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Abstract

We consider a variant of the standard Bandit linear optimization, where in each trial the loss
function is the sum of a linear function and a small but arbitrary perturbation chosen after
observing the player’s choice. We give both expected and high probability regret bounds
for the problem. Our result also implies an improved high-probability regret bound for the
Bandit linear optimization, a special case with no perturbation. We also give a lower bound
on the expected regret.

1 Introduction

Bandit optimization is a sequential game between a player and an adversary. The game is played over T
rounds, where T is a positive natural number called the horizon. The game is specified by a pair (K, F),
where K ⊆ Rd is a bounded closed convex set and F ⊆ {f : K → R} is a function class. In each round
t ∈ [T ], the player first chooses an action xt ∈ K and the adversary chooses a loss function ft ∈ F , and then
the player receives the value ft(xt) as the loss. Note that ft itself is unknown to the player. In this paper,
we assume the adversary is oblivious, i.e., the loss functions are specified before starting the game 1. The
goal of the player is to minimize the regret

T∑
t=1

ft(xt) − min
x∈K

T∑
t=1

ft(x) (1)

in expectation (expected regret) or with high probability (high-probability regret).

For convex loss functions, the bandit optimization has been extensively studied (see, e.g.,Dani et al. (2007);
Abernethy et al. (2008); Lee et al. (2020)). O(T 3/4) regret bounds are shown by Flaxman et al. (2005).
Lattimore (2020) shows an information-theoretic regret bound Õ(d2.5

√
T ) for convex loss functions. For

linear loss functions, Abernethy et al. (2008) propose the SCIRBLE algorithm and give an expected regret
bound O(d

√
T ), achieving optimal dependence on T (Bubeck et al., 2012). Lee et al. (2020) propose the

SCRIBLE with lifting and show a high-probability regret bound Õ(d2
√

T ).

Recently, non-convex functions are also getting popular in this literature. For example, Agarwal et al. (2019)
show a regret bound O(poly(d)T 2/3) for smooth and bounded non-convex functions. Ghai et al. (2022)
propose algorithms with regret bounds O(poly(d)T 2/3) under the assumption that non-convex functions are
reparametlized as some convex functions.

In this paper, we investigate the bandit optimization problem for a class of non-convex non-smooth loss
functions. The function class consists of non-smooth and non-convex functions that are "close" to linear
functions, in the sense that functions in the class can be viewed as linear functions with adversarial non-
convex perturbations whose amount is up to ϵ. Bandit optimization for linear loss functions with stochastic
noise (e.g., Abbasi-Yadkori et al. (2011); Amani et al. (2019)) cannot be applied to our problem. Also,
standard Bandit linear optimization methods for estimating the gradient, such as self-concordant barrier
regularizer(Hazan et al., 2016), cannot be effectively applied to our problem.

1We do not consider the case where the adversary is adaptive, i.e., it can choose the t-th loss function ft depending on the
previous actions x1, . . . , xt−1.
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1. When ϵ ̸= 0, we propose a modification of the SCRIBLE with lifting (Lee et al., 2020) and utilize
the properties of the ν-normal barrier(Nesterov & Nemirovskii, 1994; Nemirovski, 2004) to prove its
high probability regret bound Õ(

√
T + ϵT ), and we also obtain its expected regret O(

√
T ln T + ϵT ).

2. When ϵ = 0, this problem becomes Bandit linear optimization, a special case with no perturbation.
Compared to Lee et al. (2020)’s results, holding with probability 1−γ, O(ln2(dT )d2 ln T

√
T ln ln(dT )

γ ),
we use a different regret decomposition approach to achieve a better high-probability regret bound
O(d

√
T ln T + ln T

√
T ln( ln T

γ ) + ln( ln T
γ )).

3. We prove a lower bound Ω(ϵT ), implying that our bounds are tight w.r.t. the parameter ϵ.

2 Related Work

The bandit linear optimization was first proposed by Awerbuch & Kleinberg (2004), who achieved a regret
bound of O(d3/5T 2/3) against an oblivious adversary. Later, McMahan & Blum (2004) established a regret
bound of O(dT 3/4) when facing an adaptive adversary. A foundational approach in bandit optimization
problems involves gradient-based smoothing techniques. Hazan & Levy (2014) presented pioneering work in
this area and achieved a regret bound of Õ(

√
T ).

Unlike convex bandit problems, which have been extensively explored and analyzed, non-convex bandits
introduce unique challenges due to the complexity of exploring and exploiting in a non-convex area. Gao
et al. (2018) considered both non-convex losses and non-stationary data and established a regret bound of
O(

√
T + poly(T ). Yang et al. (2018) achieved a regret bound of O(

√
T log T ) for a non-convex loss functions.

However, they both required the loss functions to have smoothness properties, and our loss functions are
neither convex nor smooth.

3 Preliminaries

This section introduces some necessary notations and defines ϵ-approximately linear function. Then we give
our problem setting.

3.1 Notation

We abbreviate the 2-norm ∥·∥2 as ∥·∥. For a twice differentiable convex function R : Rd → R and any x, h ∈
Rd, let ∥h∥x= ∥h∥∇2R(x)=

√
h⊤∇2R(x)h, and ∥h∥∗

x= ∥h∥(∇2R(x))−1=
√

h⊤(∇2R(x))−1h, respectively.

For any v ∈ Rd, let v⊥ be the space orthogonal to v. Let Sd
1 = {x | ∥x∥= 1}. The vector ei ∈ Rd is a

standard basis vector with a value of 1 in the i-th position and 0 in all other positions. I is an identity
matrix with dimensionality implied by context.

3.2 Problem Setting

Let K ⊆ Rd be a bounded and closed convex set such that for any x, y ∈ K, ∥x − y∥ ≤ D. Furthermore,
we assume that K contains the unit ball centered at the zero vector. Otherwise, we can apply an affine
transformation to translate the center point of the convex set to the origin. Let K′ = {(x, 1) : x ∈ K}. For
any δ ∈ (0, 1), let Kδ = {x| 1

1−δ x ∈ K} and K′
δ = {(x, 1) : x ∈ Kδ}, respectively.

Definition 1. A function f : K → R is ϵ-approximately linear if there exists θf ∈ Rd such that ∀x ∈ K,
|f(x) − θ⊤

f x| ≤ ϵ.

For convenience, in the definition above, let σf (x) = f(x) − θ⊤
f x, and we omit the subscript f of θf and σf

if the context is clear. Note that |σ(x)| ≤ ϵ for any x ∈ K.

In this paper, we consider the bandit optimization (K, F), where F is the set of ϵ-approximately linear
functions f(x) = θ⊤x + σ(x) with ∥θ∥ ≤ G.
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4 Main Results

This section states our main contribution: the expected and high-probability regret of adversarial bandit
optimization for approximately linear functions.

We simplify the SCRIBLE with lifting and increasing learning rates(Lee et al., 2020). We do not use the
increasing learning rates part but retain the lifting. For a decision set K with a ν-normal barrier on con(K),
where con(K) = {0}∪{(x, b) : x

b ∈ K, x ∈ Rd, b > 0}, we apply algorithm 1 to approximately linear functions.
Recall K′ = {(x, 1) : x ∈ K}.

Algorithm 1 SCRIBLE with lifting
Input: T , parameters η ∈ R, δ ∈ (0, 1), ν-normal barrier R on con(K)

1: Initialize: x′
1 = arg minx′∈K′ R(x′)

2: for t = 1, .., T do
3: let At = [∇2R(x′

t)]−
1
2

4: Draw µt from Sd+1
1 ∩ (Ated+1)⊥ uniformly, set y′

t = (yt, 1) = x′
t + Atµt.

5: Play yt, observe and incur loss ft(yt). Let gt = dft(yt)A−1
t µt.

6: Update x′
t+1 = arg min

x′∈K′
η

∑t
τ=1 g⊤

τ x′ + R(x′)
7: end for

We use a different method to analyze regret. The first difference is that for ϵ-approximately linear functions,
the traditional method that obtains an unbiased gradient estimate is impossible and the properties of self-
concordant functions used by the SCRIBLE algorithm(Abernethy et al., 2008) do not help us bound the
regret. That’s why we employed the lifting so that we could leverage the properties of the normal barrier
to bound the norm ∥h∥x′≤ 2ν(see Lemma 8), where x′ ∈ int(K′, h ∈ con(K). The second difference is
that we use a different regret decomposition approach to apply Lemma 7(Lee et al., 2020). This allows the
high-probability regret bound we obtained to not only be effective in our problem setting but also achieve a
better result for bandit linear optimization compared to previous outcomes. Besides, unlike SCRIBLE with
lifting and increasing learning rates(Lee et al., 2020), which constrains the decision set from K′ to K′

δ to
ensure that that x′

t is never too close to the boundary and in turn, that the eigenvalues of At are bounded.
We are not concerned about x′

t being too close to the boundary as long as it doesn’t reach it. Furthermore,
we don’t need to bound the eigenvalues of At, allowing us to select a smaller value for δ, such as 1

T 2 , to
obtain a better upper bound of regret. Finally, we prove the lower bound of regret in section 5.

To introduce and prove our results, we introduce the following definitions and lemmas first.
Definition 2. Let Ψ ∈ Rd be a closed and proper convex cone and let ν ≥ 1. A function R : int(Ψ) → R:
is called a ν-logarithmically homogeneous self-concordant barrier (or simply ν-normal barrier) on Ψ if

1. R is three times continuously differentiable and convex and approaches infinity along any sequence
of points approaching the boundary of Ψ.

2. For every h ∈ Rd and x ∈ int(Ψ) the following holds:

d∑
i=1

d∑
j=1

d∑
k=1

∂3R(x)
∂xi∂xj∂xk

hihjhk ≤ 2∥h∥3
x, (2)

|∇R(x)⊤h|≤
√

ν∥h∥x, (3)

R(tx) = R(x) − ν ln t, ∀x ∈ int(Ψ), t > 0. (4)

Lemma 1 (Nemirovski (2004); Nesterov & Nemirovskii (1994)). If R is a ν-normal barrier on Ψ, Then for
any x ∈ int(Ψ) and any h ∈ Ψ, we have

∥x∥2
x= ν, (5)

∇2R(x)x = −∇R(x), (6)
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∥h∥x≤ −∇R(x)⊤h, (7)

∇R(x)⊤(h − x) ≤ ν. (8)

Lemma 2 (Nemirovski (2004)). If R is a ν-normal barrier on Ψ, then the Dikin ellipsoid centered at
x ∈ int(Ψ), defined as {y : ∥y − x∥x≤ 1}, is always within Ψ. Moreover,

∥h∥y≥ ∥h∥x(1 − ∥y − x∥x) (9)

holds for any h ∈ Rd and any y with ∥y − x∥x≤ 1.

Like in the SCRIBLE algorithm, the next minimizer x′
t+1 is “close” to x′

t. However, there are two differences
here: the first is that ∇ϕt−1(x′

t) ̸= 0 is possible, where ϕt(x′) = η
∑t

τ=1 g⊤
τ x′ + R(x′). And the second is we

need to satisfy z ∈ K′ instead of z ∈ K.
Lemma 3. x′

t+1 ∈ W4dη(x′
t), where Wr(x′) = {y ∈ K′ : ∥y − x′∥x′< r}.

Proof. Recall that x′
t+1 = arg minx′∈K′ ϕt(x′), where ϕt(x′) = η

∑t
τ=1 g⊤

τ x′ +R(x′). Let ht(x) = ϕt((x, 1)) =
ϕt(x′), then min ht(x) = min ϕt(x′). Noticing that ht is a convex function on Rd and still holds the barrier
property(approaches infinity along any sequence of points approaching the boundary of K). By properties
of convex functions, we can get ∇ht−1(xt) = 0 and for the first d coordinates ∇ϕt−1(x′

t) = 0.

Consider any point in z ∈ W 1
2
(x′

t). It can be written as z = x′
t + αu for some vector u such that ∥u∥x′

t
= 1

and α ∈ (− 1
2 , 1

2 ). Noticing the d + 1 coordinate of u is 0. Expanding,

ϕt(z) = ϕt(x′
t + αu)

= ϕt(x′
t) + α∇ϕt(x′

t)⊤u + α2 1
2u⊤∇2ϕt(ξ)u

= ϕt(x′
t) + α(∇ϕt−1(x′

t) + ηgt)⊤u + α2 1
2u⊤∇2ϕt(ξ)u

= ϕt(x′
t) + αηg⊤

t u + α2 1
2u⊤∇2ϕt(ξ)u,

for some ξ on the path between x′
t and x′

t +αu and the last equality holds because ∇ϕt−1(x′
t)⊤u = 0. Setting

the derivative with respect to α to zero, we obtain

|α∗|= η|g⊤
t u|

u⊤∇2ϕt(ξ)u = |α∗|= η|g⊤
t u|

u⊤∇2R(ξ)u (10)

The fact that ξ is on the line x′
t to x′

t + αu implies that ∥ξ − x′
t∥x′

t
≤ ∥αu∥x′

t
≤ 1

2 . Hence, by Lemma 2

∇2R(ξ) ⪰ (1 − ∥ξ − x′
t∥x′

t
)2∇2R(x′

t) ≻ 1
4∇2R(x′

t). (11)

Thus u⊤∇2R(ξ)u > 1
4 ∥u∥x′

t
= 1

4 , and α∗ < 4η|g⊤
t u|. Using assumption maxx∈K|ft(x)|≤ 1,

g⊤
t u ≤ ∥gt∥∗

x′
t
∥u∥x′

t
≤ ∥dft(yt)A−1

t µt∥∗
x′

t
≤

√
d2µ⊤

t A−⊤
t (∇2R(x′

t))−1A−1
t µt ≤ d, (12)

we conclude that |g⊤
t u|≤ d, and |α∗|< 4dη < 1

2 by our choice of η and T . We conclude that the local op
timum arg min z ∈ W 1

2 (x′
t)ϕt(z) is strictly inside W4dη(x′

t), and since ϕt is convex, the global optimum is

xt+1 = arg min
z∈K′

ϕt(z) ∈ W4dη(x′
t). (13)

Lemma 4 (Hazan et al. (2016)). Let R is a ν-normal barrier over Ψ, then for all x, z ∈ int(Ψ) : R(z) −
R(x) ≤ ν log 1

1−πx(z) , where πx(z) = inf{t ≥ 0 : x + t−1(z − x) ∈ Ψ}.

4



Under review as submission to TMLR

This next lemma is based on Lemma B.9.(Lee et al., 2020), but due to the differences in the loss functions,
what we obtain is an unbiased estimate regarding gt,i rather than θt,i, for i ∈ [d].
Lemma 5. Let l = d(θt, 0)(x′

t + Atµt)A−1
t µt, for algorithm 1, we have Et[lt,i] = θt,i, for i ∈ [d].

Proof. Let v = Ated+1
∥Ated+1∥2

.First note that Et[µtµ
⊤
t ] = 1

d (I − vv⊤)

Et[d(θt, 0)(x′
t + Atµt)A−1

t µt] = dEt[(θt, 0)x′
tA−1

t µt] + dEt[(θt, 0)AtµtA−1
t µt]

= d(θt, 0)x′
tA−1

t Et[µt] + dEt[(θt, 0)AtµtA−1
t µt]

= dEt[(θt, 0)AtµtA−1
t µt]

= dA−1
t Et[µtµ

⊤
t ]At(θt, 0)⊤

= A−1
t (I − vv⊤)At(θt, 0)⊤

= (θt, 0)⊤ − A−1
t vv⊤At(θt, 0)⊤

= (θt, 0)⊤ −
ed+1e⊤

d+1A2
t

∥Ated+1∥2
2

(θt, 0)⊤.

Noticing that Et[µt] = 0 by symmetry and the first d coordinates of ed+1e⊤
d+1A2

t (θt, 0)⊤ are all zeros concludes
the proof.

Since the update way x′
t+1 = arg min

x′∈K′
η

∑t
τ=1 g⊤

τ x′ + R(x′) satisfied the condition of FTRL algorithm(Hazan
et al., 2016), we can apply (Lemma 5.3. in Hazan et al. (2016)) to Algorithm 1 as follow.

Lemma 6. For algorithm 1 and for every u ∈ K′,
∑T

t=1 g⊤
t x′

t−
∑T

t=1 g⊤
t u ≤

∑T
t=1[g⊤

t x′
t−g⊤

t x′
t+1]+ 1

η [R(u)−
R(x′

1)].

Proof. Define the functions h0(x′) = 1
η R(x′), ht(x′) = g⊤

t x′. We first prove for every u ∈ K′,

T∑
t=0

ht(u) ≥
T∑

t=0
ht(x′

t+1). (14)

By induction on T :

Induction base: by definition, we have that x′
1 = arg min

x′∈K′
R(x′), and thus h0(u) ≥ h0(x′

1) for all u.

Induction step: assume that for T , we have

T∑
t=0

ht(u) ≥
T∑

t=0
ht(x′

t+1), (15)

and let us prove the statement for T + 1. Since x′
T +2 = arg min

x′∈K′

∑T +1
t=0 ht(x′), we have:

T +1∑
t=0

ht(u) ≥
T +1∑
t=0

ht(x′
T +2)

≥
T∑

t=0
ht(x′

T +2) + hT +1(x′
T +2)

≥
T∑

t=0
ht(x′

t+1) + hT +1(x′
T +2)

=
T +1∑
t=0

ht(x′
t+1),
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Where in the third line we used the induction hypothesis for u = x′
T +2.

Then we conclude that,

T∑
t=1

ht(x′
t) −

T∑
t=1

ht(u) ≤
T∑

t=1
ht(x′

t) −
T∑

t=1
ht(x′

t+1) + [h0(u) − h0(x′
1)]

=
T∑

t=1
[g⊤

t x′
t − g⊤

t x′
t+1] + 1

η
[R(u) − R(x′

1)]

Lemma 7 (Theorem 2.2. in Lee et al. (2020)). Let X1, ..., XT be a martingale difference sequence with
respect to a filtration F1 ⊆ ... ⊆ FT such that E[Xt | Ft] = 0. Suppose Bt ∈ [1, b] for a fixed constant b is
Ft-measurable and such that Xt ≤ Bt holds almost surely. Then with probability at least 1 − γ we have

T∑
t=1

Xt ≤ C(
√

8V ln(C/γ) + 2B∗ln(C/γ)), (16)

where V = max{1;
∑T

t=1 E[X2
t | Ft]}, B∗ = maxt∈[T ] Bt, and C = ⌈logb⌉⌈log(b2T )⌉.

Lemma 8. If R be a ν-normal barrier for Ψ ⊆ Rd, then for any x ∈ int(Ψ) and any h ∈ Ψ, we have

∥h∥x≤ 2ν. (17)

Proof. From Lemma 1, we have
∥h∥x≤ −∇R(x)⊤h ≤ |∇R(x)⊤h|. (18)

Then,
|∇R(x)⊤h| = |∇R(x)⊤(h − x + x)| ≤ |∇R(x)⊤(h − x)| + |∇R(x)⊤x|. (19)

By Lemma 1, |∇R(x)⊤(h − x)| + |∇R(x)⊤x| ≤ ν + |x⊤∇2R(x)x| = 2ν.

Lemma 9. For algorithm 1, let ft(xt) = θ⊤
t xt + σt(xt) and x∗ = arg minx∈K

∑T
t=1 ft(x) and we have

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗ ≤ 2ηd2T +

ν log( 1
δ )

η
+ Tdϵ(2ν +

√
ν) + δDGT. (20)

Proof. Recall for any δ ∈ (0, 1), Kδ = {x| 1
1−δ x ∈ K} and K′

δ = {(x, 1) : x ∈ Kδ}. Let x∗
δ =

∏
Kδ

x∗, by
properties of projections, then

∥x∗ − x∗
δ∥= min

a∈Kδ

∥x∗ − a∥. (21)

Since (1 − δ)x∗ ∈ Kδ, then
min
a∈K

∥x∗ − a∥≤ ∥x∗ − (1 − δ)x∗∥≤ δD. (22)

So,
∥x∗

δ − x∗∥≤ δD. (23)

By Cauchy–Schwarz inequality and the fact that ∥θ∥≤ G and ∥x∗
δ − x∗∥≤ δD,

T∑
t=1

θ⊤
t x∗

δ −
T∑

t=1
θ⊤

t x∗ ≤ δDGT. (24)
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So,

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗ =

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗

δ +
T∑

t=1
θ⊤

t x∗
δ −

T∑
t=1

θ⊤
t x∗

≤
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗
δ + δDGT.

Let θ′
t = (θt, z), where z is the (d + 1)th coordinate of dEt[(θt, 0)⊤(x′

t + Atµt)A−1
t µt]. From Lemma 5, we

know dEt[(θt, 0)⊤(x′
t +Atµt)A−1

t µt] = θ′
t. Since gt = df(yt)A−1

t µt = dθ′⊤
t (x′

t +Atµt)A−1
t µt +dσt(yt)A−1

t µt,
and let Mt = Et[dσt(yt)A−1

t µt], then θ′
t = Et[gt] − Mt and that we have

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗

δ =
T∑

t=1
(θ′⊤

t x′
t − z) −

T∑
t=1

(θ′⊤
t x∗′

δ − z)

=
T∑

t=1
(Et[gt] − Mt)⊤x′

t −
T∑

t=1
(Et[gt] − Mt)⊤x∗′

δ

=
T∑

t=1
Et[gt]⊤(x′

t − x∗′

δ ) +
T∑

t=1
M⊤

t (x∗′

δ − x′
t).

We bound
∑T

t=1 M⊤
t (x∗′

δ − x′
t) firstly. By Cauchy–Schwarz inequality,

T∑
t=1

M⊤
t (x∗′

δ − x′
t) ≤

T∑
t=1

∥Mt∥∗
x′

t
∥x∗′

δ − x′
t∥x′

t
.

By Jensen’s inequality,

∥Mt∥∗
x′

t
=

√
M⊤

t ∇2(R(x′
t))−1Mt

=
√
Et[dσt(yt)A−1

t µt]⊤∇2(R(x′
t))−1Et[dσt(yt)A−1

t µt]

=
√

d2Et[σt(yt)µt]⊤A−1
t A2

t A−1
t Et[σt(yt)µt]

=
√

d2Et[σt(yt)µt]⊤Et[σt(yt)µt]

≤
√

d2Et[σ2
t (yt)µ⊤

t µt]

≤
√

d2ϵ2

= dϵ.

Then we bound ∥x∗′

δ − x′
t∥x′

t
. From the triangle inequality,

∥x∗′

δ − x′
t∥x′

t
≤ ∥x∗′

δ ∥x′
t
+∥x′

t∥x′
t
.

By Lemma 1 and Lemma 8, we obtain ∥x∗′

δ ∥x′
t
≤ 2ν, ∥x′

t∥x′
t
=

√
ν .

So ∥x∗′

δ − x′
t∥x′

t
≤ 2ν +

√
ν and

∑T
t=1 M⊤

t (x∗′

δ − x′
t) ≤ Tdϵ(2ν +

√
ν). Then bound

∑T
t=1 Et[gt]T (x′

t − x∗′

δ )

7
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By Lemma 6,

T∑
t=1

Et[gt]T (x′
t − x∗′

δ ) = Et{
T∑

t=1
g⊤

t (x′
t − x∗′

δ )}

≤ Et{
T∑

t=1
[g⊤

t x′
t − g⊤

t x′
t+1] + 1

η
[R(x∗′

δ ) − R(x′
1)]}

≤ Et{
T∑

t=1
[∥gt∥∗

x′
t
∥x′

t − x′
t+1∥x′

t
]} + 1

η
(R(x∗′

δ ) − R(x′
1)).

The proof of Lemma 3 implies ∥x′
t − x′

t+1∥x′
t
≤ 4dη is true by choice of η and ∥gt∥∗

x′
t
≤ d. Therefore,

∥gt∥∗
x′

t
∥x′

t − x′
t+1∥x′

t
≤ 4ηd2, (25)

Et{
T∑

t=1
[∥gt∥∗

x′
t
∥x′

t − x′
t+1∥x′

t
]} ≤ 4ηd2T. (26)

With Lemma 4,
1
η

(R(x∗′

δ ) − R(x′
1)) ≤

ν log( 1
δ )

η
. (27)

Combine everything, we get

T∑
t=1

θ⊤
t xt −

T∑
t=1

θ⊤
t x∗

δ ≤ 4ηd2T +
ν log( 1

δ )
η

+ Tdϵ(2ν +
√

ν). (28)

Theorem 1. The algorithm with parameters η =
√

2ν log T

2d
√

T
, δ = 1

T 2 guarantees the following expected regret
bound

E[
T∑

t=1
ft(yt) − min

x∈K

T∑
t=1

ft(x)] ≤ 4d
√

2νT log T + GD

T
+ 2Tϵ + dTϵ(2ν +

√
ν). (29)

Proof. Recall ϵ-approximately linear function can be write as: f(x) = θ⊤x + σ(x). Thus, the regret of
SCRIBLE with lifting algorithm

E[
T∑

t=1
ft(yt) −

T∑
t=1

ft(x∗)] = E[
T∑

t=1
[θ⊤

t yt + σt(yt)] −
T∑

t=1
[θ⊤

t x∗ + σt(x∗)]]

= E[
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗] + E[
T∑

t=1
σt(yt) −

T∑
t=1

σt(x∗)].

Firstly, we bound the front of the above equation,

E[
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗] =
T∑

t=1
E[θ⊤

t yt] −
T∑

t=1
E[θ⊤

t xt] +
T∑

t=1
E[θ⊤

t xt] −
T∑

t=1
E[θ⊤

t x∗].

8
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From the Law of total expectation, we know
T∑

t=1
E[θ⊤

t yt] −
T∑

t=1
E[θ⊤

t xt] =
T∑

t=1
E[θ⊤

t (yt − xt)]

=
T∑

t=1
E[Et[θ⊤

t (yt − xt)]]

=
T∑

t=1
E[Et[θ⊤

t (Atµt)]]

=
T∑

t=1
E[θ⊤

t Et[(Atµt)]]

=
T∑

t=1
E[θ⊤

t 0]

= 0.

Thus,

E[
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗] = E[
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗]. (30)

From Lemma 9, we have

E[
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗] ≤ E[4ηd2T +
ν log( 1

δ )
η

+ Tdϵ(2ν +
√

ν) + δDGT ]

≤ 4ηd2T +
ν log( 1

δ )
η

+ Tdϵ(2ν +
√

ν) + δDGT.

Since σt is chosen after knowing the player’s action, it can cause as large a perturbation as possible. We
using |σt(x)|≤ ϵ to bound

∑T
t=1 E[σt(yt) −

∑T
t=1 σt(x∗)] ≤ 2Tϵ and combination of everything, we get

Regret = E[
T∑

t=1
ft(yt) −

T∑
t=1

ft(x∗)]

≤ 4d
√

2νT log T + GD

T
+ Tdϵ(2ν +

√
ν) + 2Tϵ,

where η =
√

2ν log T

2d
√

T
, δ = 1

T 2 .

Theorem 2. The algorithm with parameters η =
√

2ν ln T
2d

√
T

, δ = 1
T 2 ensures that with probability at least 1 − γ

T∑
t=1

ft(yt)−min
x∈K

T∑
t=1

ft(x) ≤ 4d
√

2νT ln T + GD

T
+Tdϵ(2ν +

√
ν)+C(1+ϵ)

√
8T ln C

γ
+2GD ln C

γ
+2Tϵ (31)

where C = ⌈ln GD⌉⌈ln((GD)2T )⌉.

Proof. Let Xt = θ⊤
t yt − θ⊤

t xt, then Et[Xt] = Et[θ⊤
t yt − θ⊤

t xt] = 0, Xt = θ⊤
t yt − θ⊤

t xt ≤ ∥θt∥∥yt − xt∥≤ GD
and

Et[X2
t ] = Et[(θ⊤

t yt − θ⊤
t xt)2]

= Et[(θ⊤
t yt)2 + (θ⊤

t xt)2 − 2θ⊤
t ytθ

⊤
t xt]

= Et[(θ⊤
t yt)2] + Et[(θ⊤

t xt)2] − Et[2θ⊤
t ytθ

⊤
t xt]

= Et[(θ⊤
t yt)2] − θ⊤

t xtθ
⊤
t xt

≤ (1 + ϵ)2.

9
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Then,
T∑

t=1
ft(yt) −

T∑
t=1

ft(x∗) =
T∑

t=1
[θ⊤

t yt + σt(yt)] −
T∑

t=1
[θ⊤

t x∗ + σt(x∗)]

≤
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗ +
T∑

t=1
σt(yt) −

T∑
t=1

σt(x∗)

≤
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t x∗ + 2Tϵ

=
T∑

t=1
θ⊤

t yt −
T∑

t=1
θ⊤

t xt +
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗ + 2Tϵ.

From Lemma 9, we know
T∑

t=1
θ⊤

t xt −
T∑

t=1
θ⊤

t x∗ ≤ 4d
√

2νT ln T + GD

T
+ Tdϵ(2ν +

√
ν), (32)

where η =
√

2ν ln T
2d

√
T

, δ = 1
T 2 . Then by Lemma 7,

P(
T∑

t=1
(θ⊤

t yt − θ⊤
t xt) ≤ C(

√
8V ln(C/γ) + 2B∗ ln(C/γ))) ≥ 1 − γ, (33)

where V = (1 + ϵ)2T, B∗ = b = GD, and C = ⌈ln GD⌉⌈ln((GD)2T )⌉. Combine everything to conclude the
proof.

4.1 Application to black-box optimization

From online to offline transformation, the result of this paper can also apply to black-box optimization for
ϵ-approximately linear function. Let x̂ be the output of algorithm 1, then from Theorem 1. we can easily
prove and ensure f(x̂) − minx∈K f(x) ≤ 4d

√
2ν ln T√

T
+ GD

T 2 + dϵ(2ν +
√

ν) + 2ϵ.

5 Lower bound

In this section, we show a lower bound of the regret. To do so, we consider a black-box optimization problem
for the set F of ϵ-approximately linear functions f : K → R. In the problem, we are given access to the
oracle Of for some f ∈ F , which returns the value f(x) given an input x ∈ K. The goal is to find a point
x̂ ∈ K such that f(x̂) − minx∈K f(x) is small enough. Then, the following statement holds.
Lemma 10. For any algorithm A for the black-box optimization problem for F , there exists an ϵ-
approximately linear function f ∈ F such that the output x̂ of A satisfies

f(x̂) − min
x∈K

f(x) ≥ 2ϵ. (34)

Proof. Firstly, suppose that the algorithm A is deterministic. At iteration t = 1, ..., T , for any feedback
y1, ..., yt−1 ∈ R, A should choose the next query point xt based on the data observed so far. That is,

xt = A((x1, y1), ..., (xt−1, yt−1)). (35)

Assume that the final output x̂ is returned after T queries to the oracle Of . In particular, we fix the T
feedbacks y1 = y2 = · · · = yT = ϵ. Let z ∈ K be such that z /∈ {x1, ..., xT , x̂}. Then we define a function
f : K → R is as

f(x) =
{

ϵ, x ̸= z,

−ϵ, x = z.
(36)

10
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The function f is indeed an ϵ-approximately linear function, as f(x) = 0⊤x + σ(x), where σ(x) = ϵ for x ̸= z
and σ(x) = −ϵ for x = z. Further, we have

f(x̂) − min
x∈K

f(x) ≥ 2ϵ. (37)

Secondly, if algorithm A is randomized. It means each xt is chosen randomly. We assume the same feedbacks
y1 = y2 = · · · = yT = ϵ. Let X = {x1, ..., xT , x̂}. Then, there exists a point z ∈ K such that PX(z ∈ X) =
0, since Ez′ [PX(z′ ∈ X|z′)] = Pz′,X(z′ ∈ X) = EX [Pz′(z′ ∈ X|X)] = 0, where the expectation on z′

is defined w.r.t. the uniform distribution over K. For the objective function f defined in (36), we have
f(x̂) − minx∈K f(x) ≥ 2ϵ while f is ϵ-approximately linear.

Theorem 3. For any horizon T ≥ 1 and any player, there exists an adversary such that the regret is at
least 2ϵT .

Proof. We prove the statement by contradiction. Suppose that there exists a player whose regret is less than
2ϵT . Then we can construct an algorithm for the blackbox optimization problem from it by feeding the
online algorithm with T feedbacks of the blackbox optimization problem and by setting x̂ = mint∈[T ] f(xt).
Then,

f(x̂) − min
x∈K

f(x) ≤
∑T

t=1 f(xt) −
∑T

t=1 minx∈K f(x)
T

< 2ϵ,

which contradicts Lemma 10.

This lower bound indicates that Ω(ϵT ) regret is inevitable for the bandit optimization problem for ϵ-
approximately linear functions. We conjecture that the lower bound can be tightened to Ω(dϵT ), but we
leave it as an open problem.

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits.

Advances in neural information processing systems, 24, 2011.

Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for
bandit linear optimization. In COLT, pp. 263–274, 2008.

Naman Agarwal, Alon Gonen, and Elad Hazan. Learning in non-convex games with an optimization oracle.
In Conference on Learning Theory, pp. 18–29. PMLR, 2019.

Sanae Amani, Mahnoosh Alizadeh, and Christos Thrampoulidis. Linear stochastic bandits under safety
constraints. Advances in Neural Information Processing Systems, 32, 2019.

Baruch Awerbuch and Robert D Kleinberg. Adaptive routing with end-to-end feedback: Distributed learn-
ing and geometric approaches. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pp. 45–53, 2004.

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online linear
optimization with bandit feedback. In Conference on Learning Theory, pp. 41–1. JMLR Workshop and
Conference Proceedings, 2012.

Varsha Dani, Sham M Kakade, and Thomas Hayes. The price of bandit information for online optimization.
Advances in Neural Information Processing Systems, 20, 2007.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan Mcmahan. Online convex optimization in the
bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pp. 385 – 394, 2005. doi: 10.5555/1070432.

11



Under review as submission to TMLR

Xiand Gao, Xiaobo Li, and Shuzhong Zhang. Online learning with non-convex losses and non-stationary
regret. In International Conference on Artificial Intelligence and Statistics, pp. 235–243. PMLR, 2018.

Udaya Ghai, Zhou Lu, and Elad Hazan. Non-convex online learning via algorithmic equivalence. Advances
in Neural Information Processing Systems, 35:22161–22172, 2022.

Elad Hazan and Kfir Levy. Bandit convex optimization: Towards tight bounds. Advances in Neural Infor-
mation Processing Systems, 27, 2014.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimization, 2
(3-4):157–325, 2016.

Tor Lattimore. Improved regret for zeroth-order adversarial bandit convex optimisation. Mathematical
Statistics and Learning, 2:311–334, 10 2020. ISSN 2520-2316. doi: 10.4171/msl/17.

Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more: high-probability data-
dependent regret bounds for adversarial bandits and mdps. Advances in neural information processing
systems, 33:15522–15533, 2020.

H Brendan McMahan and Avrim Blum. Online geometric optimization in the bandit setting against an
adaptive adversary. In Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004,
Banff, Canada, July 1-4, 2004. Proceedings 17, pp. 109–123. Springer, 2004.

Arkadi Nemirovski. Interior point polynomial time methods in convex programming. Lecture notes, 42(16):
3215–3224, 2004.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming. SIAM,
1994.

Lin Yang, Lei Deng, Mohammad H Hajiesmaili, Cheng Tan, and Wing Shing Wong. An optimal algorithm
for online non-convex learning. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 2(2):1–25, 2018.

12


	Introduction
	Related Work
	Preliminaries
	Notation
	Problem Setting

	Main Results
	Application to black-box optimization

	Lower bound

