Under review as submission to TMLR

Transformers in the Dark: Navigating Unknown
Search Spaces via Bandit Feedback

Anonymous authors
Paper under double-blind review

Abstract

Effective problem solving with Large Language Models (LLMs) can be enhanced when they
are paired with external search algorithms. By viewing the space of diverse ideas and their
follow-up possibilities as a tree structure, the search algorithm can navigate such a search
space and guide the LLM toward better solutions more efficiently. While the search algo-
rithm enables an effective balance between exploitation and exploration of a tree-structured
space, the need for an external component can complicate the overall problem-solving pro-
cess. We therefore pose the following question: can LLMs or their underlying Transformer
architectures approzimate a search algorithm? To answer this question, we first introduce a
simplified framework in which tree extensions and feedback signals are externally specified,
allowing for controlled evaluation of search capabilities. We call this setting unknown tree
search with bandit feedback. Within this setting, we show that Transformers are theoretically
expressive enough to implement distinct search strategies and can be trained from scratch to
approximate those strategies. Our Transformer models exhibit the possibility of generalizing
to unseen conditions such as longer horizons or deeper trees. Furthermore, we demonstrate
that continued task-focused training unlocks the complete capabilities of a pretrained LLM,
by fine-tuning the LLM on search trajectories.

1 Introduction

Effective problem solving often follows an iterative process of (i) generating diverse idea candidates, (ii) se-
lecting the most promising one to pursue, and (iii) evaluating its potential. Large Language Models
(LLMs) (Brown et al.l 2020; Llama Team, AT @ Meta) 2024; | Abdin et al [2024)), including reasoning-focused
variants (DeepSeek-All 2025} |Gemini Team, Google), 2025 |OpenAl, 2025b)), suggest that these systems may
implicitly implement such a process, as visualized in Figure Moreover, as discussed in previous litera-
ture (Yao et al., 2023a; [Hao et al., 2023} |Zhou et al.l [2024), this problem-solving process can be enhanced
when LLMs are paired with external search algorithms. By treating the space of diverse ideas and their
follow-up possibilities as a tree-structured space, the search algorithm navigates this search space, allowing it
to efficiently guide the LLM toward better solutions. While the search algorithm lets the model exploit and
explore effectively, relying on an external component can complicate the overall problem-solving process.

We therefore raise the following research question:
Can LLMs or their underlying Transformer architectures approximate a search algorithm?

To address this question, we introduce unknown tree search with bandit feedback, a simplified framework where
search space expansions are provided externally and rewards are given as bandit feedback, as presented in
the table shown in Figure[ll By removing self-generated structures, this setup isolates the model’s ability to
balance exploitation and exploration during selection, enabling controlled evaluation of LLM behavior under
uncertainty. Thus, this provides a rigorous foundation for assessing whether LLMs genuinely implement
structured search and how their strategies operate in such settings.

Within this setting, we show that, theoretically, Transformers are expressive enough to represent a wide
range of search strategies, and empirically, they can be trained from scratch to imitate such strategies and



Under review as submission to TMLR

Prompt i
P You are given the numbers {4, 7, 8, 8}. Using +, —, x, +, combine all the Expansmn of {4,7,8,8}
o numbers exactly once to make 24. Walk me through your steps and explore Next Steps
a few different possibilities.

8+8=16 = 7x4=28 8-4=4
— /L N
[ {4,7,16} ] [ {28, 8, 8} ] [ 4,7,8 ] [ @4,7,1} ]

Let's try several different first moves.
1.8+8=16—{4,7, 16}
-16 + 7 = 23, then {4, 23} — can't reach 24.

-16-7=9, then {4, 9} — gives 36 or 5, not helpful. Selection of
2.7x4=28— {288, 8). the Next Step

- 28 -8 =20, then {20, 8} — results in 28 or 12.

Response - 28 + 8 = 3.5, — fractional and unpromising. 8+8=16  7x4=28 g-4=4 T 8re=t
3.8-4=4-1{4,7,8). — L N T~
@ -Then 7 + 4 = 11, with {11, 8} — leads to 19 or 88, not 24. [ 7,16} ] [ {28,8,8 ] [ 478 ] [ “7.1 ]

-7 x 4 = 28, — back to an oversized number.

482821247 1) Evaluation of
-7—1=86, then {4, 6} — could combine further. Its Potential
-7 +1=8, then {4, 8} — leads to 32 or 12, not 24.

Most of these paths either overshoot or stall, but (8 + 8 = 1) seems the most ‘}W =16 7 ;= 22 g= 4;4 ™ 8+ 8;‘

promising to explore further.

/ [ {4,7,16} ] [ {28, 8, 8} ] [ {4,7,8} ] [ {4,7,1} ]

(a) Effective problem solving with an LLM where a prompt on a game of 24 is given

LLM-Guided Tree Search Unknown Tree
Tree Search with External Search with
Search Bandit Feedback
Expansion LLM LLM Externally given - .
Selection LLM External search LLM or Transformer = 0.0 . ' o1 . . |
Evaluation LLM LLM Externally given \m,\\w\““\“ ool \‘\‘\_ [UEr et A b TS

(b) Comparison of our problem formulation to existing (c) Results of reference search algorithms (blue text) and
problem formulations existing LLMs (red text)

Figure 1: Our perspective on effective problem solving as an iterative process of three phases. Given a prompt
that describes a simple problem, i.e., a game of 24, an LLM generates several possible steps, selects the next
step, and finally evaluates its potential. Repeating this cycle constructs a tree-structured search space,
where each branch represents a potential path of problem solving. This example is obtained by GPT-5, and
paraphrased to clearly illustrate our definition of effective problem solving. Under this perspective, existing
problem formulations and our problem formulation (highlighted in gray) are summarized in Figure
Specifically, our formulation assumes that next step selection is carried out by an LLM or a Transformer
while state expansion and state evaluation are externally given. Figure|[lc/shows the results on multi-reward
tree search with binary trees of depth 6 and 8 different goal states; refer to Sections [5] and [E] for the
details of the metric and the experiment, respectively. Existing LLMs are inferior to some of the established
algorithms, and Qwen3-8B Thinking is even worse than uniform leaf sampling, which is a naive strategy.

to exhibit the possibility of generalizing beyond the training distribution, for example to longer horizons
or deeper trees. However, existing LLMs are still limited in our simple setting, as shown in Figure We
compare them to the uniform and greedy leaf sampling strategies and the variant of Monte Carlo Tree Search
(MCTS) (Sutton & Barto, [2018) in terms of max-reward hit rate; see Sections [3.2]and [5| for the details of the
search algorithms and the metric, respectively. The LLMs tested in this setting underperform compared to
the established search algorithms. In particular, Qwen3-8B is on par with the uniform leaf sampling, which
is a nalve search algorithm, while Qwen3-8B Thinking performs even worse.

The observed performance gap indicates that current LLMs still have limited search capabilities, making
them less effective as problem-solving agents when search is the core challenge. To fully realize their potential,
targeted training is required. Our experiment with fine-tuned Qwen3-8B (Qwen Team| 2025)) shows that
training specifically designed for search under uncertainty significantly enhances LLM effectiveness compared
to an LLM-only method.

We summarize our contributions as follows:



Under review as submission to TMLR

¢ We introduce unknown tree search with bandit feedback, a simplified and controlled setting that captures
the essence of problem solving by externalizing both expansions and feedback;

o We provide a theoretical analysis showing that Transformers are expressive enough to represent distinct
strategies and conduct empirical studies demonstrating that Transformers trained with these strategies
can perform the approximation of behavior cloning and generalization to unseen conditions;

o We demonstrate that additional training explicitly designed for search under uncertainty improves LLM
performance, mitigating the gap relative to specialized algorithms.

2 Related Work
In this section, we briefly review the background and related work relevant to this paper.

Blind and Uninformed Search Blind or uninformed search refers to algorithms that explore a search
space without heuristic guidance or prior knowledge of its structure (Russell & Norvig, |2010). Classical
methods such as Breadth-First Search (BFS), Depth-First Search (DFS), and uniform-cost search system-
atically enumerate nodes, guaranteeing completeness and, in some cases, optimality, but scale poorly in
large or sparse environments due to their inability to incorporate feedback during search (Russell & Norvig]
@D. Modern extensions introduce adaptivity via stochastic sampling and online feedback. MCTS (Sutton|
& Barto, [2018)), particularly upper confidence bounds applied to trees (UCT) (Kocsis & Szepesvaril, 2006),
balances exploration and exploitation by applying bandit principles to tree expansion and has proven highly
effective in diverse domains such as Go (Silver et al.|[2016) and Atari games (Mnih et al [2013). Bandit-based
tree search has been further studied in the context of regret minimization and sample complexity

et al 2011).

Learning-Based Planning It denotes training models to acquire planning abilities from data, allow-
ing them to generate action sequences or policies for solving tasks under uncertainty without hand-crafted
search. MuZero learns both dynamics model and search policy directly from interaction, achieving strong
performance without access to game rules (Schrittwieser et al., 2020). [Valmeekam et al| (2023a) propose
benchmarks for evaluating LLMs on planning and reasoning, and given existing pretrained LLMs such as
GPT-3.5 and GPT-4 (OpenAlI, 2023), [Valmeekam et al.| (2023b) analyze their planning abilities. [Chen et al.|
predict actions given the history of states, actions, and rewards, using the Transformer architecture.
In addition, historical episodes are collected from a source RL algorithm and then they are used to autore-
gressively train a Transformer model (Laskin et al., 2023)), which is called algorithmic distillation. Recent
studies (Lehnert et al. 2024; Nolte et al., [2024; Su et al., 2025) propose intriguing methods to train the
Transformer-based model on the traces of A* search. In particular, the method by Nolte et al| (2024) is
capable of controlling Transformers’ outputs using either fast or slow mode. This line of research provides
the entire environment to the models, unlike our problem formulation. Beyond a framework with reasoning
and acting (Yao et al., [2023b), |Zhou et al|(2024) make use of the MCTS algorithm in decision-making with
LLMs. Kambhampati et al| (2024) introduce the LLM-Modulo framework, in which LLMs generate ideas
and serve as external critics.

Reasoning Abilities of LLMs Popular LLMs (DeepSeek-AlL, 2025; Gemini Team, Google} |2025; OpenAl
enhance its performance using a reasoning mechanism. [Lightman et al| (2024) compare outcome-
supervised and process-supervised reward models for guiding a pretrained LLM’s chain-of-thought reasoning,
showing that step-level supervision yields more reliable reasoning. [Dziri et al.| (2023) find that Transformers
encounter limitations in compositional multi-step reasoning, leading to performance degradation as task
complexity increases. show that the reward models trained on easier problems can generalize
to supervise harder ones, enabling scalable alignment without direct human feedback. [Snell et al| (2025)
investigate that allocating inference-time compute effectively can improve LLM performance, comparing
larger models under equal budgets. Han et al.| (2025) introduce a framework that dynamically considers
chain-of-thought token budgets relative to the complexity of each problem, reducing the number of tokens
with minimal loss in accuracy. Khalifa et al.|(2025]) propose ThinkPRM, a generative chain-of-thought process




Under review as submission to TMLR

reward model that, with limited step-level supervision, surpasses both LLM-as-a-judge and discriminative
PRMs on several benchmarks.

3 Problem Formulation and Model Interfaces

Each problem instance is defined by a finite, rooted search tree T = (S, N) with maximum depth D, where S
is a finite set of states and N : S — 2° is a successor function mapping each state to its children. We assume
a bounded reward function r : & — [0,1] and define the set of goal states as Sgon1 = {s € S : r(s) > 0},
requiring each goal state to be a leaf node in 7. Goal states are assumed to be sparse, i.e., |Sgoal| < [S],
with most states yielding zero reward, reflecting realistic scenarios where solutions are rare. Importantly,
the tree 7 constitutes the underlying search space, which remains hidden from the search agent.

We define the value of a state s under a uniformly random rollout policy as follows:
V(s) = Efrumf[T(Sleaf) | Sstart = 3}7 (1)

where my,ir denotes a uniform random traversal policy through the tree, and sje.s represents the leaf state
reached after traversing from the initial state sstart = s. To simulate real-world scenarios where exact feedback
is unavailable, we approximate V' (s) by a random variable V(s). Each realization of V (s) is obtained via a
Monte Carlo or heuristic estimate of V(). For example, the Monte Carlo estimate is generated by performing
k independent rollouts using munir. On the other hand, in our experiments with pretrained or fine-tuned
LLMs on “real-world” search trees, we adopt a more practical formulation of V(s), which requires internal
estimation. Specifically, we can prompt the LLM to directly estimate state values, e.g., by producing a score
between 0 and 1. These realizations serve as noisy bandit feedback signals received by the search agent.

Given the above setup, the agent-environment interaction occurs over T steps, where T' < |S|. Starting from
the root state sg, at each step t, the environment reveals the children N(s;) and a sampled rollout value
vy ~ V(s¢). We define the frontier of unvisited child states as follows:

t
Ft:(UN(Si))\{SO;Slv--wSt}a (2)
i=0
the search agent selects the state for the next step, s;+1 € F}, according to its policy:
7T(' | 50, V0, N(SO)7 51, V1, N(SI)J <oy Sty Uty N(St)) (3)

After T steps, we obtain a completed search trajectory 7:

T = [(507v03 N(SO))v (517U17 N(Sl))7 LR ('STvUT,N(ST))]' (4)

We evaluate 7 by the reward achieved at its best (highest-reward) state, r(spest) = maxs,er r(s;). For later
convenience, we collect the individual state rewards along the trajectory into the set:

R = {r(si) | (si,vi, N(s4)) € T}. (5)

With this notation, the previous expression can be written simply as r(spess) = maxR. In Section
we provide additional diverse metrics, which are computed as functions of R, to provide a more nuanced
understanding of each search strategy.

3.1 Specific Instances with Tree-Structured Search Spaces

Given the general setup, we detail two concrete problems with tree-structured search spaces; their illustrations
are shown in Figure The settings of these synthetic problems can be easily controlled to adjust their
difficulty, which enables us to conduct the analysis of our Transformer models.



Under review as submission to TMLR

A

g3

S

(a) Multi-reward tree search (b) Multi-reward navigation

Figure 2: Two environments investigated in this work, where darker cells represent higher reward values and
red cells denote cells that are impassable.

Multi-Reward Tree Search This problem is a straightforward implementation of our setup, by directly
generating a randomized search tree. It is defined with three parameters: (i) a branching factor at each
intermediate state B; (ii) a tree depth D; (iii) the number of goal states K. The number of accessible states
is (BP*!1 — B)/(B —1), where a root state s¢ is excluded since it is initially given. All goal states are located
in the leaf nodes of the tree. In Figure S0, S1, ---, S14 are all states in this binary tree, and sg and s11
are goal states where r(sg) > r(s11)-

Multi-Reward Navigation We define a multi-reward maze traversal task within our problem setup. The
objective of this task is to find paths from a designated start vertex vgary to one of several goal vertices.
Specifically, consider an undirected graph G = (V, E) representing a two-dimensional grid of size w x h, where
|[V| = wh and the edges E connect neighboring vertices (i.e., up, down, left, right). Some of wh vertices,
which are called walls, cannot be traversed. Here, we define a wall density nwan/wh, where nyay is the
number of wall vertices. The graph contains a designated start vertex wvgart € V and a set of goal vertices
G ={g1,...,9k} CV, each associated with a strictly decreasing positive reward:

R(g1) > R(g2) > - > R(gx) > 0, (6)

and R(v) = 0 for all non-goal vertices v ¢ G. The branching factor B is naturally bounded by 4 due to the
grid structure.

To formulate this problem as a search problem within our framework, we define the search space & as
the set of all valid paths p = (vg,...,v¢) in G, satisfying the following constraints: (i) the initial vertex
is fixed as vg = Ustars, (ii) each path has length at most T, and (iii) each path visits at most one goal
vertex, which if visited, must be the terminal vertex of the path. The successor function is defined by
N(p) ={pov € S:v eV} where pov denotes appending vertex v to the path p. Finally, the reward
function is defined as r(p) = R(v¢), assigning the reward of the terminal vertex vy to the entire path. This
construction naturally yields a tree representation suitable for our general search framework; see Figures 2h]
and [9] for the detailed visualization of this construction.

More specifically, in Figure an agent is started from a start vertex s and then it can select one of
neighbor vertices (i.e., up, down, left, and right vertices of the vertex of interest) sequentially. Red cells
indicate impassible vertices. Similar to the binary tree example, 7(g1) > r(g2) > 7(g3). It is noteworthy
that we express states as paths from s to a particular vertex which is shown in Figure 2B] so that it can
straightforwardly create a tree-structured search space.

3.2 Reference Search Algorithms

Here, we introduce several reference search algorithms to solve the problem discussed above.

Uniform Leaf Sampling This method chooses one of F;_; uniformly at random at step t: s; ~ U(F;_1),
where U is a uniform distribution; refer to Algorithm 2] for details.



Under review as submission to TMLR

Greedy Leaf Sampling This algorithm selects one of F;_; whose parent state has the highest reward
value: s; = argmax, ., | 0(s), where 9(s) is the estimated value of the parent state of s; refer to Algorithm
for details.

Uniform Path Sampling This strategy uniformly samples the next node at each depth level starting
from a root state sy until it meets an instance in F;_1; see Algorithm [4] for details.

Policy-Guided Path Sampling These methods traverse an underlying tree using one of tree traversal
policies: pure exploration, greedy, and UCT policies; see Algorithm [f] for details. It is analogous to the
conventional MCTS algorithm (Sutton & Barto, 2018), but differs in that it excludes fully-explored sub-
trees; refer to Algorithm [I] and its description.

These search strategies are employed to analyze the abilities of Transformers to navigate structured yet
unknown environments. The pseudocode of these algorithms is shown in Section [B] For the sake of brevity,
uniform leaf sampling and greedy leaf sampling are categorized as leaf-based sampling, and uniform path
sampling and policy-guided path sampling are categorized as path-based sampling.

3.3 Model Interfaces to Perform Search

Our problem setup can be viewed as a multi-turn interaction between an agent and an environment: at each
step, the agent sends the environment a message containing the node s it wants to visit, and the environment
replies with the node’s value v and neighbors N(s) (or unvisited states F').

This formulation allows Transformers or potentially any autoregressive next-token predictor to serve as search
policies by predicting the agent’s messages in the conversation conditioned on the chat history. We analyze
this search capability through three complementary lenses:

o Theoretically demonstrating the existence of Transformers’ parameters that implement search algorithms
(see Section [));

o Training Transformers on algorithmic traces (see Section ;

o Improving the performance of pretrained LLMs through targeted fine-tuning (see Section @

Since our tokenization schemes are essential components of both the theoretical and empirical analyses, we
specify them in the respective sections and Section [C] which provides detailed implementation information.
Moreover, our theoretical analysis examines how Transformers’ parameters represent search strategies, while
our empirical analysis investigates their optimizability and generalizability. Together, these findings enhance
our comprehensive understanding of Transformers’ representational and performance capabilities in search.

4 Theoretical Analysis of Transformers’ Search Capability

In this section, we identify the theoretical search capabilities of LLMs by demonstrating that Transform-
ers (Vaswani et al. |2017) can implement the search algorithms introduced in Section [3| by simulating each
step of the algorithms. For any given trajectory of past search steps, each search strategy will define a prob-
ability distribution over the next state to visit. We thus show that when the trajectory is provided as input
(encoded as a sequence of tokens), the Transformer can output a distribution over next states that exactly
matches the distribution prescribed by the target search strategy. To do this, we provide explicit weight
constructions for both leaf-based and path-based sampling methods, using Transformers with constant depth
and embedding dimension linear in search budget T" and branching factor B. Moreover, in our theoretical
analysis, a specific Transformer model is assumed: (i) layer normalization is omitted; (ii) the fully connected
layer is replaced with any arbitrary token-wise function; (iii) the conventional softmax attention mechanism
is replaced with hard attention. This specific model differs from the actual implementation of Transformers
for empirical analysis. See Section for the details of our theoretical Transformer model.




Under review as submission to TMLR

Given a search step budget 7" and a maximum branching factor B, the trace of the search trajectory can
contain at most T'B + 1 distinct states as there is also the root node. For simplicity, we assume exactly
TB + 1 states in total. Then, we define two tokenization schemes, Leaf-Based Tokenization and Tree-Based
Tokenization.

Leaf-Based Tokenization We define three token types for leaf-based search methods:

e State tokens S; for each unique state i;
o Continuous value tokens V,,, where a € [0,1] is stored in a dedicated coordinate in the embedding;

e Structural markers %, #, and 7.

Let a trajectory be
7 = ((s0,v0, N(0)), (81,v1, N(s1)), ..., (s7,v7, N(s7))), (7)

where N(s;) = {st,1,5t,2, ...} is the set of s¢’s child states. We then construct the tokenized trace as follows:
7 Sso h Vg # S50, Ssgp o 78 WV, #856,, Sep 0 7L

fort =0,1,...,T. Here, the following special tokens are defined:

e 7 separates the selected state from its value embedding.
e # precedes the list of child states.

e 7 terminates each search iteration.

Note that % is not required for the leaf-based sampling theoretical construction and it is added to ensure
consistency with the tree-based sampling methods below. We will construct a Transformer model to predict
the next state token S,, immediately after each 7.

Tree-Based Tokenization For path-based search algorithms, we extend the leaf-based trace with the
start-of-sequence marker [BOS] and the path separator >. At each iteration, we encode the full tree-policy
path leading to the chosen state. The resulting sequence is as follows:

[BOS] 7 70, % Vig # Sy Sson +ov 7T iroe h Vi #55,, Sery o0 7 .o

tree © tree

where the following:

e = Ssy > Seg > -+ > S, 8)

80,41

denotes the sequence of states selected by the tree policy, whose terminal state S, is chosen for expansion
at step t. Our constructed model will generate the complete path 77526 at each step, conditioned on the
previous trace. The Transformer terminates the generation by outputting the % token, which also indicates

that the immediately preceding state token is the state that should be used for expansion in the next step.
More details of these tokenization schemes are described in Section

We now present the following theorems:

Theorem 1 (Leaf-Based Search Policies) There exist 3-layer Transformers with embedding dimension
d =10 + T'B that exactly implements the uniform and greedy leaf sampling policies when using a sequential
encoding of the trajectory using Leaf-Based Tokenization.

Theorem 2 (Path-Based Search Policies) There exist 12-layer Transformers with embedding dimension
d = 26+7T B that exactly implements the uniform path sampling policy and greedy, pure exploration and UCT
based path sampling policies when using a sequential encoding of the trajectory using Tree-Based Tokenization.



Under review as submission to TMLR

The full proofs of Theorems [I] and [2] are provided in Appendices and respectively. Here, we
present a high-level overview of the proof for Theorem [I} specifically on how to construct a Transformer that
implements the greedy leaf policy. The construction proceeds in three layers:

(i) Token marking: The first layer uses the input embeddings as a lookup table to identify token types
(e.g., state tokens). It then marks whether each state token was selected by the model (a visited node)
or given by the environment (a child node of a visited node).

(ii) Frontier identification and value association: The second layer uses the markings from the previous
layer to isolate the frontier states (the unvisited children of visited nodes). For each frontier state, it
identifies and retrieves the rollout value from its parent node.

(iii) Selection: The third layer applies a maximum operation over the inherited rollout values associated
with the frontier states to select the next state to visit.

The proof for Theorem [2]is similar in flavor, using the same proof techniques. The additional complexities
arise from needing to first simulate the path policy before doing selection.

As a final note on the theory, we observe that the leaf-based tokenization is linear in iteration, while the
tree-based one is at worst quadratic. Thus both are polynomial in the number of search iterations. We
also emphasize that the theoretical significance of these two theorems lies in providing guarantees with
the following properties: (i) the Transformer constructions have constant depth; (ii) the guarantees are
in the form of exact implementations.  These results offer a stronger guarantee than existing universal

approximation theorems (e.g., the work by (2020))), which only ensure approximate implementation
over compact domains and require non-constant depth.

Finding 1: Transformers possess a sufficient architectural capacity to implement fundamental search
algorithms including leaf-based and path-based search policies.

Along with the above finding, one caveat however merits emphasis: while these existence results establish
architectural feasibility, they do not address whether such implementations can be learned through standard
training paradigms. Specifically, the Transformers’ parameters proved in Theorems [[] and [] can be thought
of as ideal parameters. The practical ability of Transformers to implement these search algorithms depends
on whether they can learn the correct parameterizations solely from traces of the reference algorithms, which
we empirically explore in the following section.

5 Empirical Analysis on Transformers’ Search Abilities

Following the theoretical analysis presented in Section [d} we empirically test Transformers’ behavior cloning
abilities. We begin by introducing the additional metrics we use for evaluation.

Experimental Details The architecture of Llama models (Touvron et al) [2023; [Llama Team, AI Q|
is adopted to our Transformer models that are trained from scratch. Unless otherwise specified,
the Transformer models are defined with 8 blocks, 8 heads, and 512 hidden dimensions. The number of
intermediate dimensions is set as 1,024. Minimum and maximum learning rates are 5 x 107° and 5 x 1074,
It uses a learning rate scheduling technique with a warm-up. The AdamW optimizer (Loshchilov & Hutter]
with #; = 0.9 and 2 = 0.99 is utilized, and the rotary positional embedding (Su et al., 2024) with
# = 10000 is used.

As offline training and validation datasets, we generate 200 different problem instances and 100 traces per
instance, for a total of 20,000 traces. These datasets are split into 70% training and 30% validation. On the
other hand, we report online test performance for all experiments. These test experiments use 10 different
problem instances and 100 traces per instance, for a total of 1,000 traces. These results with 1,000 traces
are used to calculate the mean and standard deviation of each experiment set. We verify that training and
test problem instances are mutually exclusive. Moreover, we plot 1.96 standard errors for all figures.



Under review as submission to TMLR

Uniform Leaf Sampling Uniform Path Sampling Greedy Leaf Sampling
1.0
® : - . .
C})? 05 ' ' . -
) )
, I N | WO - - N |
Reference Transformer Reference Transformer Reference Transformer
Path Sampling w/ Pure Exp. Path Sampling w/ Greedy Path Sampling w/ UCT
1.0 -
<
5 . . - -
- _ | | | . I
Reference Transformer Reference Transformer Reference Transformer
B Max-Reward Hit Rate B Normalized Path Length HEE Normalized Cumulative Reward
B Discounted Cumulative Gain Highest Reward Normalized Jump Distance

Figure 3: Behavior cloning results on the multi-reward tree search problem, where each binary tree of depth
6 has 8 different goals and a search step budget is 50.

Evaluation Metrics We use the following evaluation metrics to analyze search algorithms:

o Max-reward hit rate: The fraction of runs that ever attain the global-best reward r(spest) calculates the
probability of achieving r(spest) over multiple runs (i.e., the hit rate): Npit/Niotal, where Npip and Niogal
are the number of runs that hit spest and the total number of runs, respectively;

 Discounted cumulative gain: This metric, based on discounted cumulative gain (Jarvelin & Kekéaldinen,

2002), quantifies how quickly a search algorithm finds spes; in each run: (1/Niotar) Zgj{al 1/logq (i + 1),
where i is the 1-indexed max-reward hit iteration index at run k. If a particular run fails, i, = oo;

e Normalized path length: This metric regarding the shortest path to spest computes a metric value of
(1/Niotal) kN;"fa' exp( truth — Lk ), where £ ryen is the ground-truth shortest path length to spesy and
ly, is the shortest path length predicted by the Transformer model. If it fails to find Spest, £ = 0o, which

makes exp({x trush — fk) z€ro;

total

o Highest/cumulative reward: A highest reward is calculated by (1/Niotal) ]1:/21 max(Ry) and a cumu-

lative reward is calculated by (1/Niotal) sz;"fa‘ EreRk r, where Ry is the rewards achieved at run k.

Compared to the max-reward hit rate, these account for both suboptimal and global-best rewards.

e Normalized jump distance: This is the arithmetic mean of jump distances where a jump distance is defined
by (jump(si—1,s¢) + jump(se, s¢+1))/2, which has been proposed in the work by |[Zeng et al| (2025). Note
that jump(s;, s;) indicates the shortest distance between s; and s; on a tree-structured space.

These metrics are selected to evaluate search algorithms across criteria such as efficiency, robustness, and
solution quality. Note that higher values indicate better performance across all metrics except for normalized
jump distance.

Transformers’ Behavior Cloning Abilities We show that Transformers trained from scratch are capa-
ble of effectively performing behavior cloning in the two environments presented in Section [3.1} Full details
of the tokenization method are in Section [C.2)

As shown in Figures [3| and [d] Transformers successfully mimic the performance of the respective reference
algorithms. To quantitatively analyze these results, we calculate ¢? distance between two vectors of the
statistics of the metric values obtained by a reference algorithm and its corresponding Transformer model.
We simply employ their means and standard deviations of all six metric values to measure the distance.



Under review as submission to TMLR

Uniform Leaf Sampling Uniform Path Sampling Greedy Leaf Sampling
1.0 . -
' .
2 .
s .
N I I I I I I I I
LA Banl waen Lainl KLl ull
Reference Transformer Reference Transformer Reference Transformer
Path Sampling w/ Pure Exp. Path Sampling w/ Greedy Path Sampling w/ UCT
1.0
< ' '
5] . '
oo H__Na | Bu N II l. L] |
Reference Transformer Reference Transformer Reference Transformer
BN Max-Reward Hit Rate B Normalized Path Length HEE Normalized Cumulative Reward
B Discounted Cumulative Gain Highest Reward B Normalized Jump Distance

Figure 4: Behavior cloning results on the multi-reward navigation problem, where the size of each problem
is 4 x 4, the wall density of each problem is 0.4, and a search step budget is 50.

Reference Reference = Uniform Leaf = Greedy Leaf Path w/ Greedy
= Uniform Path == Path w/ Pure Exp. == Path w/ UCT
3

%

=
Distance

-04g,

KL Divergence

-0.2

Path w/ UCT

(a) Multi-reward tree search (b) Multi-reward navigation

Figure 5: Comparison of the metric values obtained by reference algo- Figure 6: KL divergences between
rithms and Transformers using the results shown in Figures[3|and[dl ¢? the probabilities of reference algo-
distance between two vectors regarding the metrics is presented. The rithms and Transformers. The traces
shortest and second shortest distances in each row are marked as 1 and of reference algorithms are followed
2, respectively. for both.

Figure [5| displays that the results of Transformers are mostly closest to ones of the associated reference
algorithms.

Beyond matching the reference algorithm’s performance, we test whether the Transformer replicates its deci-
sion process by measuring the KLi divergence between their next-state selection distributions under the same
trajectory. This KL divergence is computed online by following the traces of the reference algorithms and
comparing the predicted next-state probabilities generated by the reference strategies and the Transformer
models. Eventually, these probabilities are used for calculating the KL divergence Dgr,:

Dra. = ok o (2. ©

where p(z) and ¢(x) is the next-token probabilities over a token x of a reference algorithm and Transformer
model, respectively. Note that the next-state probabilities of the reference algorithms reflect uniform tie-
breaking among equally preferred nodes. In particular, to calculate the KL divergence, we should obtain
the next-state probabilities of reference algorithms. Uniform leaf sampling assigns equal probabilities to
all possible next states, and uniform path sampling uses depth-level equal probabilities to calculate the
probabilities of possible next states. Greedy and policy-guided path sampling follow their respective tree

10



Under review as submission to TMLR

Uniform Leaf Uniform Path

Reference Transformer Reference Transformer
1 1 1 1
1.0
| | | |
1 1 1 1
5 |
£
5]
| | | |
1 o 1 1
1 i
0.0 ] m—
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Greedy Leaf Reference Transformer Path w/ Pure Exp. Reference Transformer
1 1 1 1
1.0
| | | |
g — | N | |
So05 = ] ]
i | | | |
| | | |
0.0 1 1 1 1
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Path w/ Greedy Reference Transformer Path w/ UCT Reference Transformer
1 1 1 1
1.0
] ] \: |
S _— -
205 § i
1 1 J ]
0.0 1 1 i i
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
#Test Goal States #Test Goal States #Test Goal States #Test Goal States
=== Max-Reward Hit Rate === Normalized Path Length e Normalized Cumulative Reward
=== Discounted Cumulative Gain Highest Reward Normalized Jump Distance

Figure 7: Generalization analysis over the numbers of test goal states on the binary tree search problem of
depth 6 with a step budget of 50. The number of test goal states smaller than 8 is unseen. A gray dashed
line indicates the setting used in training.

traversal rules, while also considering all tied states when selecting among equally preferred options. As a
result, we empirically estimate the probabilities of the reference algorithms by repeating the sampling process
100 times with the same trace, varying only the random seed.

As shown in Figure [6} the leaf sampling algorithms achieve low KL divergence with their reference coun-
terparts, suggesting successful behavior alignment. In contrast, for path sampling algorithms, they exhibit
significantly higher KL divergence, compared to the leaf sampling algorithms. This suggests that they are
unlikely to fully replicate the reference algorithms’ behavior despite matching the performance on all of our
metrics; the KL divergence results do not agree with the resulting performance reported in Figure 5} This
discrepancy arises because of the following rationales: (i) the training traces for path-based methods do not
explicitly encode the tree-policy path for each step; (ii) the randomness included in the process of particular
path-based methods, such as the uniform path sampling, pure exploration policy-guided path sampling, and
UCT policy-guided path sampling, makes KL divergence higher. Regarding the first rationale, the Trans-
former must infer the tree-based policy and select the next state in a single step, without intermediate
tree traversal-related outputs. Due to this, it is a naturally challenging problem under our tokenization
scheme. In addition, this aligns with our theoretical analysis in Section [f] where the trace format as de-
scribed in Section [C-I] explicitly requires the Transformer to output the tree traversal policy before selecting
the next state. Regarding the second rationale, the order of some subsequent states may be interchangeable,
since their ordering does not significantly affect the eventual outcome. This rationale is supported by two
observations: (i) pure exploration policy-guided path sampling shows periodic KL divergence patterns with
recurring low-divergence regions; (ii) greedy policy-guided path sampling yields lower KL divergence than
other policy-guided path sampling methods.

We carry out generalization analysis on the numbers of test steps, test wall densities, the numbers of test
goal states, and test tree depths in Figures [7} [§ and [20] respectively. These empirical results show
that our behavior-cloned Transformers present evidence of generalization to novel tasks. In particular, our

11



Under review as submission to TMLR

Uniform Leaf Uniform Path

Reference Transformer Reference Transformer
! ! | |
g =
vﬁ‘ 0.5 } 4
- 1 | |
0.0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Greedy Leaf Reference Transformer Path w/ Pure Exp. Reference Transformer

! l l
g I I — I / I =
% 05 I i I i
| |
M .
00 | |
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Path w/ Greedy Reference Transformer Path w/ UCT Reference Transformer
| | | |
1.0
1 | — | |
: o T |
e 1 1
x 0.5
i | |
_~ | [
0.0 1 I
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
#Test Steps #Test Steps #Test Steps #Test Steps
=== Max-Reward Hit Rate === Normalized Path Length e Normalized Cumulative Reward

=== Discounted Cumulative Gain Highest Reward Normalized Jump Distance

Figure 8: Generalization analysis over the numbers of test steps on the multi-reward navigation problem
of size 4 x 4 with a wall density of 0.4. The number of test steps larger than 50 is unseen in a training
phase. Transformer-based models adequately follow their reference algorithms in both in-distribution and
out-of-distribution settings. A gray dashed line indicates the setting used in training.

Table 1: Comparison of Qwen3-8B and fine-tuned Qwen3-8B models, with and without UCT policy-guided
sampling. FT stands for fine-tuned.

Qwen3-8B FT Qwen3-8B
+ UCT Policy + UCT Policy

Max-Reward Hit Rate, Highest Reward, & Cumulative Reward 0.262 (0.069) 0.286 (0.071) 0.500 (0.078) 0.548 (0.078)
Discounted Cumulative Gain 0.153 (0.046) 0.188 (0.052) 0.262 (0.050) 0.285 (0.047)
Normalized Path Length 0.262 (0.069)  0.286 (0.071)  0.449 (0.075)  0.497 (0.076)

Performance Metric Qwen3-8B FT Qwen3-8B

Transformer models generalize well within a local range, whereas their generalization performance degrades
over longer ranges. We conjecture that this behavior stems from practical limitations such as short context
length and limited model capacity. It is noteworthy that we test unseen tasks that are harder than training
tasks, similar to the recent work by (2025). For example, later test steps are more difficult than
earlier ones, as the search space expands with each step.

Finding 2: The Transformers trained from scratch are capable of approximating diverse search
algorithms via behavior cloning and exhibiting the possibility of generalizing to unseen tasks.

More results and discussion on Transformers’ behavior cloning abilities can be found in Section [F.1]

6 Targeted Fine-Tuning for Enhancing Search Capabilities of LLMs

There is room for improving the search abilities of existing LLMs by utilizing targeted fine-tuning. To tackle
this issue, we train a pretrained LLM, i.e., Qwen3-8B (Qwen Team) 2025), on the search trajectories of
prompts and their associated responses for the Academic Paper Search problem, where this problem requires

1

[\)



Under review as submission to TMLR

an agent to navigate from a start instance to a target by interacting with the corresponding environments.
We choose this problem because its state expansion and evaluation are more structured than in more generic
reasoning tasks such as GSM8K (Cobbe et al) 2021)) and HotpotQA (Yang et all [2018). The Academic
Paper Search problem provides a fixed set of state expansions, since each paper has a predetermined set of
child papers, and supports semantic-based state evaluation, since the distance between two papers can be
defined in a straightforward manner. Consequently, this setting aligns well with our problem formulation of
unknown tree search with bandit feedback.

The trajectories generated by Gemini-2.5-Flash and policy-guided path sampling with UCT are used for
training the pretrained LLM. To verify the performance of a fine-tuned LLM, we compare the fine-tuned LLM
to two methods: a pretrained LLM and the pretrained LLM with a specialized search algorithm. Specifically,
the pretrained and fine-tuned LLMs perform all three steps of the effective problem-solving process, i.e., space
expansion, next-state selection, and state evaluation, whereas the pretrained LLM combined with a search
algorithm carries out only the two steps, space expansion and state evaluation, with the external algorithm
handling next-state selection. The missing details of this experiment can be found in Section [E.2}

As shown in Table [T} our fine-tuned Qwen3-8B is significantly superior to the two baseline methods in this
problem. These results imply that the search abilities of LLMs are not fully exploited and the additional
training explicitly designed for search can successfully unlock these abilities. Importantly, it aligns with our
findings discussed in Sections [f] and [5} which demonstrate that the Transformer models, i.e., the underly-
ing architectures of LLMs, are capable of implementing various search algorithms both theoretically and
empirically.

Finding 3: Targeted fine-tuning enhances the search capabilities of LLMs compared to both an
LLM-only method and an LLM with an external algorithm.

Despite our successful experimental results presented in this section, the LLM used in these settings may
introduce unknown biases into the trained model. This issue can potentially be mitigated by using the
search trajectories obtained from multiple LLMs. In addition, fine-tuned Qwen3-8B with the specialized
search algorithm is the best compared to the other methods. It is a natural outcome since performance
through an LLM with an external search algorithm can be considered as ground-truth performance. By
optimizing a fine-tuned model with a search algorithm, the model’s performance could be further improved;
this exploration is left for future work.

7 Discussion and Conclusion

To understand whether LLMs truly perform structured search or not, we have tackled a search problem
itself, where space extensions and bandit feedback are externally given. Then, we show both theoretically
and empirically, that Transformers can approximately implement diverse search algorithms. In addition to
these theoretical and empirical results, we empirically demonstrate that the trained Transformers showcase
evidence of generalization to unseen problem conditions. Finally, the additional fine-tuning of an existing
LLM allows us to boost its search abilities.

Limitations and Future Directions Since multi-turn interactions between an agent and an environment
are assumed, the process of determining a final state or an answer tends to be inefficient. If this overall
search process can be internalized within LLMs (Deng et al., 2024; Hao et al., 2024), it may lead to a
more efficient alternative to the current approach. Furthermore, to scale up our experiments, we should
investigate the search capabilities of Transformers on significantly longer sequences within larger problem
instances, which would require larger model sizes and greater computational resources (Kaplan et al., |2020]).
The search behavior of Transformers in those settings may differ from the current observations. Although
this work empirically demonstrates the optimization and generalization of Transformers’ parameters for
implementing search algorithms, it does not address them theoretically; future work can extend it to establish
their theoretical learnability and generalizability by following existing work (Zhang et al) |2024)). While our
empirical analysis demonstrates the effectiveness of Transformer models in terms of generalization, their
generalization abilities still remain limited. Therefore, as future work, one possible direction is to explore a

13



Under review as submission to TMLR

more extensive analysis of generalization, similar to existing studies (Lee et al., 2025; |Golowich et al., [2025]
Cai et all 2025). On the other hand, we anticipate that RL can enhance the performance of Transformer-
based search algorithms with respect to a given evaluation metric following recent literature in RL for
LLMs (DeepSeek-AlL 2025; Shenfeld et al., |2025). Our framework for enhancing the search capabilities
of LLMs has the potential to address real-world problems such as planning-based prompting on trees by
leveraging tools introduced in recent literature (Xiong et al., 2025} [Lu et al., 2025} [Minegishi et al.| |2025); we
leave this for future work. These applications will enable us to investigate the search performance of LLMs
from a practical standpoint. Finally, as discussed in Section [6] while targeted fine-tuning helps internalize
the search capabilities of LLMs, it is still hard to reach the performance through exact search algorithms.
Following previous work on tool use (Yao et al., [2023bf [Schick et al., 2023), it implies that the use of external
search algorithms may be a more practical strategy, even if this approach does not internalize the search
capabilities within the LLM.

Broader Impact Statement

This work is not directly related to any unethical or harmful tasks since it focuses on the understanding
of Transformer models and potentially the improvement of LLMs. However, similar to many advances in
learning algorithms, there is a risk that improved search capabilities could be applied to harmful tasks, such
as optimizing for undesired behaviors in interactive systems. Therefore, we should mind this risk and ensure
alignment with ethical standards.

References

M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan, S. Gunasekar, M. Harrison, R. J. Hewett, M. Javaheripi,
P. Kauffmann, J. R. Lee, Y. T. Lee, Y. Li, W. Liu, C. C. T. Mendes, A. Nguyen, E. Price, G. de Rosa,
O. Saarikivi, A. Salim, S. Shah, X. Wang, R. Ward, Y. Wu, D. Yu, C. Zhang, and Y. Zhang. Phi-4
technical report. arXiv preprint arXiv:2412.08905, 2024.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 1877-1901, Virtual, 2020.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. xz-armed bandits. Journal of Machine Learning Research,
12(5):1655-1695, 2011.

Z. Cai, N. Lee, A. Schwarzschild, S. Oymak, and D. Papailiopoulos. Extrapolation by association: Length
generalization transfer in transformers. arXiv preprint arXiv:2506.09251, 2025.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch.
Decision Transformer: Reinforcement learning via sequence modeling. In Advances in Neural Information
Processing Systems (NeurIPS), volume 34, pp. 15084-15097, Virtual, 2021.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiw:2110.14168, 2021.

DeepSeek-Al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Y. Deng, Y. Choi, and S. Shieber. From explicit CoT to implicit CoT: Learning to internalize CoT step by
step. arXiv preprint arXiv:2405.14838, 2024.

N. Dziri, X. Lu, M. Sclar, X. L. Li, L. Jiang, B. Y. Lin, P. West, C. Bhagavatula, R. Le Bras, J. D.
Hwang, S. Sanyal, S. Welleck, X. Ren, A. Ettinger, Z. Harchaoui, and Y. Choi. Faith and fate: Limits
of Transformers on compositionality. In Advances in Neural Information Processing Systems (NeurIPS),
volume 36, pp. 70293-70332, New Orleans, Louisiana, USA, 2023.

14



Under review as submission to TMLR

Gemini Team, Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

N. Golowich, S. Jelassi, D. Brandfonbrener, S. M. Kakade, and E. Malach. The role of sparsity for length
generalization in LLMs. In Proceedings of the International Conference on Machine Learning (ICML), pp.
19809-19840, Vancouver, British Columbia, Canada, 2025.

M. Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of the Association
for Computational Linguistics, 8:156-171, 2020.

T. Han, Z. Wang, C. Fang, S. Zhao, S. Ma, and Z. Chen. Token-budget-aware LLM reasoning. In Findings
of the Association for Computational Linguistics: ACL, pp. 24842-24855, Vienna, Austria, 2025.

S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. Reasoning with language model is
planning with world model. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pp. 8154-8173, Singapore, Singapore, 2023.

S. Hao, S. Sukhbaatar, D. Su, X. Li, Z. Hu, J. Weston, and Y. Tian. Training large language models to
reason in a continuous latent space. arXiv preprint arXiv:2412.06769, 2024.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Hal-
dane, J. F. del Rio, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature, 585:357-362, 2020.

E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA: Low-rank adaptation
of large language models. In Proceedings of the International Conference on Learning Representations
(ICLR), Virtual, 2022.

K. Jarvelin and J. Kekéldinen. Cumulated gain-based evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4):422-446, 2002.

S. Kambhampati, K. Valmeekam, L. Guan, M. Verma, K. Stechly, S. Bhambri, L. Saldyt, and A. Murthy.
Position: LLMs can’t plan, but can help planning in LLM-Modulo frameworks. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 22895-22907, Vienna, Austria, 2024.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and
D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

M. Khalifa, R. Agarwal, L. Logeswaran, J. Kim, H. Peng, M. Lee, H. Lee, and L. Wang. Process reward
models that think. arXiv preprint arXiv:2504.16828, 2025.

L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In Proceedings of the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD),
pp. 282-293, Berlin, Germany, 2006.

M. Laskin, L. Wang, J. Oh, E. Parisotto, S. Spencer, R. Steigerwald, DJ Strouse, S. S. Hansen, A. Filos,
E. Brooks, M. Gazeau, H. Sahni, S. Singh, and V. Mnih. In-context reinforcement learning with algorithm
distillation. In Proceedings of the International Conference on Learning Representations (ICLR), Kigali,
Rwanda, 2023.

N. Lee, K. Sreenivasan, J. D. Lee, K. Lee, and D. Papailiopoulos. Teaching arithmetic to small Transformers.
In Proceedings of the International Conference on Learning Representations (ICLR), pp. 25001-25054,
Vienna, Austria, 2024.

N. Lee, Z. Cai, A. Schwarzschild, K. Lee, and D. Papailiopoulos. Self-improving Transformers overcome easy-
to-hard and length generalization challenges. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 32930-32964, Vancouver, British Columbia, Canada, 2025.

15



Under review as submission to TMLR

L. Lehnert, S. Sukhbaatar, D. Su, Q. Zheng, P. McVay, M. Rabbat, and Y. Tian. Beyond A*: Better
planning with Transformers via search dynamics bootstrapping. In Proceedings of the Conference on
Language Modeling (COLM), Philadelphia, Pennsylvania, USA, 2024.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever,
and K. Cobbe. Let’s verify step by step. In Proceedings of the International Conference on Learning
Representations (ICLR), pp. 39578-39601, Vienna, Austria, 2024.

Llama Team, Al @ Meta. The Llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proceedings of the International
Conference on Learning Representations (ICLR), Vancouver, British Columbia, Canada, 2018.

J. Lu, Z. Xu, and M. Kankanhalli. Reasoning LLMs are wandering solution explorers. arXiv preprint
arXiv:2505.20296, 2025.

G. Minegishi, H. Furuta, T. Kojima, Y. Iwasawa, and Y. Matsuo. Topology of reasoning: Understanding
large reasoning models through reasoning graph properties. arXiv preprint arXiw:2506.05744, 2025.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

N. Nolte, O. Kitouni, A. Williams, M. Rabbat, and M. Ibrahim. Transformers can navigate mazes with
multi-step prediction. arXiv preprint arXiv:2412.05117, 2024.

OpenAl. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
OpenAl. Introducing GPT-4.1 in the API. https://openai.com/index/gpt-4-1/, 2025a.
OpenAl. Introducing GPT-5. https://openai.com/index/introducing-gpt-5/, 2025b.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pp. 8026-8037, Vancouver,
British Columbia, Canada, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

J. Pérez, J. Marinkovi¢, and P. Barcel6. On the turing completeness of modern neural network architec-
tures. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans,
Louisiana, USA, 2019.

J. Priem, H. Piwowar, and R. Orr. OpenAlex: A fully-open index of scholarly works, authors, venues,
institutions, and concepts. arXiv preprint arXiv:2205.01833, 2022.

Qwen Team. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.
S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 3 edition, 2010.

T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, E. Hambro, L. Zettlemoyer, N. Cancedda, and
T. Scialom. Toolformer: Language models can teach themselves to use tools. In Advances in Neural
Information Processing Systems (NeurIPS), volume 36, pp. 68539-68551, New Orleans, Louisiana, USA,
2023.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Has-
sabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering Atari, Go, chess and shogi by planning with a
learned model. Nature, 588(7839):604-609, 2020.

16


https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/

Under review as submission to TMLR

I. Shenfeld, J. Pari, and P. Agrawal. RL’s razor: Why online reinforcement learning forgets less. arXiv
preprint arXiv:2509.04259, 2025.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lil-
licrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):484-489, 2016.

C. Snell, J. Lee, K. Xu, and A. Kumar. Scaling LLM test-time compute optimally can be more effec-
tive than scaling parameters for reasoning. In Proceedings of the International Conference on Learning
Representations (ICLR), pp. 10131-10165, Singapore, Singapore, 2025.

D. Su, S. Sukhbaatar, M. Rabbat, Y. Tian, and Q. Zheng. Dualformer: Controllable fast and slow thinking
by learning with randomized reasoning traces. In Proceedings of the International Conference on Learning
Representations (ICLR), pp. 95080-95117, Singapore, Singapore, 2025.

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. RoFormer: Enhanced Transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Z. Sun, L. Yu, Y. Shen, W. Liu, Y. Yang, S. Welleck, and C. Gan. Easy-to-hard generalization: Scalable
alignment beyond human supervision. In Advances in Neural Information Processing Systems (NeurIPS),
volume 37, pp. 51118-51168, Vancouver, British Columbia, Canada, 2024.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. LLaMA: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

K. Valmeekam, M. Marquez, A. Olmo, S. Sreedharan, and S. Kambhampati. PlanBench: An extensible
benchmark for evaluating large language models on planning and reasoning about change. In Advances in
Neural Information Processing Systems (NeurIPS), volume 36, pp. 38975-38987, New Orleans, Louisiana,
USA, 2023a. Datasets and Benchmarks Track.

K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kambhampati. On the planning abilities of large lan-
guage models: a critical investigation. In Advances in Neural Information Processing Systems (NeurIPS),
volume 36, pp. 75993-76005, New Orleans, Louisiana, USA, 2023b.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomegz, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS), volume 30,
pp- 5998-6008, Long Beach, California, USA, 2017.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
terson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, 1. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nature Methods, 17:261-272, 2020.

G. Weiss, Y. Goldberg, and E. Yahav. Thinking like Transformers. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 11080-11090, Virtual, 2021.

Z. Xiong, Y. Cai, Z. Li, and Y. Wang. Mapping the minds of LLMs: A graph-based analysis of reasoning
LLM. arXiv preprint arXiv:2505.13890, 2025.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning. HotpotQA:
A dataset for diverse, explainable multi-hop question answering. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), Brussels, Belgium, 2018.

17



Under review as submission to TMLR

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of Thoughts: Deliberate
problem solving with large language models. In Advances in Neural Information Processing Systems
(NeurIPS), volume 36, pp. 11809-11822, New Orleans, Louisiana, USA, 2023a.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. ReAct: Synergizing reasoning and
acting in language models. In Proceedings of the International Conference on Learning Representations
(ICLR), Kigali, Rwanda, 2023b.

D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103-114,
2017.

C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are Transformers universal approxi-
mators of sequence-to-sequence functions? In Proceedings of the International Conference on Learning
Representations (ICLR), Virtual, 2020.

Y. Zeng, S. Zhang, W. Kang, S. Wu, L. Zou, Y. Fan, H. Kim, Z. Lin, J. Kim, H. I. Koo, D. Papailiopoulos,
and K. Lee. ReJump: A tree-jump representation for analyzing and improving LLM reasoning. arXiv
preprint arXiv:2512.00831, 2025.

R. Zhang, S. Frei, and P. L. Bartlett. Trained Transformers learn linear models in-context. Journal of
Machine Learning Research, 25(49):1-55, 2024.

A. Zhou, K. Yan, M. Shlapentokh-Rothman, H. Wang, and Y.-X. Wang. Language agent tree search unifies
reasoning, acting, and planning in language models. In Proceedings of the International Conference on
Machine Learning (ICML), pp. 62138-62160, Vienna, Austria, 2024.

18



Under review as submission to TMLR

A Construction of Tree-Structured Spaces for Multi-Reward Navigation

Figure 9: Construction of a tree-structured space from a particular instance of multi-reward navigation. s
and g7 are a start node and a goal node, respectively. In addition, vy, v, v3, and vy are visitable nodes.

Figure [ presents how a tree-structured search space is constructed from a particular instance of multi-reward
navigation. Deeper nodes are omitted for clarity.

19



Under review as submission to TMLR

B Details and Pseudocode of Reference Search Algorithms

In this section, we provide the pseudocode of reference search algorithms.

Algorithm 1 Fully-Explored Sub-Tree Exclusion

Input: The current state s, unvisited child states F', a hidden search tree T = (S, N).
Output:
: Obtain all visitable child states of s, denoted as C.
if CNF = then
return True
else

return False
end if

Algorithm [1] verifies if all possible child states of a state s are all explored. This algorithm is denoted as
E(s| F,T), where F is unvisited child states and 7 is a hidden search tree. If E(s | F,T) is True, a search
algorithm should exclude this sub-tree of which the root is s from further search. Importantly, with this
process, underlying tree structures are not given to search algorithms, and we only provide unvisited states
to the algorithms.

Without loss of generality, we can define a modified successor function N*, which only provides immediate
child states that have unvisited states:

N*(s) ={s' € N(s) | ~E(s" | F,T)}, (10)

where — is a logical not operation.

B.1 Uniform Leaf Sampling

Algorithm 2 Uniform Leaf Sampling

Input: A root state sg, a value estimation function ‘7(5), a step budget T', a hidden search tree T = (S, N).
Output: A search trajectory 7 = [(so, vo, N(s0)), (s1,v1, N(s1)),- .., (s7,v1, N(sT1))].

1: Initialize a trajectory 7 = [(so,vo, N(s0))].

2: Update unvisited child states Fp.

3: fort=1,2,...,T do

4:  Choose the next state s; from F;_; uniformly at random.
5:  Evaluate s; to obtain its value v; using V(st)

6:  Update 7 with (s¢, ve, f}(st))

7. Update unvisited child states Fy.

8: end for

Algorithm [2] shows the pseudocode of uniform leaf sampling. This algorithm can be considered as the
randomized algorithm of DFS.

20



Under review as submission to TMLR

B.2 Greedy Leaf Sampling

Algorithm 3 Greedy Leaf Sampling

Input: A root state sg, a value estimation function ‘7(5), a step budget T', a hidden search tree 7 = (S, N).
Output: A search trajectory 7 = [(so,vo, N(S0)), (51,01, N(81)),- .., (s7,vr, N(s7))].
1: Initialize a trajectory 7 = [(So,vo, N (S0))]-
2: Update unvisited child states Fj.
3: fort=1,2,...,7T do
4:  Choose a state s} from the parent states of F;_; which has the highest reward estimated value.
5. Sample the next state s, from child states N(s;) uniformly.
6:  Evaluate s; to obtain its value vy using IA/(st)
7. Update 7 with (s, vy, V(s;)).
8 Update unvisited child states F;.
9: end for

Algorithm [3] demonstrates the pseudocode of greedy leaf sampling. It considers the reward values of the
parent states of unvisited states.

B.3 Uniform Path Sampling

Algorithm 4 Uniform Path Sampling

Input: A root state sg, a value estimation function ‘7(8), a step budget T', a hidden search tree 7 = (S, N).
Output: A search trajectory 7 = [(so,v0, N(S0)), (51,01, N(81)),- .., (s7,v1r, N(s7))].
1: Initialize a trajectory 7 = [(So,vo, N (S0))]-
2: Update unvisited child states Fj.
3: fort=1,2,...,7T do
4:  Assign a state as s; = so.
while s} ¢ F;_; do
Choose one of N*(s}) uniformly at random, ensuring that fully-explored sub-trees are not considered.
Update s; using the sampled state.
end while
Assign the next state as s; = s}
10:  Evaluate s; to obtain its value v; using ‘7(8,5)
11:  Update 7 with (s, vy, V(s;)).
12:  Update unvisited child states F;.
13: end for

Algorithm [] presents a search algorithm of uniform path sampling. In contrast to uniform leaf sampling,
this algorithm can be viewed as a randomized variant of BFS. The definition of N* is shown in .

21



Under review as submission to TMLR

B.4 Path Sampling with Pure Exploration, Greedy, or UCT Policy

Algorithm 5 Path Sampling with a Specific Tree Traversal Policy

Input: A root state sg, a value estimation function f}(s), a tree traversal policy P, a step budget T, a

hidden search tree 7 = (S, N).
Output: A search trajectory 7 = [(s0,v0, N(S0)), (51,01, N(s1)), ..., (s7,vr, N(s7))].
Initialize a trajectory 7 = [(s0, vo, N (s0))]-
Update unvisited child states Fjp.
fort=1,2,...,7 do

Assign a state as s} = sq.
while s} ¢ F;_; do
Determine unvisited immediate child states Fy_; = {s:s€ N(st),s € F_1}.
if [F;_1| > 0 then
Choose one of ﬁt_l uniformly at random.
else
Choose one of N*(s}) with a specific tree traversal policy T; see Algorithm @, ensuring that

fully-explored sub-trees are not considered.
11: end if
12: Update s; using the chosen state.
13:  end while
14:  Assign the next state as s; = s}
15:  Evaluate s; to obtain its value v; using ‘7(3,5)
16:  Update 7 with (s¢, vy, V(st))
17:  Update unvisited child states F;.
18: end for

H
@

Algorithm [5] shows a search strategy of path sampling with a specific tree traversal policy such as a pure
exploration, greedy, or UCT policy. N* is defined in .

Algorithm 6 Tree Traversal Policies

Input: A tree traversal policy P, the current state s, modified successor function N*.
Output: A selected next state s*
Pure Exploration Policy
= arg ming ¢ y+ () count(s’), where count returns the number of visit counts.
Greedy Policy
§* = argmaxy e n-(s) value(s’), where value returns the summation of all values of the child nodes of s'.
UCT Policy
s* = argmaxg ¢ v+ () value(s’) /count(s’) + cy/log(2 count(s))/count(s’), where c is a balancing hyperpa-
rameter.

Algorithm [6] presents the details of tree traversal policies. The pure exploration policy only considers the
number of visit counts and chooses the least visited state as the next state. The greedy policy takes into
account the values of child states in order to choose the next state. The UCT policy (Kocsis & Szepesvari,
2006) balances exploration and exploitation considering both the number of visits and the estimated values.
Across all experiments, we use ¢ = 0.1. See this reference (Sutton & Barto, 2018) for more details.

22



Under review as submission to TMLR

C Trace Formats

This section presents the trace formats used for theoretical constructions, Transformers trained from scratch,
and pretrained existing LLMs.

C.1 Trace Format for Theoretical Constructions

?80% vo # N(s0) 781 % v1F#N(s1) ? 84 Yo va # N(54) ? 82 %o va # N(s2)

Figure 10: Visualization of our tokenization scheme. Same colors indicate same state transitions.

In our theoretical analysis, we represent each search trace as a sequence of discrete tokens. Figure [L0] shows
the tokenization scheme for leaf sampling algorithms.

C.2 Trace Format for Transformers Trained from Scratch

To simplify both training and inference of Transformer models trained from scratch, we provide the full set of
unvisited states F;_1 at step t. Additionally, each unvisited state, denoted as S;—1,1,St-1,2,---,S—1,|F_,>
is accompanied by its O-based index, denoted as i1, 2, ...,%r,_,|- As a result, the Transformer models should
predict these indices when predicting next states. It implies that the task becomes easier than the task of
predicting states directly. The example of this trace format is as follows:

oo Ve #1410 Spo11 02 Secv20im | Se—1,F_y TS Ve #41 Sp1ie Seacdpy Stk

Tokens for a single step

where V; is an estimated value of S; at step ¢t. In this setting, we discretize V; to two decimal places and
represent it using 101 tokens corresponding to the values 0.00,0.01,0.02, ...,0.99, 1.00.

23



Under review as submission to TMLR

start_of_iteration O r0d0>i0dl 1 r0d0>ildl 2 r0d0>i2d1 selected_child_and_then_reward

2 0.00 start_of_iteration 0 r0d0>iOdl 1 r0d0>ildl 2 r0d0>i2d1>i0d2 3 r0d40>i2d1>ii1d2 4
r0d0>i2d1>i2d2 selected_child_and_then_reward O 0.00 start_of_iteration O r0d0>iidil 1
r0d0>i2d1>i0d2 2 r0d0>i2d1>i1d2 3 r0d0>i2d1>i2d2 4 r0d0>i0d1>i0d2 5 r0d0>i0d1>ild2 6
r0d0>i0d1>i2d2 selected_child_and_then_reward 6 0.00 start_of_iteration O r0d0>ildl 1
r0d0>i2d1>i0d2 2 r0d0>i2d1>i1d2 3 r0d0>i2d1>i2d2 4 r0d0>i0d1>i0d2 5 r0d0>i0d1>ild2 6
r0d0>i0d1>i2d2>i0d3 7 r0d0>i0d1>i2d2>i1d3 8 r0d0>i0d1>i2d2>i2d3 selected_child_and_then_reward
4 0.40 start_of_iteration O r0d0>ildl 1 r0d0>i2d1>i0d2 2 r0d0>i2d1>i1d2 3 r0d0>i2d1>i2d2

4 r0d0>i0d1>i1d2 5 r0d0>i0d1>i2d2>i0d3 6 r0d0>i0d1>i2d2>i1d3 7 r0d0>i0d1>i2d2>i2d3 8
r0d0>i0d1>i0d2>i0d3 9 r0d0>i0d1>i0d2>i1d3 10 r0d0>i0d1>i0d2>i2d3 selected_child_and_then_reward
9 1.00 start_of_iteration 0 r0d0>ildl 1 r0d0>i2d1>i0d2 2 r0d0>i2d1>i1d2 3 r0d0>i2d1>i2d2

4 r0d0>i0d1>i1d2 5 r0d0>i0d1>i2d2>i0d3 6 r0d0>i0d1>i2d2>i1d3 7 r0d0>i0d1>i2d2>i2d3 8
r0d0>i0d1>i0d2>i0d3 9 r0d0>i0d1>i0d2>i2d3 selected_child_and_then_reward 9 0.00

Figure 11: Trace example of multi-reward tree search problems.

24



Under review as submission to TMLR

start_of_iteration 0 x0y0>x0Oyl 1 xOy0>x1yO selected_child_and_then_reward O 0.00
start_of_iteration 0 x0y0>x1y0O 1 xO0yO0>x0y1>x0y2 2 x0y0>x0y1>x0y0 3 x0y0>x0yi1>xly1l
selected_child_and_then_reward 1 0.10 start_of_iteration 0 x0Oy0>x1y0 1 xOy0>x0y1>x0y0 2
x0y0>x0y1>x1yl 3 x0y0>x0y1>x0y2>x0y3 4 x0y0>x0y1>x0y2>x0yl selected_child_and_then_reward 3
0.10 start_of_iteration 0 x0y0>x1y0 1 xOy0>xOy1>x0y0 2 xO0y0>x0y1>x1yl 3 x0y0>x0y1>x0y2>x0y1l
4 x0y0>x0y1>x0y2>x0y3>x0y4 5 x0y0>x0y1>x0y2>x0y3>x0y2 selected_child_and_then_reward 4 0.00
start_of_iteration 0 xOy0>x1y0 1 x0y0>x0y1>x0y0 2 x0y0>x0Oy1>x1lyl 3 x0y0>x0y1>x0y2>x0yl 4
x0y0>x0y1>x0y2>x0y3>x0y2 5 x0y0>x0y1>x0y2>x0y3>x0y4>x0y3 6 x0y0>x0y1>x0y2>x0y3>x0y4>x1y4
selected_child_and_then_reward 4 0.00 start_of_iteration 0 xOy0>x1y0 1 xOy0>x0y1>xOyO

2 x0y0>x0y1>x1lyl 3 x0y0>x0y1>x0y2>x0yl 4 x0y0>x0y1>x0y2>x0y3>x0y4>x0y3 5
x0y0>x0y1>x0y2>x0y3>x0y4>x1y4 6 x0y0>x0y1>x0y2>x0y3>x0y2>x0y3 7 x0y0>x0y1>x0y2>x0y3>x0y2>x0y1
selected_child_and_then_reward 3 0.00

Figure 12: Trace example of multi-reward navigation problems.

Figures|l1]and[12]show the trace examples of multi-reward tree search and navigation problems. These tokens
are split by whitespaces, which implies that a single word corresponds to a single token. For the multi-reward
navigation problem, to reduce the number of state tokens, we additionally split the state tokens with “>.

C.3 Trace Format for Pretrained Large Language Models

For the existing pretrained LLM, we first initialize it with the system prompt shown in Figure Each step
of the trajectory (st,v:, N(st)) is encoded into the following pair of messages:

(a) An assistant message
SELECTED_STATE: s

(b) A user message

FEEDBACK_SCORE for STATE s;: 1w
CHILD_STATES for STATE s;: S¢0 St,1 ---

We then let the LLM generate the next assistant message and parse out the newly selected state.

25



Under review as submission to TMLR

You are a Tree-Search Assistant. Your mission is to locate, within a fixed number of
iterations, the leaf node with the highest reward. You’ll follow a strict, turn-by-turn
protocol with the user.

### 1. Initialization
- When the user’s first message is ‘START’, immediately reply: SELECTED_STATE: 0
- State 0 is the root.

### 2. Turn Format

On each subsequent turn, the user will send information about the most recently selected state
N:

1. FEEDBACK_SCORE for STATE : <score>

- This score is a stochastic estimate of the **average reward** of the leaf nodes reachable from
this state.

2. CHILD_STATES for STATE N: <cl1> <c2> ... <ck>

- If there are no IDs after ‘CHILD_STATES’, then N is a leaf.

**Important : *x*

- The FEEDBACK_SCORE is a stochastic estimate of the average reward of the leaf nodes reachable
from this state.

- You only learn a state’s score when you select it.

- You do not know the scores of its children or any other unselected states until you select
them.

### 3. Your Selection Rule

- At each turn, pick exactly one unvisited state from any of the child-state lists you’ve
received so far (including lists from previous turns).

- Never select a leaf node that you have already visited.

- Reply with only:

SELECTED_STATE: X where X is the ID of the new state you’re choosing.

### 4. Objective

- Multiple leaf nodes have non-zero rewards; your goal is to find the one with the highest
reward.

- Use all received FEEDBACK_SCORES and CHILD_STATES data to guide your choices.

- Aim to identify the highest-reward leaf node in as few selections as possible.

### 5. Strict Output Format
- Only output lines of the form SELECTED_STATE: X.
- Do not echo user input, add commentary, or output anything else.

Begin when the user says START.
-

Figure 13: System prompt used to drive the Tree-Search Assistant.

26



Under review as submission to TMLR

C.4 Trace Format for Academic Paper Search Problem

In experiments on the Academic Paper Search problem, we use pretrained LLMs with the system prompts
shown in Figures [14] and At each iteration, the LLM selects the next paper.

For all methods, we evaluate the entire path as a single sequence and ask LLMs to assign one suitability
score between 0.00 and 1.00 using the prompt in Figure For the method without external search, we
instead ask the LLM to select the single most suitable candidate paper for reaching the target paper, using
the prompt in Figure

e N
You are an AI assistant specialized in finding a navigable academic paper from a given start

paper {start_title} to a target paper {target_titlel}.
1. Input:

e PATH: The previously selected sequence of papers.
Example: PATH: "Paper A" -> "Paper B" -> "Paper D" -> ...

2. Task:
e Evaluate the entire PATH as a whole.

e Assign one suitability score from 0.00 to 1.00 indicating how appropriate the current PATH
is for reaching {target_title}.

3. Output:

e On the last line only, produce a single "score" and its value with two decimal places.
Example: 0.76

e No extra text or explanation.

Figure 14: System prompt used to score the path in the Academic Paper Search problem.

e N
You are an AI assistant specialized in finding a navigable academic paper from a start paper to

a target paper.
1. Input:
e PATH: The previously selected sequence of papers.
Example: PATH: "Paper A" -> "Paper B" -> "Paper D" -> ...

e SCORE_LIST: A list of the scores for the corresponding papers in PATH.
Example: SCORE_LIST: 0.43 -> 0.22 -> 0.83 ->

o CANDIDATE_LIST: A 1-based indexed list of candidate papers.
Example: CANDIDATE_LIST: 1. "Paper A", 2. "Paper B", 3. "Paper C",
2. Task:

e Balance exploration and exploitation when selecting the next paper from CANDIDATE_LIST.
e Select the single most suitable paper for reaching the target paper.
e Do not estimate any candidate as the target itself.
3. Output:
¢ On the last line only, output exactly one integer: the index of the chosen paper from
CANDIDATE_LIST.
Example: 2

e No extra text or explanation.

Figure 15: System prompt used to select the candidate in the Academic Paper Search problem.

27



Under review as submission to TMLR

D Theoretical Constructions of Transformers
In this section, we provide the details of our theoretical results missing in Section [

D.1 Theoretical Transformer Model

This section defines a simplified version of the Transformer architecture used in this work. We make similar
assumptions as in (Hahn| [2020; Weiss et all [2021). We omit layer normalization and replace the fully
connected layer with any arbitrary token-wise function (since MLPs are universal approximators). We also
replace the conventional softmax attention mechanism with hard attention.

Transformer Block Let X € R?X" be the input matrix representing a sequence of n token embeddings,
each of dimension d. A single-head Transformer block consists of a residual self-attention mechanism followed
by a position-wise feed-forward function f:

First, the self-attention mechanism updates the input X:
Attn(X) == X + VX hardmax(X"K'QX) €R™™,

Here, Q,K,V € R¥? are the learnable query, key, and value weight matrices, respectively. The term
XTKTQX calculates the n x n attention weight matrix, where entry (i, j) represents the attention from
token j to token ¢ and we define the hardmax operator as follows:

1[z; = maxy, 2]

hardmax(2): = o e 2]

This operator assigns a uniform probability distribution over the index (or indices) corresponding to the
maximum value(s) in z, and zero otherwise. Next, a feed-forward function f is applied independently to
each token’s representation (each column vector):

Block(X) := Attn(X) + [f(Attn(X). ;)]

dxn
HJ)1j=1 €R ’

where:

o Attn(X). ; denotes the j-th column (token representation) after the attention step;

e f:RY = RYis any arbitrary piecewise continuous function. The output of f for each token is added
residually to the output of the attention layer.

Transformer Network A Transformer network is formed by stacking ¢ such blocks. Given an initial input
sequence X and fixed positional embeddings py,pa, ..., pn € R?, we first incorporate positional information:

X(O) =X + [p17p27 e 7pn]
Then, we iteratively apply the blocks:
X™ = Block(X*~D), for k=1,...,0

A final linear layer (the “unembedding” matrix) U € R"*? is applied to the final representation of the last
token in the sequence, X;(f;,), where v is the vocabulary size:

logits = UX:(’Q e RY,
The predicted next token is the one corresponding to the highest logit value:

next token = arg max(logits,),
i

i.e., we do greedy decoding. We break ties uniformly at random.

28



Under review as submission to TMLR

Discussion on Model Assumptions The omission of layer normalization follows established practice
in theoretical Transformer constructions including universal approximation proofs (Yun et al., 2020) and
constructing programming languages that can be compiled into Transformers (Weiss et al., [2021)).

Our hard attention assumption is mild in that it can be approximated arbitrarily closely by softmax at-
tention through logit scaling. It is also a standard assumption used in previous Transformer complexity
analyses (Pérez et al., 2019).

Our requirement for feed-forward networks to represent arbitrary piecewise-continuous functions aligns with
classical universal approximation theorems. Specifically, ReLU network have been shown to be able to
approximate any function in Sobolev spaces with tight bounds on the parameters needed
to achieve arbitrary closeness.

Lastly, we note, these assumptions match those in the RASP programming model (Weiss et al., [2021)), which
similarly removes normalization layers and assumes full expressivity of feed-forward layers.

D.2 Proof of Theorem 1

Embedding Construction We embed each token into a vector whose coordinates (“registers”) store
interpretable features. Table [2| lists the registers, their meaning, and the initial values for each token type.
The id; register is a collection of registers, each corresponding to one state token S;. The last three registers
(isVisited, inhValue, and pos) are initialized to zero and will be updated by the Transformer. Because,
we require a register for each state, it follows that embedding dimension is size ©(T B).

Notation We write e, for the standard basis vector with an 1 in the coordinate corresponding to register
a and 0 elsewhere. For registers a and b, define

Ma—)b = €p ezv
which is the matrix that copies the value from register a into register b.

Table 2: Initial embeddings. Each row is a register (coordinate), and each column gives its initial value for
the token types V,, (value), “# 7 %” separators, and state tokens S.

Register Vo # ? % Sk
value « 0 0 0 0
#7 0O +1 -1 0 0
isValue 1 0 0 0 0
is#? 0 1 1 0 0
isState 0 0 0 1 0
id; 0 0 0 0 1[i=k
bias 1 1 1 1 1
Dynamically updated registers:
isVisited | O 0 0 0 0
inhValue 0 0 0 0 0
pos 0 0 0 0 0

We also add a positional embedding by setting
X X; 4t epos,
so that the pos register of the token at position ¢ stores its index in the trace.
Layer 1: Marking Visited States We want each state token to know whether it follows a ? (i.e., was

selected by the Transformer for selection) or if it was generated by the environment to indicate the children
states.

29



Under review as submission to TMLR

Choose
Q = Mbias%la K= Mis#?~>17 V = Myr_isvisitea-

Here bias queries uniformly, K gives score 1 to separators (tokens with is#?7=1), and V copies the separator’s
#7 (+1 for #, —1 for ?) into the isVisited register of the querying token. Since a state immediately after
? sees one more —1 than +1, its isVisited becomes negative; after # it sees equal counts and remains zero.
Thus isVisited < 0 exactly for visited states.

We then apply a feed-forward that scales the isValue register of value tokens by their index in the trace:

f(l) (y) = (yis\lalue ypos) €isvValue)

which will be used in subsequent layers so that state tokens attend to only the closest preceding value token.

Layer 2: Propagating Inherited Rewards Next we want each frontier state (states that are children
of visited states but are themselves not yet visited) to inherit the rollout estimate value of its parent state.
Parent values live in the most recent value token V,, before the state’s position.

Set

Q = Mbias—>17 K= MisValue—)la V= Mvalue—)inhValue-

Each state token attends (via hard attention) to the immediately preceding value token (due to the feedfor-
ward in the previous layer), and the V' matrix writes that value « into its inhValue register.

We then use a piecewise feed-forward on the id; registers:

f(Q)(y) _ {yinhValue, if,Yisvisitea = 0

id; = .
‘ -1, otherwise,

with all other coordinates set to zero. Non-state tokens and visited state tokens get a negative score, and
each frontier state .S; has its inherited reward stored in id;.

Layer 3: Selecting the Maximum Finally, we collect all frontier scores and choose the largest:

Q = Mbias%la K = MisState%lv V= E Midiﬁ»idi'
i

At the embedding corresponding to the last ? in the trace, the query attends to all preceding state tokens
(isState=1) and V sums each state S;’s id; value into the querying token’s id;. We set f3)(y) = 0 as we do
not need the feedforward in this layer. Now assuming tokens are indexed so that the embedding coordinate
id; corresponds exactly to the vocabulary index of state token S;, we choose the unembedding matrix U
to be zero everywhere except on the submatrix mapping the id; coordinates to their corresponding token
logits, where it is the identity. In this setup, the id; registers directly become the logits for each state token,
so greedy decoding picks the state with the highest inherited reward.

Remark (Uniform-Leaf Sampling) If instead all V, embeddings are set to the same constant vector,
then every frontier state receives an identical score in Layer 2, yielding uniform sampling over leaves by the
same construction.

D.3 Proof of Theorem

For this theorem, we analyze the conventional MCTS (Sutton & Bartol [2018), which is a widely-used
form, where the selected state s* is determined by taking the argmin over N(s), rather than N*(s) as
in Algorithm @ In our empirical experiments, we used N*(s) due to the shallow nature of the search trees.
However, for theoretical clarity and consistency with classical MCTS, the Transformer construction presented
here uses N(s).

30



Under review as submission to TMLR

Embedding Construction Tokens are again embedded into interpretable “registers.” Table [3| defines
the initial static register values; all dynamic registers are initialized to zero. Registers of type X; denote a
set {Xi};frfi‘”'l, with one register per state token. The oid; registers include two additional coordinates used
specifically for the > and % tokens.

As in the previous construction, we apply a positional embedding via Xt(o) — Xt(o) + tepos, SO that each
token’s pos register holds its position in the trace.

Table 3: Initial embeddings for the MCTS-Transformer: static registers encode each token’s fixed features,
while dynamic registers are initialized to zero and updated by the network conditioned on the trace.

Register Vo # ? > [bos]l] % Sk
value o 0 0 O 0 0 0
#7 0 +1 -1 0 0 0 0
isValue 1 0 0 O 0 0 0
is#? 0 1 1 0 0 0 0
is> 0 0 0 1 0 0 0
is? 0 0 1 0 0 0 0
isBos 0 0 0 O 1 0 0
is#Bos 0 1 0 O 1 0 0
isState 0 0 0 O 0 0 1
id; 0 0 0 O 0 0 1[i=k
bias 1 1 1 1 1 1 1
Dynamically updated registers:
is? - pos 0 0 0 O 0 0 0
isValue-pos | 0O 0 0 O 0 0 0
isState-pos | 0 0 0 O 0 0 0
closest?pos 0 0 0 O 0 0 0
parentpos 0 0 0 O 0 0 0
isVisited 0 0 0 O 0 0 0
wasVisited 0 0 0 O 0 0 0
vid; 0 0 0 O 0 0 0
cid; 0 0 0 O 0 0 0
pid; 0 0 0 O 0 0 0
psid, 0 0 0 O 0 0 0
nsid; 0 0 0 O 0 0 0
oid,; 0 0 0 O 0 0 0
iter 0 0 0 O 0 0 0
pos 0 0 0 O 0 0 0

For any coordinates where we do not explicitly define how it is updated by a feedforward function, the output
is defined to be zero.

Layer 1: Iteration Counter and Positional Precomputation This layer precomputes positional
dependent registers. The attention mechanism is defined by the following;:

Q = Mbias~>17
K= Mis#bos—)la

V= MisBos—>iter-

31



Under review as submission to TMLR

This attention is used to compute the number of iterations that have passed which will be stored in the iter
register. We apply the feed-forward function f(1):
f(l) (y)is?P = Yis?Ypos;
f(l) (y)isState~pos = YisStateYpos)
f(l) (y)isValue~pos - yisValueyposa

f(l)(y)iter = (1/yiter) — VYiter, lf Yiter > 0 else 07

which processes the iter register to hold the correct value and preproccess several other positionally depen-
dent registers for later computation.

Layer 2: Compute closest?pos This layer will do computation so that when isState is 1, closest?pos
will store the position of the closest preceding ? token in the trace. Otherwise, it is set to 0. The attention
matrices are given by the following:

Q = Mpias—1,
K = Mis?'pos—>13

V= Mpos—)closest?pos~

Through the hard attention, each token attends to the preceding token with the largest is? - pos value (i.e.,
the value of the closest preceding ? token). Its pos value is copied to the querying token’s closest?pos
register. The subsequent feed-forward function f(2) is:

2
.f( )(y)closest?pos = Yclosest?pos YisState — Yclosest?pos;

which zeros out closest?pos if the current token does not correspond to a state.
Layer 3: Compute Per-Iteration Reward and Count Statistics This layer computes the reward

and tree policy visitation count statistics for each iteration, which will be stored in the respective V,, token
at the end of its iteration. The attention is:

Q = Mbias—)l ’

K= Mclosest?pos%l )

V= Z(Midi%vidi + Mg, scia;)-

For a V, token, this attention sums statistics from state tokens s visited by the tree policy within the
current iteration, identified as the tokens with the largest value in closest?P. The id; values from these s,
tokens are copied and summed into the V, token’s vid; and cid; registers. The feed-forward function f(3),
applied at V, tokens, then sets:

f(g) (V)vid; = Yvaue L[Wvia; > 0] — Yviq;
f(g) (¥)cid; = 1[Yeia, > 0] = Yviq,,

storing 1 in cid; when state S; is visited in this iteration (used to compute visitation counts).

Layer 4: Aggregate Statistics (Backpropagation) This layer aggregates reward and count statistics
from all iterations. These accumulated statistics will be stored in the final V,, token of the trace. We set:

Q = Mbias%la
K= MisValue—>17

V= Z(Mvid,;—widi + Mg, —ciq; )-
i

32



Under review as submission to TMLR

The token intended for final aggregation attends to all previous V,, tokens (where isValue= 1). It sums up
the vid; (values) and cid; (counts) from these iteration-specific V, tokens into its own registers. We then
use the feedforward layer to unormalize by the number of iterations (since the attention will average them):
f(s) (Y)eid; = Yeia; Yiter — Yeia,
f(5) (Y)vid: = Yvid; Yiter — Yvia,-

Layer 5: Identify State Tokens Selected by Transformer This layer identifies which state tokens in
the trace corresponds to those generated by the Transformer during the tree policy trace. We use attention:

Q = Mbiasﬁla
K = Migry1,

V= M’?#—)isSelected-

Each state token sums the 7# values from preceding relevant tokens. For states immediately following a
#, this sum in isSelected will be 0. It will be nonzero otherwise. The feed-forward f(®) uses this fact to
compute the register:

f(5) (y)isSelected = VYisState * ]l[yisSelected 7& 0] — YisSelected-
This sets isSelected to 1 for state tokens selected by the Transformer and 0 for the state token generated

by the environment to indicate the child nodes.

Layer 6: Identify Parent Position for Neighbors This layer serves as preprocessing to identify the
parent node of each neighbor token (i.e., those state tokens immediately succeeding the # token), by first
storing the parent’s position in the parentpos register of the parent token itself. No attention is needed, so
we set all the attention weights to 0. The feed-forward f(©) is:

6
f( )(y)parentp = VYisstate * YisSelected * Ypos-

This operation stores the current token’s position into its own parentP register if it is a state token and
corresponds to a state visited by the tree policy in some iteration.

Layer 7: Propagate Parent id to Its Children States Children state tokens use the information
about the parent’s position to retrieve the parent’s id. The attention is:

Q = Mbias—>13

K= Mparentpos—>1;
V= E Mg, —piq, -
%

Each neighbor state token attends to the immediately preceding non-neighbor state (which will be it’s parent
state). It then copies the parent token’s id; into its own pid, registers. No feed-forward f (M) is needed, so
we set it to 0.

Layer 8: Store Previously Selected State id in Embedding of > Token The > token stores the id
of the state that was just selected by the tree policy. We set:

Q = Mbias—>1;

K= MisState-pos—)la
V= E Midi—)psidij

3

The > token attends to the immediately preceding state token and copies that state’s id; into its own psid,.

33



Under review as submission to TMLR

Layer 9: Collect Children States of Previously Selected State in Embedding of > Token The
> token collects the id of all children of the previously selected state. The attention is:

Q= E Mpsidi—ﬂ'a
i

K = E Mpidi—>i7
A

V= E Midi%nsidy
4

The > token uses its psid; registers as the query. State tokens use their pid, registers as keys. If key and
query match, the neighbor’s id; is copied/summed into the > token’s nsid; register. No feed-forward f ) ig
needed, so we set it to 0.

Layer 10: Final UCT Computation for > Token At the > token, the next state to select is calculated
using UCT scores. First, it gathers aggregated statistics using the following attention weights:

Q = Mbias—>13

K = MisValuepos—)l )

V= Z(Mcidi—»cidi + Myia, >vid, )-
i

The > token attends to the token holding globally aggregated statistics (computed in layer 4) into its own
registers. The feed-forward function f(!%) then does the UCT computation:

Yvia; +C \/108;(2 Zk Yeidy ypsidk)/ycid,; if yis> =1, Ynsia, = 1 and yeiq, # 0,
f(lo)(y)oi ;=\ O, if yis> =1, Ynsia; = 1 and Yeiq, = 0,
0, otherwise.

Layer 11: Generate Start State Sy After ? This layer ensures the Transformer generates Sy (the root
node) when it sees the initial ? token. The attention matrices are

Q=0,
K =0,
V= Mis?—midg-

We set f(11) to the 0 function in this layer.

Layer 12: Generate > or ), After State Selection This layer determines whether to generate > or %
after a state token has been chosen by the tree policy. Specifically > is generated if the tree policy has not
reached a new undiscovered node. The % token is generated otherwise. For this layer, we set the attention
matrices to the following:

Q= ZMidiAMH
K=Y Mo i,

V= MisSelected—)wasSelected .

Intuitively for the current state token in the tree policy path, it will attend to all previous state tokens
that represent the same states. It aggregates the isSelected values into the wasSelected register. Thus
wasSelected > 0 if and only if the state was previously visited in another iteration. Thus we let the feed
forward layer be

f(12) (y)oid> = yisState]l[ywasVisited > 0]7
f(12) (y)oid% = yisState]l[ywasVisited = 0]

34



Under review as submission to TMLR

Final Unembedding Assuming without loss of generality that oid; corresponds to the i’th state token,
it again suffices to let U be the matrix that is zero everywhere except on the submatrix mapping the oid;
to the corresponding token. The token with the highest logit value is chosen by greedy decoding.

Note on on Different Tree Policies For path sampling with a greedy policy and uniform path sampling,
Layer 10 is modified. For path sampling with a greedy policy, the feed-forward f(19 at the > token computes:

f(lo) (y)oidi = Yvid; Yis> Ynsid, -
For uniform path sampling, f(1%) would set:

f(lo)(y)oidi = Yis> Ynsid; -

35



Under review as submission to TMLR

E Details of Empirical Analysis on Transformers’ Search Capabilities

In this work, we use NumPy (Harris et all [2020)), SciPy (Virtanen et al., [2020), PyTorch (Paszke et al.,
2019)), Scikit-learn (Pedregosa et al., [2011]), and other scientific packages in Python. Moreover, as shown in
the main article, we employ a variety of LLM APIs and checkpoints such as OpenAl GPT, Google Gemini,
and Alibaba Qwen.

To run our experiments, we utilize commercial Intel and AMD CPUs such as AMD EPYC 9374F and Intel
Xeon Platinum 8352Y, and NVIDIA GPUs such as NVIDIA L40S.

E.1 Experimental Details of Pretrained LLMs on Multi-Reward Tree Search Problem

To test the performance of pretrained LLM’s on the Multi-Reward Tree Search problem, we use the prompting
method as in Section We use a tree-depth of 6 and branching factor of 2. From among all leaf nodes, we
uniformly sample 8 distinct leafs to serve as “goal” nodes. Each selected goal leaf is then randomly assigned
a unique reward from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0}. In total, we generate 200 independent
trees according to this procedure, resulting in 200 distinct multi-reward tree search instances.

Model Evaluation We evaluate the following models using the prompting strategy described above: GPT-
4.1-mini and GPT-4.1 (OpenAll 2025a)); Gemini 2.5-Flash and Gemini 2.5-Flash (Thinking) (Gemini Team,
Google| |2025)); and Qwen3-8B and Qwen3-8B (Thinking) (Qwen Team) [2025). Each model is tested for 50
steps per tree instance.

Model Configuration The “Thinking” variants refer to configurations in which explicit reasoning modes
are activated. For Gemini 2.5-Flash (Thinking), we set the reasoning_effort parameter to medium. For
Qwen3-8B, which by default engages in “Thinking” (i.e., explicit reasoning chains), we create a non-thinking
variant by appending /no_think to the beginning of the system prompt to suppress intermediate reasoning
steps. Lastly, we use greedy decoding for all variants.

36



Under review as submission to TMLR

E.2 Experimental Details of Fine-Tuning for Enhancing Search Capabilities of LLMs

We evaluate the search abilities of pretrained and fine-tuned LLMs on the Academic Paper Search problem.
Given a start paper, the goal of this problem is to find a target paper where the child states of a particular
paper are defined by the papers of the co-authors of that particular paper. We randomly choose pairs
of start and target papers as shown in Table 44 We employ OpenAlex (Priem et all 2022) for designing
this experiment. The prompts used to generate the search trajectories in these experiments are shown

in Section [C4]
We fine-tune the Qwen3-8B model (Qwen Teaml [2025)) using Low-Rank Adaptation (LoRA) (Hu et al.;[2022)),

a parameter-efficient approach that updates only a small set of parameters. The maximum sequence length
is set to 10,240, and training is run for one epoch. We use the paged AdamW (32-bit) optimizer
for memory efficiency, with a learning rate of 2 x 10™%, a cosine learning-rate schedule, 3%
warmup, and weight decay 0.001. LoRA is configured with rank 16, scaling factor 32, and dropout 0.05, and
is applied to the main attention projections and MLP projections.

Table 4: Start—target paper pairs in the Academic Paper Search problem.

Start Paper

Target Paper ‘ Start Paper

Target Paper

W2585547904 W3196632732 W2390034408  W2357505547
W2272018300 W574723991 W3196681629 W2780169483
W4252577446  W3213173784 W133467238  W3138433919
W3023894403 W3186777337 W2887992654 W3035676168
W2610360324 W2254883584 W28024976 W4230887124
W375670644  W2645342909 W4403312580 W2360871073
W2290528378  W2184245987 | W2075179071 W2413728222
W1497510206 W193222316 W1928336576 W4294761907
W2378250669 W2167634255 W70597564 W2019636961
W2413184738 'W2994021882 W2111031504 W1538861733
W3125578107 'W4205416125 W1999318920 W1648404904
W957051818  'W1496033586 W1043586152 W1003374900
W4225958650 W4322489421 W1983902283 W2800480410
W657940841  W4387063953 W2124237366 W1986139416
W2564522209 W2246496635 W2312519939 W2263184888
W3038306494 'W3041988068 W2367761479  'W2935041779
W2272635734 'W3203890190 W2363737347  W2368854302
W204856840  W2136708823 W2330377032 W2045968954
W4312079109 W3082198414 W2290947939 W3182725060
W2053134222 'W4404914451 W639808865  W658822377

W4322827068 W2106442077 | W2316765899 W4380875192
W4242477155 'W4205383455 W2415588074 W3013098164
W1525894204 W1538920755 W3173752466 W2952700754
W270839233  W385335894 W2008748940 W2140973411
W2090948737  'W2080692806 W4392218955 W4391238054
W2009460780 W2505367746 W46357476 W2314777899
W2491706897 W4232504235 W1461752455 W1540011986
W2120932789 'W2962025900 W2372889019 W2355250576
Wo575771764  'W427966303 W2372242901  W2998013669
W2169084069 W4291372033 W4410927769 W4403703781
W2394974804 'W4256391018 W3209857023 W2001189511
W2369940005 W2356021002 W2393662227 W2358750724
W3153204805 W3153990973 W2134325687 W2337799504

37



Under review as submission to TMLR

F Additional Empirical Results

In this section, we show additional empirical results on the multi-reward tree search and multi-reward
navigation problems.

F.1 Additional Empirical Results on Multi-Reward Tree Search

In addition to the experiments shown in Figure [3] we present additional results on multi-reward tree search
problems with more diverse settings.

Uniform Leaf Sampling Uniform Path Sampling Greedy Leaf Sampling
1.0
‘Q) L]
5 '
205
0.0 = e —_— e R l—. . .—. .
Reference Transformer Reference Transformer Reference Transformer
Path Sampling w/ Pure Exp. Path Sampling w/ Greedy Path Sampling w/ UCT
1.0
I
S ' - ' !
N I I I I I | I
Reference Transformer Reference Transformer Reference Transformer
B Max-Reward Hit Rate B Normalized Path Length EE Normalized Cumulative Reward
B Discounted Cumulative Gain Highest Reward B Normalized Jump Distance

Figure 16: Behavior cloning results on the multi-reward tree search problem, where each binary tree of depth
8 has 8 different goals and a search step budget is 50.

Figure[I6]shows the experimental results that test deeper multi-reward trees, which are depth 8. These results
follow our observation that Transformers successfully mimic the behaviors of reference search algorithms.
Since this setting is harder than the setting of Figure[3] the search performance of each algorithm is relatively

poor.

Uniform Leaf Sampling Uniform Path Sampling Greedy Leaf Sampling
1.0
2 : '
S]
$05
' ' Lol [
00 WE__mu  mm -l W —_ —_ L l— .
Reference Transformer Reference Transformer Reference Transformer
Path Sampling w/ Pure Exp. Path Sampling w/ Greedy Path Sampling w/ UCT
1.0
g . . .
S]
So05
1
LI Lin ws '
0.0 ) i i e | [ I .
Reference Transformer Reference Transformer Reference Transformer
BN Max-Reward Hit Rate B Normalized Path Length HEE Normalized Cumulative Reward
B Discounted Cumulative Gain Highest Reward W Normalized Jump Distance

Figure 17: Behavior cloning results on the multi-reward tree search problem, where each quaternary tree of
depth 4 has 8 different goals and a search step budget is 50.

38



Under review as submission to TMLR

Similarly, we conduct experiments on wider multi-reward trees in Figure These trees have 4 child states
for each parent state. Transformers successfully show similar performance of the respective search strategies,

following our expectation.

Uniform Leaf Sampling Uniform Path Sampling Greedy Leaf Sampling
1.0
[}
E
Sos I I
1 [}
L] L]
0 BN BEN o m m L L
Reference Transformer Reference Transformer Reference Transformer
Path Sampling w/ Pure Exp. Path Sampling w/ Greedy Path Sampling w/ UCT
1.0 - .
[}
3
N I I I I I
o o - N n
Reference Transformer Reference Transformer Reference Transformer
B Max-Reward Hit Rate B Normalized Path Length EE  Normalized Cumulative Reward
B Discounted Cumulative Gain Highest Reward B Normalized Jump Distance

Figure 18: Behavior cloning results on the multi-reward tree search problem, where each binary tree of depth
6 has 4 different goals and a search step budget is 50.

We test a problem with a fewer number of goal sates. As shown in Figure[I8] these results follow the findings
observed in the previous experiments.

39



Under review as submission to TMLR

F.2 Additional Empirical Results on Generalization Analysis

Uniform Leaf Uniform Path

Reference Transformer Reference Transformer

gw’/A\/‘): M et —

|

0.0 1
0.1 0.2 0.3 04 0.1 0.2 0.3 04 0.1 0.2 0.3 04 0.1 0.2 0.3 0.4
Greedy Leaf Reference Transformer  Path w/ Pure Exp. Reforence Transformer

. I I I I

| I S— |
& — /. 2; i —_—
» 0.5 /\—/| — *II i

0.0 1 1 B —
0.1 0.2 0.3 04 0.1 0.2 0.3 04 0.1 0.2 0.3 04 0.1 0.2 0.3 0.4
Path w/ Greedy Reference Transformer  Path w/ UCT Reference Transformer

1 1
1.0
© | 1
g L
F05 . I — -
—_— N | |
0.0 1 1 1 b 1
0.1 0.2 0.3 04 0.1 0.2 0.3 04 0.1 0.2 0.3 04 0.1 0.2 0.3 0.4
Test Wall Density Test Wall Density Test Wall Density Test Wall Density
== Max-Reward Hit Rate === Normalized Path Length e Normalized Cumulative Reward
=== Discounted Cumulative Gain Highest Reward e====_Normalized Jump Distance

Figure 19: Generalization analysis over test wall densities on the multi-reward navigation problem of size 4
x 4 with a step budget of 50. The wall density smaller than 0.4 is unseen in a training phase. A gray dashed
line indicates the setting used in training.

40



Under review as submission to TMLR

Uniform Leaf Reference Transformer Uniform Path Reference Transformer

1.0

Score
[==3
ot

6 7 8 6 7 8 6 7 8
Greedy Leaf Path w/ Pure Exp.

0.0

"

(=
-

8

Reference Transformer Reference Transformer

| | | |
1.0
| | | |
; | | I
@
Sos k‘l‘ I L I
193] | \ | | |
 — f\ I &
0.0 | = L
6 7 8 6 7 8 6 7 8 6 7 8
Path w/ Greedy Reference Transformer Path w/ UCT Reference Transformer
1.0

r

Score

|
|
//
|

0.0

0
O -

7 7 7 7
#Test Tree Depth #Test Tree Depth #Test Tree Depth #Test Tree Depth

=== Max-Reward Hit Rate Normalized Path Length e Normalized Cumulative Reward

=== Discounted Cumulative Gain Highest Reward Normalized Jump Distance

Figure 20: Generalization analysis over test tree depths on the binary tree search problem with 8 different
goal states and a step budget of 50. The test tree depth larger than 6 is unseen in training. A gray dashed
line indicates the setting used in training.

Figures and demonstrate generalization analysis over test wall densities, the numbers of test goal
states, and test tree depths. In Figure test cases with lower wall densities are more challenging than
those with higher densities, as they tend to produce deeper and wider trees. Notably, according to Figure [20]
generalizing to unseen tree depths is more challenging than other generalization settings. This can be seen as
a challenge analogous to length generalization, similar to what is discussed in the previous work

2021} 2025).

G Discussion on Safeguards

To promote reliability and reproducibility in our experiments, we aim to establish a set of safeguards focused
on improving traceability and robustness. Our approach includes, in part, logging key inputs, outputs, and
intermediate states, as well as verifying that the model behaves consistently under fixed conditions. While
these components have been partially implemented in our current work, we consider them part of a broader,
ongoing effort toward responsible model development. So far, we have not observed any misbehavior in our
experiments.

H Declaration of LLM Usage

In addition to being the primary focus of our study, LLMs were used throughout our research process. We
leveraged them to generate and refine system prompts for all experiments involving pretrained LLM models,
assisted in writing the code used to run these experiments, and revised the manuscript itself. Specifically,
we employed LLM platforms developed by OpenAl, Google Gemini, and Ollama.

41



	Introduction
	Related Work
	Problem Formulation and Model Interfaces
	Specific Instances with Tree-Structured Search Spaces
	Reference Search Algorithms
	Model Interfaces to Perform Search

	Theoretical Analysis of Transformers' Search Capability
	Empirical Analysis on Transformers' Search Abilities
	Targeted Fine-Tuning for Enhancing Search Capabilities of LLMs
	Discussion and Conclusion
	Construction of Tree-Structured Spaces for Multi-Reward Navigation
	Details and Pseudocode of Reference Search Algorithms
	Uniform Leaf Sampling
	Greedy Leaf Sampling
	Uniform Path Sampling
	Path Sampling with Pure Exploration, Greedy, or UCT Policy

	Trace Formats
	Trace Format for Theoretical Constructions
	Trace Format for Transformers Trained from Scratch
	Trace Format for Pretrained Large Language Models
	Trace Format for Academic Paper Search Problem

	Theoretical Constructions of Transformers
	Theoretical Transformer Model
	Proof of Theorem 1
	Proof of Theorem 2

	Details of Empirical Analysis on Transformers' Search Capabilities
	Experimental Details of Pretrained LLMs on Multi-Reward Tree Search Problem
	Experimental Details of Fine-Tuning for Enhancing Search Capabilities of LLMs

	Additional Empirical Results
	Additional Empirical Results on Multi-Reward Tree Search
	Additional Empirical Results on Generalization Analysis

	Discussion on Safeguards
	Declaration of LLM Usage

