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ABSTRACT

Progress in sequence modeling with deep learning has been driven by the advances
in temporal credit assignment coming from better gradient propagation in neural
network architectures. In this paper, we reveal that using deep dynamics models
conditioned on sequences of actions allows to draw a direct connection between
gradient propagation in neural networks and policy gradients, and to harness those
advances for sequential decision-making. We leverage this connection to analyze,
understand and improve policy gradient methods with tools that have been devel-
oped for deep sequence models, theoretically showing that modern architectures
provably give better policy gradients. Furthermore, we empirically demonstrate
that, in our algorithmic framework, better sequence models entail better policy
optimization: when the environment dynamics is well-behaved, we find that bet-
ter neural network architectures yield more accurate policy gradients; when it is
chaotic or non-differentiable, we discover that neural networks are able to provide
gradients better-suited for policy optimization compared to the real differentiable
simulator. On an optimal control testbed, we show that, within our framework,
agents enjoy increased long-term credit assignment capabilities and sample effi-
ciency when compared to traditional model-based and model-free approaches.

1 INTRODUCTION

In reinforcement learning (RL), an agent executes actions in an environment, receiving a sequence of
rewards with the goal of maximizing their sum, the return. On a mechanistic level, this problem re-
sembles the one of sequence modeling: after processing each input, the sequence model incurs a loss
for a prediction, and its overall goal is to minimize the cumulative loss obtained on a sequence. Fun-
damentally, both problems are concerned with the challenge of temporal credit assignment, wherein
credit must be assigned to the appropriate inputs responsible for a given reward or loss. In either
case, credit can be assigned by estimating the gradient of the performance with respect to the inputs
of interest. Acknowledging this parallel is not just an exercise in correspondence but, as we show in
this paper, a powerful approach to deriving efficient RL algorithms.

In sequence modeling, backpropagation through time has remained the default method for comput-
ing the gradient of the loss function for over thirty years (Werbos, 1988). Progress has been mainly
driven by the development of neural network architectures exhibiting better gradient propagation
properties (Hochreiter & Schmidhuber, 1997; Cho et al., 2014), leading to the successful modeling
of long-term dependencies thousands of time steps apart (Vaswani et al., 2017; Gu et al., 2022).

If we follow the parallel from sequence modelling to RL, a natural technique to learn a policy is to
treat the computational graph created by the interaction between the agent and the dynamics of the
environment in a similar way, and to compute a policy gradient by differentiating through it. Such
an approach has been a foundational aspect of classic RL methods (Werbos, 1974; Barto et al., 1983;
Miller et al., 1995), and a component of successful deep RL algorithms (Hafner et al., 2022). How-
ever, backpropagation in this manner is seldom employed beyond a few dozen steps of the dynamics
due to unstable or inaccurate gradients (Heess et al., 2015). Rather, deep RL methods have mostly
sidestepped the problem by relying on temporal difference learning, which is commonly restricted
to an effective credit assignment horizon that rarely exceeds a hundred time steps (Ni et al., 2023).

Despite the success of sequence modeling and its similarities with policy gradients, there is still
limited understanding of neural networks’ role in estimating policy gradients. Can decades of scien-
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tific advances regarding gradient propagation in deep sequence models guide our understanding of
policy gradient estimation via backpropagation? Could neural network architectures developed for
sequence modeling lead to better policy gradients?

This paper aims to offer a positive answer to these questions. We do so by developing a frame-
work based on the idea of computing policy gradients by differentiating through an action-sequence
model: a predictor of the state dynamics of an environment conditioned on a sequence of actions
without environment states. This formulation allows us to draw a direct connection between gradient
propagation properties for a particular neural network architecture and the quality of the resulting
policy gradient. We show that common failure cases encountered in policy gradient methods, such as
the ones coming from estimating gradients through learned Markovian models (Heess et al., 2015),
can be understood through the lens of results for gradient propagation in sequence models.

We argue that using action-sequence models for policy optimization has inherent advantages. Unlike
traditional models conditioned on the entire history of states and actions, action-sequence models
directly enjoy the gradient propagation properties of their core neural network architecture, lead-
ing to policy gradients more amenable to policy optimization. In this work, we demonstrate these
properties both theoretically and empirically.

Theoretically, we show that modern sequence models, such as transformers (Vaswani et al., 2017),
provably lead to better policy gradients when employed as a backbone for an action-sequence model.
By interpreting model-based policy gradients differentiated through traditional dynamics models
(e.g., Markovian) under the light of action-sequence models, we ground explanations of their con-
ceptual and theoretical limitations on the existing theory of neural networks.

We complement the theoretical findings with in-depth empirical investigations. We show that using
appropriate neural network architectures for action-sequence models yields policy gradients that
are accurate in the presence of a well-behaved environment. Furthermore, we show that these
models can be better than the ones coming from the actual simulator in the case of chaotic or
non-differentiable dynamics. This provides an answer to open questions from recent work, which
conjectured that using better neural network models might be a remedy for the challenge of pol-
icy optimization via backpropagation in the presence of non-smooth differentiable simulators (Metz
et al., 2021; Suh et al., 2022). We demonstrate on a suite of realistic optimal control tasks (Howe
et al., 2022) that the enhanced gradient propagation properties coming from appropriate neural net-
work architectures used as action-sequence models allow for more effective policy optimization.
In particular, we find they unlock longer temporal credit assignment capabilities, leading to an in-
creased ability to solve long-horizon tasks and improved sample efficiency compared to traditional
model-based and model-free approaches.

2 BACKGROUND

Sequence modeling Sequence modeling is a supervised learning problem concerned with predict-
ing the sequence of labels y1, . . . , yT given an input sequence x0, . . . , xT−1. A sequence model
is any parameterized function function g : X t → Y such that g(x0, . . . , xt−1) ≈ yt. This for-
malism has been adopted in many applications, such as speech recognition, text generation and
sentiment analysis. When g is parameterized as a neural network, a similar strategy is used for
training the model regardless of its specific architecture. We will mainly consider three types of
sequence models: simple Recurrent Neural Networks (RNNs) (Werbos, 1974), Long Short-Term
Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997) and attention-based models (e.g.,
transformers (Vaswani et al., 2017)).

Problem definition We are interested in deterministic discrete-time finite-horizon Markov Decision
Processes (MDPs) (Fairbank, 2014), defined as M = (S,A, f, r,H, s1), where S ⊆ Rn is the state
space, A ⊆ Rm is the action space, f : S × A → S is the differentiable transition dynamics,
r : S → R is the differentiable reward function, H is the horizon and s1 ∈ S is the initial state.
The behavior of an agent in the environment is described by a policy πθ : S → A, belonging to a
space of parameterized differentiable deterministic1 stationary Markov policies Π = {πθ : θ ∈ Rd}.

1This assumption can be relaxed to a stochastic policy, where its derivative can be estimated using the
reparameterizations (Kingma & Welling, 2014).
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Without loss of generality, we omit possible time dependencies in the reward function and dynamics,
but this has no impact on any of the results that follow.

Gradient-based policy optimization The goal of the agent is to maximize the cumulative reward
of trajectories induced by its policy. In the deterministic setting, it corresponds to the maximization
of the objective J(θ;H) :=

∑H
t=1 r(st), where st = f(st−1, at−1), at = πθ(st) and s1 is given by

the MDP. Policy gradient methods learn a policy by gradient descent using an estimation of ∇θJ . In
this paper, we are interested in methods that compute the policy gradient by directly differentiating
through the reward function, the transition dynamics, and a policy under non-restrictive smoothness
assumptions. We consider the open-loop policy gradient defined below for the remainder of this
work.
Definition 1. (Open-loop Policy Gradient under a deterministic MDP). Let r and f be the differen-
tiable reward and transition functions of a Markov Decision Process M, Πθ a parametric space of
differentiable deterministic policies and st = f(st−1, at−1). Given πθ ∈ Πθ, the Open-loop Policy
Gradient of πθ under M is defined as:

∇θJ(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂f(sk, ak)

∂ak

∂πθ(sk)

∂θ

(
t−1∏

i=k+1

∂f(si, ai)

∂si

)
.

Rooted in an open-loop policy, where actions depend only on t, this definition retains the benefits
of a closed-loop policy during inference while simplifying gradient analysis and calculation. Prac-
tically, this gradient is often used in gradient-based policy optimization in model-based methods
(Hafner et al., 2022; 2023) and can be evaluated by treating the policy inputs as a constant. For a
more complete discussion of this gradient and its relationship with a standard policy gradient, see
Appendix B.

When the dynamics f are not known, the policy can be updated using a learned transition function
f̂ψ(st, at) belonging to a space of parameterized differentiable functions F = {fψ : ψ ∈ Rdψ}.
Given transitions st, at, st+1 sampled from the environment, the approximate one-step model f̂ , or
Markovian model, can be learned with the following mean squared error loss

L(ψ; st, at, st+1) = (st+1 − f̂ψ(st, at))
2 . (1)

This model can then be learned by gradient descent and used to compute the policy gradient.

3 A SEQUENCE MODELING PERSPECTIVE ON POLICY GRADIENTS

In this section, we present a differentiable sequence modeling perspective on policy gradients. The
core of this proposal revolves around dynamics models conditioned on sequences of actions, which
can be instantiated with any neural network architecture. When using such models, the long-term
properties of the policy gradient are a direct result of the chosen architecture. In the rest of the paper,
we will require the following assumption.
Assumption 1. The reward function r is Lr-Lipschitz and any policy πθ ∈ Π is Lπ-Lipschitz.

We use this standard assumption, commonly employed when backpropagating through the environ-
ment dynamics and rewards (Clavera et al., 2020), to prove our results on gradient propagation.

3.1 ACTION-SEQUENCE MODELS

Let us reflect on the mechanism linking a sequence of actions to its execution in the environment. If
we think of the environment as a black-box machine, what the agent observes is that when presented
with a sequence of actions a1, . . . , at−1, this machine produces a sequence of states s2, . . . , st. Un-
der this perspective, the correspondence with sequence modeling is apparent. In that setting, without
any knowledge about the mechanism linking a sequence of inputs x0, . . . , xT−1 to a sequence of
outputs y1, . . . , yT , we want to learn a model g able to predict the latter from the former; in an
identical manner, an agent that wants to successfully interact with an environment, with no prior
knowledge about its dynamics, needs to learn which states it will observe after executing a sequence
of actions.
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Figure 1: (Left): a generic representation of an ASM. (Center): an ASM instantiated with an RNN, which
recovers the familiar computational graph of an MDP. (Right): an ASM instantiated with an attention-based
model with attention modules (Att.). Gradient propagation from states back to actions will directly follow from
the inherent properties of the underlying neural network architecture.

To reuse advances in sequence modeling for understanding and improving sequential decision-
making agents, we want to build a model that follows the natural parallel we highlighted. This
is a model of the type g : At → S; a1:t 7→ g(a1:t) that, given a sequence of actions, predicts each
state resulting from executing those actions: we call this an action-sequence model (ASM). Without
loss of generality, the dependency of the model from s1 can be ignored in an MDP with a fixed
initial state. Given an ASM, a policy can be learned by directly differentiating through it to compute
the following policy gradient.
Definition 2 (Open-loop Policy Gradient under an action-sequence model). Let g be an action-
sequence model, r be the differentiable reward function of a Markov Decision Process M, Πθ a
parametric space of differentiable deterministic policies and st = g(a1:t−1). Given πθ ∈ Πθ, the
Open-loop Policy Gradient of πθ under g is defined as:

∇g
θJ(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂g(a1:t−1)

∂ak

∂πθ(sk)

∂θ
.

This gradient computation resembles the one of the open-loop policy gradient from Definition 1.
There, the policy gradient is computed by differentiating through the Markovian dynamics of the
environment, while in Definition 2 a gradient is computed by differentiating through an ASM. The
next proposition shows how the two definitions are connected, offering a first glimpse at the con-
nection between neural network architectures, ASMs and policy gradient computation in MDPs.

Proposition 1. Let M-RNN be a recurrent network with its recurrent cell being the dynamics f of
the Markov Decision Process M. Then,

∇M-RNN
θ J(θ;H) = ∇θJ(θ;H).

The above proposition tells us that the original policy gradient under an MDP is in fact equivalent
to the one computed according to Definition 2, when instantiating g as a recurrent neural network
with a specific recurrent cell. Crucially, this not only provides a grounding for gradient-estimation
with ASMs, but also hints at a fundamental fact that will be analyzed in-depth in this section: policy
gradient computation by differentiation through unrolled Markovian models can be understood to
be fundamentally ill-behaved due to its correspondence to an RNN structure. We present in Figure 1
a visual representation of the connection between different neural network architectures used to
instantiate an ASM and the resulting computation graph representing the model of the environment.

The sequence modeling perspective provided by the ASM can also be used to interpret architectural
and training design choices used in RL. As a concrete example, we present the following remark.
Remark 1. Training an ASM instantiated with an RNN to predict states using teacher forcing is
equivalent to training its recurrent cell with the one-step loss function from Equation 1.

Teacher forcing (Williams & Zipser, 1989) is an algorithm used to train RNNs, that, instead of
autoregressively unrolling them during training, enforces the outputs (i.e., in this case, the envi-
ronment/RNN states) to be the ones coming from a ground-truth trajectory. In other words, when
training an ASM as an RNN with teacher forcing, we are essentially training its recurrent cell as a
one-step model, as traditionally done in model-based RL applied to a Markovian setting.
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3.2 POLICY GRADIENT COMPUTATION WITH ACTION-SEQUENCE MODELS

Through the concept of action-sequence model, we have established a direct connection between
deep sequence models and policy gradient estimation. We will now exploit this connection to char-
acterize the asymptotic behavior of the policy gradient depending on the underlying neural network
architecture employed as an ASM. To do so, we leverage the following theorem.
Theorem 1. Let r be the Lr-Lipschitz reward function from a Markov Decision Process M, Πθ
a parametric space of differentiable deterministic Lπ-policies. Given πθ ∈ Πθ, the norm of the
open-loop policy gradient ∇g

θJ(θ;H) of πθ under an action-sequence model g as a function of the
horizon H can upper bounded as:

∥∇g
θJ(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥∂g(a1:t−1)

∂ak

∥∥∥∥ .
This theorem holds for any differentiable ASM g, and establishes a worst-case relationship between
the Jacobian of the ASM w.r.t. its inputs (i.e., actions) and the policy gradient. Notably, the result
implies that the policy gradient does not explode if the Jacobian of the ASM does not explode.

We will now leverage the generality of the previous result to characterize the asymptotic behavior
of the policy gradient computed using different neural network architectures for an ASM. First, let
us consider an ASM instantiated with a simple recurrent neural network with a linear output layer:

(RNN) xt = σ(Wxxt−1) +Waat−1 + b; ŝt = Woxt, (2)

where σ is an activation function with gradient norm bounded by ∥diag(σ′(x))∥ ≤ 1
β for some

constant β. Then, the following result holds.
Corollary 1.1. Let RNN be an action-sequence model in the form of Equation 2. For some η > 1,
the asymptotic behavior of the norm of the open-loop policy gradient ∇RNN

θ J(θ;H) as a function of
the horizon H can be described as:∥∥∇RNN

θ J(θ;H)
∥∥ = O

(
ηH
)
.

Corollary 1.1 shows that, in the worst case, the policy gradient computed with an ASM instantiated
with an RNN backbone can explode exponentially fast with respect to the problem horizon. As seen
in Proposition 1, Remark 1 and Figure 1, using a Markovian model to compute the policy gradient,
either given or learned, implies an RNN-structure for the ASM. Thus, Corollary 1.1 explains both
the difficulties observed in exploiting differentiable simulators (Metz et al., 2021) and the limitations
of existing model-based methods based on differentiating through Markovian models (Heess et al.,
2015). This result is a consequence of foundational theory of RNNs (Bengio et al., 1994; Pascanu
et al., 2013), demonstrating how the connection created by our ASM framework allows to transfer
scientific understanding from sequence modeling to policy gradients.

Let us now apply Theorem 1 to a self-attention ASM (Vaswani et al., 2017). Given Q ∈ R1×dz ,
K ∈ Rn×dz , V ∈ Rn×do , we define Attention(Q,K, V ) := softmax(QKT )V . Using a set of
weight matrices, a self-attention ASM predicts the next state as follows:

(ATT) ŝt = Attention(at−1W
T
q , a1:t−1W

T
k , a1:t−1W

T
v ) . (3)

We can now characterize the behavior of the policy gradient computed with a self-attention ASM.
Corollary 1.2. Let ATT be an attention-based action-sequence model of the form of Equation 3.
The asymptotic behavior of the norm of the open-loop policy gradient ∇ATT

θ J(θ;H) as a function
of the horizon H can be described as:∥∥∇ATT

θ J(θ;H)
∥∥ = O

(
H3
)

.

This result shows that, inheriting the properties of the underlying sequence model, the policy gra-
dient norm has only a worst-case polynomial dependency on the horizon, instead of an exponential
one: by creating a direct connection between the gradient propagation properties of a neural net-
work backbone and the policy gradient, ASMs can take advantage of the better properties of modern
architectures based on self-attention to achieve better behaved policy gradients.
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overview.
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Figure 3: ASMs ignore non-differentiable points in the state space. (a) After the block is pushed with some
initial action, it bounces off the wall, instantaneously reversing its velocity. (b) Visualization of the point of
non-differentiability in the state space. (c) Learning a one-step model is difficult, but an ASM (using an RNN)
can still accurately model the final reward when varying the initial action. Learned dynamics are trained offline
on a dataset collected using random actions.

4 EXPERIMENTS AND DISCUSSION

In this section, we will show that, by casting policy gradients into a sequence modeling problem,
the ASM framework unlocks the full potential of modern sequence model architectures for temporal
credit assignment in RL. We perform a wide range of experiments to demonstrate that policy opti-
mization with LSTMs or transformers as ASMs architectures outperforms traditional model-free and
model-based methods in a variety of domains. In our experiments, we use the differentiable reward
function provided by the environment, but we show in Appendix C that ASMs can successfully be
employed with learned reward functions as well. We use a Markov agent, or one-step model, to refer
to the traditional model-based policy gradient method presented in Section 2, which is a special case
of an RNN as highlighed in Proposition 1. When unspecified, we rely on a standard model-based
policy optimization paradigm to learn an ASM and use it to optimize a policy, in which we itera-
tively collect data interacting with the environment and use it to train the model, then compute the
policy gradient with the ASM and improve the policy via gradient ascent. We report the pseudocode
in Appendix E.

4.1 BETTER SEQUENCE MODELS YIELD MORE ACCURATE LONG-TERM GRADIENTS
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Figure 2: Better ASMs correspond
to more accurate gradients. Cosine
similarity between the policy gradients
of different learned dynamics and the
true policy gradient on the toy credit-
assignment task (10 seeds ± std).

Section 3 focus on the theoretical stability of policy gradients
computed using ASMs. Here, we present complementary em-
pirical evidence that the underlying sequence models can also
improve the accuracy of policy gradients in tasks where long-
term gradients are well-behaved. We consider the following
illustrative credit assignment task, inspired by the copy se-
quence modeling task (Hochreiter & Schmidhuber, 1997). An
initial action is taken and copied into the state space for H
steps. After H steps, the agent receives a reward as a function
of the copied initial action in the final state.

We train ASMs with different architectures on a dataset col-
lected by a randomly-initialized policy, and estimate its pol-
icy gradient using the ASMs. We report the cosine similarity
between the real policy gradient and the one estimated from
the ASMs for different tasks horizons in Figure 2. For large
episode lengths, H , the policy gradient under the environment
dynamics remains stable, yet a traditional Markovian model
cannot produce accurate policy gradients for horizons over 100 steps. Gradient estimation with
ASMs instantiated using better sequence models instead generates accurate policy gradients for up
to 500 steps, showing no signs of degradation. These results demonstrate that better sequence mod-
els can directly translate to more accurate policy gradients for RL in the context of our framework.

4.2 CAN GRADIENTS FROM MODELS BE BETTER THAN GRADIENTS FROM SIMULATORS?

When having access to a differentiable simulator, it is possible to directly leverage the environ-
ment dynamics to compute the policy gradient using Definition 1. However, when the environment
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dynamics are not well-behaved, this can lead to unstable optimization, which previous work conjec-
tured might be alleviated by learning neural network models (Metz et al., 2021; Suh et al., 2022). In
this section, we show our framework confirms this conjecture, demonstrating that ASMs based on
appropriate sequence models can lead to better policy gradients than the ones coming from the envi-
ronment dynamics, when the simulator features points of non-differentiability or chaotic behavior.

Partially-differentiable simulators Real-world systems (e.g., physical systems) often present
points of non-differentiability (e.g., contact points) across their state space. However, these points
often exists even if the dependency of the rewards from the actions is actually smooth and well-
behaved everywhere. In such cases, ASMs can be used to side-step the non-differentiability of
the state dynamics, directly mapping from actions to rewards through predicted states. To il-
lustrate this point, we examine a one-bounce environment, shown in Figure 3. In this task,
an agent must push a block towards a wall with some initial action, such that the block
bounces off the wall and ends up at some predetermined goal state after H steps. A sin-
gle terminal reward is given at t = H measuring the distance of the block to the goal state.
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Figure 4: Gradients from ASMs
outperform differentiable simula-
tors in chaotic environments. Perfor-
mance after policy optimization using
different ASMs and the environment
dynamics (10 seeds ± std).

Even though the state trajectory is non-differentiable due to
the wall bounce, the final state of the block is actually well-
behaved with respect to the permitted initial actions (Figure 3b
and Figure 3c). Consequently, we show in Figure 3c that
ASMs can accurately predict the final reward, while an un-
rolled Markovian model cannot make accurate predictions in
the presence of points of such abrupt variations in the state
space. Notably, the resulting ASM thus allows the use of pol-
icy gradient-based optimization even in the presence of an un-
derylying non-differentiable environment dynamics.

Chaotic dynamics Even when a differentiable simulator is
available, its dynamics can still be ill-behaved for policy opti-
mization. Chaotic systems constitute a notable example of this,
due to the accumulated product of Jacobians leading to gradi-
ent explosion (Suh et al., 2022). In Theorem 1, we have shown
that an ASM’s gradient behavior is determined by its under-
lying architecture, and explosion may be prevented by the use of an appropriate sequence model.
Here, we investigate how these bounds interact with a chaotic environment, and how the resulting
policy is affected. To do so, consider a prototypical chaotic system, using a double-pendulum task
depicted in Figure 5a. In this environment, the agent’s initial action determines the initial angular
position of the inner pendulum. Afterwards, the system is rolled out for H steps. The objective is to
get the system to be in some predefined goal state after H steps given the initial action. A terminal
reward is given which measures the distance between the final observed state and the desired goal
state. We illustrate in Figure 5b and Figure 5c the chaotic nature of the task, showing respectively
that the norm of true gradient of the final state with respect to the action grows exponentially with

(a) Double-
pendulum.
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(c) Final returns with respect to the initial action
for different models and lengths.

Figure 5: ASMs smooths out chaotic dynamics. (a) A double-pendulum environment where an initial po-
sition must be chosen in order to achieve some pre-determined goal state after H steps. Different transition
models are learned on a data set of random trajectories. (b) The mean gradient norm of the final state with re-
spect to the initial action for each model is computed over 50 different random actions for each episode length.
(c) Final return according to different models for different initial actions and episode lengths H .
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Figure 6: ASMs are more sample efficient than traditional model-based and model-free methods. Per-
formance of different ASMs on Myriad, a one-step model, and SAC agent (10 seeds ± 95% C.I.).

the episode length H , and that the return landscape (Rahn et al., 2023) becomes more difficult to
navigate as the horizon grows. Figure 5 shows that, while the gradient provided by a one-step model
explodes just like the true gradient, a transformer-based ASM provides stable gradients. This man-
ifests itself as a smooth and accurate approximation of the return landscape (Figure 5c), and better
policy optimization (Figure 4). These results provide evidence on how compatible with gradient
propagation are the inductive biases designed for deep learning architectures, and on how ASMs
can take advantage of those inductive biases for policy optimization.

4.3 BETTER SEQUENCE MODELS IMPROVE CREDIT ASSIGNMENT

We now show that using advanced sequence models as ASMs results in effective long-term credit
assignment. We focus on eight tasks from the Myriad testbed (Howe et al., 2022) inspired by
real-world problem (Lenhart & Workman, 2007). We employ Myriad because of its finite-horizon,
fully deterministic, continuous and Markovian environments, requiring long-term credit assignment.
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Figure 7: Better architectures in
ASMs improve long-term credit as-
signment. Final performance of pol-
icy optimization with different dynam-
ics on Myriad, in the form of ASMs,
history-sequence models and one-step
models (10 seeds ± 95% C.I.).

The episode length, and consequently the credit assignment
difficulty, is configurable: reducing the integration step size in
an environment effectively increases the horizon H . We report
additional information in Appendix D. We aggregate results
using the IQM (Agarwal et al., 2021).

The use of sequence models is common in model-based RL.
In fact, many model-based algorithms designed for partially
observable MDPs use sequence models to approximate its dy-
namics (Hafner et al., 2022). These history-sequence mod-
els resemble ASMs, with an additional conditioning on states,
such that st = g(s1a1, . . . , st−1at−1). While this condition-
ing may be redundant in a deterministic MDP (in which a se-
quence of actions implies a single state), it might seem natural
to think that such history-sequence models may, in fact, al-
ready inherit the benefits of ASMs, given their dependence on
the same sequence of actions. To verify this claim, we train
an agent following the same policy optimization paradigm but
replacing ASMs with history-sequence models.

Figure 7 shows the aggregate performance on the Myriad environments. First, ASMs instantiated
with an LSTM or a transformer can reliably do well in long-term credit assignment tasks up to a hori-
zon of 500, while an RNN-based ASM and a more traditional one-step model struggle past a horizon
of 100. These results corroborate our previous findings: better sequence models can be plugged into
the ASM framework to directly improve policy gradients’ temporal credit assignment capabilities.
Second, we demonstrate that models conditioned on full histories containing both state and actions
cannot leverage the inductive biases of the chosen architecture as well as ASMs. Whether an LSTM
or a transformer is used, our results show that conditioning on the entire history counteracts the po-
tential benefits of the more powerful sequence models. These results have a simple explanation. Just
as history-sequence models process actions as ASMs, they also process state information similarly to
a one-step transition function. Therefore, the behavior of policy gradients history-sequence models
could be dominated by ill-behaved gradients similar to the ones of unrolled one-step dynamics.
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In Figure 6, we also compare ASM-based approaches to the model-free algorithm Soft Actor-
Critic (SAC) (Haarnoja et al., 2018). When using transformers or LSTMs, ASMs outperform SAC
in sample efficiency. While this is not true for the Markov model-based method, ASMs deliver on
the promise of model-based methods for improved sample efficiency over model-free alternatives.

5 RELATED WORK

Differentiating through dynamics and backpropagation. The concept of learning a policy by
differentiating through the environment dynamics has been a foundational aspect of early RL meth-
ods (Werbos, 1974; Schmidhuber, 1990). Estimators for such a policy gradient have been employed
in different settings and referred to with different names, including pathwise derivatives (Clavera
et al., 2020; Hafner et al., 2022; 2023) and value gradients (Fairbank, 2014; Heess et al., 2015;
Amos et al., 2021). ASMs connects this literature to the one on sequence modeling with neural net-
works, with a focus on understanding gradient propagation (Bengio et al., 1994; Hochreiter, 1998;
Pascanu et al., 2013) and on architectures that allow for improved credit assignment (Hochreiter &
Schmidhuber, 1997; Vaswani et al., 2017; Kerg et al., 2020). Finally, our work can be seen as an
instance of gradient-aware model-based RL (D’Oro et al., 2020; D’Oro & Jaskowski, 2020; Abachi
et al., 2020), in which we modify the architecture of a model of the dynamics to obtain better policy
gradients downstream (Ma et al., 2021).

Multi-step state prediction with actions. The idea of training multi-step dynamics, either in
the latent space or explicitly, is related to different kinds of previous work in RL. Prior works used
models related to ASMs, analyzing their role as partial models (Rezende et al., 2020), in the context
of tree search (Schrittwieser et al., 2019), or training them with a multi-step latent prediction loss (Xu
et al., 2018; Gregor et al., 2019; Schwarzer et al., 2020), without however ever analyzing their
gradient properties. Notably, models used in these prior works are rarely shown to work beyond a
few dozen steps of unrolling or imagination, while ASMs demonstrably scale favorably for horizons
well beyond established limitations.

Sequence models in RL. In partially observable MDPs, sequence models have been extensively
used in RL as history encoders to maximize returns with or without world models Hausknecht &
Stone (2015); Ni et al. (2021); Hafner et al. (2023). Other works have recently emerged treating
MDPs as a sequence modeling problem Chen et al. (2021); Zheng et al. (2022); Janner et al. (2021),
showing promise in an imitation learning or offline RL problem setting by deriving policies through
return conditioned models. Additional experiments on decision transformers are reported in Ap-
pendix F.3. Separately, sequence models have also been used to reshape the reward landscape for
improved temporal credit assignment in sparse reward settings Hung et al. (2019); Arjona-Medina
et al. (2019); Liu et al. (2019). In contrast to all of these, our framework is the only one to use an
action-only conditioned sequence model to directly improve long-term policy gradients in MDPs.
Appendix G contains a more detailed comparison with all these methods.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we presented a differentiable sequence model perspective on policy gradients. We
built a framework based on action-sequence models, which are models of the environment dynam-
ics conditioned on sequences of actions, and showed that this framework allows to create a direct
connection between sequence modeling with neural networks and policy gradients. In particular, we
exploited this connection to theoretically characterize the asymptotic behavior of policy gradients
obtained via differentiation through world models. Empirically, we show that better sequence mod-
els can be freely plugged into this framework to produce more accurate and well-behaved policy
gradients, resulting in more sample efficient and effective long-term credit assignment.

Our work constitutes a first answer to open questions on the relationship of neural network-based
dynamics models, sequence models and differentiable simulators. To provide this answer in the
most scientifically sound and intelligible form, we opted to use carefully controlled settings and
experiments, assuming Markovian and deterministic dynamics, and relatively low-dimensional do-
mains. We encourage future work to leverage our theoretical and empirical insights for scaling up the
framework provided by action-sequence models to more complex domains, in stochastic, partially
observable, and high-dimensional settings.
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A PROOFS

Proposition 1. Let M-RNN be a recurrent network with its recurrent cell being the dynamics f of
the Markov Decision Process M. Then,

∇M-RNN
θ J(θ;H) = ∇θJ(θ;H).

Proof. We begin by providing a formal definition of the recurrent network with its recurrent cell
being the dynamics f of the MDP as:

gt(a1:t) := f(st, at)

st := f(st−1, at−1) = f(g(a1:t−1), at)

Begin by developing the LHS of the equation.

∇M-RNN
θ J(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂gt
∂ak

∂πθ(sk)

∂θ

=

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂st
∂ak

∂πθ(sk)

∂θ

where st = f(st−1, at−1) by construction (RNN assumption). Therefore, apply the chain rule ∂st
∂ak

:

∇M-RNN
θ J(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂sk+1

∂ak

( t−1∏
i=k+1

∂si+1

si

)
∂πθ(sk)

∂θ

Now, for the RHS of the equation. Rewriting the policy gradient provided in Definition 1.

∇θJ(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂sk+1

∂ak

∂πθ(sk)

∂θ

(
t−1∏

i=k+1

∂si+1

∂si

)
.

∇M-RNN
θ J(θ;H) = ∇θJ(θ;H).

Theorem 1. Let r be the Lr-Lipschitz reward function from a Markov Decision Process M, Πθ
a parametric space of differentiable deterministic Lπ-policies. Given πθ ∈ Πθ, the norm of the
open-loop policy gradient ∇g

θJ(θ;H) of πθ under an action-sequence model g as a function of the
horizon H can upper bounded as:

∥∇g
θJ(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥∂g(a1:t−1)

∂ak

∥∥∥∥ .
Proof.

∇g
θJ(θ;H) =

∥∥∥∥∥
H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂gt
∂ak

∂π(sk)

∂θ

∥∥∥∥∥ ≤ LrLπ

∥∥∥∥∥
H∑
t=1

t−1∑
k=1

∂gt
∂ak

∥∥∥∥∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥ ∂gt∂ak

∥∥∥∥ .

Corollary 1.1. Let RNN be an action-sequence model in the form of Equation 2. For some η > 1,
the asymptotic behavior of the norm of the open-loop policy gradient ∇RNN

θ J(θ;H) as a function of
the horizon H can be described as:∥∥∇RNN

θ J(θ;H)
∥∥ = O

(
ηH
)
.

Proof. We begin by defining the transition function of the recurrent network as xt = σ(Wxxt−1) +
Waat+ b, where σ is some activation function with gradient norm bounded by ∥diag(σ′(x))∥ ≤ 1

β .
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Further, consider a linear output cell st+1 = Woxt. Now we begin by showing that
∥∥∥ ∂xt
∂ak

∥∥∥ ≤
||WT

a ||(||WT
x || 1β )t−k:

∂xt

∂ak
=

∂xk

∂ak

t−1∏
i=k

∂xi+1

∂xi∥∥∥∥ ∂xt

∂ak

∥∥∥∥ ≤ ||WT
a ||

t−1∏
i=k

∥∥∥∥∂xi+1

∂xi

∥∥∥∥ = ||WT
a ||

t−1∏
i=k

∥∥WT
x diag(σ′(xi))

∥∥
≤ ||WT

a ||
t−1∏
i=k

∥∥WT
x

∥∥ ∥diag(σ′(xi))∥

≤ ||WT
a ||

t−1∏
i=k

∥∥WT
x

∥∥ 1

β
= ||WT

a ||(||WT
x || 1

β
)t−k .

We develop the expression ∂st
∂ak

= ∂st
∂xt−1

∂xt−1

∂ak
, applying the norm and plugging in the above result

we obtain: ∥∥∥∥ ∂st∂ak

∥∥∥∥ ≤ ∥Wo∥
∥∥WT

a

∥∥ (||WT
x || 1

β
)t−k−1

We then use the bound found in Theorem 1:

∥∇g
θJ(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥ ∂gt∂ak

∥∥∥∥ = LrLπ

H∑
t=1

t−1∑
k=1

∥∥∥∥ ∂st∂ak

∥∥∥∥
≤ LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥ (||WT
x || 1

β
)t−k−1 = LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥ ηt−k−1 ,

where η = ||WT
x || 1β . Now we use the assumption that the spectral radius of the recurrent matrix is

greater than β. In the case of the 2-norm, η = ρ(WT
x ) 1β > 1. By this assumption, ηi > ηj ∀j < i,

therefore we may finalize our proof:

∥∇g
θJ(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥ ηt−k−1

≤ LrLπ
H(H + 1)

2
∥Wo∥

∥∥WT
a

∥∥ ηH
= O(ηH).

Corollary 1.2. Let ATT be an attention-based action-sequence model of the form of Equation 3.
The asymptotic behavior of the norm of the open-loop policy gradient ∇ATT

θ J(θ;H) as a function
of the horizon H can be described as:∥∥∇ATT

θ J(θ;H)
∥∥ = O

(
H3
)

.

Proof. We begin with the definition of the self-attention action-sequence model. Let Q ∈ R1×dz ,
K ∈ Rn×dz , V ∈ Rn×do , attention can be defined as :

Attention(Q,K, V ) := softmax(QKT )V

A self-attention action-sequence model can then be defined in the following way with weight matri-
ces Wq ∈ Rdz×da , Wk ∈ Rdz×da , Wv ∈ Rds×da .
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ATTt(a1, ...at−1) := Attention(at−1W
T
q , a1:t−1W

T
k , a1:t−1W

T
v ) =

t−1∑
i=1

ci(aiW
T
v ) = ŝt,

where ci = softmaxi(at−1W
T
q Wka

T
1:t−1). The subscript on the softmax operator indicates the ith

index. Now, we begin by showing the expression for ∂gt
∂ak

:

∂gt
∂ak

=

t−1∑
i=1

∂

∂ak
ci(aiW

T
v )

=

t−1∑
i=1

∂ci
∂ak

(aiW
T
v ) + ci

∂(aiW
T
v )

∂ak

= ckW
T
v +

t−1∑
i=1

(
ci(1{i = k} − ck)(aiW

T
v )

)
by derivative of softmax .

Then, we take the norm:∥∥∥∥ ∂gt∂ak

∥∥∥∥ ≤ ∥ckWT
v ∥+

t−1∑
i=1

∥∥ci(1{i = k} − ck)(aiW
T
v )
∥∥

≤ ∥ckWT
v ∥+

t−1∑
i=1

∥ci(1{i = k} − ck)∥
∥∥(aiWT

v )
∥∥

≤ ∥WT
v ∥+

t−1∑
i=1

∥∥(aiWT
v )
∥∥ since |ci| ≤ 1 ∀i

Assuming the actions are bounded by |aj | ≤ α ∀j,∥∥∥∥ ∂gt∂ak

∥∥∥∥ ≤ ∥WT
v ∥+

t−1∑
i=1

∥∥(aiWT
v )
∥∥

≤ ∥WT
v ∥+ α

t−1∑
i=1

∥∥WT
v

∥∥
Finally, we use the bound derived in Theorem 1 to finalize the proof:

∥∇g
θJ(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

(
∥WT

v ∥+ α

t−1∑
i=1

∥WT
v ∥
)

= O(H3α∥WT
v ∥)

= O(H3).

A.1 TIGHTNESS OF COROLLARY 1.1

The result of Corollary 1.1 argues that policy gradients through Markovian models may explode as
the horizon grows. In order to make this claim, we comment on the tightness of the bound. To do
so, consider the line before last in the proof:

∥∇g
θJ(θ;H)∥ ≤ LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥ ηt−k−1 . (4)

To get here, we made use of the result from Theorem 1 which uses a Lipschitz assumption for the
reward function and policy and the triangle inequality in its inequalities. The rest of the proof to
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get to equation 4 uses the Cauchy-Schwarz inequality to establish all inequalities. The bound in
equation 4 is therefore tight; all relevant inequalities can be written as equivalent if and only if all
the Jacobians in the recurrent network can be written as a positive scalar multiplication of each other
Jacobian, which is a plausible condition. For example, consider the positive one dimensional case
where the condition is met. In this case, we may write

∥∇g
θJ(θ;H)∥ = LrLπ

H∑
t=1

t−1∑
k=1

∥Wo∥
∥∥WT

a

∥∥ ηt−k−1

≥ LrLπ ∥Wo∥
∥∥WT

a

∥∥ ηH−1

= Ω(ηH) ,

and the bound is tight.

B RELATIONSHIP BETWEEN OPEN AND CLOSED LOOP POLICY GRADIENTS

The policy gradients introduced and used throughout this paper are of an open-loop nature, but the
policy itself remains closed-loop. We restate the definition here for convenience.
Definition 1. (Open-loop Policy Gradient under a deterministic MDP). Let r and f be the differen-
tiable reward and transition functions of a Markov Decision Process M, Πθ a parametric space of
differentiable deterministic policies and st = f(st−1, at−1). Given πθ ∈ Πθ, the Open-loop Policy
Gradient of πθ under M is defined as:

∇θJ(θ;H) =

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂f(sk, ak)

∂ak

∂πθ(sk)

∂θ

(
t−1∏

i=k+1

∂f(si, ai)

∂si

)
.

In the classical reinforcement learning setting, policy gradients are closed loop, and can be derived
as the following equations given an MDP (Heess et al., 2015), where st = f(st−1, at−1), and
at = πθ(st):

∇∗
θJ(θ;H) :=

H∑
t=1

∇θr(st)

=

H∑
t=1

∂r(st)

∂st

dst
dθ

dst
dθ

=
∂st

∂at−1

dat−1

∂θ
+

(
∂st

∂st−1
+

∂st
∂at−1

∂at−1

∂st−1

)
dst−1

dθ

ds1
dθ

= 0 .

The open-loop policy gradient defined in Definition 1 is equivalent to the above form when we
consider the actions as a constant w.r.t their respective states, or ∂ai

∂si
= 0 for all i. To fully appreciate

this parallel, we can write the closed-loop policy gradient without the recursive dependence, and
setting ∂ai

∂si
= 0 for all i:

∇∗
θJ(θ;H) ≈

H∑
t=1

∂r(st)

∂st

t−1∑
k=1

∂sk+1

∂ak

∂π(sk)

∂θ

(
t−1∏

i=k+1

∂si+1

∂si

)
.

With this approximation, which is not unlike truncated backpropagation through time (Elman, 1990;
Williams & Zipser, 1995), where hidden states are treated as constants instead, the closed-loop
policy gradient is equivalent to the open-loop policy gradient defined in Definition 1.

C LEARNING A REWARD FUNCTION

All experiments conducted in this paper assume that the ground truth differentiable reward function
is provided. We perform a short ablation on the toy credit-assignment task with and without a learned
reward function. Figure 8 shows no significant dip in sample efficiency or performance when the
reward function must be learned.
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Figure 8: Policy gradients with a learned reward and action-sequence models in the toy credit-
assignment task. The horizon is set to 20, and runs are averaged over 10 seeds. The 95% confidence
interval is reported.

D MYRIAD ENVIRONMENTS

We give a short overview of each of the Myriad environments used in this work. For more details,
refer to Howe et al. (2022) and Lenhart & Workman (2007).

The underlying dynamics of each of these environments are described by a set of ordinary differ-
ential equations, which are then discretized using Euler’s method for discrete-time optimal control.
We normalize the returns, where 0 is the expected performance of a random policy and 1 is the
performance of an optimal policy provided by Howe et al. (2022) 2. In total, our experiments are
conducted on eight environments: cancer treatment, bioreactor, mould fungicide, bacteria, harvest,
invasive plant, HIV treatment, and timber harvest.

Cancer treatment follows the normalized density of a cancerous tumour undergoing chemotherapy.
The actions at every time step correspond to the strength of the chemotherapy drug at a given time.
The goal is to minimize the size of the tumour over set fixed duration, while also minimizing the
amount of drugs administered to the patient.

Bioreactor seeks to minimize the total amount of a chemical contaminant that naturally degrades
in the presence of a bacteria. The actions here allow the agent to feed the bacteria, increasing its
population and increasing the rate of the contaminants degradation. However, a cost is associated to
feeding the bacteria.

Mould fungicide models the concentration of a mould population. The goal is to minimize its
population by applying a fungicide, which has an associated cost to apply.

Bacteria looks to maximize a bacteria population through the application of a chemical nutrient that
stimulates growth. On top of an associated cost to applying the chemical nutrient, the chemical also
produces a byproduct that might in turn hinder bacterial growth.

Harvest models the growing population of some vegetable, and the goal is to maximize the harvested
yield of this population. While harvesting directly contributes to the reward, it consequently slows
down the population’s exponential growth.

Invasive plant seeks to minimize the presence of an invasive plant species through interventions
that remove a proportion of the invasive population. These actions have an associated cost.

2Optimal policies are computed using trajectory optimization on the underlying differential equations.
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HIV treatment follows the evolution of uninfected and infected cells in the presence of a virus.
The actions correspond to a drug administered that affects the virus’ rate of infection. The use of the
drug must also be minimized.

Timber harvest is similar to the harvest environment, except the harvested population is infinite. In-
stead, harvested timber can be converted into capital, which can then be re-invested in the harvesting
operation, stimulating company growth. The goal is to maximize revenue.

E ALGORITHM DETAILS

All model-based RL methods are trained with Algorithm 1. The policies are stochastic and explo-
ration is achieved using maximum entropy with a fixed entropy constant. A deterministic policy is
then used for evaluation. All policies are parameterized with a 2-layer 64 hidden units MLP with
ReLU activation functions, and all optimization is done using the Adam optimizer (Kingma & Ba,
2014).

Algorithm 1: Action-sequence Model Policy Gradient Algorithm
Input: Reward function r, ASM gψ , policy πθ, exploration policy π′, buffer D
Observe initial state s1 from environment;
while not converged do

Take action at from π′(st) and observe reward and next state rt, st+1 from environment;
Insert transition (st, at, rt, st+1) into D;
Sample N trajectories from D and update ASM parameters ψ ;
Update θ with the policy gradient from Definition 2

end

In the case of a Markovian agent, the ASM can be initialized as a vanilla RNN with the identity
function as its output layer. Training this RNN is also done using teacher forcing to fully recover
traditional model-based policy gradient methods such as Heess et al. (2015); Hafner et al. (2022).

E.1 MODEL-BASED HYPERPARAMETERS

All model-based policy gradient methods, including the Markov agent, ASMs and history-sequence
models were sweeped on three entropy constants for exploration: [0.1, 0.01, 0.001], and the best
performing results are reported. All actions, and states (for history-sequence models) are embedded
with a linear layer with an output size of 72. The RNN is initialized with two hidden layers, with
a hidden layer size of (64, 64). The LSTM also uses two hidden layers of size (64, 64). The self-
attention transformers use the architecture for the GPT-2 model (Radford et al., 2019) implemented
by the Hugging Face Transformer library (Wolf et al., 2019). Our transformers stack 2 layers and 3
heads of self-attention modules, with hidden layers of size 64. Timesteps are added as an input to
every input of all world models, since we are in a finite-horizon setting. The Markov agent models
the transition as a difference function: ŝt = f̂(st−1, at−1) + st−1, using two hidden layers of size
(64, 64), and ReLU activation functions. Gradient norms are clipped at a value of 100 for all policy
gradients as well. All other hyper-parameters relating to the policy learning algorithm are shown in
Table 1.

E.2 MODEL-FREE HYPERPARAMETERS

We use a model-free soft-actor critic Haarnoja et al. (2018) as a benchmark for the myriad exper-
iments. The critic of this agent is modeled as a 2-layer MLP with 256 hidden units each. En-
tropy regularization is done using a constant entropy constant. Results in Figure 6 show the best
performing results after doing a grid search over the following hyper-parameters: learning rate
= [0.001, 0.0001, 0.00001] and entropy constant = [1., 0.01, 0.001]. The remaining hyperparam-
eters are shown in Table 2.
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Hyperparameter Value
Number of Environment steps 200000

Dynamics replay ratio 2
Policy replay ratio 16

Dynamics batch size 64
Policy batch size 16

Dynamics learning rate 0.001
Policy learning rate 0.0001
Replay buffer size 1e6

Warmup steps 1500

Table 1: Hyper-parameters for all model-based algorithms that do not pertain to the world model
hyper-parameters.

Hyperparameter Value
Number of environment steps 200000

Critic replay ratio 2
Policy replay ratio 16

Batch size 128
Discount 0.995

τ 0.005
Replay buffer size 1e6

Warmup steps 1500

Table 2: Hyper-parameters for all model-free results ont he Myriad environments.

F ADDITIONAL RESULTS AND DETAILS

F.1 TOY CREDIT-ASSIGNMENT EXPERIMENTS

Toy Credit-assignment is an environment designed to test the long-term credit assignment capabil-
ities of an agent in an MDP, therefore separate from its memory capabilities. The state space lies in
two dimensions, and the action space is one dimensional. We will use a superscript to denote the
dimension of a state. The first dimension is drawn from random distribution s1 ∼ N (0, σ), and the
second dimension is 0 at t = 1, s22 = a1 and s2t = s2t−1 for t > 2. The reward function is given by
rt = (s1t −at)

2/H for t < H , and rt = −20(s2t − 0.5)2+10. In this paper, to remain deterministic
σ = 0, therefore the optimal course of actions is a∗1 = 0.5 and a∗t = 0 for all t ̸= 1. The maximum
return obtained by the optimal agent is 10.

Offline experiments. The experiments in Section 4.1 are in the offline setting. In this setting, a
random deterministic policy,πb(s), is initialized, and data is collected under this policy with random
perturbations, at = πb(st) + N (0, 0.1). Specifically, 100000 transitions are collected, and the
models are trained for 20000 steps. Afterwards, the policy gradient of πb is computed through the
true dynamics, as well the learned dynamics, and their cosine similarity is reported.

Visualizing Credit Assignment. Further, we fully train the two layer transformer action-sequence
model described above in the online reinforcement learning setting, and visualize the resulting atten-
tion weights of the transformer action-sequence model in Figure 9. Indeed, the transformer learns
to directly attend to the initial action responsible for all future states in this task, which translates
downstream into direct credit assignment from the final reward to the initial action.

F.2 CHAOTIC EXPERIMENTS

The goal position of the environment is calculated using some fixed initial angular position (initial
action) for all episode lengths. In our experiments, the optimal action is -0.4, which corresponds
to an initial angle of −0.4 × 180◦. The results in the double-pendulum experiments use the same
hype-parameters as the Myriad experiments, with the exception that the number of environment
steps used for optimization is 100000 instead of 200000.
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Figure 9: Attention weights for both layers of the transformer action-sequence model trained online
on the toy credit assignment task for a horizon of 100 time steps. The ith row is the ith state
prediction, and the jth column shows the attention weights to past actions responsible for next state
prediction. Weights are averaged over ten random trajectories sampled from the replay buffer. In
this case, the second layer is mostly responsible for attending to correct actions.
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Figure 10: Learning curves of each environment length for the double-pendulum experiments. The
lengths presented are H = [5, 20, 50, 100] in order. Ten seeds are reported along with their standard
deviations.

F.3 ONLINE DECISION TRANSFORMER

Recently, a sequence modeling perspective of reinforcement learning has shown promising results
on various continuous control tasks in an offline RL setting (Chen et al., 2021; Zheng et al., 2022;
Janner et al., 2021). Although our method differs significantly both conceptually and in the problems
they solve (see Appendix G), we show experimentally, for completeness, that the online decision
transformer (Zheng et al., 2022) performs poorly on the low dimensional Myriad suite. We use the
code and hyperparameters provided by Zheng et al. (2022) in a purely online setup, with a sweep
on the number of trajectories gathered per iteration due to the online nature of our problem setup.
Importantly, decision transformers (DT) must be conditioned on the return-to-go (RTG) to derive
desired policies. Prior works (Chen et al., 2021; Zheng et al., 2022; Janner et al., 2021) have shown
that DTs are robust to this hyperparameters, and can achieve good and sometimes better performance
even when the RTG is set to an out of distribution return that is impossible to attain.

We show in Figure 11 that DT performs poorly on the Myriad tasks in an online setting. Figure 12
also shows the individual learning curves of the decision transformer for each task. We summarize
some of the takeaways from these experiments:

• Decision transformers are still not well suited for a purely online training regime, exhibit-
ing worse performance than simple one-step model-based methods. Moreover, the action-
sequence model outperforms the decision transformer in every single environment.

• Decision transformers require some expert knowledge in many domains, and simply over-
shooting the return-to-go can yield sub-optimal and sometimes catastrophic results (See
Mould Fungicide environment in Figure 12).
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• These methods do not scale well with the horizon unlike action-sequence models. Even on
relatively short horizons such as 100 time steps, the online decision transformer’s perfor-
mance quickly drops when compared to its performance for 20 time steps.
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Figure 11: Aggregate performance of an online decision transformer on the Myriad environments.
The Expert RTG is conditioned on the optimal return for each environment, while the Overshot RTG
is conditioned on a return about two times higher than the optimal return. All experiments were run
with 10 seeds.

F.4 FINAL PERFORMANCES OF EACH MYRIAD TASK

To the best of our knowledge, this paper presents the first results on using reinforcement learning
for the environments in Myriad. The final performances of all methods are shown in Figures 13 and
14.

G EXTENDED RELATED WORK ON SEQUENCE MODELS IN RL

Sequence models in RL have primarily been used in one of three ways. First, sequence models can
be used as history encoders in RL algorithms to maximize returns in partially observable MDPs
(POMDPs) (Hausknecht & Stone, 2015; Ni et al., 2021), sometimes through a history-dependent
world model (Hafner et al., 2022; 2023). Second, sequence models have recently shown promise
in an imitation learning or offline reinforcement learning setting by treating MDPs as a sequence
modeling problem (Chen et al., 2021; Zheng et al., 2022; Janner et al., 2021), usually conditioning
on returns to derive desired policies. Lastly, a separate line of work have used sequence models to
reshape the reward landscape for improved temporal credit assignment (Hung et al., 2019; Arjona-
Medina et al., 2019; Liu et al., 2019). In contrast to all of these, our framework is the only one to use
an action-only conditioned sequence model to directly improve long-term policy gradients in MDPs
with no intermediate step. Below, we go into a detailed comparison with each area.

Comparison with history-conditioned RL methods for POMDPs. History-conditioned encoders,
modeled as sequence models, are often used in POMDPs in both model-free (Hausknecht & Stone,
2015; Ni et al., 2021) and model-based methods (Hafner et al., 2022; 2023). The latter is typically
also concerned with predicting observations, they are conditioned on entire history information,
while our method includes only actions. The problem setup is also different; such methods are
usually concerned with memory in POMDPs (Ni et al., 2023), while ours seeks to improve credit
assignment in MDPs.

Comparison with decision and trajectory transformers. Decision transformers (Chen et al.,
2021; Zheng et al., 2022) and trajectory transformers (Janner et al., 2021) take a more extreme ap-
proach, casting the entire reinforcement learning problem as a sequence modeling one. Conversely,
we specifically draw a parallel between policy gradients and sequence models. Their sequence mod-
els are conditioned on entire trajectories, which include states, actions, rewards and returns. While
trajectory transformers predict states just like our action-sequence models, both trajectory and de-
cision transformers also predict actions. In either case, their sequence models must first be trained
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Figure 12: Learning curves of the online DT for each environment (rows), and horizon
(columns, [20, 50, 100]). The Expert RTG is conditioned on the optimal return for each environ-
ment, while the Overshot RTG is conditioned on a return about two times higher than the optimal
return. Each curve shows the mean performance over 10 seeds, and the confidence interval repre-
sents the standard deviation.
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Figure 13: Better architectures in action-sequence models improve long-term credit assign-
ment.
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Figure 14: Less is more: action-sequence models perform better credit assignment than full
history dynamics.

on an offline dataset in an imitation learning (Janner et al., 2021), offline RL (Chen et al., 2021), or
pre-training framework (Zheng et al., 2022), while ASMs work for an online RL setting.

Comparison with reward reshaping methods. Perhaps more relevant, prior works have already
tried harnessing advanced sequence models for improved temporal credit assignment in RL (Hung
et al., 2019; Arjona-Medina et al., 2019; Liu et al., 2019). In these cases, the predictive power of
sequence models, either an LSTM (Arjona-Medina et al., 2019) or transformer (Hung et al., 2019;
Liu et al., 2019) are used to redistribute or augment the given reward function to produce a surrogate
reward function. This surrogate reward is then used in a more traditional model-free RL algorithm.
Again, we stress a fundamental difference in the inputs of the sequence models, which all include
state information. Our framework also establishes a more direct path between sequence models and
credit assignment, avoiding any intermediate steps like reward reshaping.
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