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Abstract

Large Language Models (LLMs) show strong generalization across diverse tasks,
yet the internal decision-making processes behind their predictions remain opaque.
In this work, we study the geometry of hidden representations in LLMs through
the lens of intrinsic dimension (ID), focusing specifically on decision-making
dynamics in a multiple-choice question answering (MCQA) setting. We perform a
large-scale study, with 28 open-weight transformer models and estimate ID across
layers using multiple estimators, while also quantifying per-layer performance on
MCQA tasks. Our findings reveal a consistent ID pattern across models: early
layers operate on low-dimensional manifolds, middle layers expand this space,
and later layers compress it again, converging to decision-relevant representations.
Together, these results suggest LLMs implicitly learn to project linguistic inputs
onto structured, low-dimensional manifolds aligned with task-specific decisions,
providing new geometric insights into how generalization and reasoning emerge in
language models.

1 Introduction

Large Language Models (LLMs) have exhibited impressive generalization across diverse natural
language tasks [Radford et al., 2019, Brown et al., 2020]. Despite their success, how these models
internally arrive at decisions, particularly in tasks requiring structured reasoning, remains underex-
plored. Understanding this process is central to interpretability and may yield insights into model
generalization, failure modes, and capabilities. Recent work in mechanistic interpretability has
highlighted specific circuits or components underlie LLM reasoning [Elhage et al., 2021, Olsson et al.,
2022]. In parallel, probing-based approaches have tracked how task-relevant information flows across
layers [Tenney et al., 2019, Hewitt and Manning, 2019]. However, these techniques often focus on
how the information is represented and where it resides, rather than how the representation geometry
evolves to support decision-making. To complement these perspectives, we study decision-making
by analyzing geometric properties of underlying manifolds. We specifically make use of the Intrinsic
Dimension (ID), which quantifies the minimal degrees of freedom required to describe a distribution
in high-dimensional space [Bishop, 2006]. Prior work has demonstrated that neural representations
often lie on low-dimensional manifolds [Gong et al., 2019, Valeriani et al., 2023], with ID fluctuations
signalling transitions in learning and abstraction [Cheng et al., 2025]. Yet, the connection between
these geometric changes and model decisiveness, i.e., the commitment to a specific prediction, has
not been explored extensively.

Our primary focus is to understand how internal decision-making unfolds within transformer-based
LLMs, particularly in tasks requiring symbolic reasoning and choice commitment. To this end, we
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Figure 1: In the transformer-based architectures, a vector (latent features) of the same hidden
dimensions d, is transformed by transformer blocks fl. Though the extrinsic dimension remains
the same, we find that the feature space lies on low-dimensional manifolds of different intrinsic
dimensions Ridl . Intrinsically, there exists a mapping ϕl corresponding to each fl, from Ridl−1 →
Ridl . We study how these compressed manifolds align with the decision-making process in middle
layers. We project the internal representations back to the vocabulary space to inspect the decisiveness.
There is a sudden shift in performance that is aligned with the follow-up of a sharp peak observed in
the residual-post ID estimates.

are guided by three key questions: 1) How does ID evolve across layers, and how does this reflect the
model’s progression from contextual encoding to decision-making? 2) Can geometric markers, such
as ID peaks, serve as interpretable indicators of decisiveness and confidence in model predictions?
3) Are these ID dynamics consistent across different model families and tasks, and what role does
model size, training stage, or prompt conditioning (e.g., few-shot examples) play in shaping these
trajectories? We aim to bridge representational geometry with functional behavior in LLMs through
these questions, providing a complementary perspective to circuit-based or probing-based analyses.
Our findings reveal that ID can act as a proxy for representational focus and task commitment, helping
identify critical layers that solidify/freeze model decisions, and provide insights that may guide future
interpretability and intervention strategies.

In this work, we study the evolution of hidden representations that develop during decision making in
LLMs using ID estimates by experimenting with reasoning-based multiple-choice question answering
(MCQA)-style prompts. We conduct an extensive investigation into the internal representations of
LLMs, analyzing 28 open-weight transformer models spanning multiple architectures and sizes (list
of models in App. D). We build upon classical estimators such as Maximum Likelihood Estimation
(MLE) [Levina and Bickel, 2004] and Two Nearest Neighbors (TwoNN) [Facco et al., 2017], and
incorporate the recently proposed Generalized Ratios Intrinsic Dimension Estimator (GRIDE) [Denti
et al., 2022] which demonstrates improved robustness to sampling noise and curvature distortions
(see §3). Fig. 1 outlines our approach (details in §4). Our primary findings are as follows:

• Emergence of Decision Geometry: Across models and tasks, we observe a characteristic hump-
shaped trend in intrinsic dimension estimates (notably at the MLP output layers), where ID increases,
peaks, and then declines. This reflects an early phase of abstraction followed by convergence
toward decision-specific subspaces.

• ID Peaks Coincide with Decisiveness: For most models, the peak in intrinsic dimension aligns
closely with the onset of confident predictions (as revealed via projection to vocabulary space).
This suggests a geometric marker of decisiveness within the model’s forward pass.

• Layer-Specific Dynamics Differ by Component: We distinguish between MLP output and
residual post-activations. While MLP outputs exhibit clear ID peaks and sharper reductions in later
layers, residual post activations show more gradual trends, providing complementary views on
when and how information/decisions solidify.

• Few-Shot Prompting Sharpens Representations: Increasing few-shot examples leads to steeper
ID transitions, implying more efficient compression and faster convergence to decision-ready states.
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• Model Scale and Architecture Matter: Larger models tend to reach ID peaks earlier in the layer
stack and maintain lower terminal ID, hinting at more efficient abstraction and early decisiveness.
Notably, model families like LLaMA and Pythia show distinct ID trends, underscoring architectural
influence on representational geometry.

In a nutshell, our study covers both real-world benchmarks and template-based tasks, enabling us
to characterize representational dynamics across a diverse range of reasoning and language under-
standing skills. We release the codebase and results at https://github.com/Exploration-Lab/
dim-discovery-archive.

2 Related Works

The manifold hypothesis posits that high-dimensional data often lie on low-dimensional manifolds
[Ruderman, 1994, Brand, 2002, Fefferman et al., 2013, Goodfellow et al., 2016]. In this context, the
intrinsic dimension (ID) has emerged as a useful geometric lens for studying neural representations.
Prior work has shown that deep networks learn low-ID features [Gong et al., 2019, Ansuini et al.,
2019, Aghajanyan et al., 2020, Pope et al., 2021], with lower ID correlating with better generalization
[Gong et al., 2019, Nakada and Imaizumi, 2020, Aghajanyan et al., 2020]. These trends have been
well-explored in computer vision, where ID is linked to optimization geometry [Li et al., 2018, Ma
et al., 2018, Zhu et al., 2018, Zhang et al., 2021] and dataset complexity [Pope et al., 2021, Deng, 2012,
Krizhevsky et al., 2009, Deng et al., 2009, Lin et al., 2015, Liu et al., 2015]. In transformers, early
studies demonstrated similar ID patterns across layers in models trained on non-text domains like
proteins and images [Valeriani et al., 2023]. More recent work has brought these geometric insights
into NLP. Cheng et al. [2025] identifies a high-ID abstraction phase in transformers, predictive of
generalization and linguistic transfer. Antonello and Cheng [2024] provides complementary fMRI
evidence for a two-phase abstraction process, with ID peaks corresponding to the most brain-like
representations. Cheng et al. [2023] further bridges geometric and information-theoretic compression,
showing that lower ID predicts faster adaptation in LMs. A few studies apply ID to practical NLP tasks.
Tulchinskii et al. [2024] use ID to differentiate LLM-generated and human-written text, while Yin
et al. [2024] introduce local ID as a metric for hallucination detection. On the other hand, Cheng et al.
[2024] leverages intrinsic dimension to refine word embeddings, improving model performance and
explainability. However, how ID evolves across layers during reasoning and decision-making remains
underexplored. Similarly, while Doimo et al. [2024] examines differences in internal geometry
induced by fine-tuning vs. in-context learning, they focus on semantic clustering and representation
alignment, not decision making or ID-based trends. Our work fills this gap by analyzing how ID
relates to decisiveness during inference, across multiple open-weight LLMs, considering reasoning a
central theme. Complementary to recent works [Cheng et al., 2025, Valeriani et al., 2023, Doimo
et al., 2024], our study shifts focus from abstraction alone to how LLMs geometrically transition from
context encoding to decision formation. More specifically, our study reveals specific trends across
multiple models for different reasoning tasks, where the model concretizes its decision throughout
layers. We find consistent geometric trends that reflect model predictions and decisiveness (see §5).
In particular, we show that ID peaks often coincide with, or slightly precede, the layer at which
the model becomes most semantically committed to an answer; we validate this by projecting the
mid-layer representations (resid-post and MLP-out) back to the vocabulary space. These findings
provide a new geometric perspective on LLM reasoning, linking representational compression to
decision formation.

3 Internal Reperesentations in Language Models

Transformer-based Language Modeling: A Language Model (LM) can be modeled as a function f
(parameterized by a neural network based architecture) that helps map a sequence of input tokens
(prompt) to output a vector of logits, where each entry corresponds to a token in a pre-defined
vocabulary. In our study, we primarily focus on the transformer-based decoder-only architectures
that are trained in an autoregressive fashion, that are widely adopted by most language models
[OpenAI et al., 2024, Gemini et al., 2024]. Given a vocabulary V , an autoregressive language model
Mθ (θ denotes the model parameters) learns a parameterized function that maps an input space
X , containing a sequence of tokens x = [x1, . . . , xt−1] ∈ X ⊆ Vt−1 to an output probability
distribution PMθ

: V → [0, 1], that helps predicting the next token (xt) given the sequence of
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previous tokens P (xt | [x1, . . . , xt−1]). Internally, the transformer-based language models consist of
transformer blocks/layers (fθ1 , fθ2 , . . . fθL) stacked together that read information from and write
onto the residual stream (connected by residual connections, see Elhage et al. [2021] for more details),
i.e. for an input sequence [x1, . . . , xt−1], the model considers representations corresponding to each
token (xi) and finally predicts the distributions corresponding to the next tokens [x2, . . . , xt]. For
our study, we only consider representations corresponding to the last token in the input prompt, i.e.,
the token responsible for answering the query present in a prompt. After the last transformer block,
the final state of the residual stream is passed through a LayerNorm, which is further then projected
onto the vocabulary space via a weight matrix WU ∈ R|V|×dmodel (also known as Unembedding
layer [Elhage et al., 2021]). The final probability distribution PMθ

(xt) is obtained by passing the
obtained logits to a softmax, leading to the final prediction. Our goal is to study the geometry of
representations learned by these transformer blocks, we consider the representations corresponding
to the last token for each layer’s output/transformer blocks (i.e. the output corresponding to the MLP
layers present in each transformer block) that writes onto the residual stream (§4) (also see Figure 1).
Note, unlike CNN-based vision models, the extrinsic dimensions after each layer remain the same
(Rdmodel ) for the transformer-based models, making the comparison between the layers more reliable.

Intrinsic Dimension: Intrinsic Dimension is defined as the minimum number of dimensions required
to describe the data manifold with minimal information loss [Bishop, 2006]. More formally, a set
of (data/feature/vector) points D ⊆ RN are said to have intrinsic dimension (ID) equal to d if its
elements lie entirely, without information loss, within a d-dimensional manifold of Rd, where d < N
[Camastra and Staiano, 2016]. The problem of estimating the dimensions of the underlying manifold,
considering a data-generating process, has been an area of interest for the last two decades [Levina
and Bickel, 2004, Facco et al., 2017, Bac et al., 2021]. Specifically, the DL community usually
prefers estimators based on the scale of the distances between the data points due to their robustness
and reliability [Ansuini et al., 2019, Gong et al., 2019, Pope et al., 2021]. A common approach to
computing intrinsic dimensions given a set of points is to investigate the space around each point
and assume a constant density within the local neighborhoods; the data generation process can be
modeled using a homogeneous Poisson Point Process (PPP) [Streit and Streit, 2010]. For our setup,
we consider three ID estimators (App. Fig. 6 summarizes the estimators):

MLE [Levina and Bickel, 2004]: Assuming the data generation processing as a PPP, the MLE
estimator formulates a likelihood expression as a function of the local intrinsic dimension specific to
a data point x, resulting in the following maximum likelihood estimate

d̂k(x) =

 1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)


where Ti(x) represents the distance of the ith nearest neighbor from the data point x, and k is a
hyperparameter for the estimator, making MLE a local intrinsic dimension estimator, i.e., it estimates
the intrinsic dimension in the neighborhood of a particular point. For calculating the global intrinsic
dimension of the datasets, these local dimensions are aggregated using either the arithmetic or the
harmonic mean operator [MacKay and Ghahramani, 2005]:

d̂ =
1

|D|
∑
x∈D

d̂k(x) OR d̂ =

(
1

|D|
∑
x∈D

1

d̂k(x)

)−1

TwoNN [Facco et al., 2017]: is a global intrinsic dimension estimator that builds upon the same
assumption of points coming from a PPP and formulates ID estimate using a relationship between
the cumulative distribution of the random variable µ, defined as the ratio of the distance between the
second and the first nearest neighbor and the intrinsic dimension of the dataset and prove it to be
Pareto distributed, i.e., µ = T2(x)

T1(x)
∼ Pareto(1, d),

d = − log(1− F (µ))

logµ

where d, is the intrinsic dimension, F (µ) is the cumulative density function. The real-world datasets
being i.i.d, the cumulative density function can be estimated given a set of data points as

Femp(x) =
1

|D|
∑
y∈D

I{µ(y) ≤ µ(x)}
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GRIDE [Denti et al., 2022]: is a recent work that mitigates the sensitivity of TwoNN towards noisy
datasets, and provides a generalization over TwoNN. Instead of taking the ratio of the second and the
first nearest neighbor, GRIDE uses higher order distances, i.e., the ratio between the nth

2 and the nth
1

nearest neighbor, where n1 and n2 are the hyperparameters of the estimator, i.e., µ =
Tn2

(x)

Tn1
(x) which

is distributed as

f(µ) =
d(µd − 1)n2−n1−1

µ(n2−1)d+1β(n2 − n1, n1)

where β(·, ·) is the beta function. The log-likelihood is maximized for the above distribution, resulting
in the following optimization problem in d,

max
d

logL(d) ≡ max
d

(n2 − n1 + 1)

|D|∑
i=1

log(µd
i − 1) + |D| log d − (n2 − 1)d

|D|∑
i=1

logµi

where µi is the ratio of distances corresponding to the ith data point and d is the intrinsic dimension,
leading to the above concave optimization problem (see App. A). Some of the other recent extensions
include Hidalgo [Allegra et al., 2020], which is more robust when the generated datasets have multiple
underlying manifolds; we leave this for future analysis and assume representations coming from a
single manifold for this study.

4 Experimental Setup

Decisiveness through Multiple-Choice Prompting In this work, we stick to reasoning captured
using multiple-choice question answering (MCQA)-style prompts [Robinson et al., 2023, Wiegreffe
et al., 2024]. The MCQA setup provides a principled and constrained setting for investigating the
internal decision-making processes of LLMs. Unlike open-ended or cloze-style generation, MCQA
structures the task as a selection among discrete alternatives, thereby reducing confounding factors
related to token frequency, length bias, and linguistic fluency [Brown et al., 2020]. This format enables
precise analysis of the transition from contextual representation to decision, making it well-suited
for studying the geometry and structure of intermediate representations. Prior work in mechanistic
interpretability has focused on identifying circuits and submodules responsible for reasoning [Elhage
et al., 2021, Olsson et al., 2022], while probing studies have examined layer-wise information flow
[Tenney et al., 2019, Hewitt and Manning, 2019]. However, relatively little attention has been given
to how these representations evolve geometrically to support discrete reasoning tasks. By leveraging
MCQA, we aim to isolate and examine the structural properties (specifically intrinsic dimensions)
of hidden states as they converge towards a decision, providing insight into the representational
dynamics that govern model predictions. In our case, each input prompt is composed of: 1) query
information (query): which includes the information related to that specific instance of the dataset.
2) A Choice Set (A. ocorrect; B. owrong)) consisting of two or more options from which the LLM
must select the correct answer and generate as output the correct choice text: A or B, or C, etc.
[Robinson et al., 2023, Wiegreffe et al., 2024, Joshi et al., 2025a,b]. Note that the A. and B. are for
representation, and in the actual run, the correct/wrong options are shuffled to marginalize the effect
of models choosing a specific option. The prediction by the LLM (Mθ) depends on the above two
critical components. Additionally, the predictions also depend on how the query is framed, i.e., the
prompt template (xϵ) used to frame the queries. The predicted probability/logit value of the next
token can be written as:

P (xt|xi<t,Mθ) = P (xt|xquery, xoptions, xϵ,Mθ) ; Mθ = {fθ1 , fθ2 , . . . fθL}

xquery ← si ∼ D ; xoptions ← {A. ocorrect,B. owrong}; xϵ ∈ set of prompt templates

where si is a sample/instance from the language-based dataset D := {s1, s2, . . . , sN} of size N .
In the LLM the input prompt (xi<t) is passed through a sequence of transformer blocks/layers
(fθ1 , fθ2 , . . . fθL), providing a distribution of logits over the vocabulary for the next tokens
(x1, x2, . . . , xt), we only consider the predicted distribution of the last token (xt), i.e., the token
responsible for predicting the next plausible token or answering the question query: Mθ(xi<t) =
fθL(I+ fθL−1

(. . . (I+ fθ1(xi<t))). These sequences of operations play a crucial role in modifying
the residual stream (the I+ denotes the update in the residual stream), leading to the final predicted
token xt. Essentially, the model Mθ processes the input and predicts the next token, which is
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expected to be the correct option identifier (e.g., "_A", "_B", etc.). This token serves as a clear
decision point, providing a precise locus for analyzing representational geometry.

Representation Extraction and Decision Emergence As the prompt flows through the transformer
layers, we collect intermediate hidden representations (hj) corresponding to the final (decision) token
position after each layer j ∈ [1, L]. These vectors trace how the model updates its beliefs through
residual stream modifications. Mathematically: hj = fj(xi<t) = fθj (I+fθj−1(. . . (I+fθ1(xi<t))).
The representations correspond to the MLP module of the transformer block that writes back to
the residual stream, i.e., fθj represents the operations in the jth transformer block. We extract the
representations from two places in the transformer block: 1) the MLP component (i.e., after the
nonlinearity, before writing back to the residual stream), and 2) the Resid-Post (i.e., after the residual
stream is updated/written by adding the MLP representations) corresponding to the final token (see
Fig. 1). These per-layer activations, collected across a datasetD = {s1, . . . , sN}, define the manifold
structure from which we compute ID using standard estimators: MLE, TwoNN, and GRIDE. Similar
to Cheng et al. [2025], we choose representations corresponding to the final token for computing
the intrinsic dimension, as this token represents the model’s predicted answer and is expected to
encapsulate all information necessary for the prediction. Given a dataset D, we get a space of these
representations for each layer’s output corresponding to text instances present in the dataset, forming
a set of |D| features/representations of the underlying manifold. Note that we only consider the
representations corresponding to the last token to form this set. We make use of Transformer-Lens
[Nanda and Bloom, 2022] for saving the corresponding representations. The obtained set of vectors is
further considered to estimate the ID of the underlying manifold formed by these transformer blocks.
Note, in actual transformer implementation, there are two points in a single transformer block where
the computational blocks read/write back from/to the residual stream (self-attention and MLP); we
skip the mid-skip connection in the equations above for brevity.

Measuring Representation Quality via Logit Accuracy To quantify the semantic sharpness of each
layer’s representation, we take inspiration from Logit Lens [nostalgebraist, 2020, Haviv et al., 2023],
and compute the accuracy of representations at different layers (see Fig. 1). Considering the stacked
set of transformer blocks, writing sequentially over the residual stream, we take the representations
after each transformer block (MLP and Residual) and project it to the vocabulary space by multiplying
it with the unembedding matrix directly (WU ), i.e., logits(zt) = WULayerNorm(zt), where zt
is the representation corresponding to the last token. We report accuracy using the Residual Post
representations rather than the MLP outputs, as the residual stream carries the accumulated state
that the model propagates forward across transformer blocks. In contrast, the MLP output contains
only the delta/difference added to the residual stream, representing a more localized, high-leverage
adjustment rather than the full signal that contain the context. Consequently, the Residual Post signal
provides a more presentable view of the model’s evolving decision state. Note that we focus on the
representation corresponding to the last token, since in autoregressive transformers, this position
uniquely has access to the entire context and is solely responsible for generating the next-token
prediction. From a decision-making perspective, this is the point at which the model must commit
to an output, making it the most informative location for understanding decision-making from a
representational perspective. While analyzing intermediate tokens could yield complementary insights
into how information is distributed and refined, the last-token view most directly captures where
and when the model’s decision solidifies. We consider the obtained logits to compute the accuracy
of the representations corresponding to a particular layer. The obtained performance estimates not
only help quantify the quality of representations but also provide the localization in layers where the
model starts to be decisive about the decision/answer/next token. The token-level accuracy at each
layer conveys how often that representation alone predicts the correct answer. This metric, coupled
with ID, lets us localize the decision emergence layer: the point in the network where the model
becomes sharply predictive and the representation starts collapsing into a low-dimensional manifold.
In Figures 2 and 3 (see App. Table 9 for other datasets), we visualize this phenomenon across layers
and models. We consistently observe that accuracy peaks and ID drops at the same layer, suggesting
a tight coupling between task certainty and representational compactness.

Real-World Tasks We first examine LLM behavior on real-world, language-based tasks (MCQA
format) where generalization is the key. We specifically choose tasks (and corresponding datasets)
related to linguistic abilities (Dataset: CoLA), topic knowledge (Dataset: AG News), field-specific
knowledge (MMLU: STEM, humanities, social sciences, other), sentiment analysis (Rotten Tomatoes,
SST2), and reasoning abilities (Causal reasoning: COPA, COLD). Note that synthetic datasets
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Figure 2: Accuracy along with ID trends for LLaMA model variants on the MMLU STEM dataset.

(template-based) also capture mathematical reasoning in some sense; however, they cannot be
considered real-world due to template-based generation. We make minor changes to the template
part of the prompt query (xϵ) for each dataset. We provide details of datasets in the App. B. We use
different prompt templates (details in App. C) for different datasets with minimal changes, keeping
the MCQA format consistent. We experiment with various models like Llama2 family, GPT-2 family,
Mistral, Phi family, and Gemma family (details in App. D).

Synthetic Tasks: Controlled Learning Trajectories Another aspect of LLMs is their open-ended
reasoning via generation. To complement our real-world findings on MCQA-based reasoning, we
analyze simplified template-based reasoning tasks where we can observe LLMs learning from scratch
under tightly controlled conditions. To monitor the improvements throughout the training trajectory,
we require reasoning datasets with low complexity for a comparison that could work for both smaller
as well as larger models. We choose the Greater Than (GT) task introduced by Hanna et al. [2023] for
simplicity and the arithmetic task [Razeghi et al., 2022], considering its usage by the Pythia suite to
monitor performance during model training. The Greater Than (GT) task consists of examples of
the format “The war lasted from the year 1743 to 17−→ xy”, where the language modeling objective is
to assign a greater probability to continuations 44, 45, . . . , 99 than 00, 01, . . . , 42. Random accuracy
is upper bounded by 99/|V|, where |V| is the vocab size. The arithmetic task also follows a template
that consists of input operands x1 ∈ [0, 99] and x2 ∈ [1, 50] and an output y, i.e. “Q:What is x1#x2?
A:” with # being “plus” for addition and “times” for multiplication. We measure the accuracy of a
prompt instance by checking the model’s prediction against the label y, making the random accuracy
1/|V|. These tasks provide low input complexity but require abstract reasoning, making them ideal for
analyzing how internal manifolds evolve over time. We use the Pythia model suite [Biderman et al.,
2023], a family of 16 autoregressive transformers (14M–6.9B parameters) (see Fig. 25, 26). With
154 publicly released training checkpoints per model, we can track the formation of decision-critical
layers from early to late training (details in App. D).

5 Results and Trends

We conduct a large-scale empirical study analyzing the ID of representations across multiple LLM
architectures, tasks, and input prompting settings. Due to space constraints, we describe the main
results here, and the remaining ones are provided in the Appendix.

Layerwise Geometry and Task-Specific Trends Fig. 2 and 3 reveal how ID and accuracy evolve
across the transformer layers for MMLU-STEM and COPA, respectively. Across models, we observe
a characteristic “hunchback” shape in the MLP output’s ID profile, i.e. ID increases in early layers,
peaks at a mid-network depth, and then declines. Notably, this geometry emerges only in settings
where model accuracy rises significantly above baseline (dashed lines), indicating that the presence
of the hump is a marker of non-trivial abstraction and task-specific decision-making. The residual
post-activations, in contrast, display smoother and more monotonic ID changes, consistent with
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Figure 3: Accuracy along with ID trends for for LLaMA model variants on the COPA dataset.
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Figure 4: The figure shows the ID of the last layer (MLP Out) feature representation in the in-context
learning setting. The box plot shows the distribution of ID for all the 28 open-weight models. Overall,
we observe IDs decreasing as more number of examples are provided in the context.

their role in progressively aggregating signals across layers. This distinction is especially prominent
in the contrast between reasoning and retrieval tasks. In COPA (Fig. 3), models must synthesize
causal and contextual information; here, the ID peak is sharp, and the post-peak ID drop coincides
with decisive increases in prediction accuracy. In MMLU-STEM (Fig. 2), a fact-retrieval task,
the ID trend is flatter, and the accuracy increases monotonically across layers with no prominent
compression phase. Interestingly, we observe a striking alignment between ID peaks and abrupt
accuracy shifts in MMLU; the sharpest increase in accuracy always follows the ID peak. These
observations suggest that transformer layers undergo an information compression phase just prior
to forming confident predictions, supporting the idea that compression marks the onset of semantic
decisiveness. While these patterns reveal a strong correlation between geometric compression and
model decisiveness, we emphasize that the relationship is not strictly causal. The alignment of ID
peaks with an increase in accuracy suggests that representational geometry and decision confidence
co-evolve, with compression emerging just before the model commits to a prediction. This ordering
provides a weak hint at an underlying causal structure that is worth investigating further; however, at
present, the evidence should be interpreted as correlational rather than causal.

MLP Outputs vs. Residual Post-Activations A key finding is the distinct behavior of MLP outputs
compared to residual post-activations (as shown in the zoomed-in version in App. Figure 14). While
residuals reflect a smoothed integration of signals across the network, MLP outputs consistently
display sharper ID transitions, highlighting their role in injecting task-specific refinements. In other
words, the residual stream represents the model’s continuously updated internal state, an accumulated
integration of information that is propagated across layers. In contrast, the MLP output reflects a
targeted modification to this stream, often acting as a high-leverage “correction” that sharpens or
reorients the representation toward task-relevant directions. Consequently, the ID trajectories of these
two signals reveal complementary aspects of computation, residual post-activations evolve smoothly,
capturing the gradual stabilization of meaning, while MLP outputs exhibit sharper, more localized ID
transitions, corresponding to points of semantic refinement or decision formation.
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Figure 5: ID of residual post hidden layers in Pythia series models evolving throughout training
for the Arithmetic dataset. The red curve shows the final checkpoint for architectures of different
sizes. The top row shows the quality of layer representations in the form of accuracy (log scale).
Interestingly, we observe that the model starts to be decisive about the correct token, where the ID
shows a reverse peak (highlighted as black dashed vertical lines).

Few-Shot Prompting Accelerates Compression Few-shot prompting modulates model geometry in
systematic ways. Fig. 4 and 16 show that increasing the number of in-context examples lowers the
final-layer intrinsic dimension, especially in MLP outputs, indicating that few-shot prompts induce
more efficient compression of the input space. This pattern is particularly salient in reasoning-heavy
tasks, where compression accelerates with each additional example, suggesting that LLMs generalize
better when they can abstract patterns across shots. Moreover, as shown in App. Fig. 16 and App.
Figs. 27–30, well-performing models exhibit earlier ID peaks and steeper ID declines, reinforcing the
view that efficient compression precedes confident prediction. We also observe that across datasets,
models of varying sizes follow similar normalized ID trajectories when aligned by relative model
depth (from 0 to 1). As shown in App. Figs. 31–40 (see App. Table 9), the ID profiles maintain
high inter-model correlation, highlighting that despite architectural variation, models learn consistent
representational transformations. This suggests that LLMs may converge towards a shared geometric
inductive bias when trained on language data.

Predictive Utility of ID performance We observe that final-layer ID values negatively correlate with
model accuracy across multiple datasets in the LLaMA family (App. Table 7) but the magnitude of the
correlation varies a lot for different datasets, hence, the final-layer ID estimates corresponding to the
last token offers a very weak unsupervised and architecture-agnostic proxy for model generalization.
We also observed that when all the models that perform better than the baseline accuracy are
considered, the correlation disappears (App. Table 8). In contrast to results reported by prior arts
Ansuini et al. [2019], Pope et al. [2021], Birdal et al. [2021], we observe that the last layer ID
(showing weak correlation) can not always be used as a strong proxy for accuracy/error across tasks.

Understanding Training Dynamics via Synthetic Tasks To better understand how intrinsic di-
mension (ID) evolves during learning, we turn to the Pythia model family (also see App. D). Fig.
5 tracks ID estimates and accuracy across layers and checkpoints. During training, we observe
the emergence of a hunchback-like trend in ID, i.e., first increasing as representations diversify
during early training, then peaking mid-network, and eventually decreasing toward the output layers.
Interestingly, the relationship between ID and accuracy diverges from what we observe in MCQA
tasks. In the higher-capacity models, accuracy begins to rise immediately after ID reaches a low
(reverse peak). However, unlike MCQA tasks, where decisive ID transitions are tightly aligned with
accuracy jumps, the transitions in generative reasoning tasks are more gradual, suggesting a more
continuous integration of symbolic structure. These findings highlight two key insights. First, ID
evolution during training can reveal whether a model is generalizing or merely memorizing, providing
a geometric lens into the learning process. Second, the ID-based compression trends observed in
real-world MCQA tasks are not artifacts of option-based formats; they also emerge, although more
gradually, in open-ended generative reasoning tasks, especially in models with sufficient capacity.
Thus, ID provides a unified view of learning geometry that applies both during training and across
diverse reasoning paradigms.
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Scaling In-Context Learning: Geometry of Few-Shot Adaptation To study how transformer
representations evolve under extreme in-context learning (ICL) conditions, we analyze up to 50-shot
prompting in arithmetic reasoning tasks using Pythia models of varying sizes (410M to 6.9B) (see
App. Fig. 15). Interestingly, we found that the accuracy decreases after some examples with smaller
models; this could be due to the fact that the model starts extracting surface patterns instead of
generalizing and predicting the output according to the inherent arithmetic operation. Overall, we
find that increasing the number of few-shot examples consistently improves accuracy while reducing
the ID of final-layer representations, especially in larger models (2.8B being an exception). These
trends highlight a tight coupling between few-shot generalization and latent space compression, as
models condition on more examples, they restructure their internal geometry to form more compact,
decision-relevant manifolds. Notably, this is the first study to probe up to 50-shot prompting in
this context, positioning intrinsic dimension as a promising unsupervised proxy for evaluating ICL
efficiency and saturation in LLMs.

Overall, the ID often relies on a smaller range of (5, 37) when compared to the extrinsic dimensions
(aka model hidden dimensions (768, 4096)), irrespective of size and number of layers present in these
models. We found this trend to be consistent for both template-based synthetic datasets as well as
real-world datasets, pointing toward the language-specific tasks being present in low-dimensional
manifolds. We provide additional results, discussion, and future directions in the App. E.

Limitations Though our work considers a wide range of open-weight models along with synthetic
as well as real-world datasets, there is still room for experimentation with more language data
sources. In our work, we primarily considered a setting where only a token is used for prediction
(computing performance and intrinsic dimensions) and not the generative modeling setting, where
multiple tokens are generated in an open-ended autoregressive fashion. Extending this analysis to
Natural Language Generation (NLG) tasks becomes difficult due to the inherent autoregressive nature
of these models. Another major limitation comes from the ID estimates that we use. In general,
though prior arts have considered them for estimating ID estimates of features, these estimators
often provide a noisy ID estimation of the underlying manifold, providing only a weaker estimate.
Though we make use of a recently improved ID estimator (GRIDE), there still remains some scope
for improvement. In the future, it would be interesting to revalidate these estimations via more
advanced ID estimators. Moreover, in this work, the primary focus was to observe the trends across a
wide range of models, and we only considered the features transformed by the transformer blocks
for analysis, leaving the hidden representation inside these models aside. However, the proposed
experimental setup could be utilized to study the spaces learned by each submodule of the transformer
blocks (MLP-heads/Attention/LayerNorm/etc).

Further, on a broader level, exploring the relationship between intrinsic dimension and entropy
provides a promising bridge between geometric and information-theoretic perspectives. Recent
studies (e.g., Skean et al., 2025, Stolfo et al., 2025) have tried linking entropy to decision making,
but examining this connection throughout the network could reveal how decision-making and rep-
resentational geometry co-evolve. This line of work may ultimately lead to a unified framework
where the activation geometry helps characterize the emergence of reasoning and understanding
decision-making across layers.

6 Conclusion

In this work, we find that LLMs (stacked transformer layers) project the datasets into low-dimensional
manifolds with ID estimates considerably lower than the actual latent dimensions. With a detailed
analysis of 28 open-weight models, we find that the ID peaks are strongly coupled with decision-
making happening inside models. This coupling between representational compression and model
decisiveness provides geometric evidence of how abstract reasoning and prediction confidence co-
evolve within the transformer architecture. We believe this study will open up new avenues for
research in understanding the low-dimensional manifolds learned by the Language models. More
broadly, we hope this study encourages the development of geometric interpretability tools that move
beyond surface-level investigation, moving toward a deeper understanding of the internal topologies
that support reasoning/decision-making in LLMs. By viewing activations through the dual lenses of
geometry and information, we can begin to map not just what language models know, but how their
internal structure gives rise to understanding and decision formation.
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Vitaliy Nikolaev, Pablo Sprechmann, Zachary Nado, Lukas Zilka, Flavien Prost, Luheng He,
Marianne Monteiro, Gaurav Mishra, Chris Welty, Josh Newlan, Dawei Jia, Miltiadis Allamanis,
Clara Huiyi Hu, Raoul de Liedekerke, Justin Gilmer, Carl Saroufim, Shruti Rijhwani, Shaobo Hou,
Disha Shrivastava, Anirudh Baddepudi, Alex Goldin, Adnan Ozturel, Albin Cassirer, Yunhan Xu,
Daniel Sohn, Devendra Sachan, Reinald Kim Amplayo, Craig Swanson, Dessie Petrova, Shashi
Narayan, Arthur Guez, Siddhartha Brahma, Jessica Landon, Miteyan Patel, Ruizhe Zhao, Kevin
Villela, Luyu Wang, Wenhao Jia, Matthew Rahtz, Mai Giménez, Legg Yeung, James Keeling,
Petko Georgiev, Diana Mincu, Boxi Wu, Salem Haykal, Rachel Saputro, Kiran Vodrahalli, James
Qin, Zeynep Cankara, Abhanshu Sharma, Nick Fernando, Will Hawkins, Behnam Neyshabur,
Solomon Kim, Adrian Hutter, Priyanka Agrawal, Alex Castro-Ros, George van den Driessche,
Tao Wang, Fan Yang, Shuo yiin Chang, Paul Komarek, Ross McIlroy, Mario Lučić, Guodong
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A Estimating Intrinsic Dimensions

In higher-dimensional spaces, real-world datasets often occupy only a small portion of the ambient
space, i.e. the datasets often lie on on a low dimensional manifold Y and there exists a mapping f :
Y → X where X is the data space of higher dimensions. Typically, it is considered that the function
f is smooth and continuous, which ensures that nearby points in the lower-dimensional manifold will
also be close by in the higher-dimensional space. In the past, multiple methods have been proposed to
estimate the dimensions of the underlying low-dimensional mapping, including classical methods like
projection or geometric-based methods, PCA Fan et al. [2010] and its constrained variant CPCA Kégl
[2002]. These eigenvalue-based estimators aim to uncover the subspace that captures the majority of
the dataset’s variability, essentially, the directions that carry meaningful information while discarding
noise. PCA computes the intrinsic dimension by first computing the covariance matrix of the dataset

C =
1

|D|
∑
x∈D

(x− µD)(x− µD)
T µD =

1

|D|
∑
x∈D

x

Then, the intrinsic dimensions are estimated by satisfying one of the two following conditions

min
d

λd

λd+1
≥ α≫ 1 min

d

∑d
i=1 λi∑n
i=1 λi

≥ β ∈ (0, 1)

where λk respresents the kth largest eigenvalue of the covariance matrix C. While such classical
estimators provide valuable insights into the structure of simpler datasets, they often struggle to
capture the highly nonlinear manifolds encountered in modern deep learning. This limitation has
motivated the DL community to seek new ways to characterize intrinsic dimensionality, ones that go
beyond linear subspaces and better reflect the complexity of learned representations.

In the DL community, the nearest neighbor-based approaches are widely accepted due to their
easier scalability and robust estimates. One such approach introduced by Levina and Bickel [2004]
proposes a local intrinsic dimension estimator, i.e., IDs are estimated pertaining to each point present
in the manifold by looking at the k-nearest neighbors. The proposed estimator assumes that in a
neighborhood of a data point, x, the density of the data distribution is approximately constant. In
this region, one can model the probability of finding another sample using a homogeneous Poisson
process, which helps formulate a maximum likelihood objective in terms of the intrinsic dimension,
having a closed-form solution

d̂R(x) =

 1

N(R, x)

N(R,x)∑
j=1

log
R

Tj(x)


where N(R, x) represents the number of sampled data points found in the neighborhood of radius R.

For real-world datasets, the approximate solution to the maximum likelihood problem can be stated
as

d̂k(x) =

 1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)


where Tk(·) : X → R computes the distance of the kth closed neighbor. This approximation provides
a local dimension estimator corresponding to each datapoint. Further, for computing the global
estimate, Levina and Bickel [2004] propose a straightforward averaging over these values, i.e.,

d̂ =
1

|D|
∑
x∈D

d̂k(x)

MacKay and Ghahramani [2005] further modifies/improves the aggregation of local intrinsic dimen-
sion estimates by formulating another maximum likelihood problem, similar to the previous one,
resulting in the global intrinsic dimension being the inverse of the average of the inverse of the local
intrinsic dimension, i.e.,

d̂ =

(
1

|D|
∑
x∈D

1

d̂k(x)

)−1
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Table 1: The table shows the hyperparameters used for different Intrinsic dimension estimators.

Method Parameter Values
MLE k all values in range [12, 24]
MLE-Modified k all values in range [12, 24]
TwoNN Discard Ratio 0.1
GRIDE n1, n2 20, 40

instead of direct averaging. It is suggested to do a direct averaging over the parameter k by Levina
and Bickel [2004] for real-world datasets to compute the IDs empirically.

TwoNN Facco et al. [2017] is a global intrinsic dimension estimator that uses the same assumptions
as the MLE of a homogeneous Poisson process. However, it relies on the terms T1(x) and T2(x) and
prove that in the intrinsic space, the ratio µ = T2(x)

T1(x)
follows the distribution Pareto(1, d), where d

is the intrinsic dimension, thus, establishing the relation

d = − log(1− F (µ))

logµ

For estimation of real-world datasets, the above term is approximated by first considering the
cumulative distribution as

Femp(x) =
1

|D|
∑
y∈D

I{µ(y) ≤ µ(x)}

where µ(x) is computed as T2(x)
T1(x)

for each of the given datapoint. To estimate the slope, a linear
regressor is fitted on the dataset {(− logµ(x), log(1 − Femp(x))}x∈D passing through the origin.
Moreover, Facco et al. [2017] empirically suggests discarding a small α < 1 fraction of datapoints
with the highest µ(x) values, resulting in better estimates for real-world datasets.

GRIDE generalizes the idea of TwoNN by keeping the same assumptions, however, modeling the nth
2

and the nth
1 nearest neighbors, resulting in the probability distribution

f(µ) =
d(µd − 1)n2−n1−1

µ(n2−1)d+1β(n2 − n1, n1)

As the above distribution doesn’t have a closed-form solution for the cumulative function, the intrinsic
dimension is estimated by maximizing the following log-likelihood

max
d

logL(d) ≡ max
d

(n2− n1 +1)
∑
x∈D

log(µ(x)d− 1)+ |D| log d− (n2− 1)d
∑
x∈D

logµ(x)

which turns out to be a concave optimization problem. The GRIDE estimates using a general form
are more robust to noisy observations present in the datasets.

Also, see Figure 6 for an overview of the different Intrinsic dimension estimators.

B Details of Real World Datasets

For real-world text-based tasks, we would like to investigate the overall capabilities of different sets
of widely used datasets. We specifically choose linguistic abilities, topic knowledge, field-specific
knowledge (STEM, humanities, other), sentiment analysis (emotional intelligence), and reasoning
abilities (Causal reasoning). Note that synthetic datasets (template-based) also capture mathematical
reasoning in some sense; however, they cannot be considered real-world due to template-based
generation. For all these abilities, we choose specific datasets that contain text samples that help
validate the task performance. We consider a common MCQA format prompt template as described in
the main paper to keep the analyses comparable with each other. Another advantage that comes with
the MCQA format is the transformation of the dataset query in a different format than the original text,
making the predictions only work when the model is able to provide predictions based on generalized
learned tasks and not the memorized examples. We make minor changes to the template part of the
prompt query (xϵ) for each of the datasets. We provide details of the datasets below:

27



Figure 6: The figure shows an overview of the Intrinsic dimension estimators. The leftmost blobs show
the underlying manifolds as the features are transformed by the transformer blocks (as explained
in Figure 1). The obtained set of features is further used to compute the Intrinsic dimensions
of the underlying manifold. The middle blob shows a zoomed-in version, highlighting the local
neighborhood of a point x ∈ Xl. All the ID estimators make use of local neighborhood estimates
of the dimensionality. MLE formulates the likelihood based on k-nearest neighbors for local ID
estimation, which is further averaged using the mean or harmonic mean to compute global intrinsic
dimensions. TwoNN reduces this to 2 nearest neighbors and estimates the empirical cumulative
distribution Femp assuming the points to be i.i.d., and further uses linear regression to estimate the
slope as global intrinsic dimensions. GRIDE generalizes the use of two nearest neighbors to nth

1 and
nth
2 neighbors and frames a concave optimization problem to estimate the global intrinsic dimensions.

Linguistic: For linguistic abilities, we consider the widely used CoLA dataset Warstadt et al. [2018]
that contains English sentences from 23 linguistics publications, expertly annotated for acceptability
(grammaticality) by their original authors, making the prompts an MCQA query with 2 choices
(’Accepted’/’Unaccepted’) in our case.

Topic knowledge: For world topic knowledge, we make use of AG News dataset Zhang et al. [2016],
which contains sentences from news articles on the web, primarily covering the 4 largest classes
(“World”, “Sports”, “Business”, “Sci/Tech”), making it a 4-choice MCQA query.

Field-specific knowledge: MMLU Hendrycks et al. [2021] is another widely used benchmark in
the LLM evaluation/benchmarking community. The benchmark primarily aims to cover questions
regarding world knowledge and problem-solving, including questions from different fields, including
STEM, Humanities, Social Sciences, and Others. For each of the questions, the benchmark provides
4 choices/options. Note that for other datasets, the choices remain fixed; however, in MMLU queries,
the option text is dynamic and keeps changing, making it a more complicated task for language
understanding.

Emotional intelligence: Affective computing is another area where language plays a vital role Singh
et al. [2021]. For this ability, we consider two known datasets, Rotten Tomatoes Pang and Lee [2005]
and SST2 Socher et al. [2013]. Both of these datasets contain sentences annotated with the sentiment
"Positive" or "Negative", making it an MCQA query with two choices in our setting.

Reasoning abilities: Real-world-based reasoning abilities are hard to capture in language benchmarks.
For reasoning in real-world concepts, we found causal reasoning to be a suitable ability as it involves
both real-world examples and a form of reasoning. We use COPA Gordon et al. [2012], and a small
sample from the recently introduced COLD dataset Joshi et al. [2024]. Both these datasets contain a
premise event and a corresponding causal query question, along with two choices, where a system is
required to predict which of the two choices is the most plausible cause/effect of the premise event.

All these datasets cover a wide range of language understanding abilities, helping us quantify the
generalization of the multiple open-weight models that we experimented with. We summarize various
datasets in Table 2.
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Table 2: The table provides details about the various real-world datasets.
Dataset Name Task Type # Samples Avg. Prompt Length # Choices

AG News Topic Knowledge 7600 235.30 4
Rotten Tomatoes Sentiment 1066 115.52 2
SST2 Sentiment 872 105.84 2
CoLA Linguistic 1043 41.83 2
MMLU Stem Field Specific Knowledge 3018 149.09 4
MMLU Humanities Field Specific Knowledge 4705 535.10 4
MMLU Social Sciences Field Specific Knowledge 3077 116.35 4
MMLU Others Field Specific Knowledge 3242 163.32 4
COPA Causal Reasoning 1000 34.89 2
COLD Causal Reasoning 1000 29.49 2

Table 3: The table provides reference links to the prompt templates used for different real-world
datasets.

Dataset Name Templates (Ref.)
AGNews Zhang et al. [2016] Figure 18
MMLU Hendrycks et al. [2021] Figure 19
CoLA Warstadt et al. [2018] Figure 20
RottenTomatoes Pang and Lee [2005] Figure 21
SST-2 Socher et al. [2013] Figure 22
COPA Gordon et al. [2012] Figure 23
COLD Joshi et al. [2024] Figure 24

C Prompt Templates

We use different prompt templates for different datasets with minimal changes, keeping the MCQA
format consistent. An input prompt given to the model helps predict the probability distribution of
the next token. The predicted probability/logit value of the next token can be written as:

P (xt|xi<t,Mθ) = P (xt|xquery, xoptions, xϵ,Mθ)

xquery ← si ∼ D
xoptions ← {A. ocorrect,B. owrong}

xϵ ∈ set of prompt templates
Mθ = {fθ1 , fθ2 , . . . fθL}

where si is a sample/instance from the language-based dataset D := {s1, s2, . . . , sN} of size N . We
choose a general prompt template (xϵ) for different datasets. Figure 17 shows a generalized prompt
template used for all the datasets. All the datasets represent a different task, requiring a different
generic query specific to the task. We modify only the generic query to make minimal changes to the
prompt template. Figure 17, Table 3 provide the references to the prompt templates used for different
datasets.

D Details of Open Weight Models

For our experiments, we consider a wide range of open-weight transformer-based LLMs. Specifically,
we consider GPT-2 Small, GPT-2 Medium, GPT-2 Large, and GLT-2 XL Radford et al. [2019] from
the GPT-2 family; GPT-Neo 125M, GPT-Neo 1.3B, and GPT-Neo 2.7B, from GPT-Neo family Black
et al. [2021]; GPT-J 6B Wang and Komatsuzaki [2021]; Phi 1 Gunasekar et al. [2023] , Phi 1.5 Li
et al. [2023], and Phi 2 Javaheripi et al. [2023], from Phi family; Gemma 2B, and Gemma 7B from
Gemma family Gemma-Team et al. [2024]; Llama2 7B, Llama2 7B Chat, Llama2 13B, and Llama2
13B Chat, from Llama2 family Touvron et al. [2023]; Llama3 8B, Llama3 8B-Instruct, from Llama3
family Grattafiori et al. [2024]; and Mistral 7B Jiang et al. [2023].

All these models provide a broad spectrum of model sizes and architectural changes with different
extrinsic dimensions. Table 4 provides the details of the used open-weight models.
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Table 4: The table shows the list of open-weight models used for investigating the intrinsic dimensions.
The list of models covers a wide range of layers with different model sizes. Note that the hidden
dimension for each of the models is represented as Extrinsic Dimensions. Our experiments suggest
that though these models use high extrinsic dimensions for information flow between the layers, the
underlying manifold often lies in lower dimensions.

Model Size # Layers Layer Dimension Vocabulary Size
GPT-2 Small 85M 12 768 50257
GPT-2 Medium 302M 24 1024 50257
GPT-2 Large 708M 36 1280 50257
GLT-2 XL 1.5B 48 1600 50257
GPT-Neo 125M 85M 12 768 50257
GPT-Neo 1.3B 1.2B 24 2048 50257
GPT-Neo 2.7B 2.5B 32 2560 50257
GPT-J 6B 5.6B 28 4096 50400
Phi 1 1.2B 24 2048 51200
Phi 1.5 1.2B 24 2048 51200
Phi 2 2.5B 32 2560 51200
Gemma 2B 2.1B 18 2048 256000
Gemma 7B 7.8B 28 3072 256000
Llama2 7B 6.5B 32 4096 32000
Llama2 7B Chat 6.5B 32 4096 32000
Llama2 13B 13B 40 5120 32000
Llama2 13B Chat 13B 40 5120 32000
Llama3 8B 7.8B 32 4096 128256
Llama3 8B-Instruct 7.8B 32 4096 128256
Mistral 7B 7.8B 32 4096 32000

Pythia 14M 1.2M 6 128 50304
Pythia 31M 4.7M 6 256 50304
Pythia 70M 19M 6 512 50304
Pythia 160M 85M 12 768 50304
Pythia 410M 302M 24 1024 50304
Pythia 1B 805M 16 2048 50304
Pythia 1.4B 1,2B 24 2048 50304
Pythia 2.8B 2.5B 32 2560 50304
Pythia 6.9B 6.4B 32 4096 50432

Reason for Selecting Pythia Model for Synthetic Tasks: We use the Pythia model suite [Biderman
et al., 2023], a family of 16 autoregressive transformers (14M–6.9B parameters), all trained on The
Pile [Gao et al., 2021] using the same architecture, data order, and objective. With 154 publicly
released training checkpoints per model, we can track the formation of decision-critical layers from
early to late training. For feasibility, we analyze 10 evenly spaced checkpoints per model (steps: 0,
512, 1k, 10k, 25k, 50k, 75k, 100k, 125k, 143k), applying our ID and logit-based methods layer-wise.

To better understand how intrinsic dimension (ID) evolves during learning, we turn to the Pythia model
family, which uniquely provides checkpoints at regular intervals throughout training. This allows
us to directly examine the temporal dynamics of representation geometry, how model manifolds
emerge, expand, and compress, as the model is exposed to more data and optimizes its objective. We
focus on a synthetic arithmetic reasoning task that requires symbolic computation rather than token
classification. Unlike MCQA settings where the output probability distribution is conditioned on the
choices (e.g., "_A", "_B"), here the whole probability distribution is considered, making the task
fundamentally generative.
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Table 5: The table shows Accuracy and corresponding last layer (MLP Out) Intrinsic Dimensions of
various models on different datasets

Model AG News COPA Rotten Tomatoes SST2 CoLA

Acc ID Acc ID Acc ID Acc ID Acc ID

Random Baseline 25 - 50 - 50 - 50 - 70 -
GPT-2 25.28 18.97 48.90 15.41 50.09 17.30 49.08 16.43 30.87 13.54
GPT-2 Medium 25.51 22.22 48.60 16.65 49.91 18.72 49.08 18.78 30.78 14.45
GPT-2 Large 24.59 21.31 48.70 16.98 49.53 20.51 48.62 20.33 31.45 15.86
GPT-2 XL 29.03 20.99 50.10 18.00 49.81 20.53 49.20 20.39 49.09 16.98
GPT-Neo 125M 25.83 15.38 48.90 15.09 49.91 18.38 49.66 17.05 30.87 12.17
GPT-Neo 1.3B 27.70 18.08 48.30 16.43 49.91 17.90 50.34 17.44 37.68 14.24
GPT-Neo 2.7B 23.16 20.03 51.20 16.73 45.97 18.15 46.79 18.30 69.03 15.01
GPT-J 6B 25.03 22.72 51.20 18.33 50.47 17.40 50.57 17.32 65.29 15.58
Phi 1 22.74 30.26 48.30 20.73 50.38 23.37 52.64 22.33 66.92 16.14
Phi 1.5 59.53 22.92 70.20 18.61 50.47 16.32 50.92 15.74 66.25 15.30
Phi 2 78.80 21.38 82.70 18.80 78.61 16.23 83.37 15.50 66.92 14.58
Gemma 2B 33.08 18.93 57.20 20.17 53.75 22.13 50.00 21.38 68.65 14.54
Llama2 7B 54.39 18.36 62.70 19.99 59.29 13.51 64.11 14.39 42.19 12.81
Llama2 7B Chat 64.46 19.20 61.60 21.37 53.85 15.52 52.98 15.43 69.03 15.65
Llama2 13B 66.34 15.10 74.30 26.29 69.61 12.56 65.37 13.87 69.32 14.82
Llama2 13B Chat 69.13 16.77 79.60 18.75 74.58 14.89 77.75 13.80 69.32 14.93
Llama3 8B 62.42 19.61 78.20 22.51 58.63 18.60 63.30 17.43 67.11 16.22
Llama3 8B Instruct 79.39 14.63 84.80 15.41 77.95 9.41 80.16 9.71 68.36 11.15
Mistral 7B 81.72 20.05 80.10 27.67 66.14 19.91 68.69 18.55 69.42 19.41

Table 6: The table shows Accuracy and corresponding last layer (MLP Out) Intrinsic Dimensions of
various models on MMLU datasets

Model STEM Humanities Social Sciences Other
Acc ID Acc ID Acc ID Acc ID

Random Baseline 25 - 25 - 25 - 25 -
GPT-2 21.37 16.53 24.25 16.69 21.81 18.55 23.60 17.80
GPT-2 Medium 21.64 17.62 24.21 17.43 21.74 19.78 23.81 19.31
GPT-2 Large 22.23 19.48 24.44 18.98 22.16 21.17 24.06 21.92
GPT-2 XL 24.62 18.50 24.31 18.13 23.46 21.24 24.46 21.46
GPT-Neo 125M 21.40 14.12 24.21 15.86 21.84 16.39 23.72 15.05
GPT-Neo 1.3B 27.87 14.06 24.82 14.32 26.91 15.02 25.17 14.83
GPT-Neo 2.7B 27.07 15.93 24.99 15.72 24.76 18.40 26.31 17.16
GPT-J 6B 25.78 15.30 26.70 14.35 26.03 18.11 27.21 17.02
Phi 1 23.56 18.97 25.89 19.99 23.63 20.53 26.31 21.05
Phi 1.5 31.84 15.16 33.62 15.75 41.57 14.97 40.38 16.16
Phi 2 44.60 18.04 47.57 15.56 63.02 17.75 58.70 20.18
Gemma 2B 28.73 13.84 30.50 16.14 33.86 16.37 35.44 16.92
Llama2 7B 31.44 13.69 36.37 14.84 42.67 15.30 43.24 15.49
Llama2 7B Chat 35.65 16.27 42.64 16.54 51.48 15.39 52.34 16.78
Llama2 13B 41.78 15.88 45.93 15.95 56.52 18.07 56.23 18.03
Llama2 13B Chat 40.69 15.21 46.93 14.81 60.81 15.35 59.22 15.49
Llama3 8B 50.07 14.83 49.22 17.65 67.31 17.21 66.13 15.70
Llama3 8B Instruct 50.40 12.70 49.99 13.03 69.78 13.63 67.80 13.09
Mistral 7B 48.05 18.22 52.22 15.91 67.86 22.86 66.78 22.25
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Table 7: The table highlights the correlation between ID estimates of the last layer (MLP Out) and the
corresponding model performance for LLama models. The negative correlation indicates ID being
lower for better-performing models, making ID estimates a weak proxy for the model’s generalization
capabilities.

Dataset Pearson Kendall Tau Spearman Accuracy
COPA −0.356 −0.467 −0.543 73.53
COLD −0.202 −0.333 −0.486 69.16
Rotten Tomatoes −0.673 −0.600 −0.771 65.65
SST2 −0.720 −0.867 −0.943 67.27

AG News −0.709 −0.600 −0.771 66.02
MMLU STEM −0.309 −0.333 −0.371 41.67
MMLU Humanities −0.022 −0.200 −0.257 45.18
MMLU Social Sciences −0.084 −0.067 −0.143 58.09
MMLU Other −0.438 −0.276 −0.406 57.50

Table 8: Correlation between ID estimates of the last layer (MLP Out) and the corresponding model
performances for all the models which perform better than the baseline, i.e., 25% or 50% for 4 options
and 2 options datasets respectively.

Dataset Pearson Kendall Tau Spearman Accuracy
COPA −0.02 −0.14 −0.18 74.47
COLD −0.75 −0.60 −0.71 73.90
Rotten Tomatoes −0.81 −0.67 −0.80 72.07
SST2 −0.66 −0.60 −0.66 69.90

AG News −0.28 −0.14 −0.12 63.87
MMLU STEM 0.04 −0.14 −0.21 42.58
MMLU Humanities −0.09 −0.21 −0.29 44.22
MMLU Social Sciences 0.25 0.07 0.05 56.28
MMLU Other 0.06 −0.11 −0.18 55.90

Table 9: The table provides reference links to the figures corresponding to the correlation between
the trend of intrinsic dimension across the relative depth of the model and the relationship between
accuracy and intrinsic dimension along the depth of the model.

Dataset Corr. Matrix (Ref.) Accuracy-ID (Ref.)
AGNews Zhang et al. [2016] Figure 31 Figure 7
CoLA Warstadt et al. [2018] Figure 32 -
COLD Joshi et al. [2024] Figure 34 Figure 8
RottenTomatoes Pang and Lee [2005] Figure 35 Figure 9
SST-2 Socher et al. [2013] Figure 36 Figure 10
MMLU STEM Hendrycks et al. [2021] Figure 37 Figure 2
MMLU Humanities Hendrycks et al. [2021] Figure 38 Figure 13
MMLU Social Sciences Hendrycks et al. [2021] Figure 39 Figure 11
MMLU Other Hendrycks et al. [2021] Figure 40 Figure 12
COPA Gordon et al. [2012] Figure 33 Figure 3
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Table 10: The table compares the ID estimates across the layers of LLama3-8B on COPA dataset

Layer PCA MLE MLE Corrected TwoNN Gride
0 32 9.6 7.92 0.97 15.58
1 41 10.31 8.7 1.12 16.16
2 43 10.82 9.3 1.11 18.38
3 48 11.04 9.76 1.19 18.95
4 45 11.86 10.35 1.3 19.13
5 43 12.11 10.54 1.38 18.58
6 40 12.85 10.97 1.55 18.29
7 36 12.92 11.07 1.67 17.82
8 37 13.55 11.62 1.89 17.87
9 41 14.14 12.22 2.22 18.21
10 45 14.43 12.49 2.4 18.1
11 45 14.66 12.73 2.59 17.71
12 68 16.52 14.24 3.08 19.51
13 83 19.03 16.37 4.16 21.07
14 69 22.06 18.98 7.76 21.5
15 54 20.87 18.13 8.68 20.0
16 47 20.08 17.5 8.94 19.12
17 37 19.84 17.26 10.75 18.64
18 31 19.18 16.75 10.55 17.87
19 28 19.12 16.69 11.11 17.83
20 30 18.37 15.99 10.16 17.53
21 33 18.68 16.26 9.7 17.8
22 42 18.94 16.37 8.95 18.24
23 62 19.2 16.6 7.14 19.49
24 88 20.13 17.24 6.02 20.75
25 129 20.8 17.7 4.93 22.91
26 145 21.37 18.04 4.46 23.96
27 158 21.27 17.89 4.11 24.15
28 160 21.09 17.62 3.85 24.81
29 147 19.59 16.58 3.58 24.26
30 160 18.0 15.56 3.02 25.01
31 116 15.69 13.8 2.64 22.56

E Additional Results, Discussion and Future Directions

E.1 Compute Resources

We perform all the experiments using a machine with 1 NVIDIA A40 GPU. We use only the
open-weight models with frozen parameters to present the results for better reproducibility in the
future.

E.2 Additional Results and Discussion

The intrinsic dimension often relies on a smaller range of (5 - 38) when compared to the extrinsic
dimensions (aka model hidden dimensions (768 - 4096)), irrespective of size and number of layers
present in these models. We found this trend to be consistent for both template-based synthetic
datasets as well as real-world datasets, pointing toward the language-specific tasks being present in
low-dimensional manifolds. This suggests that all these networks learn to compress the language
information to a lower-dimensional space of a similar range. Table 5 and Table 6 summarize the
Intrinsic dimension (of the last layer, MLP Out) estimates obtained for various datasets and compare
them with the performance. We highlight the additional trends observed in our experiments below:

Manifolds evolving during Training: In our setup, we consider two template-based synthetic
datasets, the arithmetic and the greater than dataset. The arithmetic dataset was also used for
monitoring learning during the training of Pythia series models Biderman et al. [2023]. Figure 25
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Figure 7: The figure shows accuracy along with ID trends for different variants of the LLaMA model
on the AGNews dataset

shows ID estimates for layers in Pythia series models as the training processes for the Arithmetic
Dataset. We observe all the models with different sizes following a similar trend of manifold evolution
as the training progresses, finally converging to a similar characteristic, hunchback-like shape. On
the Greater than dataset, we observe a similar evolution trend. However, the Greater Than dataset,
being straightforward (less complex), shows the accuracy boost even from small-scale models. In
Figure 26, smaller models show a hunchback-like shape with minimal changes observed for larger
models that show an accuracy boost from initial layers.

Characteristic Trend in Latent Layers: In all our experiments for real-world datasets, we observe
a characteristic hunchback-like trend in ID estimates across the model’s MLP Out layers. The
Figures 27, 28, 29, and 30 show the trends for MLE, MLE modified, TwoNN, and GRIDE estimates,
respectively. All the estimators show a characteristic trend observed for a wide range of models for
different real-world datasets. We observe a peak in the middle layers, highlighting a hunchback-like
shape. The y-label shows the model names along with the accuracy in brackets, sorted from low-
performing models to high-performing models from top to bottom. In general, we observe a similar
trend being followed for similar performing models. Additionally, the relationship between accuracy
and intrinsic dimension (both Residual post and MLP out) is captured by the Figures referred to in
the App. 9

Correlation between Characteristic trend in different datasets: Figures 31 to 40 show a correlation
between the intrinsic dimensions estimated for the hidden layers of multiple open-weight models
corresponding to MLP Out. As the number of layers varies in different models, the estimated ID
values were interpolated, considering the notion of relative depth in models. The figures show the
correlation of IDs for all four ID estimators. (See table 9 for easier reference to figures for different
datasets. Overall, we find a high correlation for similar performing models, highlighting similar
trends of IDs observed for multiple models.

Comparison of trends in ID estimators: In our experiments, we compute intrinsic dimensions
using 3 widely used ID estimators (MLE, MLE-Modified, TwoNN) and include a recently introduced
estimator (GRIDE). Overall, we found similar trends throughout multiple ID estimators. We stick to
GRIDE estimates for more reliable results in the main paper. In general, classic linear methods, such
as PCA, assume a stable global eigenstructure and are inherently limited in capturing the nonlinear,
locally curved manifolds that arise within deep networks. Prior studies have shown that PCA-based
intrinsic dimension estimates become unreliable under high curvature or limited sampling conditions
[Bruske and Sommer, 2006, Camastra, 2003]. These limitations make PCA not very well-suited for
tracking how internal decision dynamics evolve layer by layer. In contrast, modern estimators like
GRIDE and TwoNN explicitly account for local geometric distortions, providing a more faithful
measure of the manifold structure. Table 10 compares intrinsic dimension estimates across different
estimators. As noted, PCA-based estimates tend to yield considerably higher values (often exceeding
100) in later layers. This behavior arises because PCA infers dimensionality from variance along
orthogonal directions in the data. As representations in deeper layers grow more dispersed and
capture richer semantic variability, the explained variance spreads across more components, leading
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Figure 8: The figure shows accuracy along with ID trends for different variants of the LLaMA model
on the COLD dataset
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Figure 9: The figure shows accuracy along with ID trends for different variants of the LLaMA model
on the Rotten Tomatoes dataset
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Figure 10: The figure shows accuracy along with ID trends for different variants of the LLaMA
model on the SST2 dataset
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Figure 11: The figure shows accuracy along with ID trends for different variants of the LLaMA
model on the MMLU Social Sciences dataset
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Figure 12: The figure shows accuracy along with ID trends for different variants of the LLaMA
model on the MMLU Other dataset
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Figure 13: The figure shows accuracy along with ID trends for different variants of the LLaMA
model on the MMLU Humanities dataset
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Figure 14: Comparision between ID across the model layer (MLP Out and Resid Post) on MMLU
STEM Dataset
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Figure 15: Relationship between accuracy and intrinsic dimensionality across Pythia models of
varying sizes on Arithmetic Dataset for few shots ranging from 0 to 50.
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Figure 16: The figure shows ID of last token (MLP Out) throughout the stacked transformer blocks in
the LLaMA family for the Rotten Tomatoes dataset. We observe that all these models show a similar
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PCA to overestimate dimensionality. In contrast, nonlinear estimators such as GRIDE or TwoNN
are less sensitive to global variance scaling and better capture the local geometric structure of these
high-curvature manifolds.

E.3 Future Directions

The analysis we perform raises some interesting directions for future analysis. 1) Throughout all the
observations, we found a space with a similar intrinsic dimension created by these models across
different layers. We observe a peak arising in all these models in the middle layers. Though our
findings suggest the peak pointing towards the space where the model starts to be decisive, a more
detailed analysis of this space for different skills would be an interesting future venue, exploring if
there lie multiple manifolds for multiple skills/tasks. 2) Provided the extrinsic to intrinsic dimension
being large (found across multiple experiments), the autoregressive training objective highlights the
knowledge compression capabilities of these models, making justifications for model compression
by weight pruning/low-rank adaptations/finetuning/knowledge distillation. This also opens up the
requirement for a more detailed analysis of manifolds evolving during low-rank finetuning objectives.
3) Though we find that the low-dimension manifolds learned by different models lie in similar ranges,
little is explored about their structural similarity in low-dimensional manifolds learned by different
models. In the future, it would be interesting to compare these subspaces in a more rigorous fashion,
including comparison with subspace matching methods like Grassmann distance Ye and Lim [2016].
4) Study of intrinsic dimensions changing via in-context learning examples provided in the prompt.
Though the initial findings suggest the reduction in the manifold space as more in-context examples
are provided, a more detailed study would be required to exploit ID estimates for choosing better in-
context examples. 5) Comparison of representational space of different modalities in vision-language
models. In this work, we only focused on language modality, both in terms of language models and
datasets. Some of the findings have suggested that networks learning similar representations for
multiple modalities Huh et al. [2024], Valeriani et al. [2024]; these findings could be reinforced by
observing the manifolds learned for different modalities by the same models. 6) Though our work
highlights the ID estimates showing a strong relation with model generalization, exploiting them to
develop a concrete unsupervised algorithm for model comparison/task complexity comparison and
generated text comparison remains open for future avenues. 7) Some of the preliminary findings also
suggest ID estimates of human text be different from LLM-generated text Tulchinskii et al. [2024].
In this work, we could only explore open-weight LLMs on English datasets, leaving the extended
comparison in different languages for the future.

Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: A generalised statement pertaining to the task -: question/statement
A. choice1
B. choice2
Answer: A

Figure 17: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the datasets, which contains either a review, a statement, or a question.
The teal text is a template comment describing the task, which changes according to the dataset
The next-token prediction probabilities of the option IDs at the red text are used as the observed
prediction distribution.
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Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Which is best fitting topic for the given news report? -: Brewers buyer expected
to step out of the shadows Monday MILWAUKEE - Paul Attanasio says the story of his brother
buying a baseball team is like a script straight out of Hollywood. He should know.
A. World
B. Sports
C. Business
D. Sci/Tech
Answer: C

Figure 18: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the AG News dataset. The teal text is a template comment
describing the task. The next-token prediction probabilities of the option IDs at the red text are
used as the observed prediction distribution.

Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Mars has an atmosphere that is almost entirely carbon dioxide. Why isn’t there
a strong greenhouse effect keeping the planet warm?
A: the atmosphere on Mars is too thin to trap a significant amount of heat
B: There actually is a strong greenhouse effect and Mars would be 35oC colder than it is
now without it.
C: Mars does not have enough internal heat to drive the greenhouse effect
D: the greenhouse effect requires an ozone layer which Mars does not have
Answer: A

Figure 19: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the MMLU dataset. The next-token prediction probabilities of the
option IDs at the red text are used as the observed prediction distribution.

Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Select the suitable option for the following statement -: The cat was bitten
the mouse.
A: Unacceptable
B: Acceptable
Answer: A

Figure 20: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the CoLA dataset. The teal text is a template comment describing
the task. The next-token prediction probabilities of the option IDs at the red text are used as the
observed prediction distribution.

Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Select the suitable option for the following statement -: enchanted with
low-life tragedy and liberally seasoned with emotional outbursts . . . what is sorely
missing, however, is the edge of wild, lunatic invention that we associate with cage’s
best acting .
A: Negative
B: Positive
Answer: A

Figure 21: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the Rotten Tomatoes dataset. The teal text is a template comment
describing the task. The next-token prediction probabilities of the option IDs at the red text are
used as the observed prediction distribution.
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Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Select the suitable option for the following statement -: this is human comedy
at its most amusing, interesting and confirming .
A: Negative
B: Positive
Answer: B

Figure 22: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the SST-2 dataset. The teal text is a template comment describing
the task. The next-token prediction probabilities of the option IDs at the red text are used as the
observed prediction distribution.

Following are some multiple choice questions. You should directly answer the question by
choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Which of the following events (given as options A or B) is a more plausible
effect of the event -: ’The woman betrayed her friend.’?
A: Her friend sent her a greeting card.
B: Her friend cut off contact with her.
Answer: B

Figure 23: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the COPA dataset. The teal text is a template comment describing
the task. The next-token prediction probabilities of the option IDs at the red text are used as the
observed prediction distribution.

Following are some multiple choice questions about the activity ’going grocery shopping’.
You should directly answer the question by choosing the correct option.
[ in-context examples (if few-shot/in-context learning experiment) ]
Question: Which of the following events (given as options A or B) is a more plausible
cause of the event ’drive to the nearby store.’?
A: make a list.
B: get into car.
Answer: B

Figure 24: Input prompt formats for the MCQA-based evaluation of autoregressive open-weight
models (e.g., llama(-2), GPT-J, etc.). The black text is the templated input for all datasets. The
orange text is the input from the COLD dataset. The teal text is a template comment describing
the task. The next-token prediction probabilities of the option IDs at the red text are used as the
observed prediction distribution.
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Figure 27: The figure shows a characteristic trend observed for a wide range of models for different
real-world datasets. We observe a peak in the middle layers, highlighting a hunchback-like shape.
The intrinsic dimensions are estimated using the MLE estimator. The y-label shows the model names
along with the accuracy in brackets, sorted from low-performing models to high-performing models
from top to bottom.
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Figure 28: The figure shows a characteristic trend observed for a wide range of models for different
real-world datasets. We observe a peak in the middle layers, highlighting a hunchback-like shape.
The intrinsic dimensions are estimated using the modified version of the MLE (harmonic mean)
estimator. The y-label shows the model names along with the accuracy in brackets, sorted from
low-performing models to high-performing models from top to bottom.
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Figure 29: The figure shows a characteristic trend observed for a wide range of models for different
real-world datasets. We observe a peak in the middle layers, highlighting a hunchback-like shape.
The intrinsic dimensions are estimated using the TwoNN estimator. The y-label shows the model
names along with the accuracy in brackets, sorted from low-performing models to high-performing
models from top to bottom.
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Figure 30: The figure shows a characteristic trend observed for a wide range of models for different
real-world datasets. We observe a peak in the middle layers, highlighting a hunchback-like shape.
The intrinsic dimensions are estimated using the GRIDE estimator. The y-label shows the model
names along with the accuracy in brackets, sorted from low-performing models to high-performing
models from top to bottom.
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Figure 31: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
AG News dataset.
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Figure 32: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
CoLa dataset.
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Figure 33: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
COPA dataset.
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Figure 34: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
COLD dataset.
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Figure 35: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
Rotten Tomatoes dataset.
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Figure 36: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
SST2 dataset.
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Figure 37: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
MMLU STEM dataset.
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Figure 38: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
MMLU Humanities dataset.
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Figure 39: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
MMLU Social Sciences dataset.
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Figure 40: The figure shows a correlation between the intrinsic dimensions trajectories throughout
layers of multiple open-weight models, denoting the correlation of IDs for all four ID estimators for
MMLU Other dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide details about the main claims in the Abstract and Introduction
(Section 1, Section 4, and Section 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a sub-section dedicated to limitations in Section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper doesn’t include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details are provided in Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be made available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: As discussed in Section 4, we only perform evaluation on pre-trained models
and do not train/fine-tune any new models. Details for same are provided in Section 4 and
App. D and App. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We cover a wide range of open weight models and dataset to validate the
trends. Details are provided in Section 5 and App. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are provided in Appendix Section E.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics, and followed these.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: To the best of our knowledge the research proposed in the paper does not
have any negative social impact as we are only performing deeper analysis of existing
open-weight LLMs and not training new models or creating any new technology per se.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable for our paper. We are only performing deeper analysis of
existing open-weight LLMs and not training new models or creating any new technology
per se.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have used only open-source resources and cited relevant owners of the
various resources, tools and models. Details are in App. D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new asset. We are only performing deeper analysis of
existing open-weight LLMs and not training new models.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not perform any human experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not perform any human experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: In this work we only study open weight Language Models to reveal the
relationship between geometrical properties of internal representations and decision making
happening inside these models. This described in detail across several sections in the paper
(Section 1, Section 3, Section 4, and Section 5).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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