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Abstract: Safety is a critical concern in motion planning for autonomous vehi-
cles. Modern autonomous vehicles rely on neural network-based perception, but
making control decisions based on these inference results poses significant safety
risks due to inherent uncertainties. To address this challenge, we present a distri-
butionally robust optimization (DRO) framework that accounts for both aleatoric
and epistemic perception uncertainties using evidential deep learning (EDL). Our
approach introduces a novel ambiguity set formulation based on evidential dis-
tributions that dynamically adjusts the conservativeness according to perception
confidence levels. We integrate this uncertainty-aware constraint into model pre-
dictive control (MPC), proposing the DRO-EDL-MPC algorithm with computa-
tional tractability for autonomous driving applications. Validation in the CARLA
simulator demonstrates that our approach maintains efficiency under high percep-
tion confidence while enforcing conservative constraints under low confidence.
Videos are available at https://dro-edl-mpc.github.io/
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1 Introduction

Autonomous driving systems have attracted significant attention due to their potential impacts [1].
These systems rely on three fundamental technologies: perception to interpret the environment,
planning to determine optimal trajectories, and control to execute driving actions. One of the critical
challenges in developing safe autonomous driving systems lies in the inherent uncertainties of the
perception module, which propagate through the decision-making pipeline [2]. These uncertainties
stem from noises in the data, known as data uncertainty or aleatoric uncertainty, and the lack of
knowledge during the training procedure, known as model uncertainty or epistemic uncertainty [3].

To address these uncertainties, researchers have proposed various approaches for safe and robust
decision-making in autonomous driving systems. For handling data uncertainty specifically, risk
metrics-based approaches have been developed, including chance-constrained optimization [4], [5]
and conditional value-at-risk (CVaR) methods [6]. While effective in principle, these approaches as-
sume that perception models accurately represent data uncertainty distributions. In practice, percep-
tion models suffer from inherent model uncertainty arising from limited training data, architectural
constraints, and optimization challenges, leading to incomplete knowledge representations [7].

Distributionally robust optimization (DRO) has emerged as a promising framework to account for
such model uncertainty by optimizing against worst-case distributions within a predefined set of
candidate distributions, called an ambiguity set [8]. Ambiguity set formulations can be categorized
into two main approaches: discrepancy-based [9]–[12] and moment-based [13], [14]. Discrepancy-
based approaches define an ambiguity set as a set of distributions within fixed radii in terms of
discrepancy metrics, such as ϕ-divergence [9], [10] or Wasserstein distance [11], [12]. These ap-
proaches often lead to overly conservative results even when the predicted distribution shows high
confidence. Moment-based approaches leverage sample quantities to establish confidence intervals,
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thereby reducing the size of ambiguity sets as the number of samples increases [13]. However, the
adaptability of the ambiguity set requires a large number of samples, which is often impractical and
undesirable in real-world scenarios.

Recent work in [14] addresses this sample requirement limitation through the application of eviden-
tial deep learning (EDL) [15]. Unlike traditional deep learning methods that directly output target
predictions, EDL takes a probabilistic approach by learning the parameters of a posterior distri-
bution, referred to as the evidential distribution. This distribution represents uncertainty over the
parameters of the likelihood distribution of the target. However, the method in [14] leverages the
variance of the likelihood variance, which limits its applicability to confident predictions, as the
variance becomes undefined for highly uncertain predictions.

We propose a principled framework for constructing ambiguity sets that leverages this higher-order
evidential distribution, which addresses the limitation of previous EDL-based approaches by directly
integrating the evidential distribution. Our approach defines ambiguity sets by establishing bound-
aries where the cumulative probability of the evidential distribution reaches a predefined threshold.
This construction yields ambiguity sets with clear probabilistic semantics: each set contains the true
uncertainty distribution of the data with a predetermined confidence level. Unlike discrepancy-based
methods that employ static distance metrics irrespective of model confidence, or moment-based ap-
proaches that only constrain particular statistical moments, our method dynamically adjusts the am-
biguity set size according to the model uncertainty. Furthermore, in contrast to previous work [14],
our approach is broadly applicable to uncertain scenarios.

We implement this EDL-based ambiguity set formulation within the distributionally robust safety
constraint, called DR-EDL-CVaR, and this constraint is employed to our proposed DRO-EDL-MPC
algorithm for autonomous driving. This algorithm adapts conservativeness based on perception
confidence while maintaining computational tractability.

Our main contributions are as follows:

• We propose DR-EDL-CVaR, a distributionally robust safety constraint leveraging the cu-
mulative probability of the evidential distribution to construct an uncertainty-aware ambi-
guity set. This provides an informative representation of the uncertainties.

• We introduce DRO-EDL-MPC, a computationally tractable motion planning algorithm that
incorporates DR-EDL-CVaR.

• We validate DRO-EDL-MPC in the CARLA simulator, demonstrating its effectiveness in
enhancing safety under various perception uncertainty conditions.

2 Problem Formulation

The goal of this paper is to compute the optimal motion of an ego vehicle navigating an environment
with static obstacles while explicitly accounting for and adapting to perception uncertainties.

The dynamics of the ego vehicle consists of the nominal dynamics model f : Rnx × Rnu → Rnx

and unknown dynamics g : Rnx × Rnu → Rnx , represented as

x(t+ 1) = f(x(t),u(t)) + g(x(t),u(t)), (1)

where x(t) ∈ X ⊆ Rnx and u(t) ∈ U ⊆ Rnu are the state of the ego vehicle and the control input
at timestep t. The nominal dynamics can be derived from physical principles of the system, while
the unknown components can be learned from data using Gaussian Process Regression (GPR) [16].

The ego state x consists of the center positions cx ∈ Rnc , the heading angle ϕx ∈ R, and the speed
vx ∈ R of the ego vehicle. That is, x = (cx, ϕx, vx). For a 2-dimensional example, nc = 2 and
cx = (cx1 , c

x
2) represents the coordinates of the center of the ego vehicle. Also, the ego has attributes

for the lengths from the center to the boundary bx ∈ Rnc , where, for example, bx = (bx1 , b
x
2)

represents the half of the width and length of the vehicle.

2



The ego vehicle must avoid collisions with static obstacles in the environment. Similar to the ego
state x, the obstacle state ξ ∈ Rnξ consists of the center positions cξ ∈ Rnc , the heading angle
ϕξ ∈ R, and the speed vξ ∈ R. That is, ξ = (cξ, ϕξ, vξ). The obstacle also has the attributes for the
lengths from the center to the boundary bξ ∈ Rnc . To prevent collisions between the ego vehicle
and obstacles, we define a safety loss function ℓ : Rnx × Rnξ → R to quantify the level of safety.
The safety constraint is encoded by

ℓ(x, ξ) = (rx + rξ)2 − ∥cx − cξ∥22 ≤ 0, (2)

where rs denotes the radius of any state s ∈ {x, ξ} and is defined as rs := ∥bs∥2 =
√∑nc

i (bsi )
2.

The obstacle state ξ is estimated from sensor data o using a perception model F during the initializa-
tion stage. Since these prediction results inherently contain uncertainties, we must account for both
data and model uncertainties. To address data uncertainty, we employ Conditional Value-at-Risk
(CVaR) constraint, CVaRP

ϵ [ℓ(x, ξ)] ≤ 01, which enables the evaluation of expected loss in extreme
scenarios. Here, P represents the probability distribution of ξ, and ϵ ∈ [0.5, 1) is the confidence
level parameter. For model uncertainty, we use a distributionally robust approach. Given an ambi-
guity set D containing distribution P, we formulate the distributionally robust CVaR constraint as
maxP∈D CVaRP

ϵ [ℓ(x, ξ)] ≤ 0. This constraint ensures safety by optimizing against the worst-case
distribution within the ambiguity set.

The distributionally robust MPC problem with the stage-wise cost c and the terminal cost q is for-
mulated as follows:

min
u

T−1∑
t=0

c(x(t),u(t)) + q(x(T )) (3a)

s.t. x(t) ∈ X, ∀t ∈ Z0:T , u(t) ∈ U, ∀t ∈ Z0:T−1 (3b)
(1), ∀t ∈ Z0:T−1 (3c)

max
P∈D

CVaRP
ϵ [ℓ(x(t), ξ)] ≤ 0, ∀t ∈ Z0:T . (3d)

Here, Z0:T denotes the set of integers {0, 1, . . . , T}, and T is the length of the planning horizon.
The obstacle ξ is assumed to be constant during the MPC prediction steps as it represents a static
obstacle.

3 EDL-Based Safety Constraint

EDL assumes that the regression target cξi is a random variable drawn from a Gaussian distribution
N (µi, σ

2
i ) with the mean µi and variance σ2

i . Also, it assumes that the mean µi follows a Gaussian
prior N (γi, σ

2
i /λi) with γi ∈ R, λi > 0 and the variance σ2

i follows the Inverse-Gamma prior with
αi > 1, βi > 0. Let us denote θ = (µi, σ

2
i ) and mi = (γi, λi, αi, βi). Then the posterior p(θ|mi)

is defined as the Normal Inverse-Gamma (NIG) distribution NIG(θ|mi), which is also called the
evidential distribution [15]. The trained EDL model estimates the parameter mi of the evidential
distribution, from which the prediction value of cξi , data uncertainty, and model uncertainty can be
computed, respectively, as

E[µi] = γi, E[σ2
i ] =

βi

αi − 1
, V ar[µi] =

βi

λi(αi − 1)
.

For an EDL model with the regression target cξ = (cξ1, . . . , c
ξ
nc
), it predicts the parameter

m = (m1, . . . ,mnc
). Because current EDL models, such as [17], predict each mi separately at

each head, we also assume each cξi is independent and cξ is drawn from an nc-dimensional mul-
tivariate Gaussian distribution N (µ,Σ) where µ = (µ1, . . . , µnc) and Σ is a diagonal matrix of
(σ2

1 , . . . , σ
2
nc
).

1For loss L ∼ PL, CVaRPL
ϵ [L] := minz∈R EPL

[
z + (L−z)+

1−ϵ

]
where (L− z)+ = max(L− z, 0). This is

the average of the worst (1− ϵ)% of outcomes.
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The evidential distribution can be interpreted as a higher-order distribution that captures model un-
certainty, and a lower-order realization of the evidential distribution, which is a normal distribution,
represents data uncertainty. We leverage this evidential distribution to construct our ambiguity set
and formulate distributionally robust safety constraints, enabling us to account for both model and
data uncertainties.

Definition 1. (EDL ambiguity set). Given a cumulative probability threshold ηi ∈ R and evidential
distribution parameter mi, the ambiguity set for axis i is defined as

Di(ηi|mi) :=

{
N (µ, σ2)|

∫
θ=(µ,σ2)

NIG(θ|mi)dθ = ηi

}
. (4)

For all axis, given η ∈ R and m = (m1, . . . ,mnc
), the ambiguity set D(η|m) is defined as

D(η|m) := {N (µ,Σ)|N (µi, σ
2
i ) ∈ Di( nc

√
η|mi),∀i}. (5)

EDL generates a dispersed evidential distribution under high model uncertainty and a concentrated
one when uncertainty is low, causing our ambiguity set to expand or contract accordingly. This
ensures that even with a fixed confidence level ηi, our approach automatically adapts its conserva-
tiveness based on the perception model’s uncertainty.

Next, we formulate the distributionally robust safety loss within this ambiguity set.

Definition 2. (DR-EDL-CVaR). The distributionally robust safety loss given EDL ambiguity set
D(η|m) is defined as

DR-EDL-CVaRD(η|m)
ϵ [ℓ(x, ξ)] := max

P∈D(η|m)
CVaRP

ϵ [ℓ(x, ξ)]. (6)

The safety loss ℓ is defined in (2). This formulation enhances the robustness of our control approach
by simultaneously addressing both types of uncertainty: data uncertainty through CVaR risk metric
at confidence level ϵ, and model uncertainty by optimizing against the worst-case CVaR within the
ambiguity set at confidence level η.

4 Our Proposed Method

4.1 Identification of the worst-case obstacle distribution

Because it is nontrivial to find the closed-form solution of the ambiguity set, we
define a surrogate ambiguity set, which facilitates calculating the worst-case loss.

Figure 1: Illustration of moment sets
(µi, σ

2
i ) for the original and surrogate

ambiguity sets along axis i. The worst-
case distributions within the original
and surrogate ambiguity sets are iden-
tified as P∗

i and Psur∗
i , respectively.

Definition 3. (Surrogate ambiguity set). Let Θ := {θ :
NIG(θ|mi) ≤ cth} denote a sublevel set that satis-
fies

∫
Θ
NIG(θ|mi)dθ = ηi. Let µi,min, µi,max and

σ2
i,min, σ

2
i,max be the extreme values of µ and σ2, respec-

tively, in Θ. Let Ii,µ := [µi,min, µi,max] and Ii,σ2 :=
[σ2

i,min, σ
2
i,max]. We define the surrogate ambiguity set

as

Dsur
i (ηi|mi) := {N (µ, σ2) : µ ∈ Ii,µ, σ2 ∈ Ii,σ2}.

(7)

This means that the surrogate ambiguity set is a set of
Gaussian distributions whose µ and σ2 lie in a rectangular
region Ii,µ × Ii,σ2 . The rectangular region Ii,µ × Ii,σ2

encloses the contour Θ, resulting in for any ηi and mi

Di(ηi|mi) ⊂ Dsur
i (ηi|mi). (8)
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It also implies that the cumulative probability of the NIG distribution at Ii,µ×Ii,σ2 is larger than ηi,
which makes the ambiguity set more conservative. In Fig. 1, the contour Θ that defines the original
ambiguity set and Ii,µ×Ii,σ2 that defines the surrogate ambiguity set are illustrated as a solid round
and a dashed rectangle, respectively.

Proposition 1. (Conservative surrogate ambiguity set solution). Given the surrogate ambiguity set
Dsur

i (ηi|mi), the distributionally robust safety loss satisfies

max
P∈D(η|m)

CVaRP
ϵ [ℓ(x(t), ξ)] ≤ (rx + rξ)2 −

nc∑
i

max
Pi∈Dsur

i (ηi|mi)
CVaRPi

ϵ [−|cxi − cξi |]
2.

Furthermore,

• If cxi ∈ Ii,µ,
max

Pi∈Dsur
i (ηi|mi)

CVaRPi
ϵ [−|cxi − cξi |] = κ · σi,min < 0,

where κ = 1
1−ϵ

√
2
π (exp (−[erf−1(ϵ− 1)]2) − 1) and erf−1(·) the inverse of the error

function.

• If cxi ∈ Ii,unsafe \ Ii,µ,

max
Pi∈Dsur

i (ηi|mi)
CVaRPi

ϵ [−|cxi − cξi |] ≤ κ · σi,min < 0,

where Ii,unsafe = [µi,min − δ · σi,max, µi,max + δ · σi,max] for δ =
1

1−ϵ
1√
2π

exp (−[erf−1(2ϵ− 1)]2) > 0.

• If cxi /∈ Ii,unsafe,

max
Pi∈Dsur

i (ηi|mi)
CVaRPi

ϵ [−|cxi − cξi |] < −|cxi − γi|+
µi,max − µi,min

2
+ δ · σi,max < 0,

where γi is given in the prediction result mi.

According to Proposition 1, the worst-case obstacle distribution varies depending on the ego vehicle
position cxi . A one-dimensional example is illustrated in Fig. 1. When the ego vehicle is distant from
the obstacle (cxi > µi,max + δσi,max), (an upper bound of) the optimal negative distance CVaR is
attained at Psur∗

i = N (µi,max, σ
2
i,max) (filled red circle) within the surrogate ambiguity set. Within

the original ambiguity set, P∗
i (empty red circle) denotes the worst-case obstacle distribution. In

contrast, when the ego vehicle is close to the obstacle (cxi ∈ Ii,unsafe), (an upper bound of) the
maximum negative distance CVaR is attained at Psur∗

i = N (cxi , σ
2
i,min) (filled green circle) within

the surrogate ambiguity set. Within the original ambiguity set, P∗
i (empty green circle) denotes the

worst-case distribution.

Proposition 1 describes how to identify the worst-case distribution Psur∗
i within the surrogate ambi-

guity set. Thus, we can directly find the worst-case obstacle distribution instead of focusing on the
distribution of the loss function.

However, calculating the extrema µi,min, µi,max, σi,min and σi,max given the confidence thresh-
old ηi remains computationally challenging, as it requires complex numerical optimization prob-
lems. To mitigate this issue, we employ standardized solutions. The NIG distribution consists of
the normal distribution and the inverse gamma distribution. These distributions have location pa-
rameter γi and scale parameter σi, βi. Therefore, we can transpose NIG(µi, σ

2
i |γi, λi, αi, βi) into

NIG(µz,i, σ
2
z,i|0, 1, αi, 1) using following relation:

µi = µz,i ·
√

βi

λi
+ γi, σi = σz,i ·

√
βi. (9)

The shape parameter αi remains unchanged as it is an intrinsic property of the distribution. The
contour of the transposed NIG distribution at confidence ηi is calculated using numerical integration

5



[18] and the extrema (µz,i,min, µz,i,max, σ
2
z,i,min, σ

2
z,i,max) are calculated using the Brent’s method

[19], which is a numerical root finding method. These extrema are computed offline and stored in the
lookup table Mα for different α ∈ [1.01, 10.00]. At execution time, the perception model estimates
the NIG distribution parameters mi, and the extrema are queried from Mα without computation
overhead. These extrema are transformed back to the extrema of the original distribution using
(9). Consequently, the standardized approach and Proposition 1 enables determining the worst-case
obstacle distribution Psur∗

i in a computationally tractable manner.

4.2 Conservative constraint for tractable MPC (DRO-EDL-MPC)

Figure 2: Estimated obstacle position (light blue
circle) may differ from the true obstacle po-
sition (green circle). By introducing ξEDL

(large blue rectangle), we enforce the constraint
ℓ(x, ξEDL) ≤ 0 (large blue circle), thereby satis-
fying the distributionally robust safety constraint.

The safety constraint can be formulated us-
ing the worst-case obstacle distribution derived
by Proposition 1. However, these constraints
vary depending on the ego position cxi , for ex-
ample, whether cxi ∈ Ii,µ, and thus translate
into a mixed-integer programming formulation,
which can be solved using the Big-M method
[20]. To avoid the Big-M approach, which can
be computationally expensive and prone to nu-
merical instability, we introduce a conservative
reformulation of the worst-case CVaR that is
continuous with the ego state, eliminating the
need for integer variables.

Proposition 2. (Constraint reformulation).
Given the perception results m, ϕξ, vξ, and bξ,
define ξEDL = (cξEDL , ϕξEDL , vξEDL) as

cξEDL

i := γi, ϕξEDL := ϕξ, vξEDL := vξ,

and its attribute bξEDL as

bξEDL

i := (µi,max − µi,min)/2 + δ · σi,max + rξ,

where δ is provided in Proposition 1. Then, for any x,

ℓ(x, ξEDL) ≤ 0 =⇒ DR-EDL-CVaRD(η|m)
ϵ [ℓ(x, ξ)] ≤ 0. (10)

This proposition defines a new obstacle, ξEDL, which provides a more conservative constraint that
is continuous with respect to cxi . Fig. 2 illustrates the perceived obstacle position, true obstacle
position and the use of ξEDL. Distributionally robust and feasible solutions can be found with
DRO-EDL-MPC, which integrates (12) into the MPC (3d).

5 Experiments

In this section, we validate the DRO-EDL-MPC algorithm in the CARLA simulator and demonstrate
its less conservative behavior under confident perception and more conservative behavior under
uncertain environment.

5.1 Experiment Settings

The objective of the ego vehicle is to reach its destination while avoiding collisions with obstacles.
The ego vehicle is equipped with a LiDAR and camera and uses the MEDL-U algorithm [17] as
the EDL model. It takes LiDAR point clouds, camera images, and 2D bounding box predictions
to predict 3D bounding boxes with uncertainty, represented as NIG distributions. We use YOLOv8
model [21] trained on COCO [22] to predict 2D bounding box and MEDL-U trained on the KITTI
dataset [23] using only the car class.
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To compare confident and uncertain perception scenarios, we conduct experiments with different
obstacle classes and sensor configurations. In the confident case, a car is used as the obstacle, and
the LiDAR is mounted on the ego vehicle at the same height as in the training setup, ensuring that
the input data remains in-distribution. In contrast, in the uncertain case, a motorcycle is used as
the obstacle, and the LiDAR is mounted at a different height, creating out-of-distribution inputs.
The EDL model estimates prediction uncertainty, allowing us to analyze how the distributionally
robust safety constraint varies with different levels of uncertainty. For simplicity, x and y positions
(cξ1, c

ξ
2) are considered with uncertainty distribution and z coordinate is ignored because the height

information of ground obstacles has minimal impact on collision avoidance.

We compare the following safety constraint baselines.

• (Single-Estimate) uses a single prediction of the obstacle state and thus a deterministic
safety constraint.

• (CVaR [11]) estimates the distribution of the obstacle state Pdata using 5 predictions, ob-
tains the distribution of loss Ploss using the unscented transform method, and formulates
the CVaR risk metric to the loss distribution.

• (W-DRO-CVaR [11]) enforces distributionally robust CVaR considering all distributions
whose Wasserstein distance from the loss distribution Ploss is within 0.1.

• (Moment-Based EDL [14]) enforces distributionally robust CVaR, utilizing the variance
of the moments V ar[µ], V ar[σ2] estimated from the EDL model as a confidence interval
of the ambiguity set with a confidence coefficient of 0.5.

• (DR-EDL-CVaR) is the proposed distributionally robust safety constraint with η = 0.9.

All stochastic methods use CVaR with ϵ = 0.9.

We evaluate all methods over 100 runs. Specifically, we measure a collision rate with obstacles and
a success rate of reaching the destination without collision. Among successful runs, we also report
the average total cost and the average minimum distance to the estimated obstacle center ∥cx−cξ∥2,
and the average optimization time.

5.2 Results

Table 1: Comparison in confident & uncertain scenarios
Scenario Method Succ.(%) ↑ Coll. (%) ↓ Cost ↓ Distance Time (ms) ↓

Confident

Single-Estimate 100 0 6.576× 105 2.625 220.5
CVaR 93 0 6.304× 1010 5.528 247.2

W-DRO-CVaR 29 0 3.786× 1011 7.672 1064
Moment-Based EDL 78 0 2.281× 107 2.640 219.7

DR-EDL-CVaR (Ours) 100 0 6.072× 107 5.032 203.5

Uncertain

Single-Estimate 0 100 - - 306.4
CVaR 72 28 1.352× 1011 6.756 229.7

W-DRO-CVaR 65 2 1.144× 1011 11.436 1168
Moment-Based EDL - - - - -

DR-EDL-CVaR (Ours) 95 2 6.831× 105 8.014 223.1

The results of the confident percep-
tion experiments are illustrated in
Fig. 3 (a) and Table 1. All meth-
ods accurately infer obstacle posi-
tions, thereby causing no collisions.
The Single-Estimate approach suc-
cessfully reaches destinations in all
runs while maintaining low cost and
minimal distance. In contrast, the CVaR and W-DRO-CVaR methods, which consider uncertainty
distributions, maintain larger distances from the obstacle. The W-DRO-CVaR method shows a low
success rate as it leads to overly conservative behavior and infeasibility due to the use of the un-
scented transform. The Moment-Based EDL method yields a similar conservative distance to the
Single-Estimate approach, but suffers from a low success rate. This is because it is only applicable
when perception is highly confident (α > 2). Our DR-EDL-CVaR approach formulates a small
ambiguity set for confident perception, resulting in less conservative behavior and a higher success
rate than CVaR and W-DRO-CVaR.

The results of uncertain perception experiments are shown in Fig. 3 (b) and Table 1. The uncertainty
stems from model uncertainty because the perception model encounters a motorbike despite being
trained only on the car class. The Single-Estimate and CVaR methods exhibit high collision rates due
to their inability to handle model uncertainty. In contrast, W-DRO-CVaR and our proposed method
consider model uncertainty using the ambiguity set, resulting in significantly lower collision rates.
The Moment-Based EDL method is inapplicable in all uncertain perception scenarios.
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Figure 3: Illustration of the compared methods and our proposed method in (a) confident and (b)
uncertain perception scenarios. Ego position (red), obstacle position (green), estimated obstacle
position (cyan), and safe boundary (blue) are visualized.

Our DR-EDL-CVaR method is the only one that operates less conservatively under confident percep-
tion and more conservatively under uncertain perception, ensuring both efficiency and safety across
varying perception confidence levels. These results confirm that our safety constraint formulation
proves effective for safe autonomous driving. Additionally, our method demonstrates a 5 times im-
provement in computational efficiency compared to the W-DRO-CVaR method while comparable to
other simpler approaches.

6 Conclusion

We have proposed a safe motion planning approach that integrates EDL-based perception in uncer-
tain environments. Our constraint formulation method, DR-EDL-CVaR, ensures safety through a
distributionally robust safety constraint that accounts for the estimated uncertainty. Additionally,
we have introduced DRO-EDL-MPC, a conservative yet tractable motion planning algorithm based
on the upper bound of the distributional robust safety loss and standardization of the NIG distribu-
tion. Experiments demonstrate that our approach is the only method that can produce safe motion
in out-of-distribution scenarios without additional training, while exhibiting low conservativeness in
in-distribution scenarios and achieving great efficiency compared to other methods. Our future work
will address multiple dynamic obstacles.
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A Proof of Proposition 1

Proposition 1. (Conservative surrogate ambiguity set solution). Given the surrogate ambiguity set
Dsur

i (ηi|mi), the distributionally robust safety loss satisfies

max
P∈D(η|m)

CVaRP
ϵ [ℓ(x(t), ξ)] ≤ (rx + rξ)2 −

nc∑
i

max
Pi∈Dsur

i (ηi|mi)
CVaRPi

ϵ [−|cxi − cξi |]
2.

Furthermore,

• If cxi ∈ Ii,µ,
max

Pi∈Dsur
i (ηi|mi)

CVaRPi
ϵ [−|cxi − cξi |] = κ · σi,min < 0,

where κ = 1
1−ϵ

√
2
π (exp (−[erf−1(ϵ− 1)]2) − 1) and erf−1(·) the inverse of the error

function.

• If cxi ∈ Ii,unsafe \ Ii,µ,

max
Pi∈Dsur

i (ηi|mi)
CVaRPi

ϵ [−|cxi − cξi |] ≤ κ · σi,min < 0,

where Ii,unsafe = [µi,min − δ · σi,max, µi,max + δ · σi,max] for δ =
1

1−ϵ
1√
2π

exp (−[erf−1(2ϵ− 1)]2) > 0.

• If cxi /∈ Ii,unsafe,

max
Pi∈Dsur

i (ηi|mi)
CVaRPi

ϵ [−|cxi − cξi |] < −|cxi − γi|+
µi,max − µi,min

2
+ δ · σi,max < 0,

where γi is given in the prediction result mi.

Proof. The worst-case CVaR of the safety loss (2) is

max
P∈D(η|m)

CVaRP
ϵ [ℓ(x(t), ξ)]

= (rx + rξ)2 + max
P∈D(η|m)

CVaRP
ϵ [−

nc∑
i

|cxi − cξi |
2]

≤ (rx + rξ)2 −
nc∑
i

max
Pi∈Dsur

i (ηi|mi)
CVaRPi

ϵ [−|cxi − cξi |]
2 (11)

The equality holds as the axes of the obstacle distribution are independent of each other and by
Lemma 2(a) and (8).

We will derive the upper bound of maxPi∈Dsur
i (ηi|mi) CVaRPi

ϵ [−|cxi −cξi |] that is strictly negative and
thus minimizes the squared term in (11). The difference Xd = cxi −cξi follows the normal distribution
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N (cxi − µi, σ
2
i ) when cξi follows Pi = N (µi, σ

2
i ). We denote µd := cxi − µi and σ2

d := σ2
i . The

distance |Xd| follows a folded normal distribution. By Lemma 2(b), CVaRPi
ϵ [−|Xd|], referred to as

the negative distance CVaR, is a monotonically decreasing function with respect to |µd|, and thus,
its maximum is attained when |µd| is minimized.

If cxi ∈ Ii,µ, |µd| = 0 maximizes the negative distance CVaR. The distribution of −|Xd| is a
half-normal distribution, and the negative distance CVaR is κ · σi by Lemma 2(c). Therefore, the
distribution Pi = N (cxi , σ

2
i,min), which lies in the surrogate ambiguity set Dsur

i (ηi|mi), yields the
maximum negative distance CVaR of κ · σi,min.

If cxi ∈ Ii,unsafe\Ii,µ, the mean |µd| of |Xd| is larger than 0 because the mean µi of cξi is confined in
Ii,µ. Because the maximum negative distance CVaR decreases with respect to |µd| by Lemma 2(b),
it is no larger than κ · σi,min.

If cxi /∈ Ii,unsafe, when µd > 0, the ϵ-quantile of the distribution of Xd, i.e., VaRPi
ϵ [Xd], is

a positive value by construction of Ii,unsafe, in particular the definition of δ. Similary, when
µd < 0, VaRPi

ϵ [Xd] < 0 by construction of Ii,unsafe. Under this condition, Lemma 2(d) tells
that maxPi −|µd| + δ · σd > maxPi CVaRPi

ϵ [−|Xd|]. The maximum of −|µd| + δ · σd is attained
at σd = σi,max because δ > 0 and |µd| = |cxi − µi,min| when cxi < µi,min − δσi,max or at
σd = σi,max and |µd| = |cxi − µi,max| when cxi > µi,max + δ · σi,max. Using γi, which is the
center of [µi,min, µi,max], we can represent such optimal |µd| as |cxi − γi| − (µi,max − µi,min)/2.
Therefore, −|cxi − γi|+ (µi,max − µi,min)/2 + δ · σi,max > maxPi

CVaRPi
ϵ [−|Xd|] and this upper

bound is negative because cxi /∈ Ii,unsafe and by construction of Ii,unsafe.

B Proof of Proposition 2

Proposition 2. (Constraint reformulation). Given the perception results m, ϕξ, vξ, and bξ, define
ξEDL = (cξEDL , ϕξEDL , vξEDL) as

cξEDL

i := γi, ϕξEDL := ϕξ, vξEDL := vξ,

and its attribute bξEDL as

bξEDL

i := (µi,max − µi,min)/2 + δ · σi,max + rξ,

where δ is provided in Proposition 1. Then, for any x,

ℓ(x, ξEDL) ≤ 0 =⇒ DR-EDL-CVaRD(η|m)
ϵ [ℓ(x, ξ)] ≤ 0. (12)

Proof. Suppose cxi ∈ Ii,unsafe for i = 1, . . . , nin and cxi /∈ Ii,unsafe for i ∈ nin + 1, . . . , nc. By
Proposition 1,

max
P∈D(η|m)

CVaRP
ϵ [ℓ(x, ξ)]

≤(rx + rξ)2 −
nin∑
i=1

(κ · σi,min)
2 −

nc∑
i=nin+1

(|cxi − γi| − hi)
2,

where hi = (µi,max − µi,min)/2 + δ · σi,max. We denote the right-hand side by f(x).

Let us define a new obstacle state ξ̃ = (cξ̃, ϕξ̃, vξ̃) with cξ̃ = γi, ϕ
ξ̃ = ϕξ, vξ̃ = vξ, ||bξ̃i ||22 =

rξ +
√∑nc

i h2
i , and let

g(x) := ℓ(x, ξ̃) = (rx + rξ +
√∑nc

i h2
i )

2 −
∑nc

i (|cxi − γi|)2.

Note that ξ̃ is the same as ξEDL except that the attribute bξEDL

i = rξ+hi incorporates the uncertainty
margin hi directly into the size of the obstacle.

Given feasible sets F := {x|f(x) ≤ 0} and G := {x|g(x) ≤ 0}, we aim to show G ⊆ F .
Let v⃗(x) := (|cx1 − γ1|, . . . , |cxnc

− γnc
|), h⃗ := (h1, . . . , hnc

) and s(x) := (min(h1, |cx1 −

11



γ1|), ...,min(hnc , |cxnc
− γnc |)). Then,

∥v⃗(x)∥2 ≤ ∥s⃗(x)∥2 + ∥v⃗(x)− s⃗(x)∥2

≤ ∥h⃗∥2 +
√∑nc

i=nin+1 (|cxi − γi| − hi)2. (13)

The first inequality is by the triangle inequality, and the second inequality is because ∥s⃗(x)∥2 ≤
∥h⃗∥2 by definition and si(x) = |cxi − γi| for i = 1, . . . , nin and hi for i = nin + 1, . . . , nc.

Now, if f(x) > 0, we have (rx+ rξ)2−
∑nc

i=nin+1(|cxi −γi|−hi)
2 > 0 because (κ ·σi,min)

2 ≥ 0.
Therefore, (13) becomes ∥v⃗(x)∥2 < ∥h⃗∥2 + (rx + rξ), and this leads to g(x) > 0. This showed
F c ⊆ Gc and therefore G ⊆ F . This implies that g(x) ≤ 0 is more conservative than the original
constraint f(x) ≤ 0.

To facilitate a simpler and more tractable representation of the obstacle attribute, we define the
obstacle ξEDL with bξEDL

i = rξ + hi. This makes the radius rξEDL = ∥rξ + h⃗∥2 ≥ rξ + ∥h⃗∥2 and
thus ℓ(x, ξEDL) ≥ ℓ(x, ξ̃). Therefore, ℓ(x, ξEDL) ≤ 0 =⇒ ℓ(x, ξ̃) ≤ 0 =⇒ f(x) ≤ 0 =⇒
DR-EDL-CVaRD(η|m)

ϵ [ℓ(x, ξ)] ≤ 0.

C Properties of the Value-at-Risk

Lemma 1. (Properties of the Value-at-Risk). Given a random variable X ∼ P = N (µ, σ2) and a
threshold ϵ ∈ [0, 1), the following holds.

(a) VaRP
ϵ [−|X|2] = −VaRP

ϵ [−|X|]2

(b) For Y = −|X| with a fixed σ2,

dVaRP
ϵ [Y ]

dµ
=

ϕ(
VaRP

ϵ[Y ]−µ
σ )− ϕ(

−VaRP
ϵ[Y ]−µ
σ )

ϕ(
VaRP

ϵ[Y ]−µ
σ ) + ϕ(

−VaRP
ϵ[Y ]−µ
σ )

,

where ϕ is the probability density function of the standard normal distribution.

(c) VaRP
ϵ [−|X|] =

√
2σ · erf−1(ϵ− 1)

(d) VaRP
ϵ [X] > VaRP

ϵ [−|X|]

Proof. (a)

P [−|X| ≤ VaRP
ϵ [−|X|]] = ϵ,

P [−|X|2 ≤ VaRP
ϵ [−|X|2]] = ϵ

⇔P [|X| ≥
√
−VaRP

ϵ [−|X|2]] = ϵ

⇔P [−|X| ≤ −
√
−VaRP

ϵ [−|X|2]] = ϵ.

∴ VaRP
ϵ [−|X|2] = −VaRP

ϵ [−|X|]2

(b) Let FY (y) and fY (y) be the cumulative probability distribution and the probability density
function of a random variable Y , respectively. Let us similarly define FX(x) and fX(x) for a random
variable X . Also, let Φ be the cumulative distribution function of the standard normal distribution.
For simplicity, we denote VarPϵ [Y ] by k(µ), which is also a function of σ but we consider it as a
constant.
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By definition of VaR, we have

ϵ = FY (k(µ)) =

∫ k(µ)

−∞
fY (y)dy

=

∫ k(µ)

−∞
(fX(x) + fX(−x))dx

=

∫ k(µ)

−∞
fX(x)dx+

∫ k(µ)

−∞
fX(−x)dx.

Let t = −x. Then,

FY (k(µ)) =

∫ k(µ)

−∞
fX(x)dx+

∫ −k(µ)

∞
fX(t)(−dt)

=

∫ k(µ)

−∞
fX(x)dx−

∫ −k(µ)

∞
fX(x)dx

= Φ

(
k(µ)− µ

σ

)
− Φ

(
−k(µ)− µ

σ

)
+ 1.

Because ϵ = FY (k(µ)), we have dFY (k(µ))
dµ = 0. This leads to

ϕ

(
k(µ)− µ

σ

)
·
(
dk(µ)

dµ
− 1

)
1

σ
− ϕ

(
−k(µ)− µ

σ

)
·
(
−dk(µ)

dµ
− 1

)
1

σ
= 0.

Then

dk(µ)

dµ
=

ϕ
(

k(µ)−µ
σ

)
− ϕ

(
−k(µ)−µ

σ

)
ϕ
(

k(µ)−µ
σ

)
+ ϕ

(
−k(µ)−µ

σ

) .
This concludes the proof.

(c) Let −|X| = Y . Then the probability density function of Y is

fY (y) = fX(x) + fX(−x) =

√
2

σ
√
π
exp(− y2

2σ2
), y ≤ 0.

And the cumulative distribution function of Y is

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞

√
2

σ
√
π
exp(− t2

2σ2
)dt.

Meanwhile,

FY (0) =

∫ 0

−∞
fY (t)dt = 1

because Y is defined in (−∞, 0]. Then

FY (0) =

∫ y

−∞
fY (t)dt+

∫ 0

y

fY (t)dt

=

∫ y

−∞
fY (t)dt−

∫ y

0

fY (t)dt.

Therefore, ∫ y

−∞
fY (t)dt = 1 +

∫ y

0

fY (t)dt

= 1 +

∫ y

0

√
2

σ
√
π
exp(− t2

2σ2
)dt.
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Let t/
√
2σ = k. Then

FY (y) = 1 +

√
2

σ
√
π

∫ y/
√
2σ

0

exp(−k2) ·
√
2σdk

= 1 +
2√
π

∫ y/
√
2σ

0

exp(−k2)dk

= 1 + erf(y/
√
2σ).

VaRP
ϵ [Y ] is the value of y when FY (y) = ϵ. Therefore,

VaRP
ϵ [Y ] =

√
2σ · erf−1(ϵ− 1).

(d) Let VaRP
ϵ [X] = k,VaRP

ϵ [−|X|] = k′. By definition,∫ ∞

k

fX(x)dx = 1− ϵ =

∫ 0

k′
f−|X|(x)dx.

Also, ∫ ∞

k

fX(x)dx =

∫ 0

k

fX(x)dx+

∫ −k

0

fX(x)dx+

∫ ∞

−k

fX(x)dx

=

∫ 0

k

fX(x)dx+

∫ 0

k

fX(−x)dx+

∫ ∞

−k

fX(x)dx

=

∫ 0

k

f−|X|(x)dx+

∫ ∞

−k

fX(x)dx.

Therefore,∫ ∞

−k

fX(x)dx > 0 =⇒
∫ 0

k′
f−|X|(x)dx−

∫ 0

k

f−|X|(x)dx =

∫ k

k′
f−|X|(x)dx > 0.

Therefore, VaRP
ϵ [X] > VaRP

ϵ [−|X|].

D Properties of the Conditional Value-at-Risk

Lemma 2. (Properties of the Conditional Value-at-Risk). Given a random variable X ∼ P =
N (µ, σ2) and a threshold ϵ ∈ [0, 1), the following holds.

(a) CVaRP
ϵ [−|X|2] ≤ −CVaRP

ϵ [−|X|]2

(b) For a fixed σ2, CVaRP
ϵ [−|X|] is monotonically decreasing with respect to |µ|.

(c) If µ = 0, then CVaRP
ϵ [−|X|] = κ · σ,

where κ = 1
1−ϵ

√
2/π[exp(−[erf−1(ϵ− 1)]2)− 1].

(d) If VaRP
ϵ [X] > 0 ∧ µ > 0, or VaRP

ϵ [X] < 0 ∧ µ < 0, then −|µ|+ δ · σ > CVaRP
ϵ [−|X|].

Proof. (a)

CVaRP
ϵ [−|X|2] = E[−|X|2 : −|X|2 ≥ VaRP

ϵ [−|X|2]] (14)

= E[−|X|2 : −|X|2 ≥ −VaRP
ϵ [−|X|]2] (15)

= E[−|X|2 : |X| ≤ −VaRP
ϵ [−|X|]] (16)

= −E[|X|2 : |X| ≤ −VaRP
ϵ [−|X|]] (17)

≤ −E[−|X| : |X| ≤ −VaRP
ϵ [−|X|]]2 (18)

= −E[−|X| : −|X| ≥ VaRP
ϵ [−|X|]]2 (19)

= −CVaRP
ϵ [−|X|]2. (20)
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Equation (15) holds by Lemma 1 (a), and inequality (18) holds by Jensen’s inequality.

(b) With the same notations used in the proof of Lemma 1 (b), we have

CVaRP
ϵ [Y ] = E[Y : Y ≥ k(µ)] =

1

1− ϵ

∫ 0

k(µ)

yfY (y)dy

=
1

1− ϵ

∫ 0

k(µ)

x(fX(x) + fX(−x))dx

=
1

1− ϵ

[∫ 0

k(µ)

xfX(x)dx+

∫ 0

−k(µ)

tfX(t)dt

]

=
1

1− ϵ

[∫ 0

k(µ)

xfX(x)dx−
∫ −k(µ)

0

xfX(x)dx

]
.

Let a(µ), b(µ) be functions with respect to µ, and standardized random variable Z = (X − µ)/σ.
Then,∫ b(µ)

a(µ)

xfX(x)dx =

∫ b(µ)−µ
σ

a(µ)−µ
σ

(µ+ σ · z) 1
σ
ϕ(z)σdz = µ

∫ b(µ)−µ
σ

a(µ)−µ
σ

ϕ(z)dz + σ

∫ b(µ)−µ
σ

a(µ)−µ
σ

zϕ(z)dz.

With za(µ) =
a(µ)−µ

σ and zb(µ) =
b(µ)−µ

σ , the derivative with respect to µ is

d

dµ

∫ b(µ)

a(µ)

xfX(x)dx =

[∫ zb(µ)

za(µ)

ϕ(z)dz + µ · {ϕ(zb(µ)) · z′b(µ)− ϕ(za(µ)) · z′a(µ)}

]
+ σ [zb(µ)ϕ(zb(µ))z

′
b(µ)− za(µ)ϕ(za(µ))z

′
a(µ)]

=

∫ zb(µ)

za(µ)

ϕ(z)dz + b(µ)ϕ(zb(µ))z
′
b(µ)− a(µ)ϕ(za(µ))z

′
a(µ).

Using this result and letting zk(µ) =
k(µ)−µ

σ , z−k(µ) =
−k(µ)−µ

σ and z0(µ) =
−µ
σ , we can express

the derivative of CVaRP
ϵ [Y ] with respect to µ as follows.

(1−ϵ)
d

dµ
CVaRP

ϵ [Y ] =
d

dµ

[∫ 0

k(µ)

xfX(x)dx−
∫ −k(µ)

0

xfX(x)dx

]

=

∫ z0(µ)

zk(µ)

ϕ(z)dz − k(µ) · ϕ(zk(µ)) · z′k(µ)−
∫ z−k(µ)

z0(µ)

ϕ(z)dz −
[
(−k(µ)) · ϕ(z−k(µ)) · z′−k(µ)

]
=

∫ z0(µ)

zk(µ)

ϕ(z)dz −
∫ z−k(µ)

z0(µ)

ϕ(z)dz − k(µ)
[
ϕ(zk(µ)) · z′k(µ)− ϕ(z−k(µ)) · z′−k(µ)

]
.

Because

z′k(µ) =
k′(µ)− 1

σ
, z′−k(µ) =

−k′(µ)− 1

σ
,

and by Lemma 1 (b),

k′(µ) =
dk(µ)

dµ
=

ϕ(zk(µ))− ϕ(z−k(µ))

ϕ(zk(µ)) + ϕ(z−k(µ))
,

we have ϕ(zk(µ)) · z′k(µ)− ϕ(z−k(µ)) · z′−k(µ) = 0. Therefore,

d

dµ
CVaRP

ϵ [Y ] =
1

1− ϵ

[∫ −µ
σ

k(µ)−µ
σ

ϕ(z)dz −
∫ −k(µ)−µ

σ

−µ
σ

ϕ(z)dz

]
.

Note that for any b ≤ 0,
∫ a

a+b
ϕ(z)dz >

∫ a−b

a
ϕ(z)dz if a > 0 and

∫ a

a+b
ϕ(z)dz <

∫ a−b

a
ϕ(z)dz if

a < 0. Therefore,
d

dµ
CVaRP

ϵ [Y ] < 0 for µ > 0.
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and

d

dµ
CVaRP

ϵ [Y ] > 0 for µ < 0.

That is, CVaRP
ϵ [Y ] is monotonically decreasing with respect to |µ|.

(c) Let −|X| = Y and VaRϵ[Y ] = k. Then

CVaRP
ϵ [Y ] = E[Y : Y ≥ k]

=
1

1− ϵ

∫ 0

k

yfY (y)dy

=
1

1− ϵ

∫ 0

k

y ·
√
2√
πσ

exp(− y2

2σ2
)dy.

Let y/
√
2σ = u, y =

√
2σu, dy =

√
2σdu. Then

=
1

1− ϵ

∫ 0

k/
√
2σ

√
2σu ·

√
2√
πσ

exp(−u2)
√
2σdu

=
1

1− ϵ
· 2

√
2√
π
σ

∫ 0

k/
√
2σ

u · exp(−u2)du

=
1

1− ϵ
· 2

√
2√
π
σ

[
−1

2
exp(−u2)

]0
k/

√
2σ

=
1

1− ϵ
·
√
2√
π
σ

[
exp(−

[
k/

√
2σ

]2
)− 1

]

=
1

1− ϵ
·
√
2√
π
σ

exp(−[√
2σ · erf−1(ϵ− 1)√

2σ

]2

)− 1


=

1

1− ϵ
·
√
2√
π
σ
[
exp(−[erf−1(ϵ− 1)]2)− 1

]
= κ · σ,

where k =
√
2σ · erf−1(ϵ− 1) by Lemma 1 (c) and κ = 1

1−ϵ

√
2/π

[
exp(−[erf−1(ϵ− 1)]2)− 1

]
.
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(d) If µ < 0 and VaRP
ϵ [X] = k < 0, then

CVaRP
ϵ [X] = E[X|X ≥ k]

=
1

1− ϵ

∫ ∞

k

xfX(x)dx

>
1

1− ϵ

∫ −k

k

xfX(x)dx

=
1

1− ϵ
[

∫ 0

k

xfX(x)dx+

∫ −k

0

xfX(x)dx]

=
1

1− ϵ
[

∫ 0

k

xfX(x)dx+

∫ k

0

xfX(−x)dx]

=
1

1− ϵ
[

∫ 0

k

xfX(x)dt−
∫ 0

k

xfX(−x)dx]

≥ 1

1− ϵ
[

∫ 0

k

xfX(x)dt+

∫ 0

k

xfX(−x)dx]

=
1

1− ϵ

∫ 0

k

x(fX(−x) + fX(x))dx

=
1

1− ϵ

∫ 0

k

xf−|X|(x)dx

≥ 1

1− ϵ

∫ 0

VaRP
ϵ[−|X|]

xf−|X|(x)dx

= E[−|X| : −|X| ≥ VaRP
ϵ [−|X|]]

= CVaRP
ϵ [−|X|].

The last inequality is because k > VaRP
ϵ [−|X|] by Lemma 1 (d). Therefore, CVaRP

ϵ [X] = µ+δ·σ >
CVaRP

ϵ [−|X|].

Similarly, if µ > 0 and VaRP
ϵ [X] > 0, the mean of −X is smaller than zero and VaRP

ϵ [−X] < 0.
Thus, we can use the inequality that we derived in the preceding paragraph, that is,

CVaRP
ϵ [−X] > CVaRP

ϵ [−|X|].

Because X has a symmetric distribution about the mean µ, we have −VaRP
ϵ [−X] = VaRP

1−ϵ[X].
Also, CVaRP

1−ϵ[X] = E[X : X ≥ VaRP
ϵ [X]] = µ− δ · σ by [24]. Thus,

CVaRP
ϵ [−X] = E[−X : −X ≥ VaRP

ϵ [−X]]

= −E[X : X ≤ −VaRP
ϵ [−X]]

= −E[X : X ≤ VaRP
1−ϵ[X]]

= −(µ− δ · σ).

Therefore, if VaRP
ϵ [X] > 0∧µ > 0 or VaRP

ϵ [X] < 0∧µ < 0, then −|µ|+δ ·σ > CVaRP
ϵ [−|X|].
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