
making control decisions based on these inference results poses significant safety
risks due to inherent uncertainties. To address this challenge, we present a distri-
butionally robust optimization (DRO) framework that accounts for both aleatoric
and epistemic perception uncertainties using evidential deep learning (EDL). Our
approach introduces a novel ambiguity set formulation based on evidential dis-
tributions that dynamically adjusts the conservativeness according to perception
confidence levels. We integrate this uncertainty-aware constraint into model pre-
dictive control (MPC), proposing the DRO-EDL-MPC algorithm with computa-
tional tractability for autonomous driving applications. Validation in the CARLA
simulator demonstrates that our approach maintains efficiency under high percep-
tion confidence while enforcing conservative constraints under low confidence.
Videos are available at https://dro-edl-mpc.github.io/
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1 Introduction

Autonomous driving systems have attracted significant attention due to their potential impacts [1].
These systems rely on three fundamental technologies: perception to interpret the environment,
planning to determine optimal trajectories, and control to execute driving actions. One of the critical
challenges in developing safe autonomous driving systems lies in the inherent uncertainties of the
perception module, which propagate through the decision-making pipeline [2]. These uncertainties
stem from noises in the data, known as data uncertainty or aleatoric uncertainty, and the lack of
knowledge during the training procedure, known as model uncertainty or epistemic uncertainty [3].

To address these uncertainties, researchers have proposed various approaches for safe and robust
decision-making in autonomous driving systems. For handling data uncertainty specifically, risk
metrics-based approaches have been developed, including chance-constrained optimization [4], [5]
and conditional value-at-risk (CVaR) methods [6]. While effective in principle, these approaches as-
sume that perception models accurately represent data uncertainty distributions. In practice, percep-
tion models suffer from inherent model uncertainty arising from limited training data, architectural
constraints, and optimization challenges, leading to incomplete knowledge representations [7].

Distributionally robust optimization (DRO) has emerged as a promising framework to account for
such model uncertainty by optimizing against worst-case distributions within a predefined set of
candidate distributions, called an ambiguity set [8]. Ambiguity set formulations can be categorized
into two main approaches: discrepancy-based [9]-[12] and moment-based [13], [14]. Discrepancy-
based approaches define an ambiguity set as a set of distributions within fixed radii in terms of
discrepancy metrics, such as ¢-divergence [9], [10] or Wasserstein distance [11], [12]. These ap-
proaches often lead to overly conservative results even when the predicted distribution shows high
confidence. Moment-based approaches leverage sample quantities to establish confidence intervals,
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thereby reducing the size of ambiguity sets as the number of samples increases [13]. However, the
adaptability of the ambiguity set requires a large number of samples, which is often impractical and
undesirable in real-world scenarios.

Recent work in [14] addresses this sample requirement limitation through the application of eviden-
tial deep learning (EDL) [15]. Unlike traditional deep learning methods that directly output target
predictions, EDL takes a probabilistic approach by learning the parameters of a posterior distri-
bution, referred to as the evidential distribution. This distribution represents uncertainty over the
parameters of the likelihood distribution of the target. However, the method in [14] leverages the
variance of the likelihood variance, which limits its applicability to confident predictions, as the
variance becomes undefined for highly uncertain predictions.

We propose a principled framework for constructing ambiguity sets that leverages this higher-order
evidential distribution, which addresses the limitation of previous EDL-based approaches by directly
integrating the evidential distribution. Our approach defines ambiguity sets by establishing bound-
aries where the cumulative probability of the evidential distribution reaches a predefined threshold.
This construction yields ambiguity sets with clear probabilistic semantics: each set contains the true
uncertainty distribution of the data with a predetermined confidence level. Unlike discrepancy-based
methods that employ static distance metrics irrespective of model confidence, or moment-based ap-
proaches that only constrain particular statistical moments, our method dynamically adjusts the am-
biguity set size according to the model uncertainty. Furthermore, in contrast to previous work [14],
our approach is broadly applicable to uncertain scenarios.

We implement this EDL-based ambiguity set formulation within the distributionally robust safety
constraint, called DR-EDL-CVaR, and this constraint is employed to our proposed DRO-EDL-MPC
algorithm for autonomous driving. This algorithm adapts conservativeness based on perception
confidence while maintaining computational tractability.

Our main contributions are as follows:

* We propose DR-EDL-CVaR, a distributionally robust safety constraint leveraging the cu-
mulative probability of the evidential distribution to construct an uncertainty-aware ambi-
guity set. This provides an informative representation of the uncertainties.

* We introduce DRO-EDL-MPC, a computationally tractable motion planning algorithm that
incorporates DR-EDL-CVaR.

* We validate DRO-EDL-MPC in the CARLA simulator, demonstrating its effectiveness in
enhancing safety under various perception uncertainty conditions.

2 Problem Formulation

The goal of this paper is to compute the optimal motion of an ego vehicle navigating an environment
with static obstacles while explicitly accounting for and adapting to perception uncertainties.

The dynamics of the ego vehicle consists of the nominal dynamics model f : R™» x R"» — R"=
and unknown dynamics g : R?» x R™» — R"= represented as

x(t+1) = f(x(t),u(t)) + g(x(t), u(t)), (1)

where x(t) € X C R™ and u(t) € U C R™ are the state of the ego vehicle and the control input
at timestep ¢. The nominal dynamics can be derived from physical principles of the system, while
the unknown components can be learned from data using Gaussian Process Regression (GPR) [16].

The ego state x consists of the center positions ¢® € R™, the heading angle ¢* € R, and the speed
v® € R of the ego vehicle. That is, x = (c*, ¢*,v*). For a 2-dimensional example, n. = 2 and
c” = (¢}, ¢%) represents the coordinates of the center of the ego vehicle. Also, the ego has attributes
for the lengths from the center to the boundary b® € R"™e, where, for example, b* = (b7, b3)
represents the half of the width and length of the vehicle.



The ego vehicle must avoid collisions with static obstacles in the environment. Similar to the ego
state x, the obstacle state ¢ € R™¢ consists of the center positions c¢ € R™¢, the heading angle
¢ € R, and the speed v¢ € R. That is, £ = (c¢, ¢¢, v%). The obstacle also has the attributes for the
lengths from the center to the boundary b¢ € R"™:. To prevent collisions between the ego vehicle
and obstacles, we define a safety loss function £ : R™» x R™ — R to quantify the level of safety.
The safety constraint is encoded by

Ux,€) = (r* +7°)? — [[c” — || <0, )
where 7% denotes the radius of any state s € {x, £} and is defined as r® := ||bS||s = /> (b%)2.

The obstacle state ¢ is estimated from sensor data o using a perception model F' during the initializa-
tion stage. Since these prediction results inherently contain uncertainties, we must account for both
data and model uncertainties. To address data uncertainty, we employ Conditional Value-at-Risk
(CVaR) constraint, CVaR [¢(x,£)] < 0', which enables the evaluation of expected loss in extreme
scenarios. Here, P represents the probability distribution of &, and € € [0.5,1) is the confidence
level parameter. For model uncertainty, we use a distributionally robust approach. Given an ambi-
guity set D containing distribution P, we formulate the distributionally robust CVaR constraint as
maxpep CVaR! [((x,£)] < 0. This constraint ensures safety by optimizing against the worst-case
distribution within the ambiguity set.

The distributionally robust MPC problem with the stage-wise cost ¢ and the terminal cost q is for-
mulated as follows:

T—1

m&n c(x(t),u(t)) + q(x(T)) (3a)
t=

s.t. x(t) € X, Vt € Zo.r, u(t) €U, Vt € Zo.r—1 (3b)

(D), Vt € Zo.r—1 (3c)

max CVaR[((x(t), )] <0, Vt € Zo.p. (3d)

Here, Zo.r denotes the set of integers {0,1,...,7'}, and T is the length of the planning horizon.
The obstacle ¢ is assumed to be constant during the MPC prediction steps as it represents a static
obstacle.

3 EDL-Based Safety Constraint

EDL assumes that the regression target cf is a random variable drawn from a Gaussian distribution
N (1, 0?) with the mean y; and variance 2. Also, it assumes that the mean ; follows a Gaussian
prior N'(v;, 02 /\;) with v; € R, \; > 0 and the variance o2 follows the Inverse-Gamma prior with
a; > 1,8; > 0. Let us denote 6 = (u;,0?) and m; = (74, \i, @, 3;). Then the posterior p(6|m;)
is defined as the Normal Inverse-Gamma (NIG) distribution NIG(0|m;), which is also called the
evidential distribution [15]. The trained EDL model estimates the parameter m; of the evidential
distribution, from which the prediction value of cf, data uncertainty, and model uncertainty can be
computed, respectively, as

Bi Bi
E[ui] =i, E[o?] = , Var[p) = ————.
(1] = i, Elo}] po— ar|p] (o= 1)
For an EDL model with the regression target c¢® = (cf, .. .,cic), it predicts the parameter
m = (my,...,my,,). Because current EDL models, such as [17], predict each m,; separately at
each head, we also assume each cf is independent and c¢ is drawn from an n.-dimensional mul-
tivariate Gaussian distribution N'(p, X) where p = (1, ..., up,) and X is a diagonal matrix of

(01,...,02.).

"For loss L ~ Pz, CVaR?* [L] := min. e EF% [z + (L;f“] where (L — 2)* = max(L — z,0). This is

the average of the worst (1 — €)% of outcomes.



The evidential distribution can be interpreted as a higher-order distribution that captures model un-
certainty, and a lower-order realization of the evidential distribution, which is a normal distribution,
represents data uncertainty. We leverage this evidential distribution to construct our ambiguity set
and formulate distributionally robust safety constraints, enabling us to account for both model and
data uncertainties.

Definition 1. (EDL ambiguity set). Given a cumulative probability threshold n; € R and evidential
distribution parameter m;, the ambiguity set for axis 1 is defined as

0=(u,o
For all axis, givenn € Rand m = (my, ..., my,,), the ambiguity set D(n|m) is defined as
D(nm) := {N (i, 2)|N (15, 07) € Di( "g/nlma), Vil ©)

EDL generates a dispersed evidential distribution under high model uncertainty and a concentrated
one when uncertainty is low, causing our ambiguity set to expand or contract accordingly. This
ensures that even with a fixed confidence level 7);, our approach automatically adapts its conserva-
tiveness based on the perception model’s uncertainty.

Next, we formulate the distributionally robust safety loss within this ambiguity set.
Definition 2. (DR-EDL-CVaR). The distributionally robust safety loss given EDL ambiguity set
D(n|m) is defined as

DR-EDL-CVaR®"™)[¢(x, £)] := p e )CVaRf[ﬁ(:g 8)]. ©)
clD(nm

The safety loss ¢ is defined in (2). This formulation enhances the robustness of our control approach
by simultaneously addressing both types of uncertainty: data uncertainty through CVaR risk metric
at confidence level €, and model uncertainty by optimizing against the worst-case CVaR within the
ambiguity set at confidence level 7.

4 Our Proposed Method

4.1 Identification of the worst-case obstacle distribution

Because it is nontrivial to find the closed-form solution of the ambiguity set, we
define a surrogate ambiguity set, which facilitates calculating the worst-case loss.

Definition 3. (Surrogate ambiguity set). Ler © := {6 : Ambiguity Set

NIG(0lm;) < cu} denote a sublevel set that satis- Surogate A“‘big““‘y.s"t

fies [ NIG(0lmi)d0 = mi.  Let i min, fimaz and """ O NSBETE # Lmaye
02 mmins Otmax be the extreme values of (1 and o, respec- T K Dunaere

tively, in ©. Let I; ;, = [lti mins fiymaz] and L; 5> =

(07 rmins Ot maz)- We define the surrogate ambiguity set o 5 ' f e
as O min @
p 2 2 Hi,min i Hi;maz
D7 (i|mi) := AN (1, 0%) : p € i, 0° € L g2}

(N

Figure 1: Illustration of moment sets
(pi,0?) for the original and surrogate

. . . ambiguity sets along axis ¢. The worst-
This means that the surrogate ambiguity set is a set of ST oy .
case distributions within the original

Gaussian distributions whose £ and o2 lie in a rectangular and surrogate ambiguity sets are iden-
region Z; , X Z; ,2. The rectangular region Z; ;, X Z; »2>  tified as P? and P7*"*, respectively.
encloses the contour ©, resulting in for any 7; and m;

D;(nilm;) C D7 (ns|mi). ®)



It also implies that the cumulative probability of the NIG distribution at Z; ,, x Z; = is larger than 7;,
which makes the ambiguity set more conservative. In Fig. 1, the contour © that defines the original
ambiguity set and Z; ;, X Z; > that defines the surrogate ambiguity set are illustrated as a solid round
and a dashed rectangle, respectively.

Proposition 1. (Conservative surrogate ambiguity set solution). Given the surrogate ambiguity set
DY (n;|m;), the distributionally robust safety loss satisfies

ne

max CVaR( [((x(t),£)] < (r* +1%)* — max  CVaRY [—|c? — &2
PED(n|m) Lx(0), ) < ( ) ZPieDf“(m\mi) 2 dl

g

Furthermore,

. IfCZI S Iia#’

max CVaR™i[—|c? — cf|] =K 0imin <0,
P, €D%" (n;|m;)

where k = - \/%(exp (—lerf=t(e—1)]?) — 1) and er f~1(-) the inverse of the error

1—

function.
L Ifo S Ii,unsafe \INU
o CVaRT e ] < - imin <0,
where T unsafe = [Mimin — 0 * Oimaz Hijmaz + 0 * Oimaz| for 0 =

L exp (—[erf 1 (2e = 1)]?) > 0.

o Ifcf ¢ Ii,unsafe»

max CVaR]fl [_‘Cz‘m _ Cf” < _‘Cz‘m _ 71| + Himax — Mimin

+0-0; <0
P;eDs*" (ni|m;) 2 e ’

where y; is given in the prediction result m;.

According to Proposition 1, the worst-case obstacle distribution varies depending on the ego vehicle
position ¢ . A one-dimensional example is illustrated in Fig. 1. When the ego vehicle is distant from
the obstacle (¢7 > f4imaz + 00i maz). (an upper bound of) the optimal negative distance CVaR is
attained at P$“"™ = N (i maz, 012, mae) (filled red circle) within the surrogate ambiguity set. Within
the original ambiguity set, P; (empty red circle) denotes the worst-case obstacle distribution. In
contrast, when the ego vehicle is close to the obstacle (¢f € Z; ynsqafe), (an upper bound of) the
maximum negative distance CVaR is attained at P{""™* = N'(c},07,,,,) (filled green circle) within
the surrogate ambiguity set. Within the original ambiguity set, P} (empty green circle) denotes the
worst-case distribution.

Proposition 1 describes how to identify the worst-case distribution IP;“"* within the surrogate ambi-
guity set. Thus, we can directly find the worst-case obstacle distribution instead of focusing on the
distribution of the loss function.

However, calculating the extrema (t; ymin, ti,maz, Oi,min aNd 0; mae given the confidence thresh-
old n; remains computationally challenging, as it requires complex numerical optimization prob-
lems. To mitigate this issue, we employ standardized solutions. The NIG distribution consists of
the normal distribution and the inverse gamma distribution. These distributions have location pa-
rameter ; and scale parameter o;, 3;. Therefore, we can transpose NIG(p;, cri2|'yi7 Aiy @, B;) into
NIG (4,02 10,1, v, 1) using following relation:

Mz':,uz,z"\/%Jr’)% O—i:Uz,i'\/E' )

The shape parameter «; remains unchanged as it is an intrinsic property of the distribution. The
contour of the transposed NIG distribution at confidence 7; is calculated using numerical integration



[18] and the extrema ({0, i min, fhz,i,mazs afﬁi,mm, azﬂ-maw) are calculated using the Brent’s method
[19], which is a numerical root finding method. These extrema are computed offline and stored in the
lookup table M, for different o € [1.01,10.00]. At execution time, the perception model estimates
the NIG distribution parameters m;, and the extrema are queried from M, without computation
overhead. These extrema are transformed back to the extrema of the original distribution using
(9). Consequently, the standardized approach and Proposition 1 enables determining the worst-case

obstacle distribution IP;“™ in a computationally tractable manner.

4.2 Conservative constraint for tractable MPC (DRO-EDL-MPC)

The safety constraint can be formulated us-
ing the worst-case obstacle distribution derived
by Proposition 1. However, these constraints
vary depending on the ego position c;, for ex- T pi———
ample, whether ¢ € Z; ,, and thus translate T ﬁ Sl

into a mixed-integer programming formulation, a ‘ B
which can be solved using the Big-M method \ \} “'l'»l:i?f’(?ff.“"" |
[20]. To avoid the Big-M approach, which can I !
be computationally expensive and prone to nu- |
merical instability, we introduce a conservative Plgesss ollison
reformulation of the worst-case CVaR that is
continuous with the ego state, eliminating the
need for integer variables.

Figure 2: Estimated obstacle position (light blue
circle) may differ from the true obstacle po-
sition (green circle). By introducing (gpr
Proposition 2. (Constraint reformulation). (large blue rectangle), we enforce the constraint
Given the perception results m, ¢, v¢, and bS, {(x,&ppr) < 0 (large blue circle), thereby satis-
define égpr, = (cfEDL , pEEDL vﬁEDL) as fying the distributionally robust safety constraint.

CfEDL =i, ¢§EDL = (bf’ vSEDL . — 1}5,

and its attribute bSEDPL gg

beDL

= (Ni,maw - Nz,mzn)/2 +6- Oi,mazx + 7'57
where 0 is provided in Proposition 1. Then, for any X,

U(x,€ppL) <0 = DR-EDL-CVaR®"™[((x,£)] < 0. (10)

This proposition defines a new obstacle, g pr, which provides a more conservative constraint that
is continuous with respect to c¢f. Fig. 2 illustrates the perceived obstacle position, true obstacle
position and the use of égpr. Distributionally robust and feasible solutions can be found with
DRO-EDL-MPC, which integrates (12) into the MPC (3d).

5 Experiments

In this section, we validate the DRO-EDL-MPC algorithm in the CARLA simulator and demonstrate
its less conservative behavior under confident perception and more conservative behavior under
uncertain environment.

5.1 Experiment Settings

The objective of the ego vehicle is to reach its destination while avoiding collisions with obstacles.
The ego vehicle is equipped with a LiDAR and camera and uses the MEDL-U algorithm [17] as
the EDL model. It takes LiDAR point clouds, camera images, and 2D bounding box predictions
to predict 3D bounding boxes with uncertainty, represented as NIG distributions. We use YOLOv8
model [21] trained on COCO [22] to predict 2D bounding box and MEDL-U trained on the KITTI
dataset [23] using only the car class.



To compare confident and uncertain perception scenarios, we conduct experiments with different
obstacle classes and sensor configurations. In the confident case, a car is used as the obstacle, and
the LiDAR is mounted on the ego vehicle at the same height as in the training setup, ensuring that
the input data remains in-distribution. In contrast, in the uncertain case, a motorcycle is used as
the obstacle, and the LiDAR is mounted at a different height, creating out-of-distribution inputs.
The EDL model estimates prediction uncertainty, allowing us to analyze how the distributionally
robust safety constraint varies with different levels of uncertainty. For simplicity,  and y positions
(cﬁ, cg) are considered with uncertainty distribution and z coordinate is ignored because the height
information of ground obstacles has minimal impact on collision avoidance.

We compare the following safety constraint baselines.

* (Single-Estimate) uses a single prediction of the obstacle state and thus a deterministic
safety constraint.

e (CVaR [11]) estimates the distribution of the obstacle state Py,+, using 5 predictions, ob-
tains the distribution of loss P, using the unscented transform method, and formulates
the CVaR risk metric to the loss distribution.

* (W-DRO-CVaR [11]) enforces distributionally robust CVaR considering all distributions
whose Wasserstein distance from the loss distribution P, is within 0.1.

* (Moment-Based EDL [14]) enforces distributionally robust CVaR, utilizing the variance
of the moments Var[u], Var[o?] estimated from the EDL model as a confidence interval
of the ambiguity set with a confidence coefficient of 0.5.

(DR-EDL-CVaR) is the proposed distributionally robust safety constraint with 1 = 0.9.

All stochastic methods use CVaR with ¢ = 0.9.

We evaluate all methods over 100 runs. Specifically, we measure a collision rate with obstacles and
a success rate of reaching the destination without collision. Among successful runs, we also report
the average total cost and the average minimum distance to the estimated obstacle center ||c* — c¢ ||z,
and the average optimization time.

5.2 Results

The results of the confident percep- _ 1able 1: Comparison in confident & uncertain scenarios
. . . . Scenario Method Succ.(%) T Coll. (%) | Cost | Distance  Time (ms) |
tion experlments are llluStrated mn Single-Estimate 100 0 6.576 x 10° 2.625 220.5
- CVaR 93 0 6.304 x 10 5.528 2472
ig. a) and Table 1. met "
Confident W-DRO-CVaR 29 0 3.786 x 101! 7.672 1064
ods accurately infer obstacle pOSi- Moment-Based EDL 78 0 2.281 x 107 2.640 219.7
R X ot DR-EDL-CVaR (Ours) 100 0 6.072x 10" 5.032 203.5
tions, thereby causing no collisions. Single Estimate 0 100 - - 3064
. . CVaR 72 28 1.352 x 10'* 6.756 229.7
The Single-Estimate approach SUC-  Uncerain  w-DRO.CViR 65 2 ITHl0n 114% 1168
. . . Moment-Based EDL - - - - -
cessfully reaches destinations in all DR-EDL-CVaR (Ours) 95 2 6.831x10° 8014 2231

runs while maintaining low cost and

minimal distance. In contrast, the CVaR and W-DRO-CVaR methods, which consider uncertainty
distributions, maintain larger distances from the obstacle. The W-DRO-CVaR method shows a low
success rate as it leads to overly conservative behavior and infeasibility due to the use of the un-
scented transform. The Moment-Based EDL method yields a similar conservative distance to the
Single-Estimate approach, but suffers from a low success rate. This is because it is only applicable
when perception is highly confident (o« > 2). Our DR-EDL-CVaR approach formulates a small
ambiguity set for confident perception, resulting in less conservative behavior and a higher success
rate than CVaR and W-DRO-CVaR.

The results of uncertain perception experiments are shown in Fig. 3 (b) and Table 1. The uncertainty
stems from model uncertainty because the perception model encounters a motorbike despite being
trained only on the car class. The Single-Estimate and CVaR methods exhibit high collision rates due
to their inability to handle model uncertainty. In contrast, W-DRO-CVaR and our proposed method
consider model uncertainty using the ambiguity set, resulting in significantly lower collision rates.
The Moment-Based EDL method is inapplicable in all uncertain perception scenarios.
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Figure 3: Illustration of the compared methods and our proposed method in (a) confident and (b)
uncertain perception scenarios. Ego position (red), obstacle position (green), estimated obstacle
position (cyan), and safe boundary (blue) are visualized.

Our DR-EDL-CVaR method is the only one that operates less conservatively under confident percep-
tion and more conservatively under uncertain perception, ensuring both efficiency and safety across
varying perception confidence levels. These results confirm that our safety constraint formulation
proves effective for safe autonomous driving. Additionally, our method demonstrates a 5 times im-
provement in computational efficiency compared to the W-DRO-CVaR method while comparable to
other simpler approaches.

6 Conclusion

We have proposed a safe motion planning approach that integrates EDL-based perception in uncer-
tain environments. Our constraint formulation method, DR-EDL-CVaR, ensures safety through a
distributionally robust safety constraint that accounts for the estimated uncertainty. Additionally,
we have introduced DRO-EDL-MPC, a conservative yet tractable motion planning algorithm based
on the upper bound of the distributional robust safety loss and standardization of the NIG distribu-
tion. Experiments demonstrate that our approach is the only method that can produce safe motion
in out-of-distribution scenarios without additional training, while exhibiting low conservativeness in
in-distribution scenarios and achieving great efficiency compared to other methods. Our future work
will address multiple dynamic obstacles.
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A Proof of Proposition 1

Proposition 1. (Conservative surrogate ambiguity set solution). Given the surrogate ambiguity set
D2 (n;|m;), the distributionally robust safety loss satisfies

max CVaR: [((x(t),€)] < (r® +1°)? — max CVaR" [—|c¥ — &),
s CVRTIHX(0.0) < ( +057 =37 s CVkE (-1t = ]
Furthermore,
cIfcf € iy

CVaR% [—|c¢® — &l =k - 0: 0 <0
P1€D;¥}Ta@;‘ml) a € [ |cz C’L” K 0-7/,7717,71, ,

where k= T \/g(exp (—lerf=t(e = 1)]?) — 1) and er f~1(-) the inverse of the error

€

function.
* If ¢} € L unsafe \ Liw
PieD;nma();i‘mi) CVaRIEi [=lef — Cf” < K- 04 min <0,
where T unsafe = [Wimin — 0 * OimazsMimaz + 0 * Cimaz] for 6 =

1;%” exp (—[erf=1(2¢ — 1)]?) > 0.

o Ifcf ¢ Ii,unsafe,

max CVaRY [~ |c? — Cén —|e® — | + Hiymaz — Himin

+ 60 maz <0
P, €D (n;|m;) 2 e ’

where y; is given in the prediction result m;.

Proof. The worst-case CVaR of the safety loss (2) is

pcnEx )CVaR]PV( x(t),€)]

= (r"+7r)%+ max CVaR'[— c
( ) PeD(n|m) Z |
< (r* 4782 — max  CVaRFi[—[c¢F — ¢ (11)
4 =3 i, CVARE 1 — I
The equality holds as the axes of the obstacle distribution are independent of each other and by
Lemma 2(a) and (8).

We will derive the upper bound of maxp, epsur (s, |m,) CVaRYi[—|c¥ — c§ |] that is strictly negative and

thus minimizes the squared term in (11). The difference X4 = cf —cf follows the normal distribution
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N (¢ — i, 02) when & follows P; = N (i, 02). We denote jig := ¢f — yi; and 02 := o2, The
distance | X4| follows a folded normal distribution. By Lemma 2(b), CVaRY" [—| X 4], referred to as
the negative distance CVaR, is a monotonically decreasing function with respect to |14/, and thus,
its maximum is attained when |pi4| is minimized.

If ¢ € Z;,, |1l = 0 maximizes the negative distance CVaR. The distribution of —|Xg4| is a
half-normal distribution, and the negative distance CVaR is « - o; by Lemma 2(c). Therefore, the
distribution P; = N'(cf, 07 ,,,;,,), which lies in the surrogate ambiguity set D5*" (n;|m;), yields the

maximum negative distance CVaR of « - 0 pin.

If ¢ € Z; unsafe \Zi,u» the mean |pq| of | X 4] is larger than O because the mean ji; of cf is confined in
Z; ... Because the maximum negative distance CVaR decreases with respect to |14| by Lemma 2(b),
it is no larger than « - &; min.

If ¢ ¢ Z;unsafe, When pg > 0, the e-quantile of the distribution of X4, i.e., VaR]S"' (X4, is
a positive value by construction of Z; ynsqfe, in particular the definition of 4. Similary, when
pa < 0, VaRfi [X4] < 0 by construction of Z; ynsqfe- Under this condition, Lemma 2(d) tells
that maxp, —|uq| + 6 - 04 > maxp, CVaRY*[—| X4|]. The maximum of —|ug| + 6 - o4 is attained
at 0g = 0y mag because & > 0 and |pq| = |¢f — imin| When ¢f < i min — 00 max OF at
Od = Oimaz a0d |fa| = |67 — limaz) When ¢ > [ max + 0 - 0imag. Using 7;, which is the
center of [ min, fi,maz],» We can represent such optimal || as ¥ — vi| — (i, maz — fimin)/2-
Therefore, —|c? — v;| + (i, maz — Hi,min)/2 + 0 04 maz > Maxp, CVaRiPi [—|X4|] and this upper
bound is negative because ¢ ¢ Z; ynsafe and by construction of Z; ynsa fe- O

B Proof of Proposition 2
Proposition 2. (Constraint reformulation). Given the perception results m, ¢¢, v¢, and bS, define
(epr = (cEEDL7¢£EDL7,UEEDL) as
CfEDL =, ¢€EDL = d)f’ VSEDL .— vﬁ’
and its attribute b$#PL gs
beDL = (Ni,maw - Nz,mzn)/2 +4- Oi,mazx + 7’57

where 0 is provided in Proposition 1. Then, for any X,

U(x,¢5p1) <0 = DR-EDL-CVaR"(""™)[¢(x, £)] < 0. (12)
Proof. Suppose ¢! € T; ynsafe fori =1,...,n4, and ¢ ¢ Z; ynsaye fori € nj, +1,...,n.. By
Proposition 1,

max CVaR![/(x, €)]

PED(/m)
MNin Ne

SO+ = (ke imin)? = Y (leF =yl = ha),
=1 1=n;in+1

where h; = ({i maz — Himin)/2 + 0 - 0i maz- We denote the right-hand side by f(x).

Let us define a new obstacle state £ = (c£,¢¢,v%) with ¢¢ = 45,66 = ¢¢,0¢ = o€, [|bS]|2 =
r¢ + />0 h2, and let

9(x) = 0(x,8) = (r* +7¢ + /27 h7)? = i< (Ief = al)*.

Note that € is the same as £ p 1, except that the attribute be bL — r& 4 h; incorporates the uncertainty
margin h; directly into the size of the obstacle.

Given feasible sets F' := {x|f(x) < 0} and G := {x|g(x) < 0}, we aim to show G C F.
Let ¥(x) := (|¢f — ’yl|,...,|c/f;C — ),k = (h1,...,hy,) and s(x) := (min(hy,|c] —
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Y1), oy min(hp,, [ — yn,.|)). Then,

[7(0)[l2 < [15(x) |2 + [|9(x )—ﬂ( )2
< ||h||2+\/ZZ o1 (€7 =il = ha)2. (13)

The first inequality is by the triangle inequality, and the second inequality is because ||5(x)[|2 <
I2||2 by definition and s;(x) = |¢F — ;| fori =1,...,n4, and h; fori = n, +1,..., ne.

Now, if f(x) > 0, we have (r" +r¢)2 =37 (|¢f —~il —hq)? > 0 because (k- 0 min)* > 0.
Therefore, (13) becomes ||7(x)[|2 < |||z + (+* + %), and this leads to g(x) > 0. This showed
F¢ C G° and therefore G C F. This implies that g(x) < 0 is more conservative than the original
constraint f(x) < 0.

To facilitate a simpler and more tractable representation of the obstacle attribute, we define the
obstacle £ py, with 5% = 7€ + h;. This makes the radius r$202 = ||ré 4+ hll2 > 7€ + ||h||2 and

thus ¢(x,€gpr) > E(x 5) Therefore, ¢(x,{ppr) <0 = {(x, f) <0 = fx) <0 =
DR-EDL-CVaRZ"™)[¢(x, )] < 0. O

C Properties of the Value-at-Risk

Lemma 1. (Properties of the Value-at-Risk). Given a random variable X ~ P = N (u,0?) and a
threshold € € [0, 1), the following holds.

(a) VaR([~|X[*] = —VaR;[~|X]]?

(b) ForY = —|X| with a fixed o?,

dVaR]E[Y] d)( VaR[E[Y]—p,) _ d)(—VaR]‘Z Y]—u)
du o( V”RE[Y]—M) + ¢( —VaR? Y]—M)’

q

where ¢ is the probability density function of the standard normal distribution.
(c) VaRY[—|X|| = V20 -erf~1(e—1)

(d) VaRY[X] > VaR®[—| X|]

Proof. (a)
P[-|X] < VaR¥[~|X ] = ¢,
P[—|X[* < VaR{[-|X "] =
P[IX| >/ =VaR{[-|X|?]] = ¢

P[—|X| < —y/—VaR{[—|X|?]| = ¢
- VaR¥[—|X|?] = —VaRF[—| X ]2

(b) Let Fy (y) and fy(y) be the cumulative probability distribution and the probability density
function of a random variable Y, respectively. Let us similarly define F'x () and fx (z) for a random
variable X . Also, let  be the cumulative distribution function of the standard normal distribution.
For simplicity, we denote Var! [Y] by k(y), which is also a function of ¢ but we consider it as a
constant.

12



By definition of VaR, we have

k()

e=Fy(k(p) = / fy (y)dy

— 00

k()
- / (Fx(@) + fx(~2))de

— 00

k() k()
[ hs@dos [ px(-aja

— 00 — 00

Lett = —x. Then,

K () —k(n)
= / fx(x)dx — / fx(x)dx
_ % (k(u) u) _ & (—k(u) —u) 41
Because € = Fy (k(u)), we have %ﬁ(“)) = 0. This leads to

(). (52 () ()

Then

This concludes the proof.

(c) Let —| X| =Y. Then the probability density function of Y is

Iy () = fx(@) + fx(—2) = ;ﬁ?@wp(—iz)vy <0.

And the cumulative distribution function of Y is

Fy(y):[ fy(t)dt:/y V2

Y2 erp(—
oo OV P52
Meanwhile,

0
Fr)= [ ftvie=1

because Y is defined in (—oo, 0]. Then

Yy 0
Fy(O):‘/_ fy(t)dt+/ fy(t)dt

/ Oo fr et = [ oL

Therefore,
y y

/ Fr(Bdt =1+ / Fy(t)dt
— o0 0
y

V2 t?
—|—/O Uﬁeaﬂp( 202)dt
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Let t/v/20 = k. Then

B V2 [y )
Fyy)=1+ 0—\/%/0 exp(—k?) - V20dk

= 1+erf(y/V20).
VaR®[Y] is the value of y when Fy () = e. Therefore,
VaRF[Y] = V20 -erf~1(e - 1).

(d) Let VaRY[X] = k, VaRF[—| X |] = k’. By definition,

/:O fx(@)de=1—€e= /:f—x|($)d17-

Also, . o . .
/ fX(x)dx:/ Ix(z)dz + fx(:v)der/ fx(z)dz
k k 0 —k
0 0 o)
/k fx () x+/k fx(—x) x+/_k fx(z)dx
0 [e%s)
:/ f,|X|(sc)dx+/ fx(x)dx.
k —k
Therefore,

00 0 0 k
/_k fx(z)dx >0 = /k/ f,pq(x)dx—/k f,|X|(a:)dx:/k/ J-1x|(x)dz > 0.

Therefore, VaR: [X] > VaRY [—| X|].

D Properties of the Conditional Value-at-Risk

Lemma 2. (Properties of the Conditional Value-at-Risk). Given a random variable X ~ P =

N (u,0?) and a threshold € € [0, 1), the following holds.

(a) CVaR’[—|X|?] < —CVaRY[-|X|]?

(b) For a fixed 02, CVaR® [—| X |] is monotonically decreasing with respect to |ju.

(c) If p = 0, then CVaR: [—|X|| = & - o,

€

where k = 1; \/2/7[€l‘p(—[€rf_l(€ - ?) —1].

(d) If VaRY[X] > 0 A >0, or VaRY[X] < O A pu < 0, then —|p| + 6 - o > CVaRE [—| X|).

Proof. (a)
CVaR’[-| X2 =E

\
=

| X|? ¢ [X] < —VaRY[—|X]]]
= —E[|X]?: |X| < —VaR?[-|X]]]
—E[-|X]|: |X] < —VaRY[-|X]]]
—E[-|X|: —|X| > VaR{[~| X[]
= —CVaR/[-|X[]*.

IN

14

[=1X]* : = X]* > VaR{[-| X )]
E[-|X[*: | X[* > —VaR![-|X][]?]
[,

2
2

(14)
15)
(16)
a7
(18)
19)
(20)



Equation (15) holds by Lemma 1 (a), and inequality (18) holds by Jensen’s inequality.

(b) With the same notations used in the proof of Lemma 1 (b), we have

0
CVaR;[Y] = E[Y : Y > k(u)] = ! ” )yfy(y)dy
1 0
= [ @ ax s

1 0 0
— Vk(u) xfx(x)dx—&—/_k(#) th(t)dt]
1 0 —k(p)
T [/k(ﬂ)xfx(x)da:—/o fo(m)dJ;} .

Let a(p), b(1) be functions with respect to 4, and standardized random variable Z = (X — u)/o.
Then,

b(w) b(p)—p b(p)—np b(u)—p

- 1 - -
/G(M) zfx(z)de = /J(“;“ (n+o- z);qﬁ(z)odz = ,u/aw;u o(z)dz + 0/1(;2# zp(z)dz.

With 2z, (p) = W and z(p) = W, the derivative with respect to y is

d e 25 (1) / /
@ ” zfx(z)dr = [La(#) P(2)dz + p - {d(2(p)) - 24 (1) — d(za(p)) - Za(ﬂ)}]

+ 0 [ () S0 7 (1) — 2a ()20 (1)) 24 ()]
Zb(:“')
- / 6(2)dz + (1) (2b (1)) 7 (1) — a(1)d(za(1)) 24 ().

a(p)

Using this result and letting 2 (1) = k(“g_“,z_k(u) = _k(ﬁ)_” and zo(p) = =, we can express
the derivative of CVaR? [Y] with respect to y as follows.

0 —k(p)
(1- >d‘LCVaRPH d V rfx(2)ds — / z:fx<x>dx]

dp | S
zo (1) Z_ k(1)
= [ otz ko) 4 — [ ) () - 6k -]
zo(p) z_p ()
- / o(2)dz - / o(2)dz — k(1) [B(zx (1)) - 2 (1) — De—r(p2)) - 20 (10)] -
zr (1) zo(p)
Because
A = ULy = T
and by Lemma 1 (b),
i — 0D 0(e() = 0z (1)

dp P(zn(p) + o2k (w))’
we have ¢(zp, (1)) - 25, (1) — (2—r(p)) - 224 (1) = 0. Therefore,

d 1 —u k(W) —p

—CVaRF[Y] = - .

CVaRI[Y] = 1 [ / o)z - [ aﬁ(Z)dZ]
Note that for any b < 0, [*", ¢(2)dz > [ ¢(2)dz ifa > Oand [, ¢(2)dz < [ ¢(z)dz if
a < 0. Therefore, p

—CVaR{[Y] < 0 for > 0.
dp
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and

d
@CVaR]S[Y] > 0 for pu < 0.

That is, CVaR” [Y] is monotonically decreasing with respect to |p|.

(c) Let —| X| =Y and VaR.[Y] = k. Then

CVaR'[Y] =E[Y : Y > k]
1 0
=— /k yfy (y)dy

1—¢€

! / V2 ep(— 2y
- —exp(——)dy.
1_6 k Y \/77'0’ p 202 Y

Let y/\/§a = u,y = v20u,dy = /20du. Then

_ 1; ;ﬁa Vaou - \/\/;Ueacp(—u2)\/§odu
_ 1; : 2%?0 kjﬁguwﬁxp(—uQ)du
;
S e [,
= et [byvaa]) 1]
- b Yoot [ B0
= o ferp(ler s = ) - 1]

where k = /20 -erf~!(e — 1) by Lemma 1 (¢) and k = 11 \/2/7 [exp(—[erf~' (e — 1)]?) — 1].
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(d) If u < 0 and VaR¥[X] = k < 0, then

CVaRY[X] = E[X|X > K]
- 1i6/kooa:fx(x)dx

1 —k
1—6/k xfx(z)dr

0 —k
_ [/]C :cfx(x)da:Jr/o zfx(z)d]

1—e¢

>

0 k
_ ! [/k fo(:v)dx—F/o zfx(—z)dz]

1—¢

- 1i6[/koa:fx(x)dt—/koﬂifx(—l’)dx]

1 0 0
> 1l ety [Capc(-eyis

1

0
- = [ ats(a) + fx(oe

1 0
= 1—€/k rf_x|(z)dx
1 0
> 7 / rf_x|(x)dr
€ JVaRE[-|X])
= E[-|X] : —|X| > VaR/[|X[]
= CVaRl[—| X

The last inequality is because k& > VaRF[—| X |] by Lemma 1 (d). Therefore, CVaR” [X] = p+6-0 >
CVaR'[—| X].

Similarly, if # > 0 and VaRY[X] > 0, the mean of —X is smaller than zero and VaR}[~X] < 0.
Thus, we can use the inequality that we derived in the preceding paragraph, that is,

CVaRY[—X] > CVaR! [ | X|].

Because X has a symmetric distribution about the mean 1, we have —VaR![—X] = VaR]__[X].
Also, CVaR}__[X] = E[X : X > VaR¥[X]] = x — 6 - o by [24]. Thus,
CVaRY[-X] = E[- X : =X > VaRF[-X]]
= -E[X : X < —VaRY[-X]]
= —E[X : X <VaRY _[X]]
=—(u—20-0).
Therefore, if VaRY[X] > 0Ap > 0or VaRF[X] < 0Ap < 0, then —|u|+0-0 > CVaRY[—|X[]. O
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