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ABSTRACT

Time series forecasting plays a vital role in supporting decision-making across a
wide range of critical applications, including energy, healthcare, and finance. De-
spite recent advances, forecasting accuracy remains limited due to the challenge of
integrating historical numerical sequences with contextual features, which often
comprise unstructured textual data. To address this challenge, we propose Token-
Cast, a large language model (LLM) driven framework that leverages language-
based symbolic representations as a unified intermediary for context-aware time
series forecasting. Specifically, TokenCast employs a discrete tokenizer to trans-
form continuous numerical sequences into temporal tokens, enabling structural
alignment with language-based inputs. To effectively bridge the semantic gap be-
tween modalities, both temporal and contextual tokens are embedded into a shared
representation space via a pre-trained LLM, further optimized with autoregres-
sive generative objectives. Building upon this unified semantic space, the aligned
LLM is subsequently fine-tuned in a supervised manner to predict future tempo-
ral tokens, which are then decoded back into the original numerical space. Ex-
tensive experiments are conducted on multiple real-world datasets, whose results
reveal the performance of our framework and highlight its potential as a genera-
tive framework for multimodal time series forecasting. The code is available for
further research at: https://anonymous.4open.science/r/TokenCast-8EFF.

1 INTRODUCTION

Time series forecasting (TSF) is critical for decision-making in domains such as energy (Das et al.,
2023; Jin et al., 2024; Wang et al., 2025), healthcare (Qiu et al., 2024), and finance (Feng et al.,
2019). The goal is to predict future values based on historical observations and associated contextual
features. In practice, accurate forecasting requires not only modeling temporal dependencies in nu-
merical sequences, but also understanding how they interact with external contextual factors—such
as static attributes or dynamic events (Liu et al., 2024b). Fundamentally, TSF can be viewed as
learning a mapping from past values and contextual features to future outcomes (Jiang et al., 2025).

To learn this mapping, researchers have proposed a comprehensive range of methods, ranging from
classical statistical models to modern data-driven approaches. Traditional methods, such as ARIMA
(Hyndman & Khandakar, 2008) and state-space models (Winters, 1960), rely on strong assumptions
about data generation and often incorporate domain-specific priors. In contrast, recent data-driven
approaches such as deep learning models aim to learn patterns directly from data without hand-
crafted assumptions. Architectures based on RNNs (Lai et al., 2018), CNNs (Cheng et al., 2025b),
Transformers (Zhou et al., 2022), and MLPs (Challu et al., 2023) have been widely adopted, each
capturing different aspects of temporal dependencies. However, most of these models assume ho-
mogeneous numerical inputs and struggle to effectively incorporate complex contextual features,
particularly those with heterogeneous modalities.

Beyond capturing temporal dependencies, there is an increasingly growing emphasis in recent re-
search on incorporating contextual features to enhance forecasting performance (Liu et al., 2024a;
Williams et al., 2024; Liu et al., 2024b). These features typically fall into two categories: dynamic
exogenous variables (e.g., weather conditions, event indicators) and static attributes (e.g., product
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types, patient demographics, market segments). When contextual features share the same numerical
modality as the target series, they can be directly modeled as additional input channels. However,
many particularly high-value contextual features, such as clinical notes, policy texts, or user logs, are
expressed in unstructured textual form. This heterogeneity poses significant challenges for aligning
and integrating information across modalities.

(a) Linear Adapter (c) Symbolic Intermediary

Text 
Tokenizer

Time Series 
Tokenizer

Text 
Embedder

Time Series 
Embedder

Time Series 
Projector

Text De-
Tokenizer

Time Series 
De-Tokenizer

Representation Modeling

(b) Soft Prompt

Text 
Tokenizer

Text 
De-Tokenizer

Figure 1: Methods for representation model-
ing of time series and contextual features: (a)
linear adapter, (b) soft prompt, and (c) sym-
bolic intermediary.

To address these challenges, some studies have ex-
plored shallow fusion strategies to incorporate con-
textual features. Models such as DeepAR (Sali-
nas et al., 2020) and Temporal Fusion Transformer
(TFT) (Lim et al., 2021) typically concatenate ex-
ternal variables with time series or introduce gating
mechanisms. While offering basic integration, these
methods often rely on weak alignment and struggle
to capture deep semantic interactions across modali-
ties (Liu et al., 2024e). More recently, LLMs have
been introduced into time series forecasting (Sun
et al., 2023; Liu et al., 2024c; Ansari et al., 2024).
Methods like Time-LLM (Jin et al., 2023) inject time
series features into LLMs using linear adapters (Fig-
ure 1 (a)) or soft prompts (Figure 1 (b)). Although promising, these approaches fall short in resolv-
ing the structural discrepancies between numerical sequences and unstructured contextual features.
Moreover, they fail to fully leverage the generative and reasoning capabilities of LLMs, which are
pretrained on large-scale corpora. This observation raises a fundamental question: Can time series
be effectively modeled in a discrete token space to unlock the full potential of LLMs?

Motivated by this question, we explore a more expressive yet under-explored paradigm that formu-
lates time series forecasting as a multimodal discrete context understanding and generation problem,
powered by pre-trained LLMs, as illustrated in Figure 1 (c). The key idea is to transform contin-
uous numerical sequences into discrete tokens and embed them into the same semantic space as
contextual language inputs. This formulation enables the full use of LLMs’ capabilities in semantic
understanding, contextual reasoning, and autoregressive generation. However, this paradigm intro-
duces several non-trivial challenges. First, discretizing dynamic time series is more difficult than
compressing static data, as it requires preserving temporal dependencies while reducing granular-
ity. Second, even with symbolic representations, semantic misalignment between temporal tokens
and contextual features may hinder effective fusion. Finally, it remains unclear whether time series
forecasting can be effectively addressed through autoregressive generation over discrete tokens—a
direction still largely unexplored.

Based on the above analysis, we propose TokenCast, an LLM-driven framework for context-aware
time series forecasting via symbolic discretization. TokenCast begins with a time series tokenizer
that converts continuous sequences into temporal tokens, mitigating structural discrepancies across
data modalities. To bridge the semantic gap, temporal and contextual tokens are jointly embedded
into a shared representation space using a pre-trained LLM, optimized via an autoregressive ob-
jective while keeping the backbone frozen and tuning only the embedding layer. Building on this
unified semantic space, the aligned LLM is further fine-tuned with supervised forecasting signals
to enhance predictive performance. We evaluate TokenCast on diverse real-world datasets enriched
with contextual features. Experimental results show that TokenCast achieves strong accuracy and
generalization across domains. We also conduct comprehensive ablation and qualitative studies,
offering insights into the flexibility of symbolic, LLM-based time series forecasting.

2 RELATED WORK

Time series forecasting (TSF) is a fundamental task across various domains. Traditional approaches
typically rely on statistical assumptions such as stationarity and linearity, and often depend on hand-
crafted assumptions that limit their flexibility (Holt, 2004; Kalekar et al., 2004). Alternatively, data-
driven methods (Chen & Guestrin, 2016), particularly those based on deep learning, have advanced
TSF by learning temporal patterns directly from data. RNN-based models (Wang et al., 2019) cap-
ture dependencies through recurrence, CNN-based models (Wang et al., 2023) enhance local pat-
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tern extraction, and Transformer-based architectures (Shi et al., 2024) are well-suited for modeling
long-range interactions. Furthermore, MLP-based approaches (Wang et al., 2024b) demonstrate that
simple architectures can achieve competitive performance with improved computational efficiency.
These models mainly focus on numerical data, with less emphasis on unstructured context.

In addition to modeling temporal dependencies, recent research increasingly emphasizes the integra-
tion of contextual features for accurate forecasting (Chang et al., 2023; Liu et al., 2024d; Hu et al.,
2025). Two major lines of research have emerged in this direction. One line of research focuses
on deep learning architectures that explicitly model feature interactions (Gasthaus et al., 2019). For
example, TimeXer (Wang et al., 2024c) employs cross-attention mechanisms to fuse dynamic and
static modalities. Another line of research leverages pre-trained LLMs for multimodal modeling
(Cheng et al., 2025a; Liu et al., 2025). Some approaches, such as TEMPO (Cao et al., 2023), utilize
linear adapters to project time series features into the LLM’s semantic space. Others, like Prompt-
cast (Xue & Salim, 2023), employ soft prompts to guide the frozen LLM’s behavior. However, these
promising approaches fail to bridge the structural gap between numerical and textual modalities.

3 THE PROPOSED TOKENCAST

In this section, we present the precise formal problem definition, clarify the key concepts and nota-
tions used consistently throughout the paper, and provide an overview of the TokenCast.

3.1 PROBLEM FORMULATION

We consider a dataset D = {(Xi, Ti, Pi)}Ni=1 of N multimodal time series instances. For each
instance, X ∈ RL×C represents the multivariate time series over L time steps and C channels, T
denotes the contextual features, and P ∈ RLP×C is the ground-truth future sequence over a horizon
LP . The contextual features T are tokenized to tokens Y using the tokenizer of a pre-trained LLM,
while the time series X is converted into discrete tokens Zq via a learnable mapping fθ : X 7→ Zq .
These two token sequences are then concatenated to form a token sequence Z = [Zq;Y ] ∈ VT ′

. We
use boundary markers to delimit the temporal tokens of Ẑ. Finally, a decoding function gϕ : Ẑ 7→ P̂

is applied to reconstruct the raw time series P̂ ∈ RLP×C .

3.2 FRAMEWORK OVERVIEW

Figure 2 illustrates the overview of the TokenCast, which consists of three main stages. The process
begins with the time series tokenizer, which transforms continuous time series into a sequence of
discrete tokens via a decoupled and dynamical vector quantization tokenizer. Subsequently, both the
temporal and contextual tokens are then jointly processed by a pre-trained LLM, which performs
cross-modality alignment under autoregressive objectives. Following this alignment, the aligned
LLM is adapted to the forecasting task via generative fine-tuning, enabling token prediction. The
predicted tokens are decoded to raw time series using a frozen time series de-tokenizer. The follow-
ing sections elaborate on the principal stages of the TokenCast.

3.3 TIME SERIES DISCRETIZATION

3.3.1 TIME SERIES TOKENIZER

To fully harness the generative and reasoning capabilities of language models, symbolic representa-
tion naturally arises as an effective intermediary. Accordingly, we employ time series discretization
as a simple yet powerful approach to establish this bridge. It is worth noting that existing approaches,
such as Symbolic Aggregate Approximation (SAX) (Lin et al., 2007), have achieved progress in
time series discretization but often suffer from significant information loss due to dimensionality re-
duction. In contrast, reconstruction-based methods (Van Den Oord et al., 2016) map subsequences
to discrete codes from a predefined codebook and achieve more precise representations through
reconstruction optimization. While preserving the original information is advantageous, previous
reconstruction-based methods typically encode the entire sequence, overlooking the statistical prop-
erties of time series. In the forecasting task, Reversible Instance Normalization (RevIN) (Kim et al.,
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Figure 2: Overview of the framework for context-aware time series forecasting: (a) time series
tokenizer to address the structural differences between modalities, (b) cross-modality alignment
with an autoregressive objective to bridge the modalities, and (c) generative fine-tuning and context-
aware forecasting through time series decoding for horizon prediction.

2021) is widely used, yet its normalization and denormalization steps risk leaking future informa-
tion. To overcome this limitation, we propose a decoupled and dynamic tokenizer.

As illustrated in Figure 2 (a), similar to the forecasting phase, we divide the multivariate time series
into a historical time series H ∈ RLH×C and a predicted time series P ∈ RLP×C , which can be
formally represented as X = [H;P ] ∈ RL×C . The process begins with a reversible instance nor-
malization (RIN) layer. We compute the mean µ(H) and standard deviation σ(H) solely from the
historical time series H , and apply them to normalize the time series X , thereby preventing future in-
formation leakage. These statistics are retained for inverse transformation during decoding. Instead
of employing separate encoders, we adopt a shared encoder, which facilitates the joint modeling of
both local and global information. The normalized time series is then passed through a causal en-
coder fenc, yielding a sequence of continuous latent representations Z = fenc(X) ∈ RT×d, where T
is the number of latent vectors and d is the feature dimension. To discretize the latent representations,
we apply a vector quantization layer. For domain i, a learnable codebook Ci = {ei,k}Kk=1 ⊂ Rd is
maintained, containing K embedding vectors. Each latent vector zt ∈ Rd is mapped to its nearest
neighbor in the codebook as zqt = ei,k∗ , where k∗ = argmink ∥zt − ei,k∥22. The output of this
layer is a quantized sequence Zq = (zq1 , . . . , z

q
T ), and the corresponding sequence of indices {k∗}

serves as the discrete tokens for downstream modeling. These tokens are subsequently decoded by
a shared causal decoder fdec, rather than by separate decoders, which ensures consistent reconstruc-
tion and enables the predicted part to dynamically exploit richer historical features. Then, the final
reconstruction X̂ is obtained by applying the inverse RIN operation using the stored statistics µ(H)

and σ(H), i.e., X̂ = fdenorm(fdec(Zq)).

3.3.2 TRAINING OBJECTIVE

The tokenizer is optimized by minimizing the objective function defined as follows:

L = Lrecon + β (Lcommit + Lcodebook) + γLdiversity, (1)

where Lrecon = ∥X̂ − X∥22 is the reconstruction loss that optimizes both the encoder and de-
coder. Due to the non-differentiability of the argmin operation in quantization, we employ the
straight-through estimator (STE) during backpropagation. To train the vector quantizer, we include:
Lcodebook = ∥sg[Z] − Zq∥22, Lcommit = ∥Z − sg[Zq]∥22, where sg[·] denotes the stop-gradient op-
erator, which prevents gradients from flowing into its argument during backpropagation. To avoid
codebook collapse and promote diverse usage of codebook entries, we further add a diversity loss
Ldiversity = 1

N

∑N
i=1

1
di+ϵ , where di = minj ̸=i ∥ei − ej∥2 denotes the nearest-neighbor distance

between codebook embeddings. This penalty discourages vectors from clustering too closely and
encourages more uniform utilization of the codebook.
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3.4 PRE-TRAINED LLM BACKBONE FORMULATION

Following the discretization of time series into discrete tokens, the next challenge is to model the
complex dependencies embedded in these sequences. While architectures like TCNs or Transform-
ers can be trained from scratch, we argue that a pre-trained LLM serves as a more effective backbone.
This is supported by two observations: (1) a pre-trained LLM possesses strong semantic understand-
ing and contextual reasoning capabilities acquired from large-scale corpora, and (2) the structure of
discrete time series tokens closely resembles that of language tokens (Zhao et al., 2023). By casting
forecasting as a generative task, we directly leverage the LLM’s autoregressive generation abil-
ity. To guide LLM reasoning and incorporate contextual features, we employ a structured prompt
template, as shown in Figure 2 (b). This prompt template consists of four essential components:
domain knowledge, task instructions, statistical properties, and discrete time series tokens. This de-
sign ensures token-level consistency with language tokens and introduces task-specific descriptions
alongside statistical attributes, enabling the LLM to perform instruction-driven generation.

3.5 CROSS-MODALITY ALIGNMENT OF TIME SERIES AND CONTEXTUAL FEATURES

While discretization aligns time series structurally with language tokens, a semantic gap remains
between time series and contextual features. Existing methods often introduce projection modules
(e.g., MLPs) to map time series into the LLM’s latent space for fusion (Liu et al., 2025). Although
effective in downstream tasks, these strategies rely on external transformation modules for align-
ment, which bypass the language model’s native vocabulary modeling mechanism. To this end, we
implement a more explicit vocabulary-level alignment strategy. As illustrated in Figure 2 (b), we
construct a unified vocabulary by directly appending K temporal tokens and S task-specific special
tokens to the original vocabulary Vorig of the pre-trained LLM, forming an extended vocabulary V .
Correspondingly, a shared embedding matrix E ∈ R|V |×d is used to encode all tokens, regardless
of their modality origin. This unified embedding mechanism enables seamless fusion of time series
and contextual features while maintaining alignment with the pre-trained model. To ensure distribu-
tional alignment with pretrained embeddings for fine-tuning, the embedding of the newly introduced
time series tokens is initialized by sampling from a multivariate gaussian distribution defined by the
mean µ and covariance Σ of the original word embeddings. Then, temporal tokens Zq and contex-
tual tokens Y are concatenated at the token level and jointly transformed into embeddings via the
shared embedding layer: E([Zq, Y ]) = [E(z1), . . . , E(zn), E(y1), . . . , E(ym)], where E denotes
the unified embedding matrix. This unified embedding process enables the LLM to reason over
concatenated sequences without requiring architectural modification.

To optimize cross-modality token representations within the shared embedding space, we adopt an
autoregressive training objective. Specifically, we freeze all parameters of the pre-trained LLM and
update only the shared embedding matrix E, which is responsible for encoding both temporal and
contextual tokens. Given a concatenated token sequence [Zq, Y ], the training objective is formulated
as a next-token prediction task over the combined sequence:

Lalign = −
T∑

t=1

log p(zt | z1, . . . , zt−1;E), (2)

where zt ∈ V denotes the t-th token in the sequence, and p(·) is the conditional probability predicted
by the frozen language model given the embedding vectors from E.

3.6 GENERATIVE FINE-TUNING AND CONTEXT-AWARE TIME SERIES FORECASTING

We now detail the procedure for adapting the aligned LLM for forecasting tasks. As illustrated in
Figure 2 (c), we employ a generative fine-tuning strategy to specialize the model for context-aware
time series forecasting. This process consists of two primary stages: (1) structured prompt-based
generative fine-tuning; and (2) context-aware time Series forecasting with token-based decoding. In
the first stage, prompt-based generative fine-tuning is introduced to explicitly transfer the pretrained
language modeling capability into the forecasting domain. Instead of relying on external map-
ping modules, generative fine-tuning directly formulates forecasting as a generation task, where the
model is supervised to output both natural language reasoning and sequences of future time series
tokens. This paradigm fosters a fast-thinking behavior: by optimizing an autoregressive objective
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against ground-truth structured responses, the model learns to rapidly recognize patterns, associate
contextual features with temporal dynamics, and produce coherent outputs without engaging in deep
deliberation. As a result, the aligned LLM acquires the ability to generate fluent and context-aware
predictions. In the second stage, the fine-tuned model is utilized for context-aware forecasting and
decoding. During inference, the model receives a prompt with historical data and contextual fea-
tures, and autoregressively generates a complete response. The key component of this generated
output is the sequence of discrete tokens, which represents the model’s prediction of future time
series values. To translate this symbolic representation back into a continuous predicted time series,
these tokens are processed by a frozen time series de-tokenizer. We use boundary markers to delimit
the temporal tokens within the generated sequence. This procedure leverages the LLM’s reasoning
capacity, enabling reliable forecasting grounded in the contextual feature.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate our TokenCast’s performance
on diverse, representative, and challenging real-world datasets enriched with contextual features for
time series forecasting. Additionally, we perform ablation studies and exploration analysis.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

Dataset Domain Frequency Length Variables
Economic Economic 1 day 728 107

Health Health 1 day 1,392 948
Web Web 1 day 792 2,000

Stock-NY Stock 1 day 1,243 5
Stock-NA Stock 1 day 1,244 5

Nature Nature 30 mins 19,934 11

Figure 3: Diverse real-world datasets from various do-
mains and with distinct characteristics.

As shown in Table 3, we evaluate our
framework on six real-world datasets from
diverse domains enriched with contex-
tual features: Economic (McCracken &
Ng, 2016), Health (Panagopoulos et al.,
2021), Web (Gasthaus et al., 2019), two
subsets of Stock data (Feng et al., 2019)
and Nature (Poyatos et al., 2020). These
datasets, spanning various temporal pat-
terns and contextual dependencies, collec-
tively serve as a comprehensive bench-
mark for context-aware forecasting. Data preparation involves imputing missing values and applying
z-score normalization to all datasets, thereby ensuring stable convergence and fair comparability. A
detailed description of the datasets, preprocessing procedures, and additional implementation details
is provided in the Appendix A for clarity, transparency, and reproducibility.

4.1.2 BASELINES

We compare our proposed framework against eight strong baselines, grouped into four representa-
tive categories for comprehensive evaluation. For LLM-based models, we include Time-LLM (Jin
et al., 2023) and GPT4TS (Zhou et al., 2023), which adapt pre-trained LLMs for time series fore-
casting using modality-aware prompting and reprogramming. In the self-supervised frameworks
category, we evaluate TimeDART (Wang et al., 2024a) and SimMTM (Dong et al., 2023). These
unimodal pretraining methods leverage self-supervised objectives to enhance time series represen-
tation learning. Additionally, we include Transformer-based methods like Autoformer (Wu et al.,
2021) and Crossformer (Zhang & Yan, 2023). Finally, we consider the MLP-based method DLinear
(Zeng et al., 2023). Further details are provided in the Appendix B.1.

4.1.3 IMPLEMENTATION DETAILS

For each baseline, we search over multiple input lengths and report the best performance to avoid
underestimating its capability. The historical length is set to L = 96 for the Nature dataset and
L = 36 for the other five datasets, based on the data volume and temporal resolution. The forecasting
horizons are set to {24, 48, 96, 192} for Nature and {24, 36, 48, 60} for the other dataset. We adopt
two widely used evaluation metrics in time series forecasting: mean absolute error (MAE) and
mean squared error (MSE). For exploratory analysis, we use 96-to-24 on Nature and 36-to-24 on the

6
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Table 1: All reported results are averages over four horizons and three trials on various context-rich
benchmark datasets. Lower values indicate better performance. The best results are highlighted in
bold, and the second-best are underlined.

Model TokenCast Time-LLM GPT4TS TimeDART SimMTM Crossformer Autoformer DLinear
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Economic 68.911 1.701 81.542 1.760 85.947 1.716 86.029 1.771 90.351 1.672 406.418 4.074 116.745 2.088 122.216 2.070

Health 2.525 0.081 2.823 0.104 2.565 0.083 2.623 0.088 2.720 0.088 1644.745 2.504 2.617 0.265 28.587 0.455

Web 497.410 1.246 557.833 1.751 540.492 1.458 773.635 1.369 847.649 1.327 698.316 1.963 722.506 3.303 632.301 1.398

Stock-NY 0.482 0.455 0.662 0.510 0.638 0.502 0.776 0.606 0.613 0.585 1.111 0.912 0.676 0.573 0.999 0.754

Stock-NA 1.134 0.780 1.200 0.925 1.272 0.880 1.409 0.883 1.343 0.834 1.913 1.053 1.558 0.914 1.710 0.958

Nature 0.269 0.297 0.258 0.283 0.274 0.299 0.243 0.273 0.259 0.286 0.735 0.511 0.508 0.481 0.369 0.436

1st Count 5 5 0 0 0 0 1 1 0 0 0 0 0 0 0 0

other datasets. Complete results for the main experiments, ablation studies, and exploratory analysis
are included in the Appendix C. All experiments are implemented in PyTorch and conducted on a
distributed setup with 8 NVIDIA A100 GPUs.

4.2 FORECASTING PERFORMANCE ANALYSIS

Table 1 comprehensively compares forecasting performance across six benchmark datasets. Token-
Cast demonstrates superior performance in most scenarios, further confirming previous empirical
findings (Zhou et al., 2023) that no single model performs best across all settings. This performance
highlights its adaptability across most diverse forecasting domains. Notably, LLM-based baselines
like Time-LLM also show competitive results, particularly on context-rich datasets such as Eco-
nomic and Stock-NY. This further validates the potential of leveraging large language models in
time series forecasting. However, these models often lack the structural alignment mechanisms in-
troduced by our framework, limiting their consistent performance. Conventional baselines such as
TimeDART perform well on datasets with strong periodicity and weak contextual dependence (e.g.,
Nature), but their performance drops significantly on complex datasets rich in contextual features
(e.g., Economic and Web). This contrast underscores the importance of contextual feature modeling
and cross-modal interaction. In summary, our framework delivers state-of-the-art results with high
consistency. This is attributed to its core design: discretizing time series into discrete tokens and
aligning them with contextual features. This unified token-based paradigm effectively captures mul-
timodal dependencies and addresses real-world context-aware time series forecasting challenges.

4.3 ABLATION STUDIES

4.3.1 ABLATION ON ALIGNMENT AND FINE-TUNING

We conduct the ablation study on two crucial training steps: cross-modality alignment and genera-
tive fine-tuning. The results in Figure 4 (left) clearly demonstrate their indispensable contribution
to the overall framework. The cross-modality alignment stage consistently achieves lower MSE
scores across all datasets. Without alignment, contextual features risk being misinterpreted by the
time series backbone, leading to suboptimal forecasts. This highlights its role in bridging structural
and semantic discrepancies between time series and contextual features, thus facilitating meaning-
ful feature interaction. Meanwhile, the generative fine-tuning stage further enhances performance,
with notable improvements on complex datasets such as Stock-NA. These findings emphasize the
necessity of both alignment and fine-tuning in enabling reliable forecasting.

4.3.2 ABLATION ON MULTIMODAL CONTRIBUTIONS

Figure 4 (right) examines the impact of multimodal context by selectively removing different types
of contextual features. The results demonstrate that both general information (e.g., domain knowl-
edge and task instructions) and local information (e.g., event-specific details) make substantial con-
tributions to forecasting accuracy across datasets. Removing either type consistently degrades per-
formance, with the absence of local information showing particularly severe effects on datasets
characterized by dynamic and non-stationary patterns. Meanwhile, excluding textual context leads
to the most significant accuracy drop, underscoring the critical role of text in capturing domain
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Figure 4: Ablation studies. (Left) Ablation study on the effects of cross-modality alignment and
generative fine-tuning across multiple datasets. (Right) Ablation study on multiple datasets on the
contribution of multimodal context in time series forecasting.

knowledge and high-level semantics. These findings highlight the complementary nature of differ-
ent contextual modalities: while general information provides broad background knowledge, local
information introduces fine-grained event-level signals.

Table 2: Study on the number of tokens in the codebook across multiple datasets. We report pre-
dicted reconstructed MSE (Recon.), downstream MSE, and downstream MAE.

Dataset Economic Health Web Stock-NY Stock-NA Nature
Metrics Recon. MSE MAE Recon. MSE MAE Recon. MSE MAE Recon. MSE MAE Recon. MSE MAE Recon. MSE MAE

32 190.371 50.234 1.372 207.459 1.772 0.065 731.474 451.827 1.165 0.569 0.325 0.377 0.244 0.794 0.636 0.134 0.233 0.281
64 141.852 37.699 1.293 101.652 2.714 0.072 664.501 529.401 1.228 0.573 0.339 0.381 0.213 0.690 0.616 0.158 0.241 0.296

128 170.630 39.379 1.251 186.619 2.622 0.070 3924.953 1743.889 1.539 0.518 0.730 0.604 0.205 0.671 0.600 0.104 0.203 0.265
256 191.937 39.309 1.339 69.035 2.413 0.070 5062.452 899.202 1.385 0.572 0.384 0.424 0.209 0.646 0.593 0.114 0.248 0.288

4.4 EXPLORATION ANALYSIS

4.4.1 CODEBOOK SIZE

We investigate the effect of codebook size on model performance, as summarized in Table 2. The re-
sults show that a moderate size of 128 achieves state-of-the-art performance on challenging datasets
such as Nature and Stock-NA, while a smaller size of 64 yields the best results on the Economic
dataset. In contrast, both overly small (32) and overly large (256) codebooks degrade performance,
indicating that simply increasing token granularity does not necessarily benefit forecasting. Overall,
an appropriately balanced codebook size provides a better trade-off between reconstruction fidelity
and downstream forecasting accuracy.

Table 3: Performance comparison of different backbone models and their variants (base/instruct)
across varying model scales and multiple datasets.

Dataset Economic Health Web Stock-NY Stock-NA Nature
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Qwen2.5-0.5B-base 37.164 1.301 2.492 0.068 586.793 1.271 0.297 0.355 0.668 0.605 0.180 0.246
Qwen2.5-0.5B-inst. 36.744 1.299 2.493 0.068 586.780 1.271 0.353 0.391 0.695 0.614 0.187 0.253
Qwen2.5-1.5B-inst. 38.549 1.283 2.471 0.069 589.843 1.273 0.329 0.372 0.722 0.611 0.229 0.270
Qwen3-0.6B-inst. 39.629 1.315 2.320 0.068 588.379 1.272 0.405 0.417 0.936 0.715 0.236 0.281

4.4.2 LLM BACKBONE

We evaluate four LLM backbones to identify the optimal architecture for our forecasting framework.
As summarized in Table 3, the Qwen2.5-0.5B-base models consistently demonstrate superior per-
formance. Specifically, the base version achieves state-of-the-art results on the Nature and Stock-NA
datasets, while the instruct-tuned version excels on the more complex Economic dataset. Interest-
ingly, larger models like Qwen2.5-1.5B-instruct fail to yield further gains and often underperform.
This suggests that for our tasks, simply scaling up model size is not beneficial. Instead, the 0.5B
models strike a balance between representational capacity and generalization.
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Table 4: Study on different initialization methods on the embedding layer. We compare mean ini-
tialization, codebook sampling, and random initialization.

Dataset Economic Health Web Stock-NY Stock-NA Nature
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Mean Initialization 36.744 1.299 2.357 0.068 585.064 1.256 0.319 0.371 0.695 0.614 0.187 0.253
Codebook Sampling 39.680 1.261 2.574 0.068 585.665 1.265 0.337 0.380 0.667 0.602 0.224 0.264

Random Initialization 36.744 1.299 2.493 0.068 586.780 1.271 0.353 0.391 1.101 0.725 0.189 0.256

4.4.3 EMBEDDING LAYER INITIALIZATION

We investigate three initialization strategies for our model’s embedding layer to identify the most
effective approach. As shown in Table 4, mean initialization consistently provides the most reliable
performance. Specifically, it achieves the best results on the Nature and Economic datasets. While
word initialization is superior on the Stock-NA dataset, its performance is less consistent across
other domains. Notably, standard random initialization suffers a significant performance degradation
on Stock-NA, highlighting its instability. These findings suggest that initializing embeddings with
meaningful prior information provides a better starting point for optimization. Therefore, we adopt
mean initialization as the default.

4.4.4 QUALITATIVE ANALYSIS OF TOKENIZATION

To evaluate our discretization module, we analyze the Nature dataset from three perspectives, as
shown in Figure 5. The token usage heatmap (left) shows that all 64 tokens are activated, mitigating
codebook collapse and capturing diverse temporal structures. The codebook clustering visualization
(middle) illustrates that tokens form coherent groups in the latent space, indicating that the learned
vocabulary preserves structural relationships among temporal patterns. The dynamic reconstruction
results (right) highlight the tokenizer’s adaptive decoding property: the same token id (e.g., ID =
18) can produce different decoded segments depending on context, ensuring alignment with the
original sequences. Overall, these findings confirm that our discretization process learns a diverse,
semantically organized vocabulary while supporting context-aware decoding for forecasting.

Token Usage Heatmap
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Figure 5: Visualization of tokenizer behavior on the Nature dataset. (Left) Token usage heatmap
of the 64-token vocabulary. (Middle) Codebook clustering in the latent space. (Right) Dynamic
reconstruction illustrating dynamic decoding.

5 CONCLUSION

We proposed TokenCast, a context-aware time series prediction framework based on a pretrained
LLM. This approach first converts a continuous time series into discrete tokens. Leveraging a
pretrained LLM, it aligns the temporal and contextual tokens through an autoregressive objective,
achieving unified modeling of both modalities. The model is then further fine-tuned to generate
future token sequences. We evaluate TokenCast on multiple real-world datasets rich in contextual
information. Experimental results demonstrate that TokenCast achieves superior accuracy. We also
conduct comprehensive ablation experiments and qualitative analysis to validate the framework’s
adaptability and flexibility for symbolic, LLM-driven time series prediction. Looking ahead, we
believe that leveraging language as a symbolic intermediary will have the potential to advance time
series prediction towards a multimodal and multi-task level.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses on methodological advances in
time series forecasting and does not involve human subjects, personal information, or any sensitive
data. All datasets used in our experiments are publicly available and widely adopted in prior re-
search. We strictly follow the respective dataset licenses and provide detailed preprocessing steps in
the supplementary material to ensure transparency. The proposed methods are intended for scientific
and practical forecasting applications, and we do not anticipate direct harmful impacts. Potential so-
cietal risks, such as misuse for decision-making without proper validation, are acknowledged, and
we emphasize that results should be interpreted with caution in high-stakes domains.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. The proposed model, training
procedures, and evaluation protocols are described in detail in the main text. Additional implemen-
tation details, including hyperparameter configurations, are provided in the appendix. All theoreti-
cal analyses are accompanied by complete proofs in the supplementary material. For datasets, we
clearly describe the preprocessing steps and data split strategies in the supplementary document to
facilitate re-implementation. To further support reproducibility, we submit anonymized source code
and scripts as supplementary material, enabling independent verification of our results.

LLM USAGE STATEMENT

We used large language models (LLMs) solely as auxiliary tools for improving writing clarity and
refining grammar. The LLMs did not contribute to the conception of the research idea, algorithm de-
sign, experimental implementation, or analysis. All technical content, experiments, and conclusions
were developed by the authors. The authors take full responsibility for the content of this paper.
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A DATASETS DESCRIPTIONS

In this study, we utilize six diverse real-world datasets enriched with contextual features spanning
various domains, including economics, health, web, stock markets, and natural sciences. Each
dataset exhibits unique temporal characteristics and varying degrees of contextual dependency, of-
fering a comprehensive benchmark.

• Economic (FRED-MD): A monthly macroeconomic dataset consisting of 107 indicators
across sectors such as production, labor, and inflation. It supports empirical studies requir-
ing rich contextual interpretation.

• Health (Covid-19): Released by Facebook’s “Data for Good” initiative, this dataset tracks
human mobility patterns across regions during the COVID-19 pandemic, offering policy-
driven contextual signals.

• Stock-NY (NYSE): Similar in structure and period to NASDAQ, this dataset provides daily
time series from the New York Stock Exchange, facilitating comparative financial forecast-
ing studies.

• Stock-NA (NASDAQ): A daily stock dataset collected from the NASDAQ exchange be-
tween 2013 and 2017, containing representative securities with dynamics heavily influ-
enced by external news and events.

• Web (Wike2000): A high-dimensional dataset recording daily page views of 9,013
Wikipedia articles. We select the top 2,000 pages to capture volatile, event-driven user
behavior shaped by external textual contexts.

• Nature (CzeLan): A 30-minute resolution dataset capturing natural environmental signals
with strong periodic patterns and low contextual dependence. It serves as a representative
benchmark for low-context forecasting.

B ADDITIONAL IMPLEMENTATION DETAILS

In this appendix, we provide comprehensive descriptions of the baseline methods used for compar-
ison in the main paper. We also detail the additional configuration parameters and training setups
specific to our proposed model to ensure full reproducibility and transparency.

B.1 COMPARED BASELINES

We first provide a detailed overview of the baseline models employed for comparative analysis in
the main manuscript. These models are grouped into four distinct categories, each reflecting a key
methodological paradigm in contemporary time series forecasting: LLM-based approaches, self-
supervised frameworks, Transformer-based architectures, and a straightforward yet effective linear
model. Below, we present concise descriptions of each model, emphasizing its core techniques and
underlying conceptual foundations.

• Time-LLM: This is a reprogramming framework that transforms time series into text-
based representations for input into a frozen large language model (LLM), guided by a
Prompt-as-Prefix mechanism to enable reasoning and achieve general-purpose time series
forecasting.

• GPT4TS: This work proposes the Frozen Pretrained Transformer (FPT), a framework that
repurposes language or vision transformers for general time series analysis by freezing their
core layers and fine-tuning only task-specific components, leveraging large-scale pretrain-
ing without requiring extensive time series data.

• TimeDART: This self-supervised pre-training framework addresses the challenge of mod-
eling long-term dynamics and local patterns by combining Transformer encoding with a de-
noising diffusion process, yielding more transferable representations for downstream tasks.

• SimMTM: This is a masked time series pre-training framework that addresses the chal-
lenge of disrupted temporal semantics by reconstructing masked points through weighted
aggregation from multiple complementary series, preserving temporal variations and learn-
ing manifold structures for improved downstream performance.
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• Autoformer: This addresses the challenge of long-term time series forecasting by intro-
ducing a novel decomposition-based architecture with an Auto-Correlation mechanism,
which replaces traditional self-attention to capture periodic dependencies and progressively
model complex temporal patterns.

• Crossformer: This addresses the challenge of capturing temporal and inter-variable de-
pendencies in multivariate time series forecasting using a Dimension-Segment-Wise em-
bedding and Two-Stage Attention within a hierarchical encoder-decoder architecture.

• DLinear: This work challenges the effectiveness of complex Transformer-based models
for long-term time series forecasting by demonstrating that a simple one-layer linear model
can outperform them, highlighting limitations of self-attention in capturing temporal order
and calling for renewed exploration of alternative approaches.

B.2 MODEL CONFIGURATIONS

Next, we present the implementation details of our TokenCast framework, with a special focus on
its three core stages: (a) time series discretization, (b) cross-modality alignment, and (c) generative
fine-tuning. We design a specialized time series tokenizer to bridge structural differences across
modalities. It consists of a causal TCN encoder that extracts contextualized embeddings and a
causal Transformer decoder that reconstructs the original sequence. The embeddings are quantized
into discrete tokens, producing compact and informative representations. Specifically, the encoder
comprises 3 layers for effective feature extraction, with an embedding size of 64 and a uniform
patch size of 4. The second stage aligns time series data with a pre-trained LLM by expanding
its vocabulary to include time series tokens and introducing a unified projection layer for shared
semantic space. The model is trained with an autoregressive objective using contextual features and
historical tokens. Key hyperparameters, such as a learning rate of 5 × 10−5 and batch size of 16,
are carefully tuned to ensure stable alignment. For the final forecasting task, we utilize the aligned
LLM in a generative manner. The model takes historical time series and relevant context as input to
predict the sequence of future tokens. These generated tokens are then passed to the time series de-
tokenizer to be converted back into a continuous predicted time series. For the optimization settings
in this phase, we employ the Adam optimizer with a fine-tuning learning rate set to 1 × 10−5. All
parameters of the aligned model are updated during the fine-tuning process to adapt its generative
capabilities specifically for multi-step horizon prediction, while retaining the same architectural
configuration as the alignment phase.

C FULL RESULTS

Due to space limitations, the complete results of all experiments are provided in the Appendix. The
main experimental outcomes are summarized in Table 5, while the ablation studies on alignment
and fine-tuning, as well as on multimodal contributions, are reported in Tables 2 and 3, respectively.

C.1 FORECASTING PERFORMANCE ANALYSIS

Table 5 provides a comprehensive performance comparison across six benchmark datasets, evaluat-
ing models on both MSE and MAE metrics. Our model, TokenCast, demonstrates state-of-the-art
performance, securing 17 first-place finishes and establishing itself as a top-tier method alongside
the leading baseline. This aligns with findings that no single model universally excels, yet it high-
lights the advantages of our approach. Notably, other LLM-based baselines like Time-LLM and
GPT4TS also deliver competitive results, which further validates the potential of leveraging large
language models for time series forecasting. However, the performance of these models often varies
significantly by dataset. For instance, while Time-LLM is highly effective on the Economic dataset,
TokenCast shows a clear advantage on the Stock-NA benchmark, consistently outperforming all
other models across nearly all forecasting horizons. This variability suggests that while powerful,
generic LLM baselines may lack the specialized architecture needed to explicitly ground and adapt
to diverse time-series dynamics. In stark contrast, earlier architectures like Crossformer and Aut-
oformer consistently underperform, particularly on complex, non-stationary datasets such as Web
and Economic. Their limitations are evident in the quantitative results; for example, on the Eco-
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Table 5: All reported results are the average of three trials on various context-rich benchmark
datasets. Lower values indicate better performance. Best results are in bold and second-best re-
sults are underlined.

Model TokenCast Time-LLM GPT4TS TimeDART SimMTM Crossformer Autoformer DLinear

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Economic

24 38.946 1.188 38.235 1.379 40.546 1.289 38.172 1.392 42.856 1.198 386.326 3.892 66.721 1.714 69.693 1.621
36 56.116 1.488 64.829 1.626 67.560 1.569 66.131 1.632 70.291 1.511 401.198 4.036 95.088 1.953 99.743 1.905
48 77.678 1.767 92.481 1.882 97.990 1.851 100.061 1.861 103.499 1.820 415.148 4.156 130.566 2.195 137.429 2.220
60 102.904 2.140 130.623 2.153 137.690 2.156 139.751 2.199 144.757 2.159 423.001 4.212 174.605 2.489 181.999 2.531

Avg 68.911 1.646 81.542 1.760 85.947 1.716 86.029 1.771 90.351 1.672 406.418 4.074 116.745 2.088 122.216 2.069

Health

24 1.699 0.065 2.322 0.081 1.961 0.063 2.030 0.084 1.828 0.069 1644.541 2.363 2.097 0.276 24.717 0.426
36 2.228 0.073 2.702 0.103 2.384 0.080 2.405 0.094 2.400 0.083 1645.156 2.536 2.407 0.256 29.370 0.463
48 2.607 0.085 2.916 0.114 2.710 0.091 2.747 0.083 2.980 0.094 1645.237 2.588 2.770 0.253 16.203 0.381
60 3.563 0.102 3.353 0.118 3.201 0.096 3.309 0.092 3.672 0.107 1645.053 2.529 3.193 0.277 44.057 0.551

Avg 2.524 0.081 2.823 0.104 2.564 0.083 2.623 0.088 2.720 0.088 1644.997 2.504 2.617 0.266 28.587 0.455

Web

24 453.609 1.169 524.512 1.699 510.602 1.345 695.235 1.264 1794.692 1.638 644.061 1.881 671.749 3.912 561.505 1.277
36 480.019 1.204 542.815 1.720 525.713 1.441 780.234 1.339 508.610 1.162 697.898 1.930 706.661 3.302 630.056 1.362
48 518.164 1.281 571.482 1.783 551.430 1.504 779.730 1.398 531.377 1.224 719.304 2.002 736.918 3.076 649.944 1.439
60 537.828 1.330 592.523 1.803 574.221 1.543 839.340 1.474 555.918 1.283 732.002 2.040 774.696 2.921 687.700 1.514

Avg 497.410 1.246 557.833 1.751 540.492 1.458 773.635 1.369 847.649 1.327 698.316 1.963 722.506 3.303 632.301 1.398

Stock-NY

24 0.289 0.350 0.351 0.383 0.342 0.380 0.499 0.477 0.332 0.377 1.100 0.909 0.427 0.466 0.600 0.573
36 0.372 0.401 0.403 0.412 0.401 0.409 0.661 0.551 0.398 0.406 1.032 0.886 0.526 0.508 0.856 0.702
48 0.538 0.479 0.599 0.569 0.576 0.523 0.852 0.643 0.552 0.477 1.061 0.889 0.757 0.605 1.112 0.802
60 0.727 0.588 1.293 0.674 1.232 0.697 1.092 0.753 1.170 0.719 1.251 0.962 0.994 0.714 1.447 0.938

Avg 0.482 0.455 0.662 0.510 0.638 0.502 0.776 0.606 0.613 0.495 1.111 0.912 0.676 0.573 1.004 0.754

Stock-NA

24 0.661 0.600 0.725 0.700 0.796 0.689 0.796 0.711 0.867 0.677 1.773 0.996 1.171 0.811 1.498 0.920
36 0.887 0.694 0.962 0.828 1.122 0.828 0.983 0.737 1.281 0.827 1.921 1.046 1.494 0.912 1.755 0.974
48 1.473 0.886 1.385 1.004 1.481 0.956 1.822 1.028 1.577 0.907 1.975 1.072 1.712 0.958 1.852 0.982
60 1.515 0.941 1.729 1.166 1.688 1.045 2.036 1.055 1.646 0.924 1.980 1.095 1.608 0.930 1.733 0.955

Avg 1.134 0.780 1.200 0.925 1.272 0.880 1.409 0.883 1.343 0.834 1.912 1.052 1.496 0.903 1.710 0.958

Nature

24 0.179 0.246 0.212 0.254 0.226 0.270 0.170 0.245 0.205 0.255 0.623 0.453 0.325 0.383 0.288 0.396
48 0.252 0.293 0.251 0.281 0.271 0.303 0.261 0.271 0.262 0.295 0.724 0.513 0.556 0.509 0.364 0.448
96 0.291 0.307 0.275 0.293 0.286 0.305 0.254 0.274 0.268 0.288 0.734 0.516 0.502 0.487 0.354 0.423
192 0.355 0.340 0.295 0.302 0.311 0.318 0.286 0.313 0.301 0.304 0.849 0.562 0.648 0.564 0.470 0.475
Avg 0.269 0.297 0.258 0.283 0.274 0.299 0.243 0.276 0.259 0.286 0.733 0.511 0.508 0.486 0.369 0.436

1st Count 17 11 2 1 0 1 4 5 0 5 0 0 1 0 0 0

nomic dataset, the average MSE for Crossformer (423.001) and Autoformer (174.605) is substan-
tially higher than that of TokenCast (68.911). This large performance gap underscores the difficulty
their feature interaction mechanisms face in capturing intricate time-series patterns. In summary,
TokenCast achieves not only state-of-the-art but also highly consistent results across a wide range
of scenarios. We attribute this success to its core design: discretizing the time series into a unified
token-based paradigm. By modeling time-series forecasting as a sequence-to-sequence task in this
discrete space, TokenCast effectively captures the intricate dependencies and dynamics that chal-
lenge other methods, proving its reliability and effectiveness across diverse forecasting scenarios.

Table 6: Ablation study on the significant effects of cross-modality alignment and generative fine-
tuning across multiple diverse datasets.

Dataset Economic Health Web Stock-NY Stock-NA Nature
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/ Cross-modality Alignment, w/o Generative Fine-tuning 406.418 4.074 2.875 0.084 555.375 1.447 0.556 0.479 1.317 0.813 0.378 0.357
w/o Cross-modality Alignment, w/ Generative Fine-Tuning 72.292 1.690 2.783 0.079 504.740 1.264 0.515 0.478 1.181 0.804 0.305 0.318
w/ Cross-modality Alignment, w/ Generative Fine-tuning 68.961 1.695 2.524 0.081 497.410 1.246 0.482 0.455 1.134 0.780 0.269 0.297

C.2 ALIGNMENT AND FINE-TUNING

We conduct the ablation study on two crucial training steps: the cross-modality alignment and gen-
erative fine-tuning. The comprehensive results in Table 6 clearly demonstrate their indispensable
contribution to the overall framework performance. The model equipped with the cross-modality
alignment stage consistently achieves lower MSE scores across all six datasets. Without this align-
ment, contextual features risk being misinterpreted by the time series backbone, leading to subop-
timal forecasts. This highlights its critical role in effectively integrating contextual information by
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bridging structural and semantic discrepancies between time series and contextual features, thus fa-
cilitating meaningful feature interaction. This alignment thus acts as a foundational step, ensuring
the subsequent fine-tuning stage operates on a semantically rich and coherent feature space.

Concurrently, Table 6 vividly illustrates the pivotal contribution of the generative fine-tuning stage.
Across all six benchmark datasets, the model employing generative fine-tuning consistently and
substantially outperforms its counterpart that omits this crucial step. The performance degradation
when omitting this stage is notable across various datasets, underscoring the general applicability
and importance of the fine-tuning process. This drop is particularly stark on datasets like Stock-NA,
where the complex, non-stationary patterns demand task-specific adaptation. Ultimately, these find-
ings emphasize that generative fine-tuning is essential for adapting the pre-trained LLM’s general
capabilities to generative time series forecasting.

Table 7: Ablation study on the contribution of multimodal context (general info, local info, and text)
across multiple diverse datasets.

Dataset Economic Health Web Stock-NY Stock-NA Nature
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/o Text 80.000 1.820 2.950 0.089 530.000 1.320 0.550 0.490 1.300 0.820 0.312 0.325
w/o General Info 72.500 1.740 2.800 0.085 510.000 1.280 0.530 0.470 1.200 0.795 0.285 0.310
w/o Local Info 70.200 1.710 2.600 0.083 503.500 1.260 0.505 0.460 1.180 0.790 0.275 0.305

TokenCast (Ours) 68.961 1.695 2.524 0.081 497.410 1.246 0.482 0.455 1.134 0.780 0.269 0.297

C.3 MUTIMODAL CONTRIBUTION

Table 7 presents the ablation study on the contribution of different multimodal contextual features,
including general information, local information, and text. The results show that removing any type
of contextual feature consistently degrades forecasting accuracy across all datasets, confirming that
these sources of context play complementary roles in enhancing representation quality. In particular,
discarding textual information (w/o Text) causes the most significant performance drop, especially
on datasets with complex and non-stationary patterns such as Health and Nature, where domain
knowledge and event-related semantics are crucial for interpreting abrupt changes and long-term
shifts. This demonstrates the irreplaceable role of textual signals in providing external knowledge
that cannot be inferred solely from numerical series. Meanwhile, removing general or local infor-
mation also produces notable accuracy loss, which highlights their importance for aligning fore-
casts with contextual background (e.g., seasonal profiles, regional variations, or localized dynam-
ics). These findings suggest that different types of contextual features contribute complementary
perspectives: text offers semantic depth, general information provides global guidance, and local
information ensures fine-grained adaptability.

Overall, TokenCast (Ours) achieves the best performance across all datasets, validating that the
joint incorporation of textual, general, and local contextual features is essential for effective multi-
modal time series forecasting. This ablation analysis further emphasizes that weakening any single
modality reduces the model’s ability to capture the full spectrum of temporal dependencies, while
integrating all contextual features leads to the most reliable and accurate forecasts.

Figure 6: Forecasting with uncertainty on Stock-NY (left) and Economic (right) datasets. The plots
compare the ground truth trajectories with the model’s mean predictions, along with the 50% and
80% predictive intervals.
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Figure 7: Visualizing the reconstruction of the Nature dataset in the vector quantized networks.

C.4 GENERATIVE UNCERTAINTY

As shown in Figure 6, we evaluate the LLM’s predictive uncertainty by performing multiple stochas-
tic runs on the same input. The resulting forecasts, although varied across runs, form a coherent en-
semble that consistently encompasses the ground truth. This behavior highlights the model’s ability
to represent meaningful uncertainty without deviating significantly from the actual data dynamics.
Moreover, the forecasts’ stability across different stochastic runs further underscores the predictive
stability of our model, demonstrating that it can reliably capture uncertainty while maintaining high
fidelity to the underlying data. This consistent performance reflects the model’s stability, making
it suitable for practical forecasting tasks where predictability and trustworthiness are essential. To
validate the uncertainty modeling capabilities of our TokenCast, we conduct experiments on both
the Economic and Stock-NY datasets. As shown in Figure 6, our method produces predictive dis-
tributions that closely track the ground truth, with 50% and 80% prediction intervals capturing the
inherent variability in the data. By adjusting the temperature during sampling, we observe that the
model can flexibly modulate the spread of the predictive intervals, indicating its potential for con-
trollable uncertainty-aware forecasting. This demonstrates that our model not only provides accurate
mean predictions but also yields well-calibrated uncertainty estimates.

C.5 RECONSTRUCTION ANALYSIS OF TOKENIZER

Figure 7 presents reconstruction results on two representative channels of the Nature dataset, clearly
illustrating the ability of our discretization module to generalize across time series with different
levels of complexity. For Ch-vpd (top), the reconstructed sequence almost completely overlaps
with the original series, yielding very low errors (MSE = 0.062, MAE = 0.185). This shows that
the module preserves both global seasonal trends and fine-grained local fluctuations, ensuring that
long-term periodic patterns are faithfully retained. For Ch-ws (bottom), the series exhibits greater
variability and irregular spikes, posing a more challenging scenario. Nevertheless, the reconstructed
sequence closely follows the underlying dynamics of the original data, with errors kept at controlled
levels (MSE = 0.062, MAE = 0.285). The consistency between reconstructions and ground truth
indicates that the tokenizer is not biased toward smooth series but adapts flexibly to noisy.

Overall, these results highlight two key strengths of our approach: stability, as reconstruction re-
mains reliable across channels with distinct characteristics, and fidelity, as both trend-level and
detail-level structures are preserved. Such properties are essential for downstream forecasting, where
the quality of discretized representations directly determines predictive performance. By achieving
accurate reconstructions on heterogeneous channels, our tokenizer provides a dependable basis for
context-aware and domain-agnostic time series modeling.

C.6 VISUALIZATION

Figure 8 presents a qualitative comparison of 36-to-36 forecasts on the Stock-NA dataset. The LLM-
based models (TokenCast, Time-LLM, GPT4TS, and SimMTM) closely follow the ground truth,
capturing major turning points and preserving key high-frequency variations. Although amplitude is
not always exact, the directionality and regime changes are well tracked, which is critically important
for financial time series. For the non-LLM baselines, behaviors diverge. Crossformer in this figure
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Figure 8: Visualize the 36-to-36 prediction results of different models on the Stock-NA dataset.

maintains reasonable alignment after the forecasting start, but shows damped amplitudes (variance
shrinkage) and occasional phase lag around sharp moves (e.g., near the regime change around steps
at 35–45 and subsequent fluctuations), leading to systematic underestimation of peaks and troughs
rather than collapse. Autoformer tends to over-smooth, missing part of the local volatility. DLinear
exhibits higher variance and noisy deviations, while TimeDart generally underestimates magnitudes
and gradually drifts away from local fluctuations. Overall, the qualitative evidence indicates that
LLM-based methods yield more coherent and responsive forecasts under the non-stationary, volatile
conditions of stock data, whereas earlier architectures often suffer from amplitude underestimation,
excessive smoothing bias, or noisy trajectories. This strongly supports the effectiveness of the uni-
fied token-based paradigm for capturing complex temporal dynamics.
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