
Presented at Self-Supervision for Reinforcement Learning Workshop, ICLR 2021

STATE ENTROPY MAXIMIZATION WITH
RANDOM ENCODERS FOR EFFICIENT EXPLORATION

Younggyo Seo∗,1, Lili Chen∗,2, Jinwoo Shin1, Honglak Lee3,4, Pieter Abbeel2, Kimin Lee†,2
1Korea Advanced Institute of Science and Technology
2University of California, Berkeley
3University of Michigan 4LG AI Research
{younggyo.seo, jinwoos}@kaist.ac.kr
{lilichen, pabbeel, kiminlee}@berkeley.edu
honglak@eecs.umich.edu

ABSTRACT

Recent exploration methods have proven to be a recipe for improving sample-
efficiency in deep reinforcement learning (RL). However, efficient exploration in
high-dimensional observation spaces still remains a challenge. This paper presents
Random Encoders for Efficient Exploration (RE3), an exploration method that
utilizes state entropy as an intrinsic reward. In order to estimate state entropy in
environments with high-dimensional observations, we utilize a k-nearest neighbor
entropy estimator in the low-dimensional representation space of a convolutional
encoder. In particular, we find that the state entropy can be estimated in a stable
and compute-efficient manner by utilizing a randomly initialized encoder, which
is fixed throughout training. Our experiments show that RE3 significantly im-
proves the sample-efficiency of both model-free and model-based RL methods
on locomotion and navigation tasks from DeepMind Control Suite and MiniGrid
benchmarks. We also show that RE3 allows learning diverse behaviors without
extrinsic rewards, effectively improving sample-efficiency in downstream tasks.

1 INTRODUCTION

Exploration remains one of the main challenges of deep reinforcement learning (RL) in complex
environments with high-dimensional observations. Many prior approaches to incentivizing explo-
ration introduce intrinsic rewards based on a measure of state novelty. These include count-based
visitation bonuses (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017) and prediction
errors (Stadie et al., 2015; Houthooft et al., 2016; Burda et al., 2019; Pathak et al., 2017). By in-
troducing such novelty-based intrinsic rewards, these approaches encourage agents to visit diverse
states, but leave unanswered the fundamental question of how to quantify effective exploration in a
principled way.

To address this limitation, Lee et al. (2019) and Hazan et al. (2019) proposed that exploration meth-
ods should encourage uniform (i.e., maximum entropy) coverage of the state space. For practical
state entropy estimation without learning density models, Mutti et al. (2020) estimate state entropy
by measuring distances between states and their k-nearest neighbors. To extend this approach to
high-dimensional environments, recent works (Badia et al., 2020; Tao et al., 2020; Liu & Abbeel,
2021) have proposed to utilize the k-nearest neighbor state entropy estimator in a low-dimensional
latent representation space. The latent representations are learned by auxiliary tasks such as dy-
namics learning (Tao et al., 2020), inverse dynamics prediction (Badia et al., 2020), and contrastive
learning (Liu & Abbeel, 2021). However, these methods still involve optimizing multiple objectives
throughout RL training. Given the added complexity (e.g., hyperparameter tuning), instability, and
computational overhead of optimizing auxiliary losses, it is important to ask whether effective state
entropy estimation is possible without introducing additional learning procedures.
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Figure 1: Visualization of k-nearest neighbors of states found by measuring distances in the repre-
sentation space of a randomly initialized encoder (Random Encoder) and ground-truth state space
(True State) on the Hopper environment from DeepMind Control Suite (Tassa et al., 2020). We ob-
serve that the representation space of a random encoder effectively captures information about the
similarity between states without any representation learning.

In this paper, we present RE3: Random Encoders for Efficient Exploration, a simple, compute-
efficient method for exploration without introducing additional models or representation learning.
The key idea of RE3 is to utilize a k-nearest neighbor state entropy estimator in the representation
space of a randomly initialized encoder, which is fixed throughout training. Our main hypothesis is
that a randomly initialized encoder can provide a meaningful representation space for state entropy
estimation by exploiting the strong prior of convolutional architectures. Ulyanov et al. (2018) and
Caron et al. (2018) found that the structure alone of deep convolutional networks is a powerful
inductive bias that allows relevant features to be extracted for tasks such as image generation and
classification. In our case, we find that the representation space of a randomly initialized encoder
effectively captures information about similarity between states, as shown in Figure 1. Based upon
this observation, we propose to maximize a state entropy estimate in the fixed representation space
of a randomly initialized encoder.

We highlight the main contributions of this paper below:

• RE3 significantly improves the sample-efficiency of both model-free and model-based
RL methods on widely used DeepMind Control Suite (Tassa et al., 2020) and MiniGrid
(Chevalier-Boisvert et al., 2018) benchmarks.

• RE3 encourages exploration without introducing representation learning or additional mod-
els, outperforming state entropy maximization schemes that involve representation learn-
ing and exploration methods that introduce additional models for exploration (Burda et al.,
2019; Pathak et al., 2017).

• RE3 is compute-efficient as it does not require gradient computations and updates for ad-
ditional representation learning, making it a scalable and practical approach to exploration.

• RE3 allows learning diverse behaviors in environments without extrinsic rewards; we fur-
ther improve sample-efficiency in downstream tasks by fine-tuning a policy pre-trained
with the RE3 objective.

2 RELATED WORK

Exploration in reinforcement learning. Exploration algorithms encourage the RL agent to
visit a wide range of states by injecting noise to the action space (Lillicrap et al., 2015) or pa-
rameter space (Fortunato et al., 2018; Plappert et al., 2018), maximizing the entropy of the action
space (Ziebart, 2010; Haarnoja et al., 2018), and setting diverse goals that guide exploration (Flo-
rensa et al., 2018; Nair et al., 2018; Colas et al., 2019; Pong et al., 2020). Another line of ex-
ploration algorithms introduce intrinsic rewards proportional to prediction errors (Houthooft et al.,
2016; Pathak et al., 2017; Burda et al., 2019), and count-based state novelty (Bellemare et al., 2016;
Ostrovski et al., 2017; Tang et al., 2017). Our approach differs in that we explicitly encourage the
agent to uniformly visit all states by maximizing the entropy of the state distribution, instead of
depending on metrics from additional models.

State entropy maximization. Most closely related to our work are methods that maximize the
entropy of state distributions. Hazan et al. (2019) and Lee et al. (2019) proposed to maximize state
entropy estimated by approximating the state density distribution. Instead of approximating complex
distributions, Mutti et al. (2020) proposed to maximize a k-nearest neighbor state entropy estimate
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Figure 2: Illustration of RE3. The intrinsic reward for each observation is computed as the distance
to its k-nearest neighbor, measured between low-dimensional representations obtained from the
fixed random encoder. The intrinsic reward is combined with extrinsic reward from the environment,
if present. A separate RL encoder is introduced for a policy that maximizes expected reward.

from on-policy transitions. Recent works extend this method to environments with high-dimensional
observations. Tao et al. (2020) employ model-based RL techniques to build a representation space
for the state entropy estimate that measures similarity in dynamics, and Badia et al. (2020) proposed
to measure similarity in the representation space learned by inverse dynamics prediction. The work
closest to ours is Liu & Abbeel (2021), which uses off-policy RL algorithms to maximize the k-
nearest neighbor state entropy estimate in contrastive representation space (Srinivas et al., 2020) for
unsupervised pre-training. We instead explore the idea of utilizing a fixed random encoder to obtain
a stable entropy estimate without any representation learning.

Random encoders. Random weights have been utilized in neural networks since their beginnings,
most notably in a randomly initialized first layer (Gamba et al., 1961) termed the Gamba percep-
tron by Minsky & Papert (1969). Moreover, nice properties of random projections are commonly
exploited for low-rank approximation (Vempala, 2005; Rahimi & Recht, 2007). These ideas have
since been extended to deep convolutional networks, where random weights are surprisingly effec-
tive at image generation and restoration (Ulyanov et al., 2018), image classification and detection
(Caron et al., 2018), and fast architecture search (Saxe et al., 2011). In natural language processing,
Wieting & Kiela (2019) demonstrated that learned sentence embeddings show marginal performance
gain over random embeddings. In the context of RL, Gaier & Ha (2019) showed that competitive
performance can be achieved by architecture search over random weights without updating weights,
and Lee et al. (2020) utilized randomized convolutional neural networks to improve the generaliza-
tion of deep RL agents. Building on these works, we show that random encoders can also be useful
for efficient exploration in environments with high-dimensional observations.

3 METHOD

3.1 PRELIMINARIES

We formulate a control task with high-dimensional observations as a partially observable Markov
decision process (POMDP; Kaelbling et al. 1998; Sutton & Barto 2018), which is defined as a
tuple (O,A, p, re, γ). Here, O is the high-dimensional observation space, A is the action space,
p (o′|o≤t, at) is the transition dynamics, re : O × A → R is the reward function that maps the
current observation and action to a reward ret = re (o≤t, at), and γ ∈ [0, 1) is the discount factor.
By following common practice (Mnih et al., 2015), we reformulate the POMDP as an MDP (Sutton
& Barto, 2018) by stacking consecutive observations into a state st = {ot, ot−1, ot−2, ...}. For
simplicity of notation, we redefine the reward function as ret = re (st, at). The goal of RL is to
learn a policy π(at|st) that maximizes the expected return defined as the total accumulated reward.

k-nearest neighbor entropy estimator. Let X be a random variable with a probability density
function p whose support is a set X ⊂ Rq . Then its differential entropy is given as H(X) =
−Ex∼p(x)[log p(x)]. When the distribution p is not available, this quantity can be estimated given
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N i.i.d realizations of {xi}Ni=1 (Beirlant et al., 1997). However, since it is difficult to estimate p with
high-dimensional data, particle-based k-nearest neighbors (k-NN) entropy estimator (Singh et al.,
2003) can be employed:

ĤkN (X) =
1

N

N∑
i=1

log
N · ||xi − xk-NN

i ||q2 · π̂
q
2

k · Γ( q2 + 1)
+ Ck (1)

∝ 1

N

N∑
i=1

log ||xi − xk-NN
i ||2, (2)

where xk-NN
i is the k-NN of xi within a set {xi}Ni=1, Ck = log k − Ψ(k) a bias correction term, Ψ

the digamma function, Γ the gamma function, q the dimension of x, π̂ ≈ 3.14159, and the transition
from (1) to (2) always holds for q > 0.

3.2 RANDOM ENCODERS FOR EFFICIENT EXPLORATION

We present Random Encoders for Efficient Exploration (RE3), which encourages exploration in
high-dimensional observation spaces by maximizing state entropy. The key idea of RE3 is k-nearest
neighbor entropy estimation in the low-dimensional representation space of a randomly initialized
encoder. To this end, we propose to compute the distance between states in the representation space
of a random encoder fθ whose parameters θ are randomly initialized and fixed throughout training.
The main motivation arises from our observation that distances in the representation space of fθ are
already useful for finding similar states without any representation learning (see Figure 1).

State entropy estimate as intrinsic reward. To define the intrinsic reward proportional to state en-
tropy estimate by utilizing (2), we follow the idea of Liu & Abbeel (2021) that treats each transition
as a particle, hence our intrinsic reward is given as follows:

ri(si) := log(||yi − yk-NN
i ||2 + 1), (3)

where yi = fθ(si) is a fixed representation from a random encoder and yk-NN
i is the k-nearest neigh-

bor of yi within a set of N representations {y1, y2, ..., yN}. Our intuition is that measuring distance
between states in the fixed representation space produces a more stable intrinsic reward as the dis-
tance between a given pair of states does not change during training. To compute distances in latent
space in a compute-efficient manner, we propose to additionally store low-dimensional representa-
tions y in the replay buffer B during environment interactions. Therefore, we avoid processing high-
dimensional states through an encoder for obtaining representations at every RL update. Moreover,
we can feasibly compute the distance of yi to all entries y ∈ B, in contrast to existing approaches
that utilize on-policy samples (Mutti et al., 2020), or samples from a minibatch (Liu & Abbeel,
2021). Our scheme enables stable, precise entropy estimation in a compute-efficient manner.

The RE3 objective. We propose to utilize the intrinsic reward ri for (a) online RL, where the
agent solves target tasks guided by extrinsic reward re from environments, and (b) unsupervised
pre-training, where the agent learns to explore the high-dimensional observation space of environ-
ments in the absense of extrinsic rewards, i.e., re = 0. This exploratory policy from pre-training,
in turn, can be used to improve the sample-efficiency of the agent in downstream tasks by fine-
tuning. Formally, we introduce a policy πφ, parameterized by φ, that maximizes the expected return

Eπφ
[∑∞

j=0 γ
jrtotalj

]
, where the total reward rtotalj is defined as:

rtotalj := re(sj , aj) + βt · ri(sj), (4)

where βt ≥ 0 is a hyperparameter that determines the tradeoff between exploration and exploitation
at training timestep t. We use the exponential decay schedule for βt throughout training to encourage
the agent to further focus on extrinsic reward from environments as training proceeds, i.e., βt =
β0(1 − ρ)t, where ρ is a decay rate. While the proposed intrinsic reward would converge to 0 as
more similar states are collected during training, we discover that decaying βt empirically stabilizes
the performance. We provide the full procedure for RE3 with off-policy RL in Algorithm 1 and RE3
with on-policy RL in Algorithm 2.
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Algorithm 1 RE3: Off-policy RL version

1: Initialize parameters of random encoder θ, policy φ, replay buffer B ← ∅
2: for each timestep t do
3: Collect a transition τt = (st, at, st+1, r

e
t ) using policy πφ // COLLECT TRANSITIONS

4: Get a fixed representation yt = fθ(st)
5: B ← B ∪ {(τt, yt)}
6: Sample random minibatch {(τj , yj)}Bj=1 ∼ B // COMPUTE INTRINSIC REWARD
7: for j = 1 to B do
8: Compute the distance ||yj − y||2 for all y ∈ B and find the k-nearest neighbor yk-NN

j

9: Compute rij ← log(||yj − yk-NN
j ||2 + 1)

10: Update βt ← β0(1− ρ)t

11: Let rtotalj ← rej + βt · rij
12: end for
13: Update φ with transitions {(sj , aj , sj+1, r

total
j )}Bj=1 // UPDATE POLICY

14: end for

4 EXPERIMENTS

We designed experiments to answer the following questions:

• Can RE3 improve the sample-efficiency of both model-free and model-based RL algorithms
(see Figure 3)?
• How does RE3 compare to state entropy maximization schemes that involve representation

learning (see Figure 4) and other exploration schemes that introduce additional models for
exploration (see Figure 5)?
• Can RE3 further improve the sample-efficiency of off-policy RL algorithms by unsupervised

pre-training (see Figure 6 and Figure 7a)?
• How compute-efficient is RE3 (see Figure 7b)?
• Can RE3 improve the sample-efficiency of on-policy RL in discrete control (see Figure 8)?

4.1 DEEPMIND CONTROL SUITE EXPERIMENTS

Setup. To evaluate the sample-efficiency of our method, we compare to Dreamer (Hafner et al.,
2020), a state-of-the-art model-based RL method for visual control; and two state-of-the-art model-
free RL methods, RAD (Laskin et al., 2020) and DrQ (Kostrikov et al., 2021). For comparison with
other exploration methods, we consider RND (Burda et al., 2019) and ICM (Pathak et al., 2017)
that introduce additional models for exploration. For RE3 and baseline exploration methods, we
use RAD as the underlying model-free RL algorithm. To further demonstrate the applicability of
RE3 to model-based RL algorithms, we also consider a combination of Dreamer and RE3. For
random encoders, we use convolutional neural networks with the same architecture as underlying
RL algorithms, but with randomly initialized parameters fixed during the training. As for the newly
introduced hyperparameters, we use k = 3, β0 = 0.05, and ρ ∈ {0.0, 0.00001, 0.000025}. We
provide more details in Appendix B and source code in Appendix A.

Comparative evaluation. Figure 3 shows that RE3 consistently improves the sample-efficiency
of RAD on various tasks. In particular, RAD + RE3 achieves average episode return of 601.6 on
Cheetah Run Sparse, where both model-free RL methods RAD and DrQ fail to solve the task. We
emphasize that state entropy maximization with RE3 achieves such sample-efficiency with minimal
cost due to its simplicity and compute-efficiency. We also observe that Dreamer + RE3 improves the
sample-efficiency of Dreamer on most tasks, which demonstrates the applicability of RE3 to both
model-free and model-based RL. We provide experimental results on more tasks in Figure 9.

Effects of representation learning. To better grasp how RE3 improves sample-efficiency, we
compare to state entropy maximization schemes that involve representation learning in Figure 4.
Specifically, we consider a convolutional encoder trained by contrastive learning (RAD + SE w/
Contrastive) and inverse dynamics prediction (RAD + SE w/ Inverse dynamics). We also consider
two pre-trained encoders whose parameters are fixed throughout training: a ResNet-50 (He et al.,
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Figure 3: Performance on locomotion tasks from DeepMind Control Suite. RE3 consistently im-
proves the sample-efficiency of RAD and Dreamer. The solid line and shaded regions represent the
mean and standard deviation, respectively, across five runs.
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Figure 4: We compare state entropy (SE) maximization with RE3 to state entropy maximization
schemes that involve representation learning. The solid line and shaded regions represent the mean
and standard deviation, respectively, across five runs.

2016) encoder pre-trained on ImageNet dataset (RAD + SE w/ ImageNet) and an ATC (Stooke
et al., 2020) encoder pre-trained by contrastive learning on pre-training datasets that contain a wide
range of states from the environments (RAD + SE w/ ATC), where more details are available at Ap-
pendix B. We found that our method (RAD + SE w/ Random) exhibits better sample-efficiency than
approaches that continually update representations throughout training (RAD + SE w/ Contrastive,
RAD + SE w/ Inverse dynamics). This demonstrates that utilizing fixed representations helps im-
prove sample-efficiency by enabling stable state entropy estimation throughout training. We also
observe that our approach outperforms RAD + SE w/ ImageNet, implying that it is not necessarily
beneficial to employ a pre-trained encoder, and fixed random encoders can be effective for state
entropy estimation without having been trained on any data. We remark that representations from
the pre-trained ImageNet encoder could not be useful for our setup, due to the different visual char-
acteristics of natural images in the ImageNet dataset and image observations in our experiments.
However, our approach also achieves comparable sample-efficiency to RAD + SE w/ ATC, which
shows that random encoders can provide a stable state entropy estimation even competitive with
encoders pre-trained on data from the environments.

Comparison with other exploration methods. We also compare our state entropy maximization
scheme to other exploration methods combined with RAD, i.e., RAD + RND and RAD + ICM, that
learn additional models to obtain intrinsic rewards proportional to prediction errors. As shown in
Figure 5, RAD + RE3 consistently exhibits superior sample efficiency in most tasks (see Figure 10
for results on more tasks). While RND similarly employs a fixed random network for the intrinsic
reward, it also introduces an additional network which requires training and therefore suffers from
instability.1 This result demonstrates that RE3 can improve sample-efficiency without introducing
additional models for exploration, by utilizing fixed representations from a random encoder for
stable state entropy estimation.

1Taı̈ga et al. (2020) also observed that additional techniques were critical to the performance of RND.
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Figure 5: Performance on locomotion tasks from DeepMind Control Suite. RAD + RE3 outperforms
other exploration methods in terms of sample-efficiency. The solid line and shaded regions represent
the mean and standard deviation, respectively, across five runs.
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Figure 6: (a) We observe that pre-training Hopper agent with RE3 results in a higher state entropy
estimate in the ground-truth state space, i.e., proprioceptive state space, compared to other state en-
tropy maximization schemes that involve representation learning. This improves sample-efficiency
when fine-tuning pre-trained policies on (b) Hopper Hop and (c) Hopper Stand. The solid (or dotted)
line and shaded regions represent the mean and standard deviation, respectively, across three runs.

Evaluation of unsupervised pre-training. To evaluate the effectiveness of RE3 for learning
diverse behaviors in the pre-training phase without extrinsic rewards, we first visualize the behaviors
of policies pre-trained for 500K environment steps in Figure 7a. One can see that the pre-trained
policy using RE3 exhibits more diverse behaviors compared to random exploration or APT (Liu
& Abbeel, 2021), where a policy is pre-trained to maximize state entropy estimate in contrastive
representation space. To further evaluate the diversity of behaviors quantitatively, we also show the
state entropy estimate in the ground-truth (i.e., proprioceptive) state space in the Hopper environment
in Figure 6a. We observe that RE3 exhibits a higher ground-truth state entropy estimate than state
entropy maximization schemes that use contrastive learning and inverse dynamics prediction during
pre-training. This implies that RE3 can effectively maximize the ground-truth state entropy without
being able to directly observe underlying ground-truth states.

Fine-tuning in downstream tasks. We also remark that the diversity of behaviors leads to superior
sample-efficiency when fine-tuning a pre-trained policy in downstream tasks, as shown in Figure 6b
and 6c. Specifically, we fine-tune a pre-trained policy in downstream tasks where extrinsic rewards
are available, by initializing the parameters of policies with parameters of pre-trained policies (see
Appendix B for more details). We found that fine-tuning a policy pre-trained with RE3 (RAD
+ SE w/ Random + PT) further improves the sample-efficiency of RAD + SE w/ Random, and
also outperforms other pre-training schemes. We emphasize that RE3 allows learning such diverse
behaviors by pre-training a policy only for 500K environment steps, while previous work (Liu &
Abbeel, 2021) reported results by training for 5M environment steps.
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(a) Behavior visualization
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As a baseline, we show random exploration, i.e. sampling from the action space uniformly at ran-
dom. We compare the diversity of visited states resulting from pre-training for 500K steps with APT
(Liu & Abbeel, 2021) and RE3 (ours). Videos are available in Appendix A. (b) Number of FLOPs
used by each agent to achieve its performance at 500K environment steps in Hopper Hop.
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Figure 8: Performance on navigation tasks from MiniGrid. The solid (or dotted) line and shaded
regions represent the mean and standard deviation, respectively, across five runs.

Compute-efficiency. We show that RE3 is a practical and scalable approach for exploration in
RL due to its compute-efficiency. In particular, RE3 is compute-efficient in that (a) there are no
gradient updates through the random encoder, and (b) there are no unnecessary forward passes for
obtaining representations at every update step since we store low-dimensional latent representations
in the replay buffer. To evaluate compute-efficiency, we show the floating point operations (FLOPs)
consumed by RAD, RAD + SE w/ Random (ours), RAD + SE w/ Contrastive, and RAD + SE w/
Inverse dynamics. We account only for forward and backward passes through neural network layers.
We explain our full procedure for counting FLOPs in Appendix E. Figure 7b shows the FLOPS
used by each agent to achieve its final performance in Hopper Hop (see Figure 4 for corresponding
learning curves). Estimating state entropy with a random encoder is significantly more compute-
efficient than with a encoder trained with representation learning. One important detail here is that
RAD + SE w/ Random has comparable compute-efficiency to RAD. Therefore, we improve the
sample-efficiency of RAD without sacrificing compute-efficiency.

4.2 MINIGRID EXPERIMENTS

Setup. We evaluate our method on MiniGrid (Chevalier-Boisvert et al., 2018), a gridworld environ-
ment with a selection of sparse reward tasks. The tasks we consider are shown in Figure 11. For
evaluation, we use Advantage Actor-Critic (A2C; Mnih et al. 2016) as the underlying RL algorithm,
and consider two exploration methods, RND and ICM. The agent has access to a compact 7× 7× 3
embedding of the 7 × 7 grid directly in front of it, making the environment partially-observable.
To combine RE3 with A2C, an on-policy RL method, we maintain a replay buffer of 10K samples
solely for computing the RE3 intrinsic reward, and compute k-NN distances between the on-policy
batch and the entire replay buffer. For RND and ICM, the intrinsic reward is computed using the
on-policy batch. For RE3, ICM, and RND, we perform hyperparameter search over the intrinsic
reward weight and report the best result (see Appendix D for more details).

Comparison with other exploration methods. Figure 8 shows that RE3 is more effective for
improving the sample-efficiency of A2C in most tasks, compared to other exploration methods,
RND and ICM, that learn additional models. In particular, A2C + RE3 achieves average episode
return of 0.49 at 2.4M environment steps in DoorKey-8x8; in comparison, A2C + ICM achieves
a return of 0.20 and A2C + RND and A2C both fail to achieve non-trivial returns. These results
demonstrate that state entropy maximization with RE3 can also improve the sample-efficiency of
on-policy RL algorithms by introducing only a small-size replay buffer.
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Fine-tuning in downstream tasks. To evaluate the effectiveness of RE3 for unsupervised pre-
training in MiniGrid tasks, we first pre-train a policy in a large vacant room (Empty-16×16) to
maximize RE3 intrinsic rewards for 100K environments steps. Then, we fine-tune the pre-trained
policy in downstream tasks by initializing a policy with pre-trained parameters and subsequently
training with A2C + RE3. Figure 8 shows that A2C + RE3 + PT significantly improves the sample-
efficiency of A2C, which demonstrates that the ability to explore novel states in a large empty
room helps improve sample-efficiency in DoorKey tasks, which involve the added complexity of
additional components, e.g., walls, doors, and locks. We show a comparison to state entropy maxi-
mization with contrastive learning in Figure 12 and observe that it does not work well, as contrastive
learning depends on data augmentation specific to images (e.g., random shift, random crop, and
color jitter), which are not compatible with the compact embeddings used as inputs for MiniGrid.
We remark that RE3 eliminates the need for carefully chosen data augmentations by employing a
random encoder.

5 DISCUSSION

In this paper, we present RE3, a simple exploration method compatible with both model-free and
model-based RL algorithms. RE3 maximizes a k-nearest neighbor state entropy estimate in the
fixed representation space of a randomly initialized encoder. Our experimental results demonstrate
that RE3 can encourage exploration in widely-used benchmarks, as it enables stable and compute-
efficient state entropy estimation. Here, we emphasize that our goal is not to claim that represen-
tation learning or additional models are not required for exploration, but to show that fixed random
encoders can be useful for efficient exploration. For more visually complex domains, utilizing pre-
trained fixed representations for stable state entropy estimation could be more useful, but we leave
it to future work to explore this direction further because this would require having access to en-
vironments and a wide distribution of states for pre-training, which is itself a non-trivial problem.
Another interesting direction would be to investigate the effect of network architectures for state
entropy estimation, or to utilize state entropy for explicitly guiding the action of a policy to visit
diverse states. We believe RE3 would facilitate future research by providing a simple-to-implement,
stable, and compute-efficient module that can be easily combined with other techniques.
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Appendix

A SOURCE CODE AND VIDEOS

We provide source code that reproduces our experimental results and videos in Figure 7a in https:
//anonymous.4open.science/r/3f955657-271b-4e5d-9a66-f77ecc3708de/.

B DETAILS ON DEEPMIND CONTROL SUITE EXPERIMENTS

B.1 ENVIRONMENTS

We evaluate the performance of RE3 on various tasks from DeepMind Control Suite (Tassa et al.,
2020). For Hopper Hop, Quadruped Run, Cartpole Swingup Sparse, Pendulum Swingup, we use the
publicly available environments without any modification. For environments which are not from the
publicly available released implementation repository (https://github.com/deepmind/
dm_control), we designed the tasks following Seyde et al. (2021) as below:

• Walker/Cheetah Run Sparse: The goal of Walker/Cheetah Run Sparse task is same as in
Walker/Cheetah Run, moving forward as fast as possible, but reward is given sparsely until
it reaches a certain threshold: r = roriginal · 1roriginal>0.25, where roriginal is the reward in
Walker/Cheetah Run from DeepMind Control Suite.

B.2 IMPLEMENTATION DETAILS FOR MODEL-FREE RL

For all experimental results in this work, we report the results obtained by running experiments using
the publicly available released implementations from the authors2, i.e., RAD (https://github.
com/MishaLaskin/rad) and DrQ (https://github.com/denisyarats/drq). We
use random crop augmentation for RAD and random shift augmentation for DrQ. We provide a
full list of hyperparameters in Table 1.

Implementation details for RE3. We highlight key implementation details for RE3:

• Intrinsic reward. We use ri(si) := ||yi − yk-NN
i ||2 for the intrinsic reward. We got rid of log

from intrinsic reward in (3) for simplicity in DeepMind Control Suite experiments, but results
using log are also similar. To make the scale of intrinsic reward ri consistent across tasks,
following Liu & Abbeel (2021), we normalize the intrinsic reward by dividing it by a running
estimate of the standard deviation. As for newly introduced hyperparameters, we use k = 3 and
β0 = 0.05, and perform hyperparameter search over ρ ∈ {0.00001, 0.000025}.

• Architecture. For all model-free RL methods, we use the same encoder architecture as in
Yarats et al. (2019). Specifically, this encoder consists of 4 convolutional layers followed by
ReLU activations. We employ kernels of size 3 × 3 with 32 channels for all layers, and 1 stride
except of the first layer which has stride 2. The output of convolutional layers is fed into a single
fully-connected layer normalized by LayerNorm (Ba et al., 2016). Finally, tanh nonlinearity is
added to the 50-dimensional output of the fully-connected layer.

• Unsupervised pre-training. For unsupervised pre-training, we first train a policy to maximize
intrinsic rewards in (3) without extrinsic rewards for 500K environment steps. For fine-tuning
a policy in downstream tasks, we initialize the parameters using the pre-trained parameters and
then learn a policy to maximize RE3 objective in (4) for 500K environment steps. To stabilize
the initial fine-tuning phase by making the scale of intrinsic reward consistent across pre-training
and fine-tuning, we load the running estimate of the standard deviation from pre-training phase.

Implementation details for representation learning baselines . We highlight key implementation
details for state entropy maximization schemes that involve representation learning, i.e., contrastive
learning and inverse dynamics prediction, and that employs a pre-trained ImageNet Encoder:

2We found that there are some differences from the reported results in the original papers which are due
to different random seeds. We provide full source code and scripts for reproducing the main results to foster
reproducibility.
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• Contrastive learning. For state entropy maximization with contrastive learning, we intro-
duce a separate convolutional encoder with randomly initialized parameters learned to minimize
contrastive loss (Srinivas et al., 2020). Note that we use the separate encoder to investigate
the independent effect of representation learning. Then we compute intrinsic reward ri using
representations obtained by processing observations through this separate encoder.

• Inverse dynamics prediction. For state entropy maximization with inverse dynamics pre-
diction, we introduce a separate convolutional encoder with randomly initialized parameters
learned to predict actions from two consecutive observations. Specifically, we introduce 2 fully-
connected layers with ReLU activations to predict actions on top of encoder representations.
We remark that this separate encoder is separate from RL. Then we compute intrinsic reward ri
using representations obtained by processing observations through this separate encoder.

• Pre-trained ImageNet encoder. For state entropy maximization with pre-trained ImageNet
encoder, we utilize a ResNet-50 (He et al., 2016) encoder from publicly available torchvi-
sion models (https://pytorch.org/vision/0.8/models.html). To compute in-
trinsic reward ri, we utilize representations obtained by processing observations through this
pre-trained encoder.

• Pre-trained ATC encoder. For state entropy maximization with pre-trained ATC (Stooke et al.,
2020) encoder, we utilize pre-trained encoders from the authors. Specifically, these encoders are
pre-trained by contrastive learning on pre-training datasets that contain samples encountered
while training a RAD agent on DeepMind Control Suite environments (see Stooke et al. (2020)
for more details). We use pre-trained parameters from Walker Run, Hopper Stand, and Cheetah
Run for RAD + SE w/ ATC on Walker Run Sparse, Hopper Hop, and Cheetah Run Sparse,
respectively. To compute intrinsic reward ri, we utilize representations obtained by processing
observations through this pre-trained encoder.

Implementation details for exploration baselines. We highlight key implementation details for
exploration baselines, i.e., RND (Burda et al., 2019) and ICM (Pathak et al., 2017):

• RND. For RND, we introduce a random encoder fθ whose architecture is same as in Yarats et al.
(2019), and introduce a predictor network gφ consisting of a convolutional encoder with the same
architecture and 2-layer fully connected network with 1024 units each. Then, parameters φ of the
predictor network are trained to predict representations from a random encoder given the same
observations, i.e., minimize ε = ||fθ(si) − gφ(si)||2. We use prediction error ε as an intrinsic
reward and learn a policy that maximizes rtotal = re + β · ri. We perform hyperparameter
search over the weight β ∈ {0.05, 0.1, 1.0, 10.0} and report the best result on each environment.

• ICM. For ICM, we introduce a convolutional encoder gφ whose architecture is same as in
Yarats et al. (2019), and introduce a inverse dynamics predictor hψ with 2 fully-connected lay-
ers with 1024 units. These networks are learned to predict actions between two consecutive
observations, i.e., minimize Linv = ||at−hψ(gφ(st), gφ(st+1))||2. We also introduce a forward
dynamics predictor fΨ that is learned to predict the representation of next time step, i.e., mini-
mize Lforward = 1

2 ||gφ(st+1)− fΨ(gφ(st), at)||22. Then, we use prediction error as an intrinsic
reward and learn a policy that maximizes rtotal = re + β · ri. For joint training of the forward
and inverse dynamics, following Pathak et al. (2017), we minimize 0.2 ·Lforward+0.8 ·Linv. We
perform hyperparameter search over the weight β ∈ {0.05, 0.1, 1.0} and report the best result
on each environment.

B.3 IMPLEMENTATION DETAILS FOR MODEL-BASED RL.

For Dreamer, we use the publicly available released implementation repository (https://
github.com/danijar/dreamer) from the authors3. We highlight key implementation de-
tails for the combination of Dreamer with RE3:

• Intrinsic reward. We use ri(si) := ||yi − yk-NN
i ||2 for the intrinsic reward. We got rid of

log from intrinsic reward in (3) for simplicity in DeepMind Control Suite experiments, but

3We use the newer implementation of Dreamer following the suggestion of the authors, but we found that
there are some difference from the reported results in the original paper which are might be due to the difference
between newer implementation and the original implementation, or different random seeds. We provide full
source code and scripts for reproducing the main results to foster reproducibility.
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results using log are also similar. To make the scale of intrinsic reward ri consistent across
tasks, following Liu & Abbeel (2021), we normalize the intrinsic reward by dividing it by a
running estimate of the standard deviation. Since Dreamer utilizes trajectory segments for
training batch, we use large value of k = 50 to avoid find k-NN only within a trajectory
segment. We also use β0 = 0.1, and ρ = 0.0, i.e., no decay schedule. We also remark
that we find k-NN only within a minibatch instead of the entire buffer as in model-free RL,
since the large batch size of Dreamer is enough for stable entropy estimation.

• Architecture. We use the same convolutional architecture as in Dreamer. Specifically,
this encoder consists of 4 convolutional layers followed by ReLU activations. We employ
kernels of size 4 × 4 with {32, 64, 128, 256} channels, and 2 stride for all layers. To
obtain low-dimensional representations, we additionally introduce a fully-connected layer
normalized by LayerNorm (Ba et al., 2016). Finally, tanh nonlinearity is added to the
50-dimensional output of the fully-connected layer.

Table 1: Hyperparameters of RAD + RE3 used for DeepMind Control Suite experiments.

Hyperparameter Value

Augmentation Crop
Observation rendering (100, 100)
Observation downsampling (84, 84)
Replay buffer size 100000
Initial steps 10000 quadruped, run; 1000 otherwise
Stacked frames 3
Action repeat 4 quadruped, run; 2 otherwise
Learning rate (actor, critic) 0.0002
Learning rate (α) 0.001
Batch size 512
Q function EMA τ 0.01
Encoder EMA τ 0.05
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Latent dimension 50
Initial temperature 0.1 RAD + RE3; 0.01 RAD + RE3 + PT
k 3
Initial intrinsic reward scale β0 0.05
Intrinsic reward decay ρ 0.000025 walker, run sparse; 0.00001 otherwise

Intrinsic reward scale (RND) 10.0 cartpole, swingup sparse
0.1 pendulum, swingup; cheetah, run sparse
0.05 otherwise

Intrinsic reward scale (ICM) 1.0 cheetah, run sparse
0.1 otherwise

Table 2: Hyperparameters of Dreamer + RE3 used for DeepMind Control Suite experiments. We
only specify hyperparameters different from original paper of Hafner et al. (2020).

Hyperparameter Value

Initial episodes 5
Precision4 32
Latent dimension of a random encoder 50
k 53
Initial reward scale β0 0.1
Intrinsic reward decay ρ 0.0

4We found that precision of 32 is necessary for avoiding NaN in intrinsic reward normalization, as running
estimate of standard deviation is very small.
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C ADDITIONAL EXPERIMENTAL RESULTS ON DEEPMIND CONTROL SUITE

Comparative evaluation. We provide additional experimental results on various tasks from Deep-
Mind Control Suite in Figure 9. We observe that RE3 improves sample-efficiency in several tasks,
e.g., Reacher Hard and Hopper Stand, while not degrading the performance in dense-reward tasks
like Cartpole Balance. This demonstrates the simple and wide applicability of RE3 to various tasks.

Comparison with other exploration methods. Figure 10 shows that RAD + RE3 consistently
exhibits superior sample efficiency to other exploration methods (i.e., RAD + RND, RAD + ICM)
on additional tasks from DeepMind Control Suite.
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Figure 9: Performance on locomotion tasks from DeepMind Control Suite. The solid line and shaded
regions represent the mean and standard deviation, respectively, across three runs.
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Figure 10: Performance on locomotion tasks from DeepMind Control Suite. RAD + RE3 outper-
forms other exploration methods in terms of sample-efficiency. The solid line and shaded regions
represent the mean and standard deviation, respectively, across five runs.
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Empty-16x16 DoorKey-6x6 DoorKey-8x8

Figure 11: Navigation tasks from MiniGrid (Chevalier-Boisvert et al., 2018) used in our experi-
ments. The agent is represented as a red arrow and the light gray region shows the 7× 7 (or smaller,
if obstructed by walls) grid which the agent observes. The agent receives a positive reward only for
reaching the green square.

D DETAILS ON MINIGRID EXPERIMENTS

For our A2C implementation in MiniGrid, we use the publicly available released implementation
repository (https://github.com/lcswillems/rl-starter-files) and use their de-
fault hyperparameters. We provide a full list of hyperparameters that are introduced by our method
or emphasized for clarity in Table 3.

We highlight some key implementation details:

• We use ri(si) := log(||yi − yk-NN
i ||2 + 1) for the intrinsic reward. The additional 1 is for

numerical stability.
• We use the average distance between yi and its k nearest neighbors (i.e., y2-NN

i , · · · , yk-NN
i ) for

the intrinsic reward, instead of the single k nearest neighbor. This provides a less noisy state
entropy estimate and empirically improves performance in MiniGrid environments.
• We perform hyperparameter search over β ∈ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005,

0.01, 0.05, 0.1} for RE3, ICM, and RND and report the best result.
• We do not change the network architecture from the above publicly available implementation.

We use the same encoder architecture as the RL encoder for state entropy maximization. This
encoder architecture consists of 3 convolutional layers with kernel 2, stride 1, and padding 0,
each followed by a ReLU layer. The convolutional layers have 16, 32, and 64 filters respectively.
The first ReLU is followed by a two-dimensional max pooling layer with kernel 2. The actor
and critic MLPs both contain two fully-connected layers with hidden dimension 64, with a tanh
operation in between.
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Table 3: Hyperparameters used for MiniGrid experiments. Most hyperparameter values are un-
changed across environments with the exception of evaluation frequency and intrinsic reward weight
β.

Hyperparameter Value

Input Size (7, 7, 3)
Replay buffer size (for RE3 intrinsic reward) 10000
Stacked frames 1
Action repeat 1
Evaluation episodes 100
Optimizer RMSprop
k 3
Evaluation frequency 6400 Empty-16x16; 12800 DoorKey-6x6

64000 DoorKey-8x8
Intrinsic reward weight β in Empty-16x16 experiments 0.1 A2C + RE3 + PT

0.1 A2C + RE3
0.00001 A2C + ICM
0.00005 A2C + RND

Intrinsic reward weight β in DoorKey-6x6 experiments 0.05 A2C + RE3 + PT
0.005 A2C + RE3
0.0001 A2C + ICM
0.0001 A2C + RND

Intrinsic reward weight β in DoorKey-8x8 experiments 0.05 A2C + RE3 + PT
0.01 A2C + RE3
0.001 A2C + ICM
0.00005 A2C + RND

Intrinsic reward decay ρ 0
Number of processes 16
Frames per process 5
Discount γ 0.99
GAE λ 0.95
Entropy coefficient 0.01
Value loss term coefficient 0.5
Maximum norm of gradient 0.5
RMSprop ε 0.01
Clipping ε 0.2
Recurrence None
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E CALCULATION OF FLOATING POINT OPERATIONS

We explain our FLOP counting procedure for comparing the compute-efficiency of RAD, RAD +
SE w/ Random (ours), RAD + SE w/ Contrastive, and RAD + SE w/ Inverse dynamics in Figure
7. We consider each backward pass to require twice as many FLOPs as a forward pass, as done in
https://openai.com/blog/ai-and-compute/. Each weight requires one multiply-add
operation in the forward pass. In the backward pass, it requires two multiply-add operations: at
layer i, the gradient of the loss with respect to the weight at layer i and with respect to the output
of layer (i − 1) need to be computed. The latter computation is necessary for subsequent gradient
calculations for weights at layer (i− 1).

We use functions from Huang et al. (2018) and Jeong & Shin (2019) to obtain the number of op-
erations per forward pass for all layers in the encoder (denoted E) and number of operations per
forward pass for all MLP layers (denoted M ).

We assume that (1) the number of updates per iteration is 1, (2) the architecture of the encoder used
for state entropy estimation is the same as the RL encoder used in RAD, and (3) the FLOPs required
for computations (e.g., finding the k-NNs in representation space) that are not forward and backward
passes through neural network layers is negligible.5

We denote the number of forward passes per training update F , the number of backward passes per
training update B, and the batch size b (in our experiments b = 512). Then, the number of FLOPs
per iteration of RAD is:

bF (E +M) + 2bB(E +M) + (E +M),

where the last term is for the single forward pass required to compute the policy action.

Specifically, RAD + SE w/ Random only requires E extra FLOPs per iteration to store the fixed
representation from the random encoder in the replay buffer for future k-NN calculations. In com-
parison, RAD + SE w/ Contrastive requires 4bE extra FLOPs per iteration, and RAD + SE w/
Inverse dynamics requires more than 6bE extra FLOPs.

5Letting the dimension of y be d, batch size m, computing distances between yi and all entries y ∈ B over
250000 training steps requires

∑250000
n=1000(d(2m+ 2 ·min(n, |B|) + 3m ·min(n, |B|)) + 2m ·min(n, |B|)),

which is 1.569e+15 FLOPs in our case of m = 512, |B| = 100000, and d = 50.
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F COMPARISON TO STATE ENTROPY MAXIMIZATION WITH CONTRASTIVE
ENCODER FOR MINIGRID PRE-TRAINING

We show a comparison to state entropy maximization with contrastive learning (i.e., A2C + SE w/
Contrastive + PT) in Figure 12. In the results shown, we do not use state entropy intrinsic reward
during the fine-tuning phase for A2C + SE w/ Contrastive + PT, following the setup of Liu & Abbeel
(2021), but found that using intrinsic reward during fine-tuning results in very similar performance.
As discussed in Section 4.2, we observe that the contrastive encoder does not work well for state
entropy estimation, as contrastive learning depends on data augmentation specific to images (e.g.,
random shift, random crop, and color jitter), which are not compatible with the compact embeddings
used as inputs for MiniGrid. We re-mark that RE3 eliminates the need for carefully chosen data
augmentations by employing a random encoder.
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Figure 12: Performance on navigation tasks from MiniGrid. We find that pre-training using state
entropy (SE) with a random encoder (ours) outperforms pre-training using state entropy with a
contrastive encoder (Liu & Abbeel, 2021), using random shift as the data augmentation. The solid
(or dotted) line and shaded regions represent the mean and standard deviation, respectively, across
five runs.

G RE3 WITH ON-POLICY REINFORCEMENT LEARNING

We provide the full procedure for RE3 with on-policy RL in Algorithm 2.

Algorithm 2 RE3: On-policy RL version

1: Initialize parameters of random encoder θ, policy φ
2: Initialize replay buffer B ← ∅, step counter t← 0
3: repeat
4: tstart ← t // COLLECT TRANSITIONS
5: repeat
6: Collect a transition τt = (st, at, st+1, r

e
t ) using policy πφ

7: Get a fixed representation yt = fθ(st)
8: B ← B ∪ {(τt, yt)}
9: t← t+ 1

10: until terminal st or t− tstart = tmax
11: for j = t− 1 to tstart do // COMPUTE INTRINSIC REWARD
12: Compute the distance ||yj − y||2 for all y ∈ B and find the k-nearest neighbor yk-NN

j

13: Compute rij ← log(||yj − yk-NN
j ||2 + 1)

14: Let rtotalj ← rej + β · rij
15: end for
16: Update φ with transitions {(sj , aj , sj+1, r

total
j )}t−1

j=tstart
17: until t > tmax // UPDATE POLICY
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