
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EFFICIENT MOLECULAR CONFORMER GENERATION
WITH SO(3) AVERAGED FLOW-MATCHING AND REFLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular conformer generation is a critical task in computational chemistry and
drug discovery. Diverse generative deep learning methods have been proposed
and shown to outperform traditional cheminformatics tools. State-of-the-art mod-
els leverage neural transport, employing denoising diffusion or flow-matching to
generate or refine atomic point clouds from a prior distribution. Still, sampling
with existing models requires significant computational expense. In this work, we
build upon flow-matching and propose two mechanisms for accelerating training
and inference of 3D molecular conformer generation. For fast training, we intro-
duce the SO(3)-Averaged Flow, which we show to converge faster and generate
better conformer ensembles compared to conditional optimal transport and Kabsch
alignment-based optimal transport flow. For fast inference, we further show that
reflow methods and distillation of these models enable few-steps or even one-step
molecular conformer generation with high quality. Using these two techniques, we
demonstrate a model that can match the performance of strong transformer base-
lines with only a fraction of the number of parameters and generation steps. The
training techniques proposed in this work shows the path towards highly efficient
molecular conformer generation with flow-based models.

1 INTRODUCTION

Molecular conformer generation is the task to predict the ensemble of 3D conformations of molecules
given the 2D molecular graphs (Hawkins, 2017). Generating high quality molecular conformers that
fit their natural 3D structures is a crucial task for computational chemistry because many physical
and chemical properties (Guimarães et al., 2012; Schwab, 2010; Shim & MacKerell Jr, 2011) are
determined by the conformers. In the domain of drug discovery, molecular conformer generation
is a prerequisite for both structure-based and ligand-based compound virtual screening applications
such as molecular docking (Trott & Olson, 2010) and shape similarity search (Rush et al., 2005).
For established computational chemistry molecular conformer generation tools, there is a trade-off
between generation speed and the quality/diversity of generated conformers (Axelrod & Gomez-
Bombarelli, 2022). For example, enhanced molecular dynamics simulation (Grimme, 2019) can
generate diverse conformer by sampling the conformation space rather exhaustively, but is slow
due to multiple energy function evaluations. RDKit (Landrum, 2016) and some rule-based tools
(Hawkins et al., 2010) are faster but may miss many low-energy conformer and the generation quality
can deteriorate when molecule size grows. Therefore, deep learning models are being sought as a
potential solution to overcome such trade-off and bring fast, diverse, and high-quality molecular
conformer generation.

Many earlier works are based on generative models (Simm & Hernández-Lobato, 2019; Zhu et al.,
2022; Luo et al., 2021; Shi et al., 2021; Xu et al., 2022) given the stochastic nature of the molecular
conformer generation task. There is also regression model such as GeoMol (Ganea et al., 2021)
that operates on the substructures of the molecules. However, established cheminformatics tools
such as OMEGA (Hawkins et al., 2010) still has better generation quality with faster sampling
speed compared with early deep-learning based methods. Torsional diffusion (Jing et al., 2022) is
the first diffusion model that achieves better generation quality than cheminformatics model. By
restricting the degree-of-freedom on the torsion angles, torsional diffusion can generate diverse
conformers with lightweight model and less number of reverse diffusion steps. Molecular conformer
field (MCF) (Wang et al., 2024) is a more recent work that does diffusion directly on the Cartesian

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: SO(3)-Averaged Flow and Reflow (a) We illustrate a comparison between our approach
Averaged Flow, conditional OT and Kabsch + Flow. While conditional OT randomly assigns any
rotation of the data, Kabsch + Flow assigns the rotation of largest overlap. Our method instead
computes the expected flow across all rotations. (b) Flow trajectory visualization before and after the
reflow with 100 Euler steps. The flow trajectories are effectively straightened after reflow.

coordinates of the atoms. With highly scalable transformer architecture, MCF achieves the state-of-
the-art conformer generation quality at the cost of tens to hundreds of millions parameters in model
size. A more recent work, ET-Flow (Hassan et al., 2024), is also shown to have strong performance
by leveraging flow-matching, harmonic prior (Jing et al., 2023), and the Kabsch alignment of the
noise and target distribution. With the maturing of diffusion and flow-matching models in the field of
molecular conformer generation, the major obstacle that hinders the wide adoption of those models
in real-world drug discovery industry is the sampling speed. Iterative ordinary differential equation
(ODE) or stochastic differential equation (SDE) solving with large transformer model to generate
every conformer can still be computationally infeasible when the library to be virtually screened
contains billions of compounds (Bellmann et al., 2022).

In this work, we propose a novel flow-matching training approach to improve the efficiency of deep
learning model training and sampling for molecular conformer generation. To improve training
efficiency, we design a new flow-matching objective called SO(3)-Averaged Flow (Fig. 1a). As
an objective, Averaged Flow avoids the need to rotationally align prior and data distribution by
analytically computing the averaged probability path from the prior to all the rotations of the data
sample. Model trained with Averaged Flow is experimentally shown to converge faster to better
performance. To improve the sampling efficiency, we adopt the reflow and distillation technique (Liu
et al., 2022) to straighten the flow trajectories (Fig. 1b). Straightened trajectories allow high quality
molecular conformer generation with few-step or even one-step ODE solving, thus significantly
relieving the computational cost.

Our main contribution can be summarized as: (i) Proposed a novel SO(3)-Averaged Flow matching
objective. Averaged Flow eliminates the need of rotational alignment between prior and data by
training the model to learn the average probability path over all rotations of the data. Averaged
Flow leads to faster convergence to better performance for molecular conformer generation, and can
be extended to other similar tasks. (ii) Introduced reflow with distillation to reduce the number of
ODE steps required for the model to generate high quality conformers. Such technique significantly
improves the sampling efficiency of flow-matching models in molecular conformer generation.

2 BACKGROUND AND RELATED WORK

2.1 GENERATIVE MODELS FOR CONFORMER GENERATION

The task of molecular conformer generation in its core is to sample from the intractable conformer
distribution conditioned on the 2D molecular graph. Therefore, generative deep learning model is
well-suited for such task and many methods have been proposed. Deep learning model are usually
trained on datasets containing molecular conformers generated by CREST (Pracht et al., 2020) using
computationally expensive semi-empirical quantum chemistry method (Bannwarth et al., 2019) under
the hood. Earliest works in this field uses variational autoencoder to generate the intrinsic inter-atomic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

distance (Simm & Hernández-Lobato, 2019; Xu et al., 2021). Shi et al. (2021) proposed a score-
matching method that learns the gradient of intrinsic atom coordinates in molecular graph. Ganea
et al. (2021) started to tackle molecular conformer generation by designing a message passing neural
network to predict the local 3D structure and torsion angles. Xu et al. (2022) adopted diffusion model
and equivariant graph neural network to generate molecular conformers by iteratively denoising the
Euclidean atom coordinates from sampled noise. Torsional diffusion (Jing et al., 2022) reduced
the degree-of-freedom by refining the torsion angles of RDKit-generated (Landrum, 2016) initial
conformers with a diffusion process on the hypertorus. Such design allowed torsional diffusion
to significantly reduce sampling steps. One drawback of torsional diffusion is that it relies on an
RDKit-generated conformer as the starting point of diffusion, which adds computational overhead to
generation process. The generation quality of RDKit, especially for atom coordinates in rings, can
also impact the sample quality of torsional diffusion. Another recent work called DiSCO (Lee et al.,
2024a) has proposed to use a Schrödinger bridge-based method to optimize generated conformers.
DiSCO can refine molecular conformers generated by any method to lower energy state by aligning
the conformational distribution approximated by a prior model to the ground truth distribution. It
is shown to improve the conformer generation quality of many methods such as RDKit and even
Torsional Diffusion. Molecular conformer field (MCF) proposed by Wang et al. (2024) is a recent
work that leverages the scaling power of the transformer architecture (Jaegle et al., 2021) and diffusion
model. MCF achieves state-of-the-art performance in molecular conformer generation by training
models with tens to hundreds million of parameters to denoise the atoms’ Euclidean coordinates
using DDPM paradigm (Ho et al., 2020). Equivariant Transformer Flow (ET-Flow) is a concurrent
work that trains a equivariant flow-matching model to generate conformers from prior distribution.
By combining harmonic prior (Jing et al., 2023), flow-matching, and Kabsch alignment that reduces
transport cost, ET-Flow is reported to outperform MCF on several metrics with less ODE steps.

Overall, the trade-off between conformer generation quality and speed is a prevailing issue. Specifi-
cally, semi-empirical quantum chemistry can sample very high quality conformers with high com-
putational cost. Diffusion or flow-matching models can generate high quality conformers but the
iterative ODE/SDE solving process can be slow, making them less practical for large-scale virtual
screening. Cheminformatics tools such as RDKit and OMEGA are very fast but generate conformers
with underwhelming diversity.

2.2 FLOW-MATCHING

Averaged Flow is based on Flow Matching (Lipman et al., 2023; Liu et al., 2023a; Albergo &
Vanden-Eijnden, 2023), which models a probability density path pt(xt) that gradually transforms
an analytically tractable noise distribution (t = 0) into a data distribution (t = 1), following a time
variable t ∈ [0, 1]. Formally, the path pt(xt) corresponds to a flow ψt that pushes samples from p0
to pt via pt = [ψ]t ∗ p0, where ∗ denotes the push-forward. In practice, the flow is modelled via
an ordinary differential equation (ODE) dxt = vθt (xt)dt, defined through a learnable vector field
vθt (xt) with parameters θ. Initialized from noise x0 ∼ p0(x0), this ODE simulates the flow and
transforms noise into approximate data distribution samples. The probability density path pt(xt) and
the (intractable) ground-truth vector field ut(xt) are related via the continuity equation dpt(x)/dt =
−∇x ·(pt(x)ut(x)). To construct pt Lipman et al. (2023) introduce a conditional probability pt(x|x1)
and conditional vector field ut(x|x1) both related to their unconditional counterparts as follow:

pt(x) =

∫
pt(x|x1)q(x1)dx1. (FM6)

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)
pt(x)

dx1 (FM8)

With the following simple choices of conditional probability and flow
pt(x|x1) = N (x;µt(x1), σ

2
t (x1)) (FM10)

ψt(x) = σt(x1)x+ µt(x1) (FM11)
they prove that

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1). (FM15)

It is noteworthy that we refer to the linear interpolant xt = tx1 − (1− t)x0 between the noise and
data distribution as conditional optimal transport (OT) following Lipman et al. (2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.3 RECTIFIED FLOW AND OTHER DISTILLATION

With the success of denoising diffusion probabilistic models (Ho et al., 2020), many attention has
been drawn to improve the sampling speed of diffusion models. DDIM (Song et al., 2020) shows that
the sampling steps can be significantly reduced by formulating the sampling process as ODE solving.
Knowledge distillation techniques (Meng et al., 2023; Salimans & Ho, 2022; Song et al., 2023; Song
& Dhariwal, 2023) are also proposed to reduce sampling steps and accelerate generation. Rectified
flow (Liu et al., 2022; Liu, 2022) is a method proposed to train the model to learn straight probability
flow that bridges prior and data distribution. The reflow technique proposed in rectified flow can
straighten the flow trajectory and reduce the transport cost, allowing very few-step generation with
high quality. After reflow, the model can be further distilled to improve 1-step generation. The
reflow and distillation technique has been proven effective in enabling few-step or even single-step
text-to-image (Esser et al., 2024; Liu et al., 2023b) and point cloud (Wu et al., 2023) generation.

3 METHOD

3.1 SO(3)-Averaged Flow

The concept of Averaged Flow involves recognizing that the data distribution q may exhibit group sym-
metries, which can be explicitly integrated out. A symmetry group G of q consists of transformations
g : x 7→ g · x that leave the distribution q unchanged, meaning q(x) = q(g · x).
If we focus on Lie groups with a Haar measure, we can express q as

q(x) =

∫
dx̂ q̂(x̂)

∫
dg δg·x̂(x) (1)

where q̂ represents the distribution over the group orbits, x̂ is a representative point of the orbit, and
the integral over G uses the Haar measure.

By substituting this into equation equation FM8, we obtain:

ut(x) =

∫
dx̂ q̂(x̂)

∫
dg ut(x|g · x̂)

pt(x|g · x̂)
pt(x)

(2)

Notice that pt(x) =
∫
dx̂ q̂(x̂)

∫
dg pt(x|g · x̂) is the partition function.

Let’s consider the case of conformer generation:

1. x is a N × 3 matrix representing the 3D coordinates of N atoms.

2. The group G is the rotation group SO(3). We will use R to denote the rotation matrix,
which acts on x as x 7→ xRT .

3. The goal is to generate molecular conformers that corresponds to at least local minima in the
conformational energy landscape. The orbits x̂ in this case corresponds to the different low-
energy conformers of a given molecule and their permutations that leave the 2D molecular
graph invariant. Therefore, the integral

∫
dx̂ q̂(x̂) in Eq.2 representing the entire conformer

ensemble can be written as
∑

x̂∈conformers q̂(x̂), where q̂(x̂) is the weight associated to that
conformer.

4. pt(x|x1) is a Gaussian of the form:

pt(x|x1) ∝ exp
(1
2

1

(1− t)2

∑
ijδ

(x− tx1)iδΣij(x− tx1)jδ

)
≡ exp

(1
2

∥x− tx1∥2Σ
(1− t)2

)
where Σ is a RN×N matrix.

Let’s rewrite ut(x) in this case:

ut(x) =
1

Zt(x, 0)

∑
x̂∈conformers

q̂(x̂)

∫
SO(3)

dR
x̂RT − x

1− t
e
− 1

2

∥x−tx̂RT ∥2Σ
(1−t)2 (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

where Zt(x, α) is defined as

Zt(x, α) =
∑

x̂∈conformers

q̂(x̂)

∫
SO(3)

dR e
− 1

2

∥x−tx̂RT ∥2Σ
(1−t)2

+α·(x̂RT) (4)

with α being an N × 3 matrix that will be needed in the following steps.

Note ut(x) can be computed by taking the derivative of logZt(x, α) with respect to α, and then
evaluating it at α = 0.

The integral over R can be computed using the formula from Mohlin et al. (2020), which provides a
closed-form solution for

F 7→ log

∫
SO(3)

dR exp(tr(FRT)) (5)

where F can be any 3× 3 matrix. In our case, we have

logZt(x, α) =

log
∑

x̂∈conformers

q̂(x̂) exp

(
log

∫
SO(3)

dR exp(tr(
(
αT +

t

(1− t)2
xTΣ

)
x̂RT)) + constant in α

)
︸ ︷︷ ︸

closed-form solution using F = αT x̂ + t
(1−t)2

xTΣx̂

(6)

Then we can directly learn

LAvgFlow(θ) = E
[
∥vθt (xt)− ut(xt)∥2

]
,with t ∈ [0, 1]. (7)

where
ut(xt) = ([∂α logZt(xt, α)]α=0 − xt)/(1− t) (8)

We provide the python implementation of this formula in Appendix A.3.1. Theoretically, vθt (xt) can
be parameterized by any powerful enough neural network architecture that is capable of learning the
conditional OT flow (Lipman et al., 2023).

We note that while our Averaged Flow implementation is capable of handling multiple conformer
states in the summation in Eq 6. In practice, we approximate the expectation of the conformer
ensemble through sampling one conformer in each training epoch. Following previous works (Jing
et al., 2022; Wang et al., 2024), the q̂(x̂) follows uniform distribution for all conformers. The
benchmark of computation time (Table A.3.2) shows that only a small overhead is added when using
the Averaged Flow objective.

3.2 REFLOW AND DISTILLATION

Flow-matching and diffusion-based molecular conformer generation model typically requires hun-
dreds or even thousands steps numerical solving of ODE or SDE during the sampling process. Such
iterative process adds computational overhead and hinders the adoption of those model in industrial-
level downstream applications, which desire fast generation. One effective technique to reduce the
sampling steps without significantly sacrificing the generation quality is to straighten the trajectory.
Inspired by the success of such technique in point-cloud generation (Wu et al., 2023) and text-image
generation (Esser et al., 2024; Liu et al., 2023b), we finetune our model vθt trained with Averaged
Flow using the reflow algorithm proposed in previous rectified flow works (Liu et al., 2022; Liu,
2022). Specifically, we first randomly sample atom coordinates X ′

0 from standard Gaussian and
generates the corresponding conformer X ′

1 using the Tsitouras’ 5/4 solver (Tsitouras, 2011). The
coupling (X ′

0, X
′
1) is then used in the rectified flow objective to finetune the model:

LReflow(θ) = E
[
∥vθt (X ′

t, t)− (X ′
1 −X ′

0)∥2
]
,with t ∈ [0, 1] (9)

Liu et al. (2022) proved that the coupling (X ′
0, X

′
1) yields equal or lower transport cost than (X0, X1)

where X0 is sampled from noise distribution and X1 from data distribution. Therefore, applying the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

reflow algorithm to fine-tune model with Eq. 9 can effectively reduce the transport cost and straighten
the trajectory.

We empirically find that the transport trajectories bridging Gaussian noise and molecular conformers
demonstrates high curvature when t is closer to 0 (Fig. 1b). Therefore, inspired by Lee et al. (2024b),
we sample t from a exponential distribution with the probability density function as:

p(t) ∝ Exp(λt) (10)

where λ is -1.2 by selection to focus the training more on t < 0.5. The distribution of t is visualized
in Fig. 4.

After reflow, the sampling speed can be further reduced by distilling the relation of the coupling
(X ′

0, X
′
1) into model vθ to enable 1-step transport and eliminate the need of ODE solving. During the

distillation stage, we fine-tune the reflowed model vθ with the following loss function:

LDistill(θ) = E
[
∥vθt (X ′

0, 0)− (X ′
1 −X ′

0)∥2
]

(11)

which is equivalent to the Eq. 9 with t = 0.

3.3 FLOW-MATCHING MODEL ARCHITECTURE

We use SE(3)-equivariant networks for predicting the time-dependent vector field (Eq. 7). We
condition the model on the molecular graph. For implementing our network, we use NequIP model
based on Batzner et al. (2022). The features of each atoms and bonds (see Sec. A.1.4 for detailed list
of features) are firstly embedded by the model into scalar features. Those features are then mixed
with the edge vector through 6 interaction blocks of the model. Lastly a linear layer is used to make
prediction of the vector field as type l = 1 geometric features. Some noteworthy modifications we
made to the original architecture include incorporating edge features to the graph convolution layer
and adding residue connection and equivariant layer normalization to stabilize training. Details of
our model are provided in Sec. A.1.2 and Fig.5. Overall, the model is trained and fine-tuned using
Averaged Flow + reflow + distillation following the Algorithm 1. Details of model sampling are
included in Sec. A.1.5.

Algorithm 1 Averaged Flow with Reflow+Distillation Training
Require: Molecule Dataset G = [G0, ..., GD], each with conformers XG = [XG,0, ...XG,N]
Require: Learnable Velocity Field Network vθ

1. Base SO(3) Averaged Flow Training
t,X0, G ∼ U(0, 1),N (0, 1),G
X1 ∼ XG

Xt ← t ·X0 + (1− t) ·X1

ut(Xt)← Solve closed-form Eq. 8 forXt and t
Gradient Step -∥vθt (Xt|G)− ut(Xt)∥2
2. Reflow
X ′

0 ∼ N (0, 1)
X ′

1 ∼ ODESolve
(
vθt (·|G), X ′

0

)
Finetune model with coupled pair (X ′

0, X
′
1) through Eq. 9

3. Distillation
Train model with coupled pair (X ′

0, X
′
1) through Eq. 11

4 EXPERIMENTS

Following previous works, we train and evaluate our model on the GEOM-QM9 and GEOM-Drugs
dataset (Axelrod & Gomez-Bombarelli, 2022). We followed the splitting strategy proposed by Ganea
et al. (2021); Jing et al. (2022) and test our model on the same test set containing 1000 molecules for
both QM9 and Drugs dataset. Dataset and splitting details are included in Sec. A.1.3. The major model
evaluation metrics are the average minimum RMSD (AMR, the lower the better) and coverage (COV,
the higher the better). Both AMR and coverage are reported for precision (AMR-P and COV-P) and
recall (AMR-R and COV-R). The definition of metrics are specified in Sec.A.2.1. Intuitively, coverage

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

measures the percentage of ground truth conformers being generated (recall) or the percentage of
generated conformers being close enough to ground truth (precision), while AMR measures the
average RMSD between each ground truth and its closest generated conformer (recall) or vice versa
(precision). There are three types of baselines in this work, including (a) methods with fast inference
speed such as cheminformatics tools (RDKit, OMEGA) and regression model GeoMol(Ganea et al.,
2021), (b) lightweight diffusion model with reduced degree of freedom (Torsional Diffusion), and (c)
large transformer-based diffusion or flow model operating on Euclidean atomistic coordinates (MCF
and ET-Flow). Moreover, to fairly validate the effectiveness of the Averaged Flow objective, we
compare the performance of our NequIP-based architecture (Appendix A.1.2) trained with different
objectives. Similarly, we compare the performance of the same model architecture before and after
reflow+distillation to show the necessity of reflow for few-step generation.

4.1 AVERAGED FLOW LEADS TO FASTER CONVERGENCE TO BETTER PERFORMANCE

Figure 2: Model trained with Averaged Flow con-
sistently converge to better performance on GEOM-
Drugs. The two objective we compared Averaged Flow
to are: (i) Conditional OT and (ii) Kabsch alignment
of noise X0 with conformer X1 before conditional OT.
Values are the average of a 300-molecule test subset.

To showcase the advantage of the Averaged
Flow over other training objectives, we evaluate
the performance of model trained on different
objectives using a randomly sampled GEOM-
Drugs test subset containing 300 molecules. The
two other objectives to be compared are con-
ditional OT and Kabsch alignment. The Kab-
sch alignment objective is to rotationally align
the sampled noise X0 with conformer X1 be-
fore training with the conditional OT objective.
Model is evaluated every 8 epochs of training
starting from 4 to 100 epochs. Fig. 2 demon-
strates that model trained with Averaged Flow
is consistently better than with both conditional
OT and Kabsch alignment on all four metrics.
With only 68 epochs of training, Averaged Flow
has COV-R higher and AMR-R lower than the
other two objectives trained for 100 epochs. The
COV-P (49.3%) and AMR-P (0.831) of Aver-
aged Flow trained for 52 epochs are better than
conditional OT (COV-P= 49.1% and AMR-
P= 0.832Å) trained for 100 epochs. Also, Aver-

aged Flow outperforms Kabsch trained for 100 epochs on AMR-P (Averaged Flow = 0.814Å and
Kabsch= 0.815Å) and on COV-P (Averaged Flow = 50.9% and Kabsch= 50.5%) after 76 and 84
epochs, respectively. Overall, model trained with Averaged Flow converges with less epochs to better
performance in molecular conformer generation.

4.2 GEOM-QM9

On the GEOM-QM9 dataset, we compared our model with two prevailingly used cheminformatics
tools: RDKit and OMEGA1, along with GeoMol (Ganea et al., 2021), Torsional Diffusion (Jing
et al., 2022), ET-Flow-SS (Hassan et al., 2024), and MCF (Wang et al., 2024). We denote our model
trained with Averaged Flow as AvgFlow, the model finetuned with reflow as AvgFlowReflow, and the
model further finetuned with distillation as AvgFlowDistill. The number of sampling steps required
by diffusion and flow-matching model are also noted. Table. 1 shows that AvgFlow outperforms all
other models in the COV-R metrics and almost matching the AMR-R of ET-Flow-SS, indicating it
is capable of generating very diverse conformers on the GEOM-QM9 dataset. More importantly,
the AvgFlowReflow and AvgFlowDistill achieve higher COV-R than other models with only 2-step
and 1-step ODE sampling, respectively. AvgFlowReflow also outperforms all cheminformatics tools
and GeoMol in all metrics. The benchmark on GEOM-QM9 shows that our model can match
the performance of state-of-the-art models with only much less trainable parameters on smaller
scale molecule. Table. 1 also shows that reflow+distillation can effectively maintain the conformer
generation quality with only 1 or 2 steps of ODE solving.

1Results adopted from Jing et al. (2022)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Quality of ML generated conformer ensembles for GEOM-QM9 (δ = 0.5Å) test set in terms
of Coverage (COV) and Average Minimum RMSD (AMR). Bolded results are the best. Baseline
values are taken from the corresponding papers. *Due to the use of adaptive step size, the number of
steps of AvgFlow is an average value over all test set molecules.

Recall Precision
COV (%) ↑ AMR (Å) ↓ COV (%) ↑ AMR (Å) ↓

Method Step Mean Med Mean Med Mean Med Mean Med

RDKit - 85.1 100 0.235 0.199 86.8 100 0.232 0.205
OMEGA - 85.5 100 0.177 0.126 82.9 100 0.224 0.186
GeoMol - 91.5 100 0.225 0.193 87.6 100 0.27 0.241
Tor. Diff. 20 92.8 100 0.178 0.147 92.7 100 0.221 0.195
ET-Flow-SS (8.3M) 50 95.0 100 0.083 0.035 91.0 100 0.116 0.047
MCF-B (64M) 1000 95.0 100 0.103 0.044 93.7 100 0.119 0.055

AvgFlow (4.7M) 60* 96.4 100 0.089 0.042 92.8 100 0.132 0.084
AvgFlowReflow (4.7M) 2 95.9 100 0.151 0.104 87.7 100 0.236 0.207
AvgFlowDistill (4.7M) 1 95.1 100 0.220 0.195 84.8 100 0.304 0.283

4.3 GEOM-DRUGS

We then trained and benchmarked our model on GEOM-Drugs, which is a larger dataset containing
conformers of drug-like molecules. Table. 2 shows that AvgFlow has good performance on GEOM-
Drugs by outperforming torsional diffusion on all metrics. Compared with MCF-S which has
approximately 3 times more parameters, our model achieves better COV-P and AMR-P, indicating
more AvgFlow-generated conformers are close to ground truth conformers. AvgFlowReflow can
outperform cheminformatics tools and GeoMol on all metrics, with large margin specifically on the
recall metrics. With only 4.7M parameters and 2 ODE steps, AvgFlowReflow pushes the limit of the
quality-speed trade-off of molecular conformer generations and bears the potential to be adopted
for large-scale virtual screen use cases. The AvgFlowDistill is also shown to achieve better COV-R
and AMR-R than cheminformatics tools and GeoMol, showing the our model can maintain high
generation diversity even with a single ODE step. The performance of AvgFlowReflow drops on
precision metrics because of the inevitable model approximation error introduced by the reflow
process. More specifically, X ′

1 generated for reflow may have drifted away from the data distribution
and the error is passed on and accumulated during reflow. Therefore, one future direction to improve
the performance of reflow and distillation model is to filter the generated X ′

1 by including only those
with low RMSD to ground truth conformers in the reflow finetuning dataset.

Table 2: Quality of generated conformer ensembles for GEOM-DRUGS (δ = 0.75Å) test set in terms
of Coverage (COV) and Average Minimum RMSD (AMR). Bolded results are the best. Baseline
values are taken from the corresponding papers. *Due to the use of adaptive step size, the number of
steps of AvgFlow is an average value over all test set molecules.

Recall Precision
COV (%) ↑ AMR (Å) ↓ COV (%) ↑ AMR (Å) ↓

Method Step Mean Med Mean Med Mean Med Mean Med

RDKit - 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA - 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol - 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
Tor. Diff. 20 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729
ET-Flow-SS (8.3M) 50 79.6 84.6 0.439 0.406 75.2 81.7 0.517 0.442
MCF-S (13M) 1000 79.4 87.5 0.512 0.492 57.4 57.6 0.761 0.715
MCF-B (64M) 1000 84.0 91.5 0.427 0.402 64.0 66.2 0.667 0.605
MCF-L (242M) 1000 84.7 92.2 0.390 0.247 66.8 71.3 0.618 0.530

AvgFlow (4.7M) 102* 76.8 83.6 0.523 0.511 60.6 63.5 0.706 0.670
AvgFlowReflow (4.7M) 2 64.2 67.7 0.663 0.661 43.1 38.9 0.871 0.853
AvgFlowDistill (4.7M) 1 55.6 56.8 0.739 0.734 36.4 30.5 0.912 0.888

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

4.4 WHEN IS REFLOW REALLY NECESSARY?

From the benchmark results on GEOM-Drugs and GEOM-QM9, we understand that our
AvgFlowReflow model can achieve better performance than cheminformatics methods on all metrics.
However, it is obvious that the model’s performance drops after reflow especially for the precision
metrics. Flow-matching models generally have high generation quality with less steps compared
to denoising diffusion model (Lipman et al., 2023) thanks to the ODE sampling process. In this
section, we are trying to answer the question: when is reflow really necessary to generate high-quality
molecular conformers?

Figure 3: Effect of the number of ODE steps to
model’s performance Comparison between model per-
formance before and after reflow with different number
of ODE steps

Fig. 3 shows the the performance of our model
using Euler sampling method with number of
ODE steps Nstep ∈ {1, 2, 3, 5, 10, 20, 50, 100}.
The performance of models are evaluated with
the same four metrics on a subset of the GEOM-
Drugs test set containing 300 molecules. Over-
all, AvgFlow has better performance when
Nstep ≥ 10 than AvgFlowReflow. When
Nstep < 10, the performance of AvgFlow has
start to collapse and eventually reaches 0%
coverage for both recall and precision when
Nstep = 1. The performance gap becomes
significant for all metrics when Nstep < 5.
AvgFlowReflow, on the other hand, has minimal
loss in performance until Nstep = 2 thanks to
the straightened flow trajectory. The 1-step gen-
eration quality of the model still suffers even
after reflow. Distillation can effectively reduce
the RMSD of 1-step generated conformers and
improve both the COV-R and COV-P. In sum-
mary, reflow is critical when generating molecular conformers with very few ODE steps (Nstep < 5).
The reflow and distillation algorithm is model architecture independent, thus can be extended to
finetune other powerful models such as ET-Flow (Hassan et al., 2024) to reduce sampling steps.

4.5 SAMPLING TIME

Table 3: Sampling time and performance comparison between models. Bolded results are the best.

Recall Precision
COV (%) ↑ AMR (Å) ↓ COV (%) ↑ AMR (Å) ↓

Method Step Time (ms) ↓ Mean Mean Mean Mean

Tor. Diff. 5 128 58.4 0.691 36.4 0.973
ET-Flow 5 106 77.8 0.476 74.0 0.550
MCF-S 3 57.3 56.9 0.725 30.8 1.014
MCF-B 3 102 66.5 0.665 39.9 0.951
MCF-L 3 134 71.6 0.636 45.3 0.686

AvgFlowReflow 2 2.68 64.2 0.663 43.1 0.871

To demonstrate the sampling efficiency of our model, we compared the sampling wall time of our
model with MCF and torsional diffusion. Table. 3 shows the sampling time comparison between
models2. The average sampling time of AvgFlowReflow for each conformer in the GEOM-Drugs test
set is 2.68 microseconds, which is 21 to 50× faster than different variants of MCF sampled with
DDIM for 3 steps. It is also 48× faster than torsional diffusion sampled with 5 steps. AvgFlowReflow

outperforms MCF-B on precision metrics and reached comparable performance on the recall metrics.
AvgFlowReflow also outperforms torsional diffusion and MCF-S by large margin with only a fraction
of the sampling time. The major speed-up of the our model is due to the JAX implementation and
less number of parameters. With reflow ensuring high-quality generation with only 2 ODE steps, our

2MCF and Torsional Diffusion sampling time values are adopted from Fig.6 of Wang et al. (2024)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

model achieves extraordinary sampling efficiency. The 5-steps generation of ET-Flow is achieving
better generation quality than all other models. Such high performance is majorly attributed to
the harmonic prior (Hassan et al., 2024; Jing et al., 2023). We have further extended the AvgFlow
implementation to accommodate the transport from harmonic prior and will explore the effect of
harmonic prior in future work. We want to note that the reflow is found to be necessary (Fig. 3) to
maintain generation quality when Nstep < 5, thus making it useful to finetune ET-Flow to improve
its sampling speed.

5 CONCLUSION

We have presented SO(3)-Averaged Flow as a new objective to accelerate the training of flow-
matching models for molecular conformer generation. Averaged Flow leads to faster convergence to
better performance compared with conditional OT and Kabsch alignment. We have also experimented
reflow and distillation to straighten the flow trajectory and enable few-step molecular conformer
generation. Our model reaches the state-of-the-art performance on the coverage-recall metric of the
GEOM-QM9 dataset. It is also matching the performance of transformer-based model which have
several times more parameters on the GEOM-Drugs dataset. By analyzing the effect of number of
ODE steps to the model generation quality, we find out that reflow and distillation are necessary when
very few steps (Nstep < 5) of conformer generation is desired. Finally, by comparing the sampling
time, we demonstrate that our model is approximately 21 to 50 times faster than the other state-of-the-
art models, while achieving second to the best generation quality and diversity. Overall, given that the
Averaged Flow and reflow training scheme can be applied to any models, our method bridges the gap
between multi-step flow-matching models and practical molecular conformer generation application
by pushing the boundary of quality-speed trade-off.

REFERENCES

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations (ICLR), 2023.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. Gfn2-xtb—an accurate and broadly
parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics
and density-dependent dispersion contributions. Journal of chemical theory and computation, 15
(3):1652–1671, 2019.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature communications, 13(1):2453, 2022.

Louis Bellmann, Patrick Penner, Marcus Gastreich, and Matthias Rarey. Comparison of combinatorial
fragment spaces and its application to ultralarge make-on-demand compound catalogs. Journal of
Chemical Information and Modeling, 62(3):553–566, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William Green,
and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d conformer
ensembles. Advances in Neural Information Processing Systems, 34:13757–13769, 2021.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks, 2022. URL https://arxiv.
org/abs/2207.09453.

10

https://arxiv.org/abs/2207.09453
https://arxiv.org/abs/2207.09453

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice,
Kostiantyn Lapchevskyi, Maurice Weiler, Michał Tyszkiewicz, Simon Batzner, Dylan Madis-
etti, Martin Uhrin, Jes Frellsen, Nuri Jung, Sophia Sanborn, Mingjian Wen, Josh Rackers,
Marcel Rød, and Michael Bailey. Euclidean neural networks: e3nn, April 2022. URL
https://doi.org/10.5281/zenodo.6459381.

Stefan Grimme. Exploration of chemical compound, conformer, and reaction space with meta-
dynamics simulations based on tight-binding quantum chemical calculations. Journal of chemical
theory and computation, 15(5):2847–2862, 2019.

Cristiano RW Guimarães, Alan M Mathiowetz, Marina Shalaeva, Gilles Goetz, and Spiros Liras. Use
of 3d properties to characterize beyond rule-of-5 property space for passive permeation. Journal of
chemical information and modeling, 52(4):882–890, 2012.

Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stark, Stephan Thaler, and Dominique Beaini.
Equivariant flow matching for molecular conformer generation. In ICML 2024 Workshop on
Structured Probabilistic Inference {\&} Generative Modeling, 2024.

Paul CD Hawkins. Conformation generation: the state of the art. Journal of chemical information
and modeling, 57(8):1747–1756, 2017.

Paul CD Hawkins, A Geoffrey Skillman, Gregory L Warren, Benjamin A Ellingson, and Matthew T
Stahl. Conformer generation with omega: algorithm and validation using high quality structures
from the protein databank and cambridge structural database. Journal of chemical information and
modeling, 50(4):572–584, 2010.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional
diffusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240–24253, 2022.

Bowen Jing, Ezra Erives, Peter Pao-Huang, Gabriele Corso, Bonnie Berger, and Tommi Jaakkola.
Eigenfold: Generative protein structure prediction with diffusion models. arXiv preprint
arXiv:2304.02198, 2023.

G Landrum. Rdkit: open-source cheminformatics http://www. rdkit. org. Google Scholar There is no
corresponding record for this reference, 3(8), 2016.

Danyeong Lee, Dohoon Lee, Dongmin Bang, and Sun Kim. Disco: Diffusion schrödinger bridge
for molecular conformer optimization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 13365–13373, 2024a.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. arXiv preprint
arXiv:2405.20320, 2024b.

Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
transformer for scaling to higher-degree representations. arXiv preprint arXiv:2306.12059, 2023.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

11

https://doi.org/10.5281/zenodo.6459381
https://openreview.net/forum?id=PqvMRDCJT9t

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations
(ICLR), 2023a.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference on
Learning Representations, 2023b.

Shitong Luo, Chence Shi, Minkai Xu, and Jian Tang. Predicting molecular conformation via dynamic
graph score matching. Advances in Neural Information Processing Systems, 34:19784–19795,
2021.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

David Mohlin, Josephine Sullivan, and Gérald Bianchi. Probabilistic orientation estimation with
matrix fisher distributions. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 4884–4893. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf.

Philipp Pracht, Fabian Bohle, and Stefan Grimme. Automated exploration of the low-energy chemical
space with fast quantum chemical methods. Physical Chemistry Chemical Physics, 22(14):7169–
7192, 2020.

Thomas S Rush, J Andrew Grant, Lidia Mosyak, and Anthony Nicholls. A shape-based 3-d scaffold
hopping method and its application to a bacterial protein- protein interaction. Journal of medicinal
chemistry, 48(5):1489–1495, 2005.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Christof H Schwab. Conformations and 3d pharmacophore searching. Drug Discovery Today:
Technologies, 7(4):e245–e253, 2010.

Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular
conformation generation. In International conference on machine learning, pp. 9558–9568. PMLR,
2021.

Jihyun Shim and Alexander D MacKerell Jr. Computational ligand-based rational design: role of
conformational sampling and force fields in model development. MedChemComm, 2(5):356–370,
2011.

Gregor NC Simm and José Miguel Hernández-Lobato. A generative model for molecular distance
geometry. arXiv preprint arXiv:1909.11459, 2019.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Ch Tsitouras. Runge–kutta pairs of order 5 (4) satisfying only the first column simplifying assumption.
Computers & Mathematics with Applications, 62(2):770–775, 2011.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/33cc2b872dfe481abef0f61af181dfcf-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Yuyang Wang, Ahmed AA Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Ángel Bautista.
Swallowing the bitter pill: Simplified scalable conformer generation. In Forty-first International
Conference on Machine Learning, 2024.

Lemeng Wu, Dilin Wang, Chengyue Gong, Xingchao Liu, Yunyang Xiong, Rakesh Ranjan, Raghura-
man Krishnamoorthi, Vikas Chandra, and Qiang Liu. Fast point cloud generation with straight
flows. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9445–9454, 2023.

Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli,
and Jian Tang. An end-to-end framework for molecular conformation generation via bilevel
programming. In International conference on machine learning, pp. 11537–11547. PMLR, 2021.

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923, 2022.

Jinhua Zhu, Yingce Xia, Chang Liu, Lijun Wu, Shufang Xie, Yusong Wang, Tong Wang, Tao Qin,
Wengang Zhou, Houqiang Li, et al. Direct molecular conformation generation. arXiv preprint
arXiv:2202.01356, 2022.

A APPENDIX

A.1 EXPERIMENTS DETAILS

A.1.1 TRAJECTORY AND DISTRIBUTION OF t

Figure 4: The distribution of t during
reflow

Here we are visualizing the trajectories of atoms in a
molecules during 100-steps of ODE transport. Fig. 1a shows
the trajectory before reflow, which demonstrate high cur-
vature at the beginning of the transport (t close to 0). We
observed such pattern in trajectory for most of molecules,
leading us to sample t from exponential distribution which
focus on the t < 0 region during the reflow. After reflow,
the 100-step ODE trajectory of the same molecules much
straighter (Fig. 1b).The distribution of t is visualized in
Fig. 4.

A.1.2 MODEL ARCHITECTURE

The equivariant model used in this work is a modified variant (Fig. 5) of the NequIP model (Batzner
et al., 2022). The model takes 4 inputs including the atomic features Z, relative distance vector
between atoms r⃗, edge (bond) features e, and the flow-matching time-step t. The output model is
a vector field corresponding to the probability flow at t. Compared to the original NequIP model,
our variant has residue connection and equivariant layer normalization (Liao et al., 2023) after each
interaction block, which we found to be highly effective in stabilizing the training of model with
more than 4 layers. Bond information in the 2D molecular graph is critical inductive bias for the
molecular conformer generation task. To add bond information into the model, we featurize the edges
in the molecular graph and concatenate the edge features e with the radial basis embedding of relative
distance vector r⃗. The concatenated message is then fed into the rotationally invariant radial function
implemented as an multi-layer perceptron. To keep long-range information in the graph convolution
during intermediate time-step t, we remove the envelop function from the radial basis and keep only
the radial Bessel function.

For both the GEOM-Drugs and GEOM-QM9 dataset, we train a model with 6 interaction blocks. The
multiplicity is set to 96 and maximum order of irreps l is 2. The radial function MLP has 2 layers
and hidden dimension of 256. Molecular graph are fully-connected with non-bond as an specified
bond type. The relative distance vectors are scaled down by a soft cutoff distance of 10Å and 20Å for
QM9 and Drugs dataset, respectively. we used 12 Bessel radial basis functions in the model. The
model is implemented using e3nn-jax (Geiger & Smidt, 2022; Geiger et al., 2022).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

 ×

(𝑍1, … , 𝑍), 𝑡
(𝑟1, … , 𝑟), (𝑒1, … , 𝑒)

𝑣 𝑡

𝑙 = 0, 1, 2 (𝑟1, … , 𝑟), (𝑒1, … , 𝑒)

(𝑍1, … , 𝑍), 𝑡

×

(a) (b) (c)

𝑙 = 0, 1, 2 (𝑟1, … , 𝑟)

𝑌
(𝑙)

(𝑒1, … , 𝑒)

Figure 5: Model architecture (a) Overview of the modified NequIP architecture for the flow vector field
prediction. (b) Details of the interaction block, where atomic features are mixed and refined with relative distance
vectors r⃗ and edge features. (c) In the convolution block, a learnable radial function MLP incorporate basis
embedding of r⃗ and edge features. Tensor product is used to combine the output of the MLP and the spherical
harmonics Y (l)

m projection of r⃗.

A.1.3 DATASETS

The dataset we train and benchmark our model on are GEOM-Drugs and GEOM-QM9(Axelrod &
Gomez-Bombarelli, 2022). We follow the exact splitting defined and used in previous works (Ganea
et al., 2021; Jing et al., 2022; Wang et al., 2024). The train/val/test set of GEOM-Drugs con-
tains 243473/30433/1000 molecules, respectively. The train/val/test set of GEOM-QM9 contains
106586/13323/1000 molecules, respectively.

A.1.4 MOLECULAR GRAPH FEATURIZATION

We followed the atomic featurization from GeoMol (Ganea et al., 2021). Details of the atomic
featurization are included in Table. 4. Graph Laplacian positional encoding vector (Dwivedi et al.,
2023) with size of 32 is concatenated with the atomic features for each atom in molecular graph.
The edge features is the one-hot encoding of the bond types: {No Bond, Single Bond, Double Bond,
Triple Bond, Aromatic Bond}.

Table 4: Atomic features as input to the model
Name Description Range

atom type Atom type One-hot encoding of the atom type
degree Number of bonded neighbors {x : 0 ≤ x ≤ 6, x ∈ Z}
charge Formal charge of atom {x : −1 ≤ x ≤ 1, x ∈ Z}
valence Implicit valence of atom {x : 0 ≤ x ≤ 6, x ∈ Z}
hybridization Hybridization type {sp, sp2, sp3, sp3d, sp3d2, other}
chirality Chirality Tag {unspecified, tetrahedral CW, tetrahedral CCW, other}
num H Total number of hydrogens {x : 0 ≤ x ≤ 8, x ∈ Z}
aromatic Whether on aromatic ring {True, False}
num rings Number of rings the atom on {x : 0 ≤ x ≤ 3, x ∈ Z}
ring size 3-8 Whether on ring size of 3-8 {True, False}

A.1.5 TRAINING AND SAMPLING DETAILS

The model is trained with the Averaged Flow for 990 epochs on the GEOM-Drugs dataset and 1500
epochs on the GEOM-QM9 dataset using 2 NVIDIA A5880 GPUs. We used dynamic graph batching
to maixmize the utilization of GPU memory and reduce JAX compilation time. The effective average
batch size is 208 and 416 for Drugs and QM9 dataset, respectively. We used Adam optimizer with
learning rate of 1e−2, which decays to 5e−3 after 600 epochs and to 1e−3 after 850 epochs. We
selected the top-30 conformers for model training.

To sample coupled (X ′
0, X

′
1) for reflow and distillation, we generate 32 noise-sample pairs for each

molecule in the Drugs and 64 for each molecule in the QM9 dataset. The reflow and distillation are

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

done using 4 NVIDIA A100 GPUs and doubling the effective batch size of each dataset. During the
reflow stage, the model is finetuned for 870 epochs on Drugs and 1530 epochs on QM9. We used
Adam optimizer with learning rate of 5e−3, which decays to 2.5e−3 after 450 epochs for Drugs
(500 epochs for QM9), and to 5e−4 after 650 epochs for Drugs (900 epochs for QM9). During
the distillation stage, the model is finetuned for 450 epochs on Drugs and 1200 epochs on QM9.
We used Adam optimizer with learning rate of 2e−3, which decays to 1e−3 after 300 epochs for
Drugs (500 epochs for QM9), and to 2e−4 after 450 epochs for Drugs (900 epochs for QM9). We
used exponential moving average (EMA) with a decay of 0.999 for all Averaged Flow, reflow, and
distillation training.

To generate the benchmark results of AvgFlow (Table. 1, Table. 1, and Table. 3), we use the Tsitouras’
5/4 solver (Tsitouras, 2011) implemented in the diffrax package with adaptive stepping. The
relative tolerance and absolute tolerance are set to 1e−5 and 1e−6 when sampling for GEOM-Drugs,
respectively. The relative tolerance and absolute tolerance are both set to 1e−5 when sampling for
GEOM-QM9. Euler solver is always used for AvgFlowReflow and AvgFlowDistill. When comparing
the effect of ODE steps to models, Euler solver is used.

A.2 EVALUATION DETAILS

A.2.1 EVALUATION MTRICS

We report the average minimum RMSD (AMR) between ground truth and generated structures,
and Coverage for Recall and Precision. Coverage is defined as the percentage of conformers with
a minimum error under a specified AMR threshold. Recall matches each ground truth structure
to its closest generated structure, and Precision measures the overall spatial accuracy of the each
generated structure. Following Ganea et al. (2021); Jing et al. (2022), we generate two times the
number of ground truth structures for each molecule. More formally, for K = 2L, let {C∗

l }l∈[1,L]

and {Ck}k∈[1,K] respectively be the sets of ground truth and generated structures:

COV-Precision :=
1

K

∣∣∣∣{k ∈ [1..K] : minl∈[1..L] RMSD(Ck, C
∗
l) < δ}

∣∣∣∣,
AMR-Precision :=

1

K

∑
k∈[1..K]

minl∈[1..L] RMSD(Ck, C
∗
l),

(12)

where δ is the coverage threshold. δ is set to 0.75Å for the Drugs and 0.5Å for the QM9 dataset. The
recall metrics are obtained by swapping ground truth (K) and generated conformers (L) in the above
equations.

A.3 AVERAGED FLOW DETAILS

A.3.1 PYTHON IMPLEMENTATION

Listing 1: Averaged Flow
def avg_harmonic_flow(

t: jax.Array, # []
x: jax.Array, # [num_nodes, 3]
x1: jax.Array, # [num_conformers, num_nodes, 3]
edges: jax.Array, # [2, num_edges]
weights: jax.Array | None = None, # [num_conformers]
sigma0: jax.Array = 1.0,
sigma1: jax.Array = 0.0,

) -> jax.Array:
degree = jnp.bincount(edges[0], length=x.shape[0])

def metric(x, y):
x and y have shape [num_nodes]
sigma_t = (1 - t) * sigma0 + t * sigma1
beta = t / sigma_t**2
laplacian = jnp.sum(degree * x * y) - jnp.sum(x[edges[0]] * y[edges[1]])
return beta * laplacian

avg_x1 = avg_target(x, x1, metric, weights)

return (avg_x1 - x) / (1 - t)

def avg_flow(

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

t: jax.Array, # []
x: jax.Array, # [num_nodes, 3]
x1: jax.Array, # [num_conformers, num_nodes, 3]
weights: jax.Array | None = None, # [num_conformers]
sigma0: jax.Array = 1.0,
sigma1: jax.Array = 0.0,

) -> jax.Array:
def metric(x, y):

x and y have shape [num_nodes]
sigma_t = (1 - t) * sigma0 + t * sigma1
beta = t / sigma_t**2
return beta * jnp.dot(x, y)

avg_x1 = avg_target(x, x1, metric, weights)

return (avg_x1 - x) / (1 - t)

def avg_target(
y: jax.Array, # [num_nodes, 3]
targets: jax.Array, # [num_conformers, num_nodes, 3]
metric: Callable[[jax.Array, jax.Array], jax.Array],
weights: jax.Array | None = None, # [num_conformers]

) -> jax.Array:
num_conformers, num_nodes, _ = targets.shape
assert y.shape == (num_nodes, 3)
assert targets.shape == (num_conformers, num_nodes, 3)

def logZ(alpha):
def f(x):

x and y have shape [num_nodes, 3]
mapped_metric = jax.vmap(jax.vmap(metric, (None, -1)), (-1, None))
similarity = mapped_metric(x, y) # [3, 3]
return logcF(similarity + x.T @ alpha)

return logsumexp(jax.vmap(f)(targets), weights)

return jax.grad(logZ)(jnp.zeros_like(y))

def logsumexp(a: jax.Array, weights: jax.Array | None = None) -> jax.Array:
assert a.ndim == 1
assert weights is None or weights.shape == a.shape
where = (weights > 0) if weights is not None else None

amax = jnp.max(a, where=where, initial=-jnp.inf)
amax = jax.lax.stop_gradient(

jax.lax.select(jnp.isfinite(amax), amax, jax.lax.full_like(amax, 0))
)
if where is not None:

a = jnp.where(where, a, amax)
exp_a = jax.lax.exp(jax.lax.sub(a, amax))
if weights is not None:

exp_a = exp_a * weights
sumexp = exp_a.sum(where=where)
return jax.lax.add(jax.lax.log(sumexp), amax)

All the code below is adapted from a PyTorch code from David Mohlin, Gerald Bianchi and Josephine Sullivan

def logcF(F: jax.Array) -> jax.Array:
\log \int_{SO(3)} \exp(\text{tr}(FˆT R)) dR
assert F.shape == (3, 3)
return logcf(*signed_svdvals(F))

def signed_svdvals(F: jax.Array) -> jax.Array:
u, s, vh = jnp.linalg.svd(F, full_matrices=False)
u, vh = jax.lax.stop_gradient((u, vh))
sign = jnp.sign(jnp.linalg.det(u @ vh))
return s.at[-1].mul(sign)

@jax.custom_vjp
def logcf(s1: jax.Array, s2: jax.Array, s3: jax.Array) -> jax.Array:

assume s1 >= s2 >= s3
s1, s2, s3 = jnp.asarray(s1), jnp.asarray(s2), jnp.asarray(s3)
return s1 + s2 + s3 + jnp.log(factor(False, s1, s2, s3))

def _logcf_fwd(
s1: jax.Array, s2: jax.Array, s3: jax.Array

) -> tuple[jax.Array, tuple[jax.Array, jax.Array]]:
s1 >= s2 >= s3
f = factor(False, s1, s2, s3)
return s1 + s2 + s3 + jnp.log(f), (s1, s2, s3, f)

def _logcf_bwd(res: tuple[jax.Array, ...], grad: jax.Array) -> tuple[jax.Array]:
s1, s2, s3, f = res
s1 >= s2 >= s3
assert s1.shape == ()

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

assert f.shape == ()
assert grad.shape == ()
g1 = grad * factor(True, s1, s2, s3) / f
g2 = grad * factor(True, s2, s1, s3) / f
g3 = grad * factor(True, s3, s1, s2) / f
return g1, g2, g3

logcf.defvjp(_logcf_fwd, _logcf_bwd)

def factor(add_x: bool, s1: jax.Array, s2: jax.Array, s3: jax.Array) -> jax.Array:
def f(x):

i0 = (1.0 - 2 * x) if add_x else 1.0
i1 = bessel0((s2 - s3) * x)
i2 = bessel0((s2 + s3) * (1 - x))
return i0 * i1 * i2

tiny = jnp.finfo(s1.dtype).tiny
a = 2 * (s3 + s1)

a non zero:
a_ = jnp.maximum(a, 0.5)
y = jnp.linspace(tiny + jnp.exp(-a_), 1.0, 512)
r1 = jnp.trapezoid(jax.vmap(f)(-jnp.log(y) / a_), y) / a_

a (close to) zero:
x = jnp.linspace(0.0, 1.0, 512, dtype=s1.dtype)
r2 = jnp.trapezoid(jax.vmap(f)(x) * jnp.exp(-a * x), x)

return jnp.where(a > 1.0, r1, r2)

def bessel0(x: jax.Array) -> jax.Array:
p = [1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732, 0.360768e-1, 0.45813e-2]
bessel0_a = jnp.array(p[::-1], dtype=x.dtype)

p = [0.39894228, 0.1328592e-1, 0.225319e-2, -0.157565e-2, 0.916281e-2]
p += [-0.2057706e-1, 0.2635537e-1, -0.1647633e-1, 0.392377e-2]
bessel0_b = jnp.array(p[::-1], dtype=x.dtype)

abs_x = jnp.abs(x)
x_lim = 3.75

def w(x, y):
return jnp.where(abs_x <= x_lim, x, y)

abs_x_ = w(x_lim, abs_x)

return w(
jnp.polyval(bessel0_a, w(abs_x / x_lim, 1.0) ** 2) * jnp.exp(-abs_x),
jnp.polyval(bessel0_b, w(1.0, x_lim / abs_x_)) / jnp.sqrt(abs_x_),

)

A.3.2 SPEED BENCHMARK

We benchmarked the time used by our Python implementation to solve the Averaged Flow objective
for batched graphs. Each graph is set to have 50 nodes (the average number of atoms in GEOM-Drugs
molecules is 44). The benchmark is done on a single NVIDIA A5880 GPU.

Table 5: Computation time of Averaged Flow on batched graphs (50 nodes per graph). Unit is in ms.
Nbatch is the number of graphs in a batch and Nconformer is number of conformers used in Averaged
Flow solving.

Nbatch

Nconformer

1 10 100 1000
1 0.6 0.5 0.5 0.6
10 0.5 0.5 0.6 1.0
100 0.5 0.6 1.1 7.6
1000 0.5 0.9 7.5 73.5

17

	Introduction
	Background and related work
	Generative models for Conformer generation
	Flow-matching
	Rectified flow and other distillation

	Method
	SO(3)-Averaged Flow
	Reflow and distillation
	Flow-matching model architecture

	Experiments
	Averaged Flow leads to faster convergence to better performance
	GEOM-QM9
	GEOM-Drugs
	When is reflow really necessary?
	Sampling time

	Conclusion
	Appendix
	Experiments Details
	Trajectory and distribution of t
	Model architecture
	Datasets
	Molecular graph featurization
	Training and sampling details

	Evaluation Details
	Evaluation Mtrics

	Averaged Flow Details
	Python Implementation
	Speed Benchmark

