
Pulse Coupled Oscillators for Drone-to-Drone
Synchronisation

Anony Mouse
Universidad Anonymous

Anon
anon@anon

Not Known
Department of Not Known
Univeristy of Not Known

not@known

Abstract—The autonomous operation of drone swarms cur-
rently poses a challenge due the limited bandwidth and reliability
of drone-to-drone or drone-to-controller communication. In this
paper we present a decentralised drone-to-drone communication
algorithm for synchronisation that uses a mesh network topology.
Current approaches use centralised control and communication
organised in a star topology that prevents drone-to-drone commu-
nication. This poses a single point of control an communication
failure and scalability problems. Drone-to-drone communication
organised as a mesh network is a viable option that could increase
swarm autonomy and resilience to communication failure. In this
paper we propose the Epoch Synchronisation with Pulse Coupled
Oscillators (ESPCO) distributed algorithm for decentralised
synchronisation. We design, implement, and demonstrate a Pulse
Coupled Oscillator based agreement protocol that is decentralised
and robust to individual drone failure.

Index Terms—robotics, drones, autonomous vehicles, commu-
nication, protocols

I. INTRODUCTION

Multi-Drone Systems (MDS) [1] are systems that consist
of multiple autonomous unmanned aerial vehicles(UAVs) that
work together to achieve an objective such as create aerial
displays, perform search and rescue tasks, sensing tasks for
precision agriculture [2] and infrastructure monitoring [3].
Most current MDS utilise centralised control organised in a
star topology [1].

Autonomy of the drones in a MDS is a desirable quality for
these applications [4]. Drone autonomy can occur at different
levels, from being able to hover without any external influence,
to being able to change plans dynamically as the environment
changes mid-mission. For MDS there is a crucial system level
of autonomy where the drones can agree upon a heading and
velocity and move together without drone-to-drone collisions.
This behaviour is referred to as flocking or swarming and is
necessary to be able to perform the above mentioned tasks at
scale or with higher levels of autonomy.

A key problem for autonomy in drone swarms is how to
communicate in a decentralised fashion, or mesh topology,
and organise local actions at a global level [5]. In particular,
swarm synchronisation has been identified as a very useful
behaviour [6] for swarm robotics. If the robots in a swarm
can intercommunication and agree a common understanding
of time, they can perform synchronised actions.

Certain MDS applications such as gas leaks detection [7] or
search and rescue operations [8] may require that the drones
operate in an environment of little or no central communication

where the drones must operate autonomously of a central
controller. In these circumstances, the drones would need
to inter-communicate and synchronise among themselves. In
this paper we report on an experiment with the use of the
Epoch Synchronisation with Pulse Coupled Oscillator proto-
col (ESPCO) using drone-to-drone mesh communication to
synchronise an MDS.

II. BACKGROUND

Pulse Coupled Oscillators (PCO) is a model of decen-
tralised, distributed synchronisation. This type of synchronisa-
tion is observed in biological systems such as the coordinated
firing of heart muscle cells or the synchronised flashing of
Malaysian fireflies [9]. Mirollo and Stogatz [9] proved that
a network of fully connected pulse-coupled oscillators even-
tually converges with the oscillators are firing synchronously.
Later the condition that the network is fully connected with all-
to-all communication was lifted by Lucarelli and Wang [10].

Chia-Chu Chen [11] showed that providing a threshold
condition of less than 1/2, whereby under this threshold an
oscillator does not change it’s firing timer, a system of pulse-
coupled oscillators will still converge to synchronous firing.
Pulse coupled oscillators were first demonstrated to be useful
to synchronise wireless ad-hoc networks by [12].

The FiGo [13] algorithm combines polite gossip with pulse-
coupled oscillation for decentralised sensor network synchro-
nisation and dissemination. FiGO uses an all-to-all mesh topol-
ogy. Polite message suppression is where when a node receives
a message a neighbour, it will suppress it’s next broadcast [14].
In FiGo it is shown that in a fully connected mesh network of
sensor nodes with polite message suppression, the converge to
synchronicity. The authors of [15] formally verify that sensors
using FiGo synchronise even with polite message suppression.

A. MAV Synchronisation

Schilcher, Udo et al. studied solving issues around applying
the swarmulators model, which couples synchronisation and
swarming behaviour [16]. Swarmulators use stochastic cou-
pling, a method for reducing the number of state broadcasts.
Agata Barcis and Christian Bettstetter proposed Sandsbots
following this work [17], that demonstrates the swarmula-
tors model on synchronising and swarming for real world
robots, both ground robots and on the Crazyflie, but used
a central controller communicating with the drones in a star

topology. Fernando Perez-Diaz et al. [18] investigated small
grounded mobile pulse-coupled oscillators synchronised using
light pulses and directional cameras, and how changing the
movement of the robots can change the speed of global
convergence.

Fawaz Alsolami et al. [19] investigated time synchronisation
in a UAV (Unmanned Arial Vehicle) network, where several
drones autonomously generate swarm clusters, with a cluster
head that initiates time synchronisation, synchronising within
that cluster. These still require that each cluster has a leader,
which decreases robustness in the time synchronisation if the
cluster head is lost.

Anders Christensen et al. showed that synchronisation can
be used to detect faults in a swarm by using pulse coupled
oscillation to synchronise a swarm with LEDs, and then [20].
This is then used for swarm self-repair capabilities, shown in
simulation and on small ground robots.

Geoffrey Werner-Allen et al. proposed the Reachback Fire-
fly Algorithm (RFA) [21] to synchronise a network of nodes
to within 100 microsec. This accounts for message delays
and losses by time-stamping the messages at a low level to
estimate the time delay before broadcast. There is however
no notion of shared time provided for the network to perform
coordinated actions. The Trickle algorithm proposed by Philip
Levis et al. [22] introduces polite message suppression, to
disseminate information to a network of nodes with a small
trickle of packets. The above algorithms were introduced for
wireless sensor networks, and as such do not have the latency
requirements of in-flight drone swarms.

III. ESPCO ALGORITHM

The pseudocode for the Epoch Synchronisation with Pulse
Coupled Oscillators (ESCPO) algorithm can be seen in Al-
gorithm 1. ESPCO uses broadcast radio communication. It
assume that the drones are organised in an all-to-all network
topology.

Every time the synchronisation timer fires, the epoch will be
incremented by one. We then start a new synchronisation timer
with a time period depending on our offset from any other
drone’s synchronisation messages, using the sync_offset.
If we have not received any synchronisation messages in the
last period, then we send a sync message. This is the polite
gossip part of the algorithm, and results in less messages
being sent to synchronise. Then, with probability P we start a
timer to send an epoch message to the other drones halfway
through the next period. This ensures that the epoch will be
correct during the period. We send it halfway through the
period because if we send the epoch straight away then it
could produce instability in the epoch number, since even
when the drones are synchronised there will still be a small
synchronisation error between them. If a drone receives an
epoch number that is higher than it’s own then it updates it’s
own epoch to that value.

The idea of stochastically sending state updates to syn-
chronising nodes was also explored in Bettsetter work on
Swarmulators, which couple synchronisation with positional

state [16]. However in this paper this is applied to the problem
of coupling positional state updates and synchronisation mes-
sages rather than a shared time epoch, and the synchronisation
messages are sent stochastically, whereas we employ message
suppression with the polite gossip paradigm.

Also in order to quickly update new drones that join the
network, if a drone receives a synchronisation message with
an epoch number is more than two behind the current epoch,
then it will send an epoch message to get the new drone up to
date. This means when a drone joins the network, once it has
received a synchronisation message from the synced drones in
the network, it cannot ever be more than one epoch out from
the other drones.

When a synchronisation message is received, we get the
time now which is the time since our current period’s timer
started. We then set this to sync_offset, which means
when the current timer expires the next timer will only last
for this offset time. This means that after the next timer has
expired the two drones timers should fire at the same time.
This is proven to synchronise as shown in [11].

Algorithm 1 ESPCO
1: epoch← 0
2: sync offset← 0
3: received count← 1
4: P← 20
5: procedure SYNC TIMER EXPIRE
6: epoch← epoch + 1
7: if sync offset > 0 then
8: START SYNC TIMER(sync offset)
9: else

10: START SYNC TIMER(PERIOD)
11: end if
12:
13: if received count < 1 then
14: SEND SYNC MESSAGE(epoch)
15: end if
16:
17: random← choose random number from 0 to 100
18: if random < P then
19: START EPOCH TIMER(PERIOD/2)
20: end if
21:
22: received count← 0
23: sync offset← 0
24: end procedure
25:
26: procedure EPOCH TIMER EXPIRE
27: SEND EPOCH MESSAGE(epoch)
28: end procedure
29:
30: procedure RX SYNC MESSAGE(other epoch)
31: now ← time since SYNC TIMER started
32: if PERIOD > now & now >= PERIOD/2 then
33: sync offset← now
34: end if
35:
36: if other epoch < epoch− 2 then
37: SEND EPOCH MESSAGE(epoch)
38: end if
39: end procedure
40:
41: procedure RX EPOCH MESSAGE(other epoch)
42: if other epoch > epoch then
43: epoch← other epoch
44: end if
45: end procedure

IV. EVAUATION

A. Implementation

A Micro Air Vehicle (MAV) is a small, lightweight flying
robot [5]. These can have various designs, from fixed wing
robots [23] and flapping wing [24] designs to quad-copters.
The Crazyflie 2.1 (Figure 1) is a palm sized MAV that weighs
only 27g. The Crazyflie is equipped with a STM32F405 MCU
(Microcontroller unit) to handle the main applications, and an
nRF51822 MCU to handle radio communications and power
management. It has a flight time of 7 minutes, and a maxi-
mum recommended payload weight of 15g. The development
platform for the Crazyflie is open source, giving flexibility to
modify the firmware depending on your application.

The STM32F405 (STM) microprocessor runs the Crazyflie
Firmware [25]. This firmware runs the controller which han-
dles state estimation of the Crazyflie, including the sensor
information and motors speed control, as well as sending
communication packets to the NRF radio MCU. It also runs
applications that can be created by the user, which can be
used to run the Crazyflie in a decentralised manner without a
centralised controller.

The nRF51822 MCU is a System on a Chip (SoC) man-
ufactured by Nordic Semiconductor that provides 2.4 GHz
radio protocols, including Bluetooth Low Energy (BLE) and
Nordic’s proprietary ESB protocol [26]. The Crazyflie uses
BLE for control using the IOS and Android applications, and
the 2.4GHz radio to send peer to peer communications be-
tween drones using the Enhanced ShockBurst (ESB) protocol
provided by Nordic.

The implementation of the ESPCO algorithm consisted of
first implementing the algorithm on the nRF51822 MCU,
ensuring that the drones synchronise and the epochs are
shared. Then implementing a method to send this shared epoch
to the Crazyflies STM processor to be used for applications,
such as coordinated flight.

V. FLIGHT EXPERIMENTATION

To evaluate how well ESPCO and its epoch updates worked
for synchronised flight, we ran five flight tests with three
drones using the Vicon camera system for positioning [27]. In
each test, the drones were left to synchronise for one minute,
and then proceeded to fly for one minute, before landing. The
FLIGHT_TIME_S for how long the Crazyflie will take to fly
to the proposed relative (x, y, z) was 2 seconds.

The setup before flight can be seen in Figure 1, and the
drones mid flight can be see in Figure 2. The drones were
placed under 0.5 meters away from each-other. In each of the
tests the drones flew at synchronised times without having any
collisions caused by drones not reacting to proposed flight
times at the same epoch. In one of the flights, one of the
drones ended up failing mid-flight, due to it running low on
battery, however the other two still flew in synchronisation,
demonstrating the robustness to failure of the synchronisation.

Fig. 1. Drone setup before flight

Fig. 2. Drones flying mid experiment in synchronisation.

VI. CONCLUSION

Overall we can see from the results that the ESPCO algo-
rithm has the following benefits:
• Decentralised Drone-to-Drone communication: The

ESPCO algorithm does not rely on a single controller or
communication path. It uses a mesh all-to-all topology
that is resilient to the failure of any individual drone. As
long as the network is fully connected all drones will
eventually synchronise and receive updates.

• Generally fast synchronisation: The ESPCO algorithm
synchronises in under a minute. In general the algorithm
seems to synchronise much faster when all the drones
turn on at the same time. This speed can be adjusted if
required by changing the PERIOD of the algorithm, with
a trade off that faster periods result in more messages
sent in the network however would result in faster con-
vergence.

• Robust Synchronisation: We have seen above that the
synchronisation of ESPCO is very robust, and once
drones are synchronised, they do not lose synchronisation
for at least 10 minutes as tested. They also do not change
much in their synchronisation, with a standard deviation
of 0.02ms.

• Low synchronisation error: When the drones are syn-
chronised, we can see that they synchronise with an

error of less than 0.1ms. This is certainly sufficient
for coordinated flight maneuvers, as well as changing
behaviour in unison.

• Coordinated Epoch Updates: The synchronisation of
epochs in the network is very fast, and in general seems
bounded by the synchronisation of the oscillations of the
drones.

• Tolerance for drones entering the network: The algo-
rithm is tolerant to new drones entering the network, and
can converge to a stable oscillation with the new drone
included. This does however take more time than when
all the drones enter the network separately.

• Unaffected by drones leaving the network: We have
demonstrated that the networks synchronisation is unaf-
fected when drones leave the network, and in fact may
actually improve slightly as a drone that left the network
could have had a bigger synchronisation error.

• Sufficient for planning synchronised behavior: We
have demonstrated in flight tests that the epochs can
be used to schedule synchronised flight behaviours, with
drones proposing actions that are then performed at the
same time.

We have also identified the following drawbacks of the
ESPCO algorithm:
• Indeterminate synchronisation time: The algorithm

does not have a clearly defined time at which it will def-
initely be synchronised, it is only proven to synchronise
in some finite time.

• Synchronisation time when joining the network: The
synchronisation time seems worse when a drone is joining
an already established synchronised network. This could
limit the applications for drones leaving and rejoining the
network to perform tasks.

REFERENCES

[1] Rinner B, Bettstetter C, Hellwager H, Weiss S. Multidrone Systems:
More than the Sum of the Parts. IEEE Computer. 2021 Mar;54(3):185-
94.

[2] Radoglou-Grammatikis P, Sarigiannidis P, Lagkas T, Moscholios I. A
compilation of UAV applications for precision agriculture. Computer
Networks. 2020;172:107148.

[3] Floreano D, Wood RJ. Science, technology and the future of small
autonomous drones. Nature. 2015;521(7553):460-6.

[4] Rizk Y, Awad M, Tunstel EW. Cooperative heterogeneous multi-robot
systems: A survey. ACM Computing Surveys (CSUR). 2019;52(2):1-31.

[5] Coppola M, McGuire KN, De Wagter C, de Croon GCHE. A Survey
on Swarming With Micro Air Vehicles: Fundamental Challenges and
Constraints. Frontiers in Robotics and AI. 2020;7. Available from:
https://www.frontiersin.org/article/10.3389/frobt.2020.00018.

[6] Schranz M, Umlauft M, Sende M, Elmenreich W.
Swarm Robotic Behaviors and Current Applications.
Frontiers in Robotics and AI. 2020;7. Available from:
https://www.frontiersin.org/article/10.3389/frobt.2020.00036.

[7] Duisterhof BP, Li S, Burgués J, Reddi VJ, de Croon GCHE.
Sniffy Bug: A Fully Autonomous Swarm of Gas-Seeking Nano
Quadcopters in Cluttered Environments. 2021 7. Available from:
http://arxiv.org/abs/2107.05490.

[8] Mcguire K, De Wagter C, Tuyls K, Kappen H, Croon G. Minimal
navigation solution for a swarm of tiny flying robots to explore an
unknown environment. Science Robotics. 2019 10;4:eaaw9710.

[9] Mirollo RE, Strogatz SH. Synchronization of Pulse-Coupled Biological
Oscillators. SIAM Journal on Applied Mathematics. 1990;50(6):1645-
62. Available from: https://doi.org/10.1137/0150098.

[10] Lucarelli D, Wang IJ. Decentralized Synchronization Protocols with
Nearest Neighbor Communication. In: Proceedings of the 2nd Inter-
national Conference on Embedded Networked Sensor Systems. SenSys
’04. New York, NY, USA: Association for Computing Machinery; 2004.
p. 62–68. Available from: https://doi.org/10.1145/1031495.1031503.

[11] Chen CC. Threshold effects on synchronization of pulse-coupled
oscillators. Phys Rev E. 1994 Apr;49:2668-72. Available from:
https://link.aps.org/doi/10.1103/PhysRevE.49.2668.

[12] Hong YW, Scaglione A. Time synchronization and reach-back com-
munications with pulse-coupled oscillators for UWB wireless ad hoc
networks; 2003. p. 190 194.

[13] Breza M, McCann J. Polite Broadcast Gossip for IOT Configuration
Management; 2017. p. 1-6.

[14] Levis P, Clausen T, Hui J, Gnawali O, Ko J. The trickle algorithm;
2011.

[15] Webster M, Breza M, Dixon C, Fisher M, McCann J. Formal Verification
of Synchronisation, Gossip and Environmental Effects for Wireless
Sensor Networks. Electronic Communications of the EASST Volume.
2019;076.

[16] Schilcher U, Schmidt JF, Vogell A, Bettstetter C. Swarmalators with
Stochastic Coupling and Memory. In: 2021 IEEE International Confer-
ence on Autonomic Computing and Self-Organizing Systems (ACSOS);
2021. p. 90-9.

[17] Barcis A, Bettstetter C. Sandsbots: Robots That Sync and Swarm. IEEE
Access. 2020;8:218752-64.

[18] Perez Diaz F, Zillmer R, Groß R. Firefly-Inspired Synchronization in
Swarms of Mobile Agents. vol. 1; 2015. .

[19] Alsolami F, Alqurashi F, Hasan M, Saeed R, Abdel-Khalek S, Ishak
A. Development of Self-Synchronized Drones’ Network Using Cluster-
Based Swarm Intelligence Approach. IEEE Access. 2021 03;PP:1-1.

[20] Christensen AL, OGrady R, Dorigo M. From Fireflies to Fault-Tolerant
Swarms of Robots. IEEE Transactions on Evolutionary Computation.
2009;13(4):754-66.

[21] Werner-Allen G, Tewari G, Patel A, Welsh M, Nagpal R. ABSTRACT
Firefly-Inspired Sensor Network Synchronicity with Realistic Radio
Effects; 2005. p. 142-53.

[22] Levis P, Patel N, Culler D, Shenker S. Trickle: A self-regulating
algorithm for code maintenance and propagation in wireless sensor
networks; 2004. .

[23] Green WE, Oh PY. Autonomous hovering of a fixed-wing mi-
cro air vehicle. IEEE; 2006. p. 2164-9. Available from:
http://ieeexplore.ieee.org/document/1642024/.

[24] de Croon GCHE, Perçin M, Remes BDW, Ruijsink R, Wagter CD. The
DelFly. Springer Netherlands; 2016.

[25] Crazyflie Firmware. Bitcraze;. Accessed 20/06/2022. Available from:
https://github.com/bitcraze/crazyflie-firmware.

[26] nRF51822 - System on Chip - Bluetooth Low Energy and 2.4 GHz
SoC. Nordic Semiconductor;. Accessed 20/06/2022. Available from:
https://www.nordicsemi.com/products/nrf51822.

[27] TRACKER. Vicon;. Accessed 20/06/2022. Available from:
https://www.vicon.com/software/tracker/.

