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Abstract. Traditional algorithms in recommender systems aim to solve the rec-
ommendation problem by finding the latent connections between users and items.
They mainly consider the information provided by the input datasets without ex-
ploring the inherent connections between items such as taxonomic and hierarchi-
cal relationships in a specific field. In this paper, we propose an extension to an
existing deep neural network algorithm, by using an associated domain ontology
as auxiliary information to support the training of the model, called Ontology-
based Neural Collaborative Filtering (ONCF). Specifically, our method exploits
the hierarchical properties of the item set as defined by an ontology and integrates
the structural information into the training process of the deep neural network.
Consequently, our algorithm is not only able to predict the exact item but also
offers a recommendation to a specific class of candidate items based on the on-
tological relations in the knowledge graph. We demonstrate our OCNF model’s
comparable accuracy in terms of the quality of predictions, while at the same time
having a lower computational complexity to recommend potential matches.

Keywords: Recommender System · Knowledge Graph · Deep Neural Networks.

1 Introduction

Recommendation systems are an essential part of internet media, personalised ser-
vices and the advertising industry and have a significant impact on the popularity,
turnover and profit of electronic businesses, which, for example, is evident in the case
of Amazon.com, the earliest adopter of a recommendation engine [16]. Effective rec-
ommendation systems typically have three major parts: a comprehensive dataset such
as the histories of user activities, an effective algorithm to intelligently process the in-
formation, and an accurate prediction engine to output intuitive and reasonable recom-
mendations. A user’s behaviour history is the fundamental knowledge source of a rec-
ommendation system that provides the raw data about the interactions between users
and items. The recommendation algorithm is a comprehensive engine that preprocesses
the original data, analysis the latent correspondences of the entities and produces those
models with an appropriate data structure. The prediction engine is used to transform
the machine-readable models into human-understandable outcomes.

The general idea to solve a recommendation problem is to find the correlations be-
tween users and items. If the user-item relationships are stored in a matrix, one possible
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solution is to find a matrix decomposition [11, 14], with the general idea to extract the
characteristics of users and items from their interactions. However, those methods have
been shown to not work well with sparse matrices, and the dataset must be preprocessed
to handle the missing relationships [11].

Deep Neural Networks (DNN) have been introduced as an alternative model to find
latent correspondences. Prior research [18] has shown that DNNs work well on finding
non-linear relationships between the input data and the output data. A Neural Collabo-
rative Filtering (NCF) approach proposed by He et al. [9] is one of the state-of-art al-
gorithms to solve the recommendation problem with the support of DNN. It combines
general matrix factorisation and multi-layer perceptions in the DNN model and achieves
significant improvement on the performance over traditional linear models. However,
like the traditional matrix decomposition method, their algorithm heavily relies on the
density of the dataset. There are also other content-based recommender systems based
on Convolutional Neural Networks [20]. However, each of them only focuses on a sin-
gle domain, such as processing videos, audios or images. In summary, there are two
major shortcomings in existing algorithms. First, they require the dataset to be dense
and comprehensive, i.e., each item must have a considerable number of mappings to
the user set. Otherwise, the entire model may face an underfitting problem. Besides,
they are unable to capture the semantic properties among the entities. Finally, there
is a lack of assorted prediction algorithms for those models to offer the most relevant
results.

In the context of recommender systems, an ontology could help us to discover the
inherent properties and relationships among the items and enhance the performance
of a recommender model with the auxiliary information from a knowledge graph in
the specific field. Gruber [7] originally defined an ontology as an “explicit specifica-
tion of a conceptualization”. There are many models to formally define an ontology. In
this paper, we focus on ontologies expressed in the Resource Description Framework
(RDF). The Resource Description Framework Schema (RDFS) and the Web Ontology
Language (OWL) are two data modelling languages to describe an RDF model.

In our model, we use the corresponding ontology of the item-set as the supplemen-
tary source to retrieve the connections among the item set. The ontology provides the
semantic correlations of the items that are potentially helpful in the training and predic-
tion procedures. For instance, in the use case described in this paper, a food ontology [5]
is used that contains a class hierarchy of the ingredients that humankind uses in their
recipes. In our algorithm, we design a DNN-based learning model that identifies the
best-matched class, while we then perform a further prediction of the best match sub-
class, if it exists, based on the calculated statistical confidence level of all subclasses.
The algorithm addresses the first problem we identified above, i.e., the sparsity of data
since we can merge sparse items based on their taxonomical classifications known in
the ontology. To address the second issue, i.e., the introduction of new items, our algo-
rithm only needs to update the corresponding confidence level unless the new item is
completely disjoint to all existing classes.

The remainder of the paper is structured as follows. In Section 2, we discuss related
work of recommendation algorithms and analyse their limitations in certain use cases.
In Section 3 we will introduce, describe and analyse our algorithm. In Section 4.2, we



Ontology based hierarchical recommendation model on Deep Neural Networks 3

evaluate our algorithm on a sparse dataset, i.e., a recipe dataset. We conclude the paper
in Section 5 with a brief summary and potential improvements and future work.

2 Related Work

The traditional approach to deal with the recommendation problem is to use a sin-
gular value decomposition (SVD) to decompose the user-item matrix [15]. However, in
the context of product recommendations where this was first introduced, a user can only
buy a limited variety of items, and this results in a correlation matrix that is sparse and
cannot be directly used in the algorithm. One possible approach is to fill in the matrix
with some noise, but this significantly increases the complexity of computations and
potentially distorts the dataset. There are many SVD-based machine learning recom-
mender algorithms such as the latent factor models (LFM), which is a combination of
SVD and machine learning[2]. It simply introduces a matrix of user features and an-
other of item features. Then the model is trained by minimising the root-mean-square
deviation between the ground truth and the product of the corresponding elements in
two matrices. It is usually accompanied with an L-2 regularisation to avoid the over-
fitting problem. However, like traditional SVD, it assumes the user-item correlations
are linear, which is not always true, depending on the use case.

The adaption of Deep Neural Network is another approach to tackle the limita-
tions of a linear model. He et al. [9] propose a model that is a combination of matrix
factorisation and multi-layer perceptions with the capability to learn non-linear under-
lying features. Zhang et al. [19] developed another approach using a DNN. It applies
a quadratic polynomial regression when initialising the input layer of the multi-level
perceptions instead of using a plain one-hot encoding of the user and item set. Such
an approach considers both linear and non-linear features that potentially exist in the
correlations. However, they only explore the explicit relationships that are present in
the given user history. All of the correlations within users, within items and between
users and items are learnt from the training process of the neural network. The perfor-
mance of such models is significantly limited when the history dataset is too sparse, or
if correlations exposed are inconsistent with the ground truth.

3 Methodology

In this paper, we focus on the hierarchical information, that is, the subclass hierarchy
in the ontology. Our data flow is comprised of four major components, 1) raw data pro-
cessing, 2) ontology matching, 3) deep neural network construction and 4) prediction.
In the raw data processing stage, we extract the key information from the “user-item”
interactions in plain text, which are ingredients in each recipe in the context of this pa-
per. In the second step, we match the extracted “items” to the corresponding class(es)
in the selected ontology. Additionally, we reconstruct a tree data structure to represent
the matching, which is compatible with the deep neural network in the next stage. The
deep neural network takes the input of the user-item interactions in terms of the cor-
responding class, as well as the hierarchical information in the reconstructed ontology
tree, to train the parameters in the network. Then we are able to perform the predictions
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for future use based on the ontology tree and the neural network model. In the following
sections, we provide more details on each of the four above steps.

3.1 Raw Data Processing

The simplest datasets used for a recommendation system contains two sets, a user
set U and an item set I . In addition, there are mappings M between a user and items
such that u ∈ U and i ∈ I . Usually, the potential items a user is interested in are
recommended, so each user is treated as a container that includes a set of items that the
user is interested in, such that for each user u, we have E(u) = {i| (u, i) ∈M}.

Our model explores the intermediate correlations among the entities in the datasets
using an appropriate domain ontology. In the user-item problem, it is hard to find the
natural relationships (the correlation that is already known) of a user, but we can in-
fer the connections among items from the ontology-based knowledge graph about the
corresponding item sets. The recipe dataset we used in this paper is compatible to the
generalised user-item model, i.e., we treat each recipe as a “user”, and its corresponding
ingredients are the “items”.

1 1/2 cups whipping cream
2 medium onions, 

chopped
5 teaspoons salt

3 bay leaves
3 whole cloves

1 large garlic clove, 
crushed

1 teaspoon pepper

Ingredient 
Extracting

whipping cream
Onions

Salt
bay leaves

Clove
Crushed
pepper

Matching

Whipping Cream

rdfs:label
rdfs:subClassOf
...

Whipping Cream

rdfs:label
rdfs:subClassOf
...

Fig. 1: Data processing and Ontology Matching

Specifically, we extracted the ingredients from the plain-text recipe based on the
CRF Ingredient Phrase Tagger [6, 12], and then use the popular NLP library nltk [3] in
combination with custom-rules to find the closest matching class. An example is shown
in the first part of Figure 1, where the ingredient “whipping cream” is separated from
the original recipe from its quantity and unit.

3.2 Ontology Matching and Reconstruction

The ontology used in our model is in the form of triples (s, p, o), where s refers to
the subject, p refers to the predicate, and o refers to the object. At this stage we only con-
sider predicates of type rdfs:subClassOf and owl:equivalentClass, where
rdfs and owl denote the RDFS namespace and the OWL namespace, respectively. In this
section, we discuss two stages, the ontology matching and the ontology reconstruction.
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Ontology Matching Ideally we had access to a dataset that encodes recipes using an
ontology, in this case, the FoodOn. However, since to the best of our knowledge, there
is no dataset available that has recipes and their ingredients encoded using the FoodOn
ontology [5], we have to map each ingredient from our chosen recipe dataset to in-
stances in the FoodOn ontology. This ontology matching preprocess which matches the
ingredients of each recipe in the form of plain text to the corresponding class in ontol-
ogy, can be done with any existing state-of-the-art ontology matching tool such as those
based on statistical analysis [13] or machine learning [4]. However, to achieve a close
to 100% precision (trading off recall), we have developed custom rules for this specific
task and our ontology, and the results from our empirical survey indicate a precision of
about 85%.

The evaluation of the performance of the ontology matching algorithm we used in
our paper was performed through an evaluation survey. We invited 6 people with pro-
ficient English skill, which is sufficient to distinguish the common English words and
suitable for the vocabulary in our selected ontology and dataset. Each survey contains
200 randomly selected candidates from a pool of 7,059 matching entries processed by
our ontology matching algorithm. In the survey, participants are offered a unique or-
der of matchings, including the original textual data and the generated matching to the
(label of) corresponding ontology. The evaluation of the matching accuracy is assessed
on a 5-point Likert scale: Perfect Match, Partial Match, Neutral, Weak Match, and No
Match.

According to the human evaluation of our ontology matching algorithm, when par-
ticipants can only make a binary decision that it is a match or not a match, the accuracy
is about 84.5%. While if they are provided with an instruction to make them in the 5-
point Likert scale, the accuracy is 85.5% if we consider the matching marked as level
4 (Partial Match) and level 5 (Perfect Match) as a match. From the evaluation, we ob-
served a relatively acceptable accuracy that will not generally become the bottleneck of
the overall model performance. Additionally, an improvement of the matching accuracy
may provide a better result for our predictive performance of our model.

Ontology Reconstruction The structural patterns in ontologies may differ from domain
to domain; therefore we need a normalising algorithm to transform ontologies so that
they share a standard structural pattern. The development of the algorithm is very dif-
ficult due to numerous unexpected structures. In this paper, we briefly introduce some
of the techniques to normalise the ontology, to fit it to our neural network model in the
following section.

We extract the triples from the original ontology file into a set of 3-tuples in the form
of (s,p,o) as explained in Section 3.2. Then we restructure them based on the extracted
triples by reducing the complexity of the ontology, such as removing classes with only
one child, consolidate equivalent classes and reshape the graph into an ontology tree.
Those procedures significantly reduce the depth of the matched ingredients and reduce
the potential error in the training process. Specifically, it mostly solves the issue that
two “similar” ingredients are matched to two equivalent classes or to a class that derives
from other classes. Besides, it reduces the number of sparse classes in the ontology that
are seldom matched. However, in some cases, we need to add extra classes to the ex-
isting ontology to ensure the compatibility and accuracy of our deep neural network
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model. Here we discuss two examples of the most common cases. Figure 2 illustrates
the case of classes containing multiple paths from the root (usually owl:Thing, but may
be different for a specific domain). If we only allow selecting one path, its ancestors
(i.e., super-classes) may not be accurate to the ground truth in the context of the corre-
sponding recipe. Therefore we need to duplicate each path to make sure they have equal
contribution to the learning process in our model. Figure 3 demonstrates the case that
some classes have shallow hierarchical properties. When this happens, we duplicate the
leaf class to all lower layers down to the original deepest leaf in the ontology.

A

C

D D

B

D D

A

C

D D

B

D D

Fig. 2: Dealing with Multiple Paths. Multiple paths to a single class will be duplicated.
We process this from the top to the bottom. This solves the selection problem about
which path to include, if we only allow one path as an input to our DNN model.
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Fig. 3: Dealing with Shallow Class Hierarchy. Missing classes will be filled with du-
plicate leaf node(s) of that path. This solves the vector filling problem when there are
insufficient nodes in a specific depth.

3.3 Ontology-based Neural Collaborative Filtering (ONCF)

To begin with, we introduce the Neural Collaborative Filtering (NCF) [9], which is
a Deep Learning based algorithm that combines both the concepts of matrix factorisa-
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tion and multi-layer perceptions. It mainly focuses on implicit feedback with the binary
representation of the interaction between users and items. Our model is based on the
traditional 4-layer neural collaborative filtering algorithm, which contains input layer,
vectorisation layer, DNN layer and output layer. As an improvement, we integrate the
hierarchical information into the traditional DNN model, and we mainly focus on the
implicit feedback with the binary representation of the interaction between users and
items. Here, the user and item are two abstract concepts. We consider a “user” as a
container, and the corresponding items are its contents that belong to, or have a direct
relationship to the container. For example, a recipe in this context is a “user”, while its
ingredients are the “items”. Hence, the implicit interaction between the user i and the
item j is denoted as:

yui =

{
1 recipe u contains ingredient i
0 otherwise

(1)

Our model contains four sublayers: Input layer, embedding layer, DNN layer and
output layer

Input Layer The input layer is the vector representation of the user and item. It has
three parts: the user vector Ui, and a group of the item vectors Ij .

The user sub-vector Ui is the one-hot encoding of each user. For every item j, its
sub-vector Ij as we discussed in the previous section, is the concatenation of the sub-
vectors of all its super classes in the ontology tree including itself. Such that:

Ij = {ij,1, ij,2, . . . , ij,d}, where ij,d = onehot(Sj,d) (2)

And Sj,d is the superclass of item j in the ontology tree such that

S(j, d) = {s|j ∈ s, distance(j, s) = d} (3)

The input layer can then be formulated as a set of d+ 1 sub-vectors:

Uinput = Ui (4)

and
Iinput = Ij = {ij,1, ij,2, . . . , ij,d} (5)

where d is the overall depth of the subclass hierarchy.

Vectorisation Layer The vectorisation layer, or embedding layer, converts the vectors
in the input layer to dense representations of the features of the user-item pair. The
output vector of the original one-hot encoding has a dimension which is equivalent to
the size of the item set. The transformation between the original encoding to a dense
vector significantly reduces the memory and time in the training stage. In our model, we
designed 2-level embedding layers. This layer transforms each one-hot vector in xinput
into a corresponding dense vector such that the outputs are eu for the user vector and ei
for the item vector.
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DNN Layer and Output Layer This is the core part of our model. We first concatenate
the outputs of the vectorisation layer, so that the input of the first DNN layer becomes:

xin1 = concat(eu, ei) (6)

The general form of each DNN layer is:

xouti = activation(Wix
in
i ++b1) (7)

Here, Wn denotes the weight matrices, and bn are the corresponding bias vectors. If we
define Tn,n+1(xn) = activation(Wnxn + bn) to be the transition function from the
n− th to n+ 1-th layer, we have:

xinn+1 = xoutn = Tn,n+1(x
in
n ) (8)

The output layer converts the output of the last DNN layer into a scalar score, which
represents the correspondence between the specific pair of a user and an item in a nu-
merical form, such that:

ŷui = activation(Exn) (9)

where E is the edge weight, and Xn is the last output of the DNN layer.

Cost Function In our case, the classes are in a hierarchy and we cannot assume them to
be mutually exclusive. Therefore, we updated the cost function from the cross entropy
to use “progressive target values” instead of binary values. For example, each class has
the target value

yui =
1

αdi
(10)

where di is the distance to the matched class from the ontology matching algorithm as
described in the ontology matching section, α is a parameter that represents the level to
penalise inaccurate predictions (i.e. its super-classes instead of itself).

The likelihood function then becomes:

p(y, y∗, y−) =
∏

(u,i)∈y

ŷui
∏

(u,i)∈y∗

|(yui − ŷui)|
∏

(u,i)∈y−

(1− ŷui) (11)

Where y∗ denotes the super-classes of the matched class. This partially resolves the
issues that if the algorithm matches to one of its super-classes, the evaluation module
counts it as wrong. In cases where the model predicts one of the intermediate classes,
we can do further predictions based on the confidence level derived from the statistics
data of the training dataset. Specifically, for a partially positive item that does not ex-
actly match the ground truth, but has some correspondence in terms of the number of
common super-classes, we will assign a positive mark, instead of treating it as incorrect
and give it a zero score. For example, consider the matched class is “Fuji Apple” with
a full score value of 1, its super-class “Apple” has a score value of 0.37, and its further
super-class “Fruit” has a score value of 0.14. To derive the objective function, we take
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the negative logarithm, then we have

L(y, y∗, y−) = log p(y, y∗, y−)

= −
∑

(u,i)∈y

log ŷui −
∑

(u,i)∈y∗

log |(yui − ŷui)| −
∑

(u,i)∈y−

log (1− ŷui)

(12)

If we constrain yui ∈ (0, 1), the objective function thus becomes

L(y, y∗, y−)

= −
∑

(u,i)∈y∪y∗∪y−

yui log (1− |yui − ŷui|) + (1− yui) log (1− |yui − ŷui|)

= −
∑

(u,i)∈y∪y∗∪y−

log (1− |yui − ŷui|)

(13)

4 Prediction and Evaluation

In this section, we discuss the evaluation results of our model. In addition, we also
introduce an innovative prediction algorithm that takes advantages of the class hierarchy
information. We start this section from the idea of the prediction mechanism, followed
by the evaluation for both the accuracy of our model and the general performance of
the prediction algorithm.

4.1 Prediction

From the previous section, we are able to calculate the scores for a given user and
item from the model we generated by our OCNF algorithm. The calculation takes ad-
vantage of the hierarchical structure of the ontology. We know that the cost function
adjusts the loss according to the distance between the node in the path and the matched
class. If the model is trained well, the scores for a given user and the intermediate “item”
are progressively increasing along the path from the root to the correct predication in
the reconstructed ontology tree. Formally, in the tree-structured ontology which cap-
tures the subclass hierarchy, we define the nodes along the path from the root to the best
result as nk, where k refers to the distance to the root, we have:

y(nk) < y(nk+1), k ∈ [0, d− 1] (14)

where d is the distance between the node of the expected prediction and the root. In this
case, we can recursively choose the children with the highest score until we find the
local maximum. Thus, we have the initial prediction Algorithm 0.

However, the accuracy of the model may be affected by a variety of factors such as
the quality of the ontology matching process (as discussed above), and the completeness
of the datasets. Such errors may result in the score of the optimal prediction to fluctuate,
which in turn deteriorates the performance of our algorithm. Thus, we adjust the basic
Algorithm 0 as follows:
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Algorithm 1 Improved Prediction
Input: root r, shift s, tolerance k
children = root.getChildren()
highest score = 0
curr node = r
scores =[]
expanded = []
repeat

N = children.pop().getChildren()
for n ∈ N do

score[n] = getScore(n)
end for
max score = max(score)
d← distance from curr node to its deepest descendant
thresholdd = max scored − ( s

αd
i

)

selected = {n|n ∈ N, getScore(n) > thresholdd}
for child ∈ selected do

expanded.append(child)
children.append(child)

end for
until !children.isEmpty()
sorted = expanded.sort(key = lambda x : x.getScore())
Return: sorted[1 : k]

1. Following Algorithm 0 above to find the “best” prediction with the corresponding
score (in each layer).

2. Apply an error shift to the maximum score in each layer such that

thresholdd = max scored − (
s

αd
i

) (15)

Where di is the current distance from the leaf with the maximum score (as pre-
dicted from Algorithm 1 above, instead of the global maximum). And s is the shift
parameter which represents the sensitivity of the tolerance to the potential error.

3. Expand the tree with all scores larger than or equal to this threshold score in each
layer. Then perform step 1 in each of the layers.

4. Rank them in terms of the score and find the best K predictions.

The improved algorithm 1 adapts the general behaviour of the score value for relevant
and irrelevant classes but is able to allow tolerances to potential training errors, which
are inevitable, by expanding more nodes instead of just exploring the one with the
highest rank from the scoring engine that takes the recipe and ontology ID as input and
outputs the corresponding score from the OCNF model described above. In fact, in the
ideal case where Algorithm 0 is applicable, the overall prediction complexity will be
in O(d), where d is the depth of the ontology, while we can usually achieve O(log d)
for most of the ontologies. With the redundancy check, the complexity increases to
O(Kd), but it is still much smaller than a brute-force algorithm in the consideration



Ontology based hierarchical recommendation model on Deep Neural Networks 11

that we usually select a small K, and the depth d will be limited during the ontology
reconstruction process.

Algorithm 1 resolves the accuracy problems with an acceptable decrease of the
performance by a branch extension, however, the accuracy is still limited by the sparsity
of the ontology. If the reconstructed hierarchical tree is too sparse, the algorithm may
waste a considerable time on the unnecessary branches, and we cannot ignore the risk
that the predictor gets trapped in a local optimum. To deal with this issue, we also
consider two adjustments. First, we prune the unnecessary branches such that the total
matched descendant is less than K. We set K = 2 to eliminate the branches with 0
or 1 matched descendant as they lack deterministic information, but it can be adjusted
to a higher value for more complicated and more sparse datasets. Besides, we adapt
the idea of decision trees to amend the order of the nodes and layers that the branches
with the highest information gain to the top, to reduce the uncertainty of the prediction
by selecting the most correct super-class(es) at the beginning of the algorithm. This
approach enhances the speed, as well as further reducing the risk for the predictor to be
trapped in a local optimum, or goes to the wrong branch.

4.2 Evaluation

In this section, we discuss the evaluations of our OCNF model, along with the anal-
yses of the general performance of the prediction algorithm provided in section 4.1.

Datasets and Ontology In our evaluations, we focus on two major datasets, “Chose-
MyPlate” [1] from USDA, and MovieLens 25M dataset [8]. For each of the datasets,
we need at least one base ontology, which contains the relative hierarchical or con-
nectivity information among all entities (ingredients for the USDA and movies for the
MovieLens dataset).

The first dataset we use is the “ChoseMyPlate” recipe dataset from the U.S. Depart-
ment of Agriculture, which contains about 6,000 unique recipes. Each recipe contains
a set of ingredients used to prepare the meal. The motivation is to adapt the inher-
ent properties and relationships among the ingredients from the ontology and try to
make a recommendation of the most relevant ingredient for the given recipe. The cor-
responding ontology we selected is the “foodon” food ontology [5] which contains
about 9,000 individual food ingredients. We also validate our model over the ontol-
ogy created within Wikidata [17]. For Wikidata, we considered the sub-ontology whose
root ancestor is ’food ingredient’ (i.e. http://www.wikidata.org/entity/
Q25403900) or ’food’ (i.e. http://www.wikidata.org/entity/Q2095), or
both. We selected about 4,000 food ingredients in the tailored Wikidata ontology we
used in this paper.

The second dataset is the MovieLens 25M dataset with about 2,500,000 ratings for
62,000 movies by 162,000 users. The corresponding ontology is also tailored from the
Wikidata dump with extractions about entities which are related to movies. We selected
major properties including but not limited to the genre, country, year (grouped in 5) up
to 4 Star actors, directors and the distributing company(s). We reconstructed the graph
based ontology to a tree model in terms of the divisibility, which is evaluated according



12 Xinghao Li, Armin Haller, and Yingnan Shi

to the information gain. The properties with higher divisibility will be placed at the top.
For the MovieLens dataset,

Evaluation Settings The model evaluation assesses the basic performance of the model
in comparison with the original neural collaborative filtering algorithm. We adopt the
popular top-K evaluation with the leave-one-out mechanism [9]. The test data contains
one positive sample, that is, one ingredient belongs to the specific recipe, while 99 nega-
tive samples are not in the recipe. Since our algorithm adapts the hierarchical properties
of the ingredients in the ontology, we changed the policy for generating negative sam-
ples to ensure they are also not in the same path (not an ancestor) of the selected positive
ingredient. Finally, we rank the scores for the samples and validate if the positive ingre-
dient is in the samples of the top-K highest scores.

Baseline According to the motivation of our model, we will evaluate the model per-
formance in comparison to the original neural collaborative filtering [9]. We calculated
the Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) [10] with
the error-tolerance parameter set to K = 10. The Hit Ratio metric intuitively measures
if the ground truth falls into the top K rankings according to the score from the output
layer of the neural network model. The Normalized Discounted Cumulative Gain con-
siders the ranking information with a higher value for the upper ranking of the ground
truth. The value is higher if the ground truth is at the top 1 rather than at a middle or bot-
tom rank. The baseline we used in our evaluations are the results from the CNF model,
which are marked in red lines.

Performance Analyses The first set of figures illustrates the comparison of the HR and
NDCG between the original neural collaborative filtering model and our OCNF model.
The first experiment evaluates the plain performance that is based on the exact accuracy
without considering the semantic relevance. For example, for the ground truth “Fuji
Apple”, a “Fruit” will not be considered as a hit. For HR, the valid hit must be the exact
match from the prediction output to the “ground truth”. In addition, when calculating
the NDCG, the relevance score is binary, in which 1 denotes a hit and 0 otherwise.

Figure 4 and Figure 5 illustrates the comparison of the hit rates and NDCG of K = 10
with respect to the depth of layers for the initial settings that use the non-reconstructed
ontology (dashed lines) and re-constructed ontology (solid lines). In the first case, if
a class contains multiple paths, a random one will be chosen, and if a class does not
contain the maximum possible hierarchical information, we use a dummy vector of all
zeros to represent the missing class vectors. For the MovieLens dataset, we do not have
such comparison because the tailored ontology is not originally in a hierarchical struc-
ture, and we reconstructed the ontology tree based on our customised measurement
mentioned in previous sections. The baseline indicates the corresponding performance
of the original CNF algorithm without any information supported by the ontology. In
the plots, the x-axis represents the number of iterations used for training the model,
and the y-axis is the corresponding performance in our test dataset. From the plot, it
is noteworthy that the accuracy drops in the bottom layers. In our selected datasets,
our model works well in distinguishing the classes with shallower hierarchical levels.
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However, when dealing with the bottom layer, the exact accuracy drops below the base-
line. The solid lines indicate the HR and NDCG performance when K = 10 with the
ontology reconstruction. We can also clearly notice the performance improvement of
the ontology reconstruction in the USDA dataset, which proves the effectiveness of the
reconstruction mechanisms as described in Section 3.2.

By observing the comparison between our OCNF model and the baseline for the
MovieLens dataset, we notice the similar behaviours: the hit rate of our model is also
slightly better at the first 4 layers, but also drops for lower layers. This issue may be
caused by the quality of the hierarchical modelled ontology, which is created by con-
verting the graph based knowledge graph. The result may get better for a natively hier-
archical based knowledge domains.

(a) HR@10 USDA-foodon (b) HR@10 USDA-WikiData (c) HR@10 MovieLens

Fig. 4: HR@10 with 3 dataset settings

There are two observations to explain the behaviour about the accuracy drop in the
USDA dataset. First, for the USDA dataset, most of the ingredients contain limited hier-
archical information, and those ingredients that are part of a shallow class hierarchy do
not contribute to the model during the training process. Additionally, our model is struc-
turally more complex so as to integrate ontological information. The enlarged complex-
ity leads to additional problems such as over-fitting. Additionally, in the USDA-Recipe
dataset, classes with the depth of 4-8 are much denser than top and bottom classes,
which leads to a trade-off between the better result focusing on the upper classes and
the averaged overall behaviour. We observed a better result for the Wikidata ontology,
which indicates the performance may be highly influenced by the overall structure of
the ontology. It also leads to potential future work to “normalise” an ontology that
minimises the overall effect caused by the irregular structure of the ontology, such as
sporadic deep branches, instead of its content. Additionally, we leave the solution to
the potential over-fitting problem as a part of our future work to dynamically adjust the
complexity of the model based on the distributions of the dataset and the corresponding
ontology. At the current stage, our algorithm successfully predicts the upper-classes,
and one of our hypothesis is that for an ontology with a shallow hierarchical structure,
we are able to achieve a better result than the base-line, even at the bottom layers. The
performance of our model is comparable to the traditional non-ontology based algo-
rithm in general, but we have the benefit to get better prediction accuracy for the classes
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or entities in the higher level. In other words, our result is better if we are more inter-
ested in the generalisation of an item, instead of the item itself.

(a) NDCG@10 USDA-foodon (b) NDCG@10 USDA-WikiData (c) NDCG@10 MovieLens

Fig. 5: HR@10 with 3 dataset settings

Prediction Evaluation In addition to the model evaluation, we also need to assess the
corresponding prediction algorithm. Our prediction algorithm adopts the hierarchical
relationship of the food ingredients. However, the original CNF model does not have
a corresponding prediction algorithm. Instead of directly comparing the performance,
we designed two evaluations based on a “random-selecting algorithm” that randomly
selects a number of ingredients from the solution space, as well as the complete search
based on a “brute-force” algorithm that calculates the score of all the potential ingredi-
ent in the ontology. The evaluation contains two major parts. The first test is based on
the original Algorithm 0 without any shifts and adjustments of the threshold. The sec-
ond test is based on the improved Algorithm 1. The third test is based on the reordered
tree according to the information gain in each level. We will compare the results with
different values of k and s for the Alg0 and Alg1. The dataset used for the prediction
evaluation is slightly different from what we used for the model evaluation. We strip
out the unused hierarchical information in the vector representations for the ingredient
when searching a specific layer (zero out all deeper layers), and use the prediction al-
gorithm mentioned in the technical detail section to generate the top N = 10 relevant
ingredients according to the rank of the scores. Again, if the ground truth lies in the
top N predictions, we consider it as a hit. We stop expanding the nodes when the re-
maining children consists less than 10% of the original entities, and check if the item
(or its superclass if the expansion stops) contains in the top N predictions. All tests are
performed in single thread with the Intel(R) Core(TM) i9-9880H CPU.

Table 1 shows the evaluation results of the prediction algorithm, the three numbers
represents the USDA-Foodon, USDA-Wikidata and MovieLens dataset. The parameters
were set to balance the speed and accuracy by limiting the total expansions to 10% of
the overall entities. Among all combinations of k and s, we are able to achieve a hit rate
of about 50%, while the speed is about 10 times faster than the brute force algorithm.
If we require more accuracy, we could increase the value of k, and achieve a hit rate
around 70% with a speed of about 5 times faster than the brute-force algorithm. The
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Performance Evaluation
Brute-Force Alg0 Alg1 Alg-DT

Accuracy 0.905/0.898/0.847 0.347/0.408/0.302 0.568/0/609/0.566 0.582/0.626/0.594
Time Con-
sumption (sec)

10.54/6.82/825.01 1.25/0.71/100.26 1.36/0.78/91.24 1.22/0.68/86.75

Table 1: Prediction Evaluations

precision is already a huge improvement over the random guess, and the speed is much
faster than the brute-force algorithm. The actual deployment of the prediction engine
contains a trade-off between the accuracy and the speed.

With the adaption of the decision tree reordering mechanism, we can achieve a
further improved performance, as indicated in Table. However, this structural and ex-
panding order amendment works differently in different datasets. We noticed that it
grants huge improvements for the USDA datasets with both the foodon and WikiData
ontology, whose entity sparsity is higher, but it does not provide a noticeable difference
for the MovieLens dataset with dense entities included.

5 Conclusion and Future work

In this paper, we introduced an improvement to the traditional DNN based model
for recommender systems that integrates the hierarchical information of an ontology,
along with a template compatible algorithm that helps the system to provide actual pre-
dictions. Comparing to the traditional model that only considers the dataset without
any external information related to the knowledge domain, our model can be used on
sparse data and with new data added without reconstructing the entire model. Addi-
tionally, our model behaves well when focusing on the recommendation results of the
categorical classes instead of the exact item. However, the performance of our model is
tightly bound to the data quality and the structure of the corresponding ontology. Re-
sults show that our model is successful for predicting shallow layers but still requires
more adjustments to give an exactly accurate prediction.

In future works, we will formalise the ontology normalisation algorithm and the
fast-prediction algorithm. In addition, we want to generalise our model to consider other
relations than only the hierarchical structure.

References

1. Choosemyplate. https://www.choosemyplate.gov/, accessed: 2019-06-01
2. Agarwal, D., Chen, B.C.: Regression-based latent factor models. In: Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p.
19–28. ACM, New York, NY, USA (2009)

3. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly Media,
Inc., 1st edn. (2009)



16 Xinghao Li, Armin Haller, and Yingnan Shi

4. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology Matching: A Machine Learning
Approach, pp. 385–403. Springer Berlin Heidelberg (2004)

5. Dooley, D.M., Griffiths, E.J., Gosal, G.S., Buttigieg, P.L., Hoehndorf, R., Lange, M.C.,
Schriml, L.M., Brinkman, F.S.L., Hsiao, W.W.L.: Foodon: a harmonized food ontology to
increase global food traceability, quality control and data integration. npj Science of Food
2(1), 23 (2018)

6. Erica Greene, A.M.: CRF ingredient phrase tagger. https://github.com/nytimes/
ingredient-phrase-tagger (2016), accessed: 2019-06-01

7. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acqui-
sition 5(2), 199–220 (1993)

8. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM Trans. Inter-
act. Intell. Syst. 5(4) (Dec 2015). https://doi.org/10.1145/2827872, https://doi.org/
10.1145/2827872

9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In:
Proceedings of the 26th International Conference on World Wide Web. pp. 173–182 (2017)
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