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Abstract

We consider a variant of the standard Bandit linear optimization, where in each trial the loss
function is the sum of a linear function and a small but arbitrary perturbation chosen after
observing the player’s choice. We give both expected and high probability regret bounds
for the problem. Our result also implies an improved high-probability regret bound for the
Bandit linear optimization, a special case with no perturbation. We also give a lower bound
on the expected regret.

1 Introduction

Bandit optimization is a sequential game between a player and an adversary. The game is played over T
rounds, where T is a positive natural number called the horizon. The game is specified by a pair (K, F),
where K ⊆ Rd is a bounded closed convex set and F ⊆ {f : K → R} is a function class. In each round
t ∈ [T ], the player first chooses an action xt ∈ K and the adversary chooses a loss function ft ∈ F , and then
the player receives the value ft(xt) as the loss. Note that ft itself is unknown to the player. In this paper,
we assume the adversary is oblivious, i.e., the loss functions are specified before starting the game 1. The
goal of the player is to minimize the regret

T∑
t=1

ft(xt) − min
x∈K

T∑
t=1

ft(x) (1)

in expectation (expected regret) or with high probability (high-probability regret).

For convex loss functions, the bandit optimization has been extensively studied (see, e.g.,Dani et al. (2007);
Abernethy et al. (2008); Lee et al. (2020)). O(d1/3T 3/4) regret bounds are shown by Flaxman et al. (2005).
Lattimore (2020) shows an information-theoretic regret bound Õ(d2.5

√
T ) for convex loss functions. For

linear loss functions, Abernethy et al. (2008) propose the SCIRBLE algorithm and give an expected regret
bound O(d

√
T ln T ), achieving optimal dependence on T (Bubeck et al., 2012). Lee et al. (2020) propose the

SCRIBLE with lifting and show a high-probability regret bound Õ(d2
√

T ).

Recently, non-convex functions are also getting popular in this literature. For example, Agarwal et al. (2019)
show a regret bound O(poly(d)T 2/3) for smooth and bounded non-convex functions. Ghai et al. (2022)
propose algorithms with regret bounds O(poly(d)T 2/3) under the assumption that non-convex functions are
reparametlized as some convex functions.

In this paper, we investigate the bandit optimization problem for a class of non-convex non-smooth loss
functions. The function class consists of non-smooth and non-convex functions that are "close" to linear
functions, in the sense that functions in the class can be viewed as linear functions with adversarial non-
convex perturbations whose amount is up to ϵ. Bandit optimization for linear loss functions with stochastic
noise (e.g., Abbasi-Yadkori et al. (2011); Amani et al. (2019)) cannot be applied to our problem. Also,
standard Bandit linear optimization methods for estimating the gradient, such as self-concordant barrier

1We do not consider the case where the adversary is adaptive, i.e., it can choose the t-th loss function ft depending on the
previous actions x1, . . . , xt−1.

1

 Focus on d and T (Literature Review by Reviewer TGdS)



Under review as submission to TMLR

regularizer(Hazan et al., 2016), cannot be effectively applied to our problem. We propose a novel approach
to analyzing high-probability regret, introducing a new method for decomposing regret. Additionally, we
propose a novel method to bound ∥xt − u∥, where u ∈ K, to account for the impact of perturbations.

1. When ϵ ̸= 0, we propose a modification of the SCRIBLE with lifting and increasing learning rates
(Lee et al., 2020) and utilize the properties of the ν-normal barrier(Nemirovski, 2004) to prove its high
probability regret bound Õ(d

√
T + ϵdT ), and we also obtain its expected regret O(d

√
T ln T + ϵdT ).

2. When ϵ = 0, this problem becomes Bandit linear optimization, a special case with no perturbation.
Compared to Lee et al. (2020)’s results, holding with probability 1−γ, O(ln2(dT )d2 ln T

√
T ln ln(dT )

γ ),
we use a different regret decomposition approach to achieve a better high-probability regret bound
O(d

√
T ln T + ln T

√
T ln( ln T

γ ) + ln( ln T
γ )).

3. We prove a lower bound Ω(ϵT ), implying that our bounds are tight w.r.t. the parameter ϵ.

2 Related Work

The bandit linear optimization was first proposed by Awerbuch & Kleinberg (2004), who achieved a regret
bound of O(d3/5T 2/3) against an oblivious adversary. Later, McMahan & Blum (2004) established a regret
bound of O(dT 3/4) when facing an adaptive adversary. A foundational approach in bandit optimization
problems involves gradient-based smoothing techniques. Abernethy et al. (2012) presented pioneering work
in this area and achieved an expected regret bound of O(d

√
T ln T ) when dealing with an oblivious adversary.

Bartlett et al. (2008) proposed a high-probability regret bound of O(d2/3
√

T ln dT ) under a special condition.
Subsequently, Lee et al. (2020) presented a high-probability regret bound Õ(d2

√
T ) for both oblivious and

adaptive adversaries.

Unlike convex bandit problems, which have been extensively explored and analyzed, non-convex bandits
introduce unique challenges due to the complexity of exploring and exploiting in a non-convex area. Gao
et al. (2018) considered both non-convex losses and non-stationary data and established a regret bound of
O(

√
T + poly(T ). Yang et al. (2018) achieved a regret bound of O(

√
T log T ) for a non-convex loss functions.

However, they both required the loss functions to have smoothness properties, and our loss functions are
neither convex nor smooth.

2.1 Comparison to Lee et al. (2020)

Our approach builds upon Lee et al. (2020)’s work. Below, we highlight the key differences between our
method and Lee et al. (2020)’s in the context of the oblivious bandit setting:

1. Simplified Regret Analysis: While Lee’s regret analysis introduces unnecessary complexity for the
oblivious bandit setting, our approach simplifies the analysis, leading to more streamlined results.

2. Reduced Dependence on d: Lee et al. (2020)’s analysis results in a regret bound with greater
dependence on d, whereas our method derives a bound with significantly reduced dependence on
d (This distinction is demonstrated in the introduction and further illustrated in the case where
ϵ = 0).

3. Revised Generality of Problem Setting: Like the SCIRBLE algorithm, our approach is more general,
treating bandit linear optimization as a special case within a broader problem framework.

3 Preliminaries

This section introduces some necessary notations and defines ϵ-approximately linear function. Then we give
our problem setting.
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3.1 Notation

We abbreviate the 2-norm ∥·∥2 as ∥·∥. For a twice differentiable convex function R : Rd → R and any x, h ∈
Rd, let ∥h∥x= ∥h∥∇2R(x)=

√
h⊤∇2R(x)h, and ∥h∥∗

x= ∥h∥(∇2R(x))−1=
√

h⊤(∇2R(x))−1h, respectively.

For any v ∈ Rd, let v⊥ be the space orthogonal to v. Let Sd
1 = {x | ∥x∥= 1}. The vector ei ∈ Rd is a

standard basis vector with a value of 1 in the i-th position and 0 in all other positions. I is an identity
matrix with dimensionality implied by context.

3.2 Problem Setting

Let K ⊆ Rd be a bounded and closed convex set such that for any x, y ∈ K, ∥x − y∥ ≤ D. Furthermore,
we assume that K contains the unit ball centered at the zero vector. Otherwise, we can apply an affine
transformation to translate the center point of the convex set to the origin. Let K′ = {(x, 1) : x ∈ K}. For
any δ ∈ (0, 1), let Kδ = {x| 1

1−δ x ∈ K} and K′
δ = {(x, 1) : x ∈ Kδ}, respectively.

Definition 1. A function f : K → R is ϵ-approximately linear if there exists θf ∈ Rd such that ∀x ∈ K,
|f(x) − θ⊤

f x| ≤ ϵ.

For convenience, in the definition above, let σf (x) = f(x) − θ⊤
f x, and we omit the subscript f of θf and σf

if the context is clear. Note that |σ(x)| ≤ ϵ for any x ∈ K.

In this paper, we consider the bandit optimization (K, F), where F is the set of ϵ-approximately linear
functions f(x) = θ⊤x + σ(x) with ∥θ∥ ≤ G.

The bandit optimization for ϵ-approximately linear functions can be defined as the following statement. For
every round t = 1, .., T , the player chooses an action xt ∈ K, and the adversary simultaneously chooses a
linear function ft(xt)(= θ⊤

t xt) at the same time. After observing the player’s choice xt, the adversary chooses
a perturbation σt(xt)(|σt(xt)| ≤ ϵ). The value of ϵ-approximately linear function ft(xt) = θ⊤

t xt + σt(xt) is
then revealed to the player. The goal of the player is to minimize the regret

∑T
t=1 ft(xt)−minx∈K

∑T
t=1 ft(x).

4 Main Results

In this section, we first review SCRIBLE and SCRIBLE with lifting and increasing learning rates, followed
by presenting the main contributions of this paper with detailed explanations.

4.1 SCRIBLE

When ϵ = 0, our problem becomes bandit linear optimization problem, which is a problem that has been
widely studied. To introduce our result, we start by revisiting the SCRIBLE algorithm, which is effective
for the bandit linear optimization problem. It utilizes a κ-self concordant barrier T (Abernethy et al.,
2008), which always exists on K. At each round t, the player chooses a point xt ∈ K, but the actual point
played is yt = xt + Atµt, where At = [∇2T (xt)]−

1
2 and µt is uniformly randomly sampled from the d-

dimensional unit sphere Sd. It maintains a sequence x1, ..., xT ∈ K, which is updated according to the rule:
xt+1 = arg min

x∈K
η

∑t
τ=1 g⊤

τ x + T (x), where gτ is an estimator for θτ , η is some learning rate. It relies only

on the feedback ft(yt)(= θ⊤
t yt) to build an unbiased estimator gt = dft(yt)A−1

t µt for θt.

In the analysis (Abernethy et al., 2008) of SCRIBLE, the unbiased estimator gt helps establish that for any
u ∈ K, θ⊤

t (xt − u) = Et[g⊤
t (xt − u)] ≤ O(ηd2). This result is instrumental in deriving the regret bound

O( κ
η log T + ηd2T ) for oblivious adversary. However, in our problem setting, the estimates gt = d[θ⊤

t yt +
σt(yt)]A−1

t µt obtained using SCRIBLE will always be influenced by σt(yt). This necessitates additional
focus on bounding (dσt(yt)A−1

t µt)⊤(xt − u). Although the Cauchy-Schwarz inequality helps in deriving the
bounds (dσt(yt)A−1

t µt)⊤(xt − u) ≤ ∥dσt(yt)A−1
t µt∥∗

∇2T (xt)∥xt − u∥∇2T (xt) and ∥dσt(yt)A−1
t µt∥∗

∇2T (xt)≤ dϵ

(a similar proof can be found in Equations 24 to 30), the analysis of SCRIBLE, particularly the κ-self
concordant barrier T , cannot help us bound ∥xt − u∥∇2T (xt). Furthermore, since the largest eigenvalue
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of ∇2T (xt)(Nemirovski, 2004) could potentially approach infinity, bounding ∥xt − u∥∇2T (xt) becomes a
significant challenge.

4.2 SCRIBLE with lifting and increasing learning rates

SCRIBLE with lifting and increasing learning rates introduces a dummy coordinate with a value of 1 ap-
pended to all actions, resulting in the lifted decision set K′ = {(x, 1) : x ∈ K}. This transformation lifts the
bandit linear optimization problem to Rd+1. The conic hull of this set is con(K) = {0} ∪ {(x, b) : x

b ∈ K, x ∈
Rd, b > 0}.

The algorithm performs SCRIBLE over the lifted decision set, using a ν-normal barrier R defined over the
con(K) (which always exists) as the regularizer to generate the sequence x′

1, ..., x′
t. It set y′

t = x′
t+Atµt where

At = [∇2R(x′
t)]−

1
2 and µt is uniformly sampled at random from Sd+1

1 ∩ (Ated+1)⊥. Since µt is orthogonal to
Ated+1, the last coordinate of Atµt is zero, ensuring that y′

t = (yt, 1) remains within K′. The actual point
played is still yt. After playing yt and observing ft(= θ⊤

t yt), it constructs the loss estimator the same way
as SCRIBLE: gt = dft(yt)A−1

t µt. The analysis by Lee et al. (2020) shows that the first d coordinates of gt

are indeed an unbiased estimator of θt.

SCRIBLE with lifting and increasing learning rates utilizes the properties of the ν-normal barrier R, which
are not available in the κ-self concordant barrier T , as well as increasing learning rates, to bound ∥h∥∇2R(x′

t)≤
−∥h∥∇2R(x′

t+1)+ν ln(νT + 1), where h ∈ K′. Besides, Lee et al. (2020) divide the regret mainly into two
parts:

∑T
t=1[y⊤

t θt − x⊤
t gt + u⊤(gt − θt)] and

∑T
t=1(yt − u)⊤gt, where u ∈ K. They provide a bound for∑T

t=1(yt − u)⊤gt and a high-probability bound for
∑T

t=1[y⊤
t θt − x⊤

t gt + u⊤(gt − θt)], which helps derive
high-probability regret bounds for both oblivious and adaptive adversaries. However, for our problem, the
bound they obtain for ∥h∥∇2R(x′

t) is still too large and does not help in bounding ∥x′
t − h∥∇2R(x′

t). Again,
since the largest eigenvalue of ∇2R(xt′)(Nemirovski, 2004) could potentially approach infinity, bounding
∥x′

t − h∥∇2R(x′
t) remains a challenge, and no previous work has addressed this.

4.3 SCRIBLE with lifting

For a decision set K with a ν-normal barrier on con(K), where con(K) = {0}∪{(x, b) : x
b ∈ K, x ∈ Rd, b > 0},

we apply Algorithm 1 to approximately linear functions. Recall K′ = {(x, 1) : x ∈ K}.

We simplify the SCRIBLE with lifting and increasing learning rates(Lee et al., 2020). We do not use the
increasing learning rates part but retain the lifting. This preserves its advantages; for instance, the ν-
normal barrier R always exists on con(K). Additionally, the actual point played by the algorithm is yt and
y′

t = (yt, 1) = x′
t +Atµt always remains within K′. Furthermore, it adopts the same update method as FTRL

algorithm(Hazan et al., 2016): x′
t+1 = arg min

x′∈K′
η

∑t
τ=1 g⊤

τ x′ + R(x′). Although it constructs the same loss

estimator, gt = dft(yt)A−1
t µt as the original algorithm, gt is no longer an unbiased estimator of θt

Algorithm 1 SCRIBLE with lifting
Input: T , parameters η ∈ R, δ ∈ (0, 1), ν-normal barrier R on con(K)

1: Initialize: x′
1 = arg minx′∈K′ R(x′)

2: for t = 1, .., T do
3: let At = [∇2R(x′

t)]−
1
2

4: Draw µt from Sd+1
1 ∩ (Ated+1)⊥ uniformly, set y′

t = (yt, 1) = x′
t + Atµt.

5: Play yt, observe and incur loss ft(yt). Let gt = dft(yt)A−1
t µt.

6: Update x′
t+1 = arg min

x′∈K′
η

∑t
τ=1 g⊤

τ x′ + R(x′)
7: end for

We present our main results: expected and high-probability regret bounds for the problem.
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Theorem 1. The algorithm with parameters η =
√

2ν log T

2d
√

T
, δ = 1

T 2 guarantees the following expected regret
bound

E[
T∑

t=1
ft(yt) − min

x∈K

T∑
t=1

ft(x)] ≤ 4d
√

2νT log T + GD

T
+ 2Tϵ + dTϵ(2ν +

√
ν). (2)

Theorem 2. The algorithm with parameters η =
√

2ν ln T
2d

√
T

, δ = 1
T 2 ensures that with probability at least 1 − γ

T∑
t=1

ft(yt) − min
x∈K

T∑
t=1

ft(x) ≤ 4d
√

2νT ln T + GD

T
+ Tdϵ(2ν +

√
ν) + C(1 + ϵ)

√
8T ln C

γ
+ 2GD ln C

γ
+ 2Tϵ (3)

where C = ⌈ln GD⌉⌈ln((GD)2T )⌉.

We primarily divide the regret into parts
∑T

t=1(xt − u)⊤θt and
∑T

t=1(yt − xt)⊤θt rather than following the
approach of Lee et al. (2020), where u ∈ K. This means that, for an oblivious adversary, calculating the
regret does not require considering the variance of the estimator gt and θt, but only the variance between
yt and xt. This difference is a key factor that enables us to achieve a better high-probability regret bound
when ϵ = 0.

Firstly, we bound
∑T

t=1(xt − u)⊤θt. As mentioned earlier, for ϵ-approximately linear functions, bounding∑T
t=1(xt − u)⊤θt requires considering the term (dσt(yt)A−1

t µt)⊤(xt − u). The main difficulty in bounding
(dσt(yt)A−1

t µt)⊤(xt−u) is that the norm ∥xt−u∥ is hard to bound. Thus, we make the entire analysis hold in
Rd+1 and transform the problem from bounding the norm ∥xt −u∥ to how to bound the norm ∥x′

t −h∥, where
h ∈ K′. We present a straightforward yet necessary Lemma 4, which helps to bound ∥h∥∇2R(x′

t)≤ 2ν. In
addition, the properties of the ν normal barrier tell us ∥x′

t∥∇2R(x′
t)=

√
ν. With these two conditions, we can

immediately deduce the bound ∥x′
t − h∥∇2R(x′

t) as 2ν +
√

ν. This also implies that increasing learning rates
are not required in our case, as they are solely aimed at controlling ∥h∥∇2R(x′

t)≤ −∥h∥∇2R(x′
t+1)+ν ln(νT +1)

in Lee et al. (2020)’s paper.

Secondly, by obtaining the expected bound and high-probability bound for
∑T

t=1(yt − xt)⊤θt, we can derive
the expected regret bound and high-probability regret bound, respectively. For high-probability bound of∑T

t=1(yt − xt)⊤θt, unlike SCRIBLE with lifting and increasing learning rates, which constrains the decision
set from K′ to K′

δ to ensure that x′
t is never too close to the boundary (thus ensuring that the eigenvalues of

At are bounded, especially for bounding ∥h∥∇2R(x′
t)). Our approach does not require x′

t to stay away from
the boundary. Furthermore, we do not need to bound the eigenvalues of At, which gives us greater flexibility
in choosing the value of δ (such as 1

T 2 ), leading to a better upper bound for the regret.

Finally, we prove the lower bound of regret in section 6.

5 Proof

This section introduces the preliminary of ν-normal barrier, presents several essential lemmas, and gives the
proof of main theorems.

5.1 ν-normal barrier

We introduce the ν-normal barrier, providing its definitions and highlighting several key properties that will
be frequently used in the subsequent analysis.
Definition 2. Let Ψ ∈ Rd be a closed and proper convex cone and let ν ≥ 1. A function R : int(Ψ) → R:
is called a ν-logarithmically homogeneous self-concordant barrier (or simply ν-normal barrier) on Ψ if

1. R is three times continuously differentiable and convex and approaches infinity along any sequence
of points approaching the boundary of Ψ.
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2. For every h ∈ Rd and x ∈ int(Ψ) the following holds:

d∑
i=1

d∑
j=1

d∑
k=1

∂3R(x)
∂xi∂xj∂xk

hihjhk ≤ 2∥h∥3
x, (4)

|∇R(x)⊤h|≤
√

ν∥h∥x, (5)

R(tx) = R(x) − ν ln t, ∀x ∈ int(Ψ), t > 0. (6)

Lemma 1 (Nemirovski (2004); Nesterov & Nemirovskii (1994)). If R is a ν-normal barrier on Ψ, Then for
any x ∈ int(Ψ) and any h ∈ Ψ, we have

∥x∥2
x= ν, (7)

∇2R(x)x = −∇R(x), (8)

∥h∥x≤ −∇R(x)⊤h, (9)

∇R(x)⊤(h − x) ≤ ν. (10)

Lemma 2 (Nemirovski (2004)). If R is a ν-normal barrier on Ψ, then the Dikin ellipsoid centered at
x ∈ int(Ψ), defined as {y : ∥y − x∥x≤ 1}, is always within Ψ. Moreover,

∥h∥y≥ ∥h∥x(1 − ∥y − x∥x) (11)

holds for any h ∈ Rd and any y with ∥y − x∥x≤ 1.
Lemma 3 (Hazan et al. (2016)). Let R is a ν-normal barrier over Ψ, then for all x, z ∈ int(Ψ) : R(z) −
R(x) ≤ ν log 1

1−πx(z) , where πx(z) = inf{t ≥ 0 : x + t−1(z − x) ∈ Ψ}.

ν-normal barrier plays a crucial role in addressing one of the key challenges in this problem: bounding
∥x′

t − h∥x′
t
, where h ∈ K′. Equation 7 give ∥x′

t∥x′
t
=

√
ν. Building upon Lemma 1, we introduce an effective

Lemma 4 that aids in bounding ∥h∥x′
t
.

Lemma 4. If R be a ν-normal barrier for Ψ ⊆ Rd, then for any x ∈ int(Ψ) and any h ∈ Ψ, we have

∥h∥x≤ 2ν. (12)

Proof. From Lemma 1, we have
∥h∥x≤ −∇R(x)⊤h ≤ |∇R(x)⊤h|. (13)

Then,
|∇R(x)⊤h| = |∇R(x)⊤(h − x + x)| ≤ |∇R(x)⊤(h − x)| + |∇R(x)⊤x|. (14)

By Lemma 1, |∇R(x)⊤(h − x)| + |∇R(x)⊤x| ≤ ν + |x⊤∇2R(x)x| = 2ν.

With the help of Equation 7 and Lemma 4, it is easy to apply the triangle inequality to derive ∥x′
t − h∥x′

t
≤

∥x′
t∥x′

t
+∥h∥x′

t
≤

√
ν + 2ν, where h ∈ K′..

5.2 Useful lemmas

In addition to the properties of the normal barrier and its related lemmas, we also need to introduce some
additional necessary lemmas.

Like Lemma 6 in the SCRIBLE algorithm(Abernethy et al., 2008), the next minimizer x′
t+1 is “close” to

x′
t. However, there are two differences here: the first is that ∇ϕt−1(x′

t) ̸= 0 is possible, where ϕt(x′) =
η

∑t
τ=1 g⊤

τ x′ + R(x′). And the second is that for z = x′
t + αu, where u is a vector such that ∥u∥x′

t
= 1 and

α ∈ (− 1
2 , 1

2 ), we need to satisfy z ∈ K′ instead of z ∈ K.
Lemma 5. x′

t+1 ∈ W4dη(x′
t), where Wr(x′) = {y ∈ K′ : ∥y − x′∥x′< r}.
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Proof. Recall that x′
t+1 = arg minx′∈K′ ϕt(x′), where ϕt(x′) = η

∑t
τ=1 g⊤

τ x′ +R(x′). Let ht(x) = ϕt((x, 1)) =
ϕt(x′), then min ht(x) = min ϕt(x′). Noticing that ht is a convex function on Rd and still holds the barrier
property(approaches infinity along any sequence of points approaching the boundary of K). By properties
of convex functions, we can get ∇ht−1(xt) = 0 and for the first d coordinates ∇ϕt−1(x′

t) = 0.

Consider any point in z ∈ W 1
2
(x′

t). It can be written as z = x′
t + αu for some vector u such that ∥u∥x′

t
= 1

and α ∈ (− 1
2 , 1

2 ). Noticing the d + 1 coordinate of u is 0. Expanding,

ϕt(z) = ϕt(x′
t + αu)

= ϕt(x′
t) + α∇ϕt(x′

t)⊤u + α2 1
2u⊤∇2ϕt(ξ)u

= ϕt(x′
t) + α(∇ϕt−1(x′

t) + ηgt)⊤u + α2 1
2u⊤∇2ϕt(ξ)u

= ϕt(x′
t) + αηg⊤

t u + α2 1
2u⊤∇2ϕt(ξ)u,

for some ξ on the path between x′
t and x′

t +αu and the last equality holds because ∇ϕt−1(x′
t)⊤u = 0. Setting

the derivative with respect to α to zero, we obtain

|α∗|= η|g⊤
t u|

u⊤∇2ϕt(ξ)u = |α∗|= η|g⊤
t u|

u⊤∇2R(ξ)u (15)

The fact that ξ is on the line x′
t to x′

t + αu implies that ∥ξ − x′
t∥x′

t
≤ ∥αu∥x′

t
≤ 1

2 . Hence, by Lemma 2

∇2R(ξ) ⪰ (1 − ∥ξ − x′
t∥x′

t
)2∇2R(x′

t) ≻ 1
4∇2R(x′

t). (16)

Thus u⊤∇2R(ξ)u > 1
4 ∥u∥x′

t
= 1

4 , and α∗ < 4η|g⊤
t u|. Using assumption maxx∈K|ft(x)|≤ 1,

g⊤
t u ≤ ∥gt∥∗

x′
t
∥u∥x′

t
≤ ∥dft(yt)A−1

t µt∥∗
x′

t
≤

√
d2µ⊤

t A−⊤
t (∇2R(x′

t))−1A−1
t µt ≤ d, (17)

we conclude that |g⊤
t u|≤ d, and |α∗|< 4dη < 1

2 by our choice of η and T . We conclude that the local
optimum arg min z ∈ W 1

2 (x′
t)ϕt(z) is strictly inside W4dη(x′

t), and since ϕt is convex, the global optimum is

xt+1 = arg min
z∈K′

ϕt(z) ∈ W4dη(x′
t). (18)

Lemma 5 implies ∥x′
t+1 −x′

t∥x′
t
≤ 4dη. This result will help us bound g⊤

t (x′
t −h), where h ∈ K′(see Lemma 7).

This next lemma is based on Lemma B.9.(Lee et al., 2020), but due to the differences in the loss functions,
what we obtain is an unbiased estimate regarding gt,i rather than θt,i, for i ∈ [d]. Lee et al. (2020) state
that Et[lt,i] = θt,i, for i ∈ [d]. Since lt = d(θt, 0)(x′

t + Atµt)A−1
t µt is identical to ours, we directly apply it

to our analyze.
Lemma 6. Let lt = d(θt, 0)(x′

t + Atµt)A−1
t µt. For Algorithm 1, we have Et[lt,i] = θt,i, for i ∈ [d].

The regret bound of FTRL algorithm(Hazan et al., 2016) states that for every u ∈ K,
∑T

t=1 ∇⊤
t xt −∑T

t=1 ∇⊤
t u ≤

∑T
t=1[∇⊤

t xt −∇⊤
t xt+1]+ 1

η [R(u)−R(x1)], where ∇t represents the gradient of the loss function
ft. In our adaptation, we replaced ∇t with gt and K with K′. This modification does not fundamentally
alter the original result. Since the update way x′

t+1 = arg min
x′∈K′

η
∑t

τ=1 g⊤
τ x′ + R(x′) satisfied the condition

of FTRL algorithm(Hazan et al., 2016), we can apply (Lemma 5.3. in Hazan et al. (2016)) to Algorithm 1
as follow.
Lemma 7. For Algorithm 1 and for every h ∈ K′,

∑T
t=1 g⊤

t x′
t −

∑T
t=1 g⊤

t h ≤
∑T

t=1[g⊤
t x′

t − g⊤
t x′

t+1] +
1
η [R(h) − R(x′

1)].
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The following lemma represents a key proof of this paper. Specifically, it provides a bound for
∑T

t=1 θ⊤
t xt −∑T

t=1 θ⊤
t x∗. Due to Lemma 8, we only need to consider

∑T
t=1 θ⊤

t yt −
∑T

t=1 θ⊤
t xt when calculating the regret

bound. This result plays a crucial role in deriving both expected and high-probability regret bounds.
Lemma 8. For Algorithm 1, let ft(xt) = θ⊤

t xt + σt(xt) and x∗ = arg minx∈K
∑T

t=1 ft(x) and we have

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗ ≤ 2ηd2T +

ν log( 1
δ )

η
+ Tdϵ(2ν +

√
ν) + δDGT. (19)

Proof. Recall for any δ ∈ (0, 1), Kδ = {x| 1
1−δ x ∈ K} and K′

δ = {(x, 1) : x ∈ Kδ}. Let x∗
δ =

∏
Kδ

x∗, by
properties of projections, then

∥x∗ − x∗
δ∥= min

a∈Kδ

∥x∗ − a∥. (20)

Since (1 − δ)x∗ ∈ Kδ, then
min
a∈K

∥x∗ − a∥≤ ∥x∗ − (1 − δ)x∗∥≤ δD. (21)

So,
∥x∗

δ − x∗∥≤ δD. (22)

By Cauchy–Schwarz inequality and the fact that ∥θ∥≤ G and ∥x∗
δ − x∗∥≤ δD,

T∑
t=1

θ⊤
t x∗

δ −
T∑

t=1
θ⊤

t x∗ ≤ δDGT. (23)

So,

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗ =

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗

δ +
T∑

t=1
θ⊤

t x∗
δ −

T∑
t=1

θ⊤
t x∗

≤
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗
δ + δDGT.

Let θ′
t = (θt, z), where z is the (d + 1)th coordinate of dEt[(θt, 0)⊤(x′

t + Atµt)A−1
t µt]. From Lemma 6, we

know dEt[(θt, 0)⊤(x′
t +Atµt)A−1

t µt] = θ′
t. Since gt = df(yt)A−1

t µt = dθ′⊤
t (x′

t +Atµt)A−1
t µt +dσt(yt)A−1

t µt,
and let Mt = Et[dσt(yt)A−1

t µt], then θ′
t = Et[gt] − Mt and that we have

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗

δ =
T∑

t=1
(θ′⊤

t x′
t − z) −

T∑
t=1

(θ′⊤
t x∗′

δ − z)

=
T∑

t=1
(Et[gt] − Mt)⊤x′

t −
T∑

t=1
(Et[gt] − Mt)⊤x∗′

δ

=
T∑

t=1
Et[gt]⊤(x′

t − x∗′

δ ) +
T∑

t=1
M⊤

t (x∗′

δ − x′
t).

We bound
∑T

t=1 M⊤
t (x∗′

δ − x′
t) firstly. By Cauchy–Schwarz inequality,

T∑
t=1

M⊤
t (x∗′

δ − x′
t) ≤

T∑
t=1

∥Mt∥∗
x′

t
∥x∗′

δ − x′
t∥x′

t
.
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By Jensen’s inequality,

∥Mt∥∗
x′

t
=

√
M⊤

t ∇2(R(x′
t))−1Mt (24)

=
√
Et[dσt(yt)A−1

t µt]⊤∇2(R(x′
t))−1Et[dσt(yt)A−1

t µt] (25)

=
√

d2Et[σt(yt)µt]⊤A−1
t A2

t A−1
t Et[σt(yt)µt] (26)

=
√

d2Et[σt(yt)µt]⊤Et[σt(yt)µt] (27)

≤
√

d2Et[σ2
t (yt)µ⊤

t µt] (28)

≤
√

d2ϵ2 (29)
= dϵ. (30)

Then we bound ∥x∗′

δ − x′
t∥x′

t
. From the triangle inequality,

∥x∗′

δ − x′
t∥x′

t
≤ ∥x∗′

δ ∥x′
t
+∥x′

t∥x′
t
.

By Lemma 1 and Lemma 4, we obtain ∥x∗′

δ ∥x′
t
≤ 2ν, ∥x′

t∥x′
t
=

√
ν .

So ∥x∗′

δ − x′
t∥x′

t
≤ 2ν +

√
ν and

∑T
t=1 M⊤

t (x∗′

δ − x′
t) ≤ Tdϵ(2ν +

√
ν). Then bound

∑T
t=1 Et[gt]T (x′

t − x∗′

δ )

By Lemma 7,

T∑
t=1

Et[gt]T (x′
t − x∗′

δ ) = Et{
T∑

t=1
g⊤

t (x′
t − x∗′

δ )}

≤ Et{
T∑

t=1
[g⊤

t x′
t − g⊤

t x′
t+1] + 1

η
[R(x∗′

δ ) − R(x′
1)]}

≤ Et{
T∑

t=1
[∥gt∥∗

x′
t
∥x′

t − x′
t+1∥x′

t
]} + 1

η
(R(x∗′

δ ) − R(x′
1)).

Lemma 5 implies that ∥x′
t − x′

t+1∥x′
t
≤ 4dη is true by choice of η. Additionally, from Eq. (17), we deduce

that ∥gt∥∗
x′

t
≤ d. Therefore,

∥gt∥∗
x′

t
∥x′

t − x′
t+1∥x′

t
≤ 4ηd2, (31)

Et{
T∑

t=1
[∥gt∥∗

x′
t
∥x′

t − x′
t+1∥x′

t
]} ≤ 4ηd2T. (32)

With Lemma 3,
1
η

(R(x∗′

δ ) − R(x′
1)) ≤

ν log( 1
δ )

η
. (33)

Combine everything, we get

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗

δ ≤ 4ηd2T +
ν log( 1

δ )
η

+ Tdϵ(2ν +
√

ν). (34)

Now we are ready to prove Theorem 1.

9
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5.3 Proof of Theorem 1

Proof. Recall ϵ-approximately linear function can be write as: f(x) = θ⊤x + σ(x). Thus, the regret of
SCRIBLE with lifting algorithm

E[
T∑

t=1
ft(yt) −

T∑
t=1

ft(x∗)] = E[
T∑

t=1
[θ⊤

t yt + σt(yt)] −
T∑

t=1
[θ⊤

t x∗ + σt(x∗)]]

= E[
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗] + E[
T∑

t=1
σt(yt) −

T∑
t=1

σt(x∗)].

Firstly, we bound the front of the above equation,

E[
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗] =
T∑

t=1
E[θ⊤

t yt] −
T∑

t=1
E[θ⊤

t xt] +
T∑

t=1
E[θ⊤

t xt] −
T∑

t=1
E[θ⊤

t x∗].

From the Law of total expectation, we know
T∑

t=1
E[θ⊤

t yt] −
T∑

t=1
E[θ⊤

t xt] =
T∑

t=1
E[θ⊤

t (yt − xt)]

=
T∑

t=1
E[Et[θ⊤

t (yt − xt)]]

=
T∑

t=1
E[Et[θ⊤

t (Atµt)]]

=
T∑

t=1
E[θ⊤

t Et[(Atµt)]]

=
T∑

t=1
E[θ⊤

t 0]

= 0.

Thus,

E[
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗] = E[
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗]. (35)

From Lemma 8, we have

E[
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗] ≤ E[4ηd2T +
ν log( 1

δ )
η

+ Tdϵ(2ν +
√

ν) + δDGT ]

≤ 4ηd2T +
ν log( 1

δ )
η

+ Tdϵ(2ν +
√

ν) + δDGT.

Since σt is chosen after knowing the player’s action, it can cause as large a perturbation as possible. We
using |σt(x)|≤ ϵ to bound

∑T
t=1 E[σt(yt) −

∑T
t=1 σt(x∗)] ≤ 2Tϵ and combination of everything, we get

Regret = E[
T∑

t=1
ft(yt) −

T∑
t=1

ft(x∗)]

≤ 4d
√

2νT log T + GD

T
+ Tdϵ(2ν +

√
ν) + 2Tϵ,

where η =
√

2ν log T

2d
√

T
, δ = 1

T 2 .

10
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5.4 Proof of Theorem 2

To establish the high-probability regret bound, we first introduce the necessary Lemma 9.
Lemma 9 (Theorem 2.2. in Lee et al. (2020)). Let X1, ..., XT be a martingale difference sequence with
respect to a filtration F1 ⊆ ... ⊆ FT such that E[Xt | Ft] = 0. Suppose Bt ∈ [1, b] for a fixed constant b is
Ft-measurable and such that Xt ≤ Bt holds almost surely. Then with probability at least 1 − γ we have

T∑
t=1

Xt ≤ C(
√

8V ln(C/γ) + 2B∗ln(C/γ)), (36)

where V = max{1;
∑T

t=1 E[X2
t | Ft]}, B∗ = maxt∈[T ] Bt, and C = ⌈logb⌉⌈log(b2T )⌉.

The analysis in Lee et al. (2020) employs Lemma 9 to derive a high-probability bound for
∑T

t=1[y⊤
t θt −

x⊤
t gt + u⊤(gt − θt)]. In contrast, our approach defines Xt = θ⊤

t yt − θ⊤
t xt and derives the high-probability

bound for
∑T

t=1(θ⊤
t yt − θ⊤

t xt). This distinction in the application of Lemma 9 enables us to derive a tighter
high-probability upper bound for bandit linear optimization.

With the support of Lemma 8 and Lemma 9, we are ready to prove Theorem 2.

Proof. Let Xt = θ⊤
t yt − θ⊤

t xt, then Et[Xt] = Et[θ⊤
t yt − θ⊤

t xt] = 0, Xt = θ⊤
t yt − θ⊤

t xt ≤ ∥θt∥∥yt − xt∥≤ GD
and

Et[X2
t ] = Et[(θ⊤

t yt − θ⊤
t xt)2]

= Et[(θ⊤
t yt)2 + (θ⊤

t xt)2 − 2θ⊤
t ytθ

⊤
t xt]

= Et[(θ⊤
t yt)2] + Et[(θ⊤

t xt)2] − Et[2θ⊤
t ytθ

⊤
t xt]

= Et[(θ⊤
t yt)2] − θ⊤

t xtθ
⊤
t xt

≤ (1 + ϵ)2.

Then,
T∑

t=1
ft(yt) −

T∑
t=1

ft(x∗) =
T∑

t=1
[θ⊤

t yt + σt(yt)] −
T∑

t=1
[θ⊤

t x∗ + σt(x∗)]

≤
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗ +
T∑

t=1
σt(yt) −

T∑
t=1

σt(x∗)

≤
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗ + 2Tϵ

=
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t xt +
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗ + 2Tϵ.

From Lemma 8, we know
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗ ≤ 4d
√

2νT ln T + GD

T
+ Tdϵ(2ν +

√
ν), (37)

where η =
√

2ν ln T
2d

√
T

, δ = 1
T 2 . Then by Lemma 9,

P(
T∑

t=1
(θ⊤

t yt − θ⊤
t xt) ≤ C(

√
8V ln(C/γ) + 2B∗ ln(C/γ))) ≥ 1 − γ, (38)

where V = (1 + ϵ)2T, B∗ = b = GD, and C = ⌈ln GD⌉⌈ln((GD)2T )⌉. Combine everything to conclude the
proof.
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5.5 Application to black-box optimization

From online to offline transformation, the result of this paper can also apply to black-box optimization
for ϵ-approximately linear function. This problem is important in that previous theoretical analyses for
black box optimization can only deal with linear/convex/smooth objectives in the adversarial environments
(via bandit convex optimization). So, it is quite meaningful to clarify the possibility of the black box
optimization problems without such restrictions. In fact, our objective is not linear, nor smooth, even with
a simple assumption.

Let x̂ be the output of algorithm 1, then from Theorem 1. we can easily prove and ensure f(x̂) −
minx∈K f(x) ≤ 4d

√
2ν ln T√

T
+ GD

T 2 + dϵ(2ν +
√

ν) + 2ϵ. Additionally, we provide a lower bound 2ϵ for this
problem (see Lemma 10). We can see that the difference between the lower bound and the upper bound is
only dϵ(2ν +

√
ν) as T approaches infinity. This suggests the potential existence of "easier" settings between

the adversarial environment and the standard stochastic environment, where better algorithms might be
found. It also motivates us to explore these settings further.

6 Lower bound

In this section, we show a lower bound of the regret. To do so, we consider a black-box optimization problem
for the set F of ϵ-approximately linear functions f : K → R. In the problem, we are given access to the
oracle Of for some f ∈ F , which returns the value f(x) given an input x ∈ K. The goal is to find a point
x̂ ∈ K such that f(x̂) − minx∈K f(x) is small enough. Then, the following statement holds.
Lemma 10. For any algorithm A for the black-box optimization problem for F , there exists an ϵ-
approximately linear function f ∈ F such that the output x̂ of A satisfies

f(x̂) − min
x∈K

f(x) ≥ 2ϵ. (39)

Proof. Firstly, suppose that the algorithm A is deterministic. At iteration t = 1, ..., T , for any feedback
y1, ..., yt−1 ∈ R, A should choose the next query point xt based on the data observed so far. That is,

xt = A((x1, y1), ..., (xt−1, yt−1)). (40)

Assume that the final output x̂ is returned after T queries to the oracle Of . In particular, we fix the T
feedbacks y1 = y2 = · · · = yT = ϵ. Let z ∈ K be such that z /∈ {x1, ..., xT , x̂}. Then we define a function
f : K → R is as

f(x) =
{

ϵ, x ̸= z,

−ϵ, x = z.
(41)

The function f is indeed an ϵ-approximately linear function, as f(x) = 0⊤x + σ(x), where σ(x) = ϵ for x ̸= z
and σ(x) = −ϵ for x = z. Further, we have

f(x̂) − min
x∈K

f(x) ≥ 2ϵ. (42)

Secondly, if algorithm A is randomized. It means each xt is chosen randomly. We assume the same feedbacks
y1 = y2 = · · · = yT = ϵ. Let X = {x1, ..., xT , x̂}. Then, there exists a point z ∈ K such that PX(z ∈ X) =
0, since Ez′ [PX(z′ ∈ X|z′)] = Pz′,X(z′ ∈ X) = EX [Pz′(z′ ∈ X|X)] = 0, where the expectation on z′

is defined w.r.t. the uniform distribution over K. For the objective function f defined in (41), we have
f(x̂) − minx∈K f(x) ≥ 2ϵ while f is ϵ-approximately linear.

Theorem 3. For any horizon T ≥ 1 and any player, there exists an adversary such that the regret is at
least 2ϵT .

Proof. We prove the statement by contradiction. Suppose that there exists a player whose regret is less than
2ϵT . Then we can construct an algorithm for the blackbox optimization problem from it by feeding the
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online algorithm with T feedbacks of the blackbox optimization problem and by setting x̂ = mint∈[T ] f(xt).
Then,

f(x̂) − min
x∈K

f(x) ≤
∑T

t=1 f(xt) −
∑T

t=1 minx∈K f(x)
T

< 2ϵ,

which contradicts Lemma 10.

This lower bound indicates that Ω(ϵT ) regret is inevitable for the bandit optimization problem for ϵ-
approximately linear functions. We conjecture that the lower bound can be tightened to Ω(dϵT ), but we
leave it as an open problem.
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