
Black-Box Detection of Language Model Watermarks

Thibaud Gloaguen 1 Nikola Jovanović 2 Robin Staab 2 Martin Vechev 2

Abstract
Watermarking has emerged as a promising way to
detect LLM-generated text. To apply a watermark
an LLM provider, given a secret key, augments
generations with a signal that is later detectable
by any party with the same key. Recent work
has proposed three main families of watermark-
ing schemes, two of which focus on the property
of preserving the LLM distribution which sup-
posedly makes it harder for malicious actors to
bypass the watermark. Yet, despite much dis-
course around detectability, no prior work has
investigated if any of these scheme families are de-
tectable in a realistic black-box setting. We tackle
this for the first time, developing rigorous statis-
tical tests to detect the presence of all three most
popular watermarking scheme families using only
a limited number of black-box queries. We experi-
mentally confirm the effectiveness of our methods
on a range of schemes and a diverse set of open-
source models. Our findings indicate that current
watermarking schemes are more detectable than
previously believed. We further apply our meth-
ods to test for watermark presence behind the
most popular public APIs: GPT4, CLAUDE 3,
GEMINI 1.0 PRO, finding no strong evidence of a
watermark at this point in time.

1. Introduction
With the rapid increase in large language model (LLM)
capabilities and their widespread adoption, researchers and
regulators alike are raising concerns about their potential
misuse for generating harmful content (Bommasani et al.,
2021; Council of the European Union, 2024). To tackle this
issue, the idea of watermarking, a process of embedding a
signal invisible to humans into generated texts, is gaining

1Department of Mathematics, ETH Zurich 2Department
of Computer Science, ETH Zurich. Correspondence to:
Thibaud Gloaguen <tgloaguen@student.ethz.ch>, Nikola Jo-
vanović <nikola.jovanovic@inf.ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

significant traction.

Language model watermarking More formally, in LLM
watermarking (Hu et al., 2024; Kirchenbauer et al., 2023;
2024; Kuditipudi et al., 2024; Sadasivan et al., 2023; Wang
et al., 2024; Wu et al., 2023; Yoo et al., 024s) we consider
the setting of a model provider that offers black-box access
to their proprietary model LM while ensuring that each
generation y in response to a prompt q can be reliably at-
tributed to the model. To enable this, the provider modifies
the generations using a secret watermark key ξ, which a
corresponding watermark detector can later use to detect
whether a given text was generated by LM .

The prominent family of Red-Green watermarks (Kirchen-
bauer et al., 2023; 2024) achieves this by, at each step of
generation, selecting a context-dependent pseudorandom set
of logits to be boosted, modifying the model’s next-token
distribution. In contrast to these, the recently proposed fam-
ilies of Fixed-Sampling (Kuditipudi et al., 2024) and Cache-
Augmented (Hu et al., 2024; Wu et al., 2023) schemes have
focused on developing watermarks that aim to preserve the
output distribution of the LLM, achieving such guarantees
in ideal theoretical settings. This goal can be motivated by
two main benefits: (i) it is a tractable proxy for preserva-
tion of capabilities of the original LLM, and (ii) intuitively,
the deployment of the watermark should become inherently
harder to detect for malicious actors that would otherwise be
able to avoid or attack the watermark (Jovanović et al., 2024;
Pang et al., 2024; Sadasivan et al., 2023). Yet, despite wa-
termark detection being a key concern in current discourse,
there have so far been no investigations into the practical
detectability of any of the three watermark families.

This work: practical black-box watermark detection
In this work, for the first time, we investigate the question of
watermark detection in practical real-world settings. Faith-
ful to how LLMs are exposed in current public deployments,
we assume a minimal setting in which the adversary cannot
control any input parameters (e.g., temperature, sampling
strategy) apart from the prompt q, and does not receive any
additional information (e.g., log-probabilities) apart from
the instruction-tuned model’s textual response y. In this
setting, the goal of the adversary is to identify if the model
is watermarked and determine which scheme was used.

1

Black-Box Detection of Language Model Watermarks

Is there a
Red-Green
watermark?

context

p
re

fix

Tested for context-
dependent logit bias

PASS
(p=1e-6)

choices

p
ro

b
a

b
ili

ty

Tested for cache-conditioned
choice distribution

FAIL
(p=0.73)

queries

u
n

q
iu

e
 t
e

xt
s Tested for sublinear

response diversity
FAIL
(p=0.94)Is there a

Fixed-Sampling
watermark?

Is there a
Cache-Augmented
watermark? ?

?

?

Figure 1: Given black-box textual access to a language model, a client can query the model and run statistical tests to
rigorously test for presence of a watermark. In this example, both the test for Cache-Augmented watermarks and the test for
Fixed-Sampling watermarks fail, while the test for Red-Green watermarks successfully detects the watermark.

To this end, we propose rigorous statistical tests for the
black-box detection of seven scheme variants of the three
most prominent watermark families. Our tests, illustrated
in Figure 1, are based on fundamental properties of the three
respective scheme families: Red-Green, Fixed-Sampling,
and Cache-Augmented watermarks. In our extensive experi-
mental evaluation, we find that in practice, both distribution-
modifying as well as distribution-preserving schemes are
easily detectable by our tests, even in the most restricted
black-box setting. Highlighting their practicality, we further
test several real-world LLM deployments (GPT4, CLAUDE
3, GEMINI 1.0 PRO) and detect no watermarks, suggesting
that watermark deployment at this scale is a challenge.

Implications Our findings question whether non-
detectability should be a key focus in the development of
LLM watermarks. Guided by our results, we suspect that
avoiding practical detectability may be an inherently hard
problem given the fundamental nature of watermarks. In
light of this, we advocate for a more diverse and practically
oriented development and evaluation of LLM watermarks,
allowing for broader consideration of other relevant proper-
ties such as attack robustness, text quality, and efficiency.
Such a shift in focus could lead to watermarking schemes
that better safeguard against misuse of LLMs, while also
being more practical and deployable in real-world settings.

Main contributions Our key contributions are threefold:

• We present the first statistically rigorous tests for practi-
cal black-box detection of LLM watermarks across the
three prominent scheme families: Red-Green, Fixed-
Sampling, and Cache-Augmented (§2).

• We confirm the effectiveness of all our tests with an
experimental evaluation across seven schemes and five

open-source models, and verify the applicability of our
tests in real-world settings (§3.1).

• We further highlight the practicality of our tests by
executing them on several real-world black-box LLM
deployments—GPT, CLAUDE, and GEMINI (§3.2).

2. Detecting and Identifying Watermarks
Our threat model is as follows: a model provider offers
black-box access to their model LM . The adversary queries
the model, observes its responses and infers with high cer-
tainty whether the model is watermarked and to which fam-
ily the watermark belongs, as illustrated in Figure 1. The
full technical descriptions of the three tests are deferred to
App. A–C for conciseness.

Red-Green watermarks The Red-Green watermarking
family, introduced by Kirchenbauer et al. (2023), operates
by shifting a fraction γ ∈ [0, 1], of the model’s logits by
a positive constant δ at each generation step. The shifted
logits, named the green vocabulary, are chosen based on the
last h > 0 previous tokens, which we refer to as the context.

First, we limit the model output to a small subset of tokens
Σ, ensuring the model distribution across different contexts
is roughly uniform, which simplifies the estimation process.
We then vary both the context and a prefix that does not
change the green vocabulary. In practice, Σ is a predefined
set of choices provided to the model, the context is made of
digits, and the prefix of preceding verbs. We estimate the
probabilities of each token within Σ for each combination
of context and prefix by querying the model multiple times.

To test the null hypothesis that the model is not Red-Green
watermarked, we count tokens that are systematically more
likely for a given context, independent of the prefix. We then
use a permutation test, comparing the observed counts to

2

Black-Box Detection of Language Model Watermarks

the counts obtained by randomly permuting the context and
prefix. For a watermarked model, the permuted setting will
not exhibit the same systematic bias as the original setting,
while an unwatermarked model will. Hence, we can reject
the null hypothesis if the observed counts are significantly
different from the permuted counts. This detection test is
illustrated in Figure 1 (bottom). In App. A, we detail the
statistical modeling underlying the permutation test.

Fixed-Sampling watermarks Unlike Red-Green water-
marks, the recently proposed Fixed-Sampling watermarks
by Kuditipudi et al. (2024) do not modify the logit vectors
during generation, so estimating the probabilities of model
outputs as above is not informative. Instead, the sampling
is fully determined by the rotation of the watermark key,
making the natural vector to exploit when detecting this wa-
termark its lack of diversity. This means that the model can
only produce a finite number of unique outputs, specifically
the key length nkey , for a given prompt.

Given a prompt for which an unwatermarked model is ex-
pected to produce highly diverse outputs, we can use this
observation to reliably distinguish between the two. By
querying the LM multiple times with such a prompt, we
build the rarefaction curve, which is the expected number of
unique outputs as a function of the number of queries. The
rarefaction curve of an unwatermarked LM grows linearly
with the number of queries, while the watermarked LM
curve asymptotes at nkey, as illustrated in Figure 1 (mid-
dle). We use the Mann-Whitney U test to determine if the
observed rarefaction curve is linear.

Cache-Augmented watermarks Like the Red-Green
family, the Cache-Augmented family, introduced by Hu
et al. (2024), uses a context to seed the underlying water-
mark mechanism. However, once the context has been seen
once, it is cached, and the watermark is not applied again
for the same context. The underlying watermark mecha-
nism either deterministically samples the model distribution
(δ-REWEIGHT) or reweights the distribution (DIPMARK/γ-
REWEIGHT) by Hu et al. (2024); Wu et al. (2023). In any
case, the watermarked distribution conditioned on a context
differs from the original one.

This means that the model’s distribution is different the first
time a context is seen compared to subsequent times. By
leveraging the necessity of periodically resetting the cache,
we can probe the model’s distribution both without and with
the watermark. To test for this change, we first probe the
model until we find a prompt where the model chooses
among two tokens with almost equal probability. This low-
ers the number of queries needed to detect a distribution
change. Then we query the model with the same prompt,
making sure to reset the cache in between queries. Our test
then compares the two distributions using a Fisher’s exact

test, rejecting the null hypothesis if the two distributions
are different, i.e., if the model is watermarked. The test is
illustrated in Figure 1 (top).

3. Experimental Evaluation
In this section, we apply the tests introduced in §2 to a
wide range of models and watermarking schemes, and con-
firm their effectiveness in detecting watermarks. In §3.1
we show that the adversary can reliably detect the water-
marking scheme used (if any) at a low cost, across a wide
range of practical settings. We then demonstrate in §3.2
that our tests can be directly applied to real-world LLM
deployments, revealing no significant evidence of any wa-
termarking schemes at this point in time.

3.1. Main Experiments: Detecting Watermarking
Schemes

Experimental setup We run all our tests on five different
models (MISTRAL-7B, LLAMA2-7B, -13B, and -70B, and
LLAMA3-8B), in different scenarios. We here present re-
sults of a subset of those, and defer the rest to App. D. In
each scenario, each model is either unwatermarked (where
we vary the temperature) or watermarked with a scheme
from the three families (where we vary the particular scheme
and its parameters). If our tests are reliable, we expect to see
low p-values only when the model is watermarked exactly
with the scheme family that we are testing for.

For Red-Green tests, we set N = 10,M = 9, r = 1.96, a
different Σ per model based on the first Q1 samples, use
100 samples to estimate the probabilities, and use 10000
permutations in the test. For Fixed-Sampling tests, we use
n = 1000 queries and set t = 50. For Cache-Augmented
tests, we use Q1 = Q2 = 75 and assume the cache is
cleared between queries in the second phase.

Results: reliable watermark detection Our main results
are shown in Table 1, where we report the median p-values
for each (model, test, scenario) tuple across 100 repetitions
of each experiment. Across all experiments, all three tests
reject the null hypothesis (the specific watermark is not
present) at a 95% confidence level only when the scheme
from the target family is indeed applied to the model. This
confirms that our tests are reliable in detecting watermarks,
and robust with respect to the model and the specific param-
eters of the scheme, emphasizing our tests’ generalization
to all schemes that are based on the same foundational prin-
ciples. In particular, our Red-Green tests are robust to the
seeding scheme, the logit bias δ, and the green token frac-
tion γ; our Fixed-Sampling tests maintain high confidence
even for unusually high values of nkey; finally, our Cache-
Augmented tests are robust to all details of the underlying
scheme. Our results also provide evidence that unrelated

3

Black-Box Detection of Language Model Watermarks

Table 1: Main results of our watermark detection tests across different models and watermarking schemes. We report median
p-values across 100 repetitions of the experiment, and for RED-GREEN schemes additionally over 5 watermarking keys.
p-values below 0.05 (test passing) are highlighted in bold. δR and γR denote δ-REWEIGHT and γ-REWEIGHT schemes.

Red-Green Fixed-Sampling Cache-Augmented

Unwatermarked LEFTHASH SELFHASH ITS/EXP DIPMARK/γR δR

Model Test
T =
1.0

T =
0.7

δ, γ =
2, 0.25

δ, γ =
4, 0.5

δ, γ =
2, 0.5

δ, γ =
4, 0.25

nkey =
256

nkey =
2048

α =
0.3

α =
0.5

MISTRAL
7B

R-G 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000
Fixed 0.938 0.938 0.938 0.938 0.938 0.938 1.3e-125 1.1e-9 0.938 0.938 0.938
Cache 0.570 0.667 0.607 0.608 1.00 0.742 0.638 0.687 2.4e-4 2.1e-3 5.6e-27

LLAMA2
13B

R-G 0.149 0.663 0.000 0.000 0.000 0.000 0.121 0.128 0.149 0.149 0.149
Fixed 0.968 0.868 0.938 0.938 0.938 0.938 5.5e-124 7.5e-8 0.938 0.938 0.968
Cache 0.708 0.573 0.511 0.807 0.619 0.710 0.518 0.692 1.8e-2 5.3e-3 6.7e-32

LLAMA2
70B

R-G 1.000 1.000 0.000 0.020 0.000 0.000 1.000 1.000 1.000 1.000 1.000
Fixed 0.938 0.526 0.966 0.965 0.984 0.975 4.2e-125 1.7e-8 0.938 0.966 0.938
Cache 0.596 0.620 0.657 0.639 0.651 0.608 0.463 0.818 1.5e-3 4.4e-3 5.8e-28

Table 2: The results of our watermark detection tests on
popular black-box LLM deployments.

GPT4 CLAUDE 3 GEMINI 1.0 PRO

R-G 0.998 0.638 0.683
Fixed 0.938 0.844 0.938
Cache 0.51 0.135 0.478

model modifications do not cause false positives.

Our tests do not incur significant costs for the adversary,
making them easily applicable in practice. We estimate the
average cost of the tests to be below $20 for Red-Green, $1
for Fixed-Sampling, and $0.1 for Cache-Augmented tests,
assuming latest OpenAI GPT4O pricing.

3.2. Detecting watermarks in deployed models

Finally, we demonstrate the applicability of the statistical
tests introduced in §2, by applying them to popular black-
box LLM deployments: GPT4, CLAUDE 3, and GEMINI
1.0 PRO. We use the same experimental setup as in §3.1, and
use the API access for efficiency reasons—we do not rely on
any additional capabilities, and our tests could be as easily
run in the web interface. For the Cache-Augmented tests,
we assume a global cache, that clears after 1000 seconds.

Results Our results in Table 2 show that the null hypoth-
esis is not rejected for any of the models and any of the
watermark tests. This suggests that none of the deployed
models tested are watermarked at this point in time. The
demonstrated applicability of our tests makes it simple to
monitor these deployments and detect any watermarking
schemes that may be introduced in the future.

4. Conclusion, Impact and Limitations
In this paper, we have focused on the problem of detect-
ing watermarks in large language models (LLMs) given
only black-box access. We developed rigorous statistical
tests for the three most prominent scheme families, and
validated their effectiveness. Our results imply that protect-
ing from detectability should not be the key focus of LLM
watermarks, and that other properties such as robustness to
attacks, text quality, and efficiency should be prioritized.

Broader Impact While our work primarily enables mali-
cious parties to more easily circumvent attempts at tracing
LLM-generated text, we believe the benefits of our work out-
weigh those risks, as our conclusions help model providers
calibrate their expectations in terms of watermark detectabil-
ity, and avoid a false sense of safety.

Limitations One limitation of our tests is that they are re-
stricted to the three scheme families discussed in §2. These
are indeed the most prominent in the literature, and as our
tests are based on fundamental properties of these scheme
families, they should generalize to more variants and com-
binations of the underlying ideas. However, it is possible
that a model provider deploys a scheme based on an en-
tirely novel idea, which our tests would not be able to detect.
Further, our p-values are based on several model assump-
tions, such as symmetric error terms and perfect sampling.
While we validate that these assumptions are sufficiently
met on several open-source models, we cannot guarantee
that all models adhere to them. Finally, another conceptual
limitation of our Red-Green test is that it does not take into
account the possibility that the red-green vocabulary split
is the same (on the observed domain) for all contexts. The
probability of this event decreases exponentially with the

4

Black-Box Detection of Language Model Watermarks

number of different contexts, and is thus unlikely to affect
the test’s performance in practice.

References
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R. B.,

Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card,
D., Castellon, R., Chatterji, N. S., Chen, A. S., Creel, K.,
Davis, J. Q., Demszky, D., Donahue, C., Doumbouya,
M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh,
K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel, K.,
Goodman, N. D., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri,
P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O.,
Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R., and
et al. (2021). On the opportunities and risks of foundation
models. CoRR.

Carlini, N., Paleka, D., Dvijotham, K. D., Steinke, T.,
Hayase, J., Cooper, A. F., Lee, K., Jagielski, M., Nasr,
M., Conmy, A., Wallace, E., Rolnick, D., and Tramèr,
F. (2024). Stealing part of a production language model.
CoRR.

Council of the European Union (2024). Proposal for a
regulation of the european parliament and of the council
laying down harmonised rules on artificial intelligence
(artificial intelligence act) and amending certain union
legislative acts - analysis of the final compromise text
with a view to agreement.

Gu, C., Li, X. L., Liang, P., and Hashimoto, T. (2024).
On the learnability of watermarks for language models.
ICLR.

Hou, A. B., Zhang, J., He, T., Wang, Y., Chuang, Y., Wang,
H., Shen, L., Durme, B. V., Khashabi, D., and Tsvetkov,
Y. (2023). Semstamp: A semantic watermark with para-
phrastic robustness for text generation. arXiv.

Hu, Z., Chen, L., Wu, X., Wu, Y., Zhang, H., and Huang, H.
(2024). Unbiased watermark for large language models.
ICLR.

Jovanović, N., Staab, R., and Vechev, M. (2024). Watermark
stealing in large language models. arXiv.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I.,
and Goldstein, T. (2023). A watermark for large language
models. In ICML.

Kirchenbauer, J., Geiping, J., Wen, Y., Shu, M., Saifullah,
K., Kong, K., Fernando, K., Saha, A., Goldblum, M., and
Goldstein, T. (2024). On the reliability of watermarks for
large language models. ICLR.

Kuditipudi, R., Thickstun, J., Hashimoto, T., and Liang, P.
(2024). Robust distortion-free watermarks for language
models. TMLR.

Li, Y. and Fung, P. (2013). Improved mixed language speech
recognition using asymmetric acoustic model and lan-
guage model with code-switch inversion constraints. In
ICASSP.

Liu, A., Pan, L., Hu, X., Li, S., Wen, L., King, I., and Yu,
P. S. (2024a). A private watermark for large language
models. ICLR.

Liu, A., Pan, L., Hu, X., Meng, S., and Wen, L. (2024b). A
semantic invariant robust watermark for large language
models. ICLR.

Naseh, A., Krishna, K., Iyyer, M., and Houmansadr, A.
(2023). On the risks of stealing the decoding algorithms
of language models. CoRR.

Pang, Q., Hu, S., Zheng, W., and Smith, V. (2024). At-
tacking LLM watermarks by exploiting their strengths.
arXiv.

Piet, J., Sitawarin, C., Fang, V., Mu, N., and Wagner, D. A.
(2023). Mark my words: Analyzing and evaluating lan-
guage model watermarks. arXiv.

Rando, J. and Tramèr, F. (2024). The worst (but only)
claude 3 tokenizer. https://github.com/javirandor/

anthropic-tokenizer.

Ren, J., Xu, H., Liu, Y., Cui, Y., Wang, S., Yin, D., and
Tang, J. (2023). A robust semantics-based watermark for
large language model against paraphrasing. arXiv.

Sadasivan, V. S., Kumar, A., Balasubramanian, S., Wang,
W., and Feizi, S. (2023). Can ai-generated text be reliably
detected? arXiv.

Tang, L., Uberti, G., and Shlomi, T. (2023). Baselines for
identifying watermarked large language models. CoRR.

Wang, L., Yang, W., Chen, D., Zhou, H., Lin, Y., Meng,
F., Zhou, J., and Sun, X. (2024). Towards codable text
watermarking for large language models. ICLR.

Wu, Y., Hu, Z., Zhang, H., and Huang, H. (2023). Dipmark:
A stealthy, efficient and resilient watermark for large
language models. arXiv.

Yoo, K., Ahn, W., and Kwak, N. (2024s). Advancing beyond
identification: Multi-bit watermark for language models.
NAACL.

5

https://github.com/javirandor/anthropic-tokenizer
https://github.com/javirandor/anthropic-tokenizer

Black-Box Detection of Language Model Watermarks

A. Detecting Red-Green Watermarks
Here we provide a more detailed introduction to the Red-Green watermarking scheme, and describe in details the statistical
test we developed to detect it.

Background Assume a watermark key ξ ∈ N, a pseudorandom function (PRF) f , and a hashing function H : N→ N. At
each generation step t, a Red-Green watermark modifies the logits l1:|V | of tokens from the vocabulary V to promote a subset
of tokens (green tokens) before applying standard sampling. We consider two popular variants, LEFTHASH (Kirchenbauer
et al., 2023) and SELFHASH (Kirchenbauer et al., 2024), both parametrized by δ, γ ∈ R+, and using h = 1 and h = 3
previous tokens as context, respectively. LEFTHASH seeds f with H(yt−1) · ξ, and uses it to split V into γ|V | green
tokens and remaining red tokens. For each green i, it then increases li by δ. SELFHASH differs by seeding f with
min(H(yt−3), . . . ,H(yt)) ·H(yt) · ξ, effectively using a context size of 4 by including the token yt yet to be generated.
For both schemes, the watermark detector is based on observing a significant number of green tokens in the input text
of length m, above the expectation of γm. Other schemes from this family include, among else, varying the aggregation
function or the context size.

Modeling Red-Green watermarks Assume a setting where the model chooses a token from some restricted set Σ ⊂ V ,
following some context t2 (longer than the watermark context h), which is preceded by a prefix t1. We discuss how to
construct such a setting shortly. To model the watermark, we assume the following distribution for pt1,t2(x), the probability
the model assigns to some x ∈ Σ:

pt1,t2(x) =
exp

(
(x0 + δt2(x) + εt1,t2(x))/T

)∑
w∈Σ exp ((w0 + δt2(w) + εt1,t2(w))/T)

. (1)

Here, we assume the existence of the true logit x0, modeling the model bias towards x. The true logit is shifted by δt2(x), a
δ-Bernoulli random variable, where δ ∈ R+ is the watermark parameter introduced above. Finally, εt1,t2(x) for different
t1, t2 are iid symmetric error terms with mean 0 and variance σ2. Applying the logit function p → log(p/(1 − p)) to
Equation (1), we obtain:

lt1,t2(x) =
x0

T
+
δt2(x)

T
+
εt1,t2(x)

T
− log

 ∑
w∈Σ\{x}

exp

(
w0

T
+
δt2(j)

T
+
εt1,t2
T

) . (2)

Approximating the log-sum-exp with a maximum, and WLOG setting w0 = 0 for w which is the maximum in the
log-sum-exp (as logits are shift-invariant), the above simplifies to

lt1,t2(x) = x0/T + δ′t2(x) + ε′t1,t2(x), (3)

where ε′t1,t2(x) absorbs the previous error terms. The resulting δ′t2(x) is a random variable that is 0 for unwatermarked
models, and has 3 possible values for watermarked models: δ/T (where δ is the watermark parameter), if x is the only token
from Σ that is in the green partition of the vocabulary, −δ/T , if x is in the red partition and some other tokens from Σ are in
the green partition, and 0 otherwise. Our test is based on detecting cases of δ′t2(x) 6= 0 and checking that their occurrence is
indeed independent of t1, distinguishing model variance from the watermark bias.

Querying strategy Recall that our goal is to steer a model into a setting (via an instruction, as we have no access to the
completion model) where it makes a choice from some restricted set Σ. Importantly, we want to ensure enough variability in
the model’s choices to be able to observe the behavior specific to a Red-Green watermark and perform efficient estimation
(in terms of query cost).

Assuming an upper bound H on the context size h of the watermark, we use the following prompt template, parametrized
by t1 (an arbitrary length string), d (a single token), and a word list Σ.

f"Complete the sentence \"{t1} {d ·H︸ ︷︷ ︸
t2

}\" using a random word from: [{Σ}]."

Here, t1 serves as the prefix, and t2 = d ·H as the context. For a watermarked model, changing t2 is the only way to change
the red-green vocabulary split, which can greatly affect the model’s choice. For unwatermarked models, while we often see

6

Black-Box Detection of Language Model Watermarks

bias towards some choices from Σ, this bias will not strongly depend on t2. This holds for all context sizes ≤ H and most
aggregation functions, making our setting and the corresponding test directly applicable to different variants of Red-Green
schemes.

In our instantiation (illustrated in Figure 1), we use N different t1 of the form “I bought”, varying the verb, M different
values of d from the set of digits, a word list Σ of four different plural fruit names, and an example that uses different words
to not bias the model towards a specific choice. We empirically observe that this setup minimizes the chance that the model
collapses to a single choice or fails to follow the instruction, which often occurred for similar settings based on repetition of
words or numbers outside of natural context.

Estimating the logits To collect the data for the test, we query the model in two phases. First, we choose different values
of Σ until we find one where the model does not always make the same choice, inducing Q1 total queries. We set x to be the
most commonly observed word from Σ. Next, for each (t1, t2) pair we query the model until we obtain K valid responses
(filtering out failures to follow the instruction), inducing Q2 additional queries.

We use these samples to estimate the model logits corresponding to x as l̂t1,t2(x) = log
p̂t1,t2 (x)

1−p̂t1,t2
(x) , where p̂t1,t2(x) is the

empirically estimated probability of x in the responses. The result of the adversary’s querying procedure is a matrix LN×M
(visualized in Figure 1) of such logit estimates.

Testing watermark presence Finally, we describe the statistical test based on the logit estimates LN×M . We first estimate
σ, the standard deviation of ε′t1,t2(x), as follows:

σ̂2 = median[Vart2(L)], (4)

using the empirical median to improve robustness to unpredictable behavior caused by different t1. Then, we calculate the
following two binary functions, which flag cases where we believe the model’s probability was affected by a watermark:

Rx(t1, t2) = 1{l̂t1,t2(x)−median[L] < −rσ̂}, (5)

and
Gx(t1, t2) = 1{l̂t1,t2(x)−median[L] > rσ̂}, (6)

with r ∈ R+ a parameter of the test. In practice, to account for model unpredictability, we use the empirical median
conditioned on t1 in Equations (5) and (6). For simplicity, let us denote t1 ∈ {1, . . . , N} and t2 ∈ {1, . . . ,M}. Let
cntx(t2) = max

(∑N
t1=1Rx(t1, t2),

∑N
t1=1Gx(t1, t2)

)
count the number of consistently flagged values for fixed t2. We

define the following test statistic:

Sx(L) = max
t2∈[M]

cntx(t2)− min
t2∈[M]

cntx(t2). (7)

The null hypothesis of our test is ∀t2 : δ′t2(x) = 0, i.e., the model is not watermarked. To obtain a p-value, we apply a
Monte Carlo permutation test to Sx, checking if the flagged values are correlated with t2 in a way that indicates a Red-Green
watermark. Namely, we sample a set of permutations σ of the matrix L uniformly at random, and calculate a 99% confidence
interval of Pr[Sx(σ(L)) ≥ Sx(L)], whose upper bound we take as our p-value. When this value is small, we interpret that
as evidence of a watermark. Because Equation (3) is permutation invariant when δ′t2(x) = 0, this ensures that the test does
not reject under the null. This completes our method for detection of Red-Green watermarks.

B. Detecting Fixed-Sampling Watermarks
As in App. A, we begin by introducing the background of the watermarking scheme. We then formally model the diversity
of model outputs, discuss our querying strategy to ensure our assumptions are met, and describe the resulting statistical test.

Background For Fixed-Sampling watermarks, the secret watermark key sequence ξ of length nkey is cyclically shifted
uniformly at random for each generation to obtain ξ̄, and the entry ξ̄t is used to sample from l. In the ITS variant, ξ̄t is a pair
(u, π) ∈ [0, 1]× Π, where Π defines the space of permutations of the vocabulary V . Given the probability distribution p
over V , obtained by applying the softmax function to l, ITS samples the token with the smallest index in the permutation π

7

Black-Box Detection of Language Model Watermarks

such that the CDF of p with respect to π is at least u. In the EXP variant, ξ̄t is a value u ∈ [0, 1], and we sample the token
arg mini∈V − log(u)/pi. The detection, for both variants, is based on testing the correlation between the text and ξ using a
permutation test. As noted in §1, the key design goal of ITS and EXP is that, in expectation w.r.t. ξ, they do not distort the
distribution of the responses. How close to this ideal is achieved in practical implementations is the question we aim to
answer.

Modeling the diversity Let Un(q, t) denote a random variable that counts the number of unique outputs to a fixed prompt
q in n queries, each of length exactly t in tokens. We introduce the rarefaction curve (visualized in Figure 1) as

R(n) = E[Un(q, t)]. (8)

For suitable q that enables diversity and large enough t, the unwatermarked model exhibits R(n) = n. For a Fixed-Sampling
watermark (both ITS and EXP variants), the watermark key segment used for sampling is determined by choosing a rotation
of the key ξ uniformly at random. As choosing the same rotation for the same prompt and sampling settings will always
yield the same output, the number of unique outputs is at most equal to the key size nkey. The probability that an output i
was not produced is given by (1− 1/nkey)n. By linearity of expectation, we have the rarefaction curve

R(n) = nkey

(
1− (1− 1

nkey
)n
)
. (9)

Querying strategy To estimate R(n) of LM , we query it with a fixed prompt q, using rejection sampling to discard short
responses until we obtain a set of N responses of length t tokens (inducing Q total queries). We then repeatedly sample n
responses from this set to get a Monte-Carlo estimation of R(n). There are two key considerations. First, we need to ensure
that we are in a setting where an unwatermarked model would have R(n) = n. To do this, we use the prompt “This is

the story of” that reliably causes diverse outputs, and set t high enough to minimize the chance of duplicates. In §3 we
experimentally confirm that the number of unique outputs scales exponentially with t, and investigate the effect of small
temperatures. Second, as larger nkey make R(n) closer to linear, we must ensure that n is large enough for our test to be
reliable. To do this, we can set an upper bound n̄key on key size, and estimate the number of samples needed for a given
power by simulating the test—our experiments show that our test succeeds even on values of n̄key far above practical ones.

Testing watermark presence Finally, to test for presence of a Fixed-Sampling watermark, we use a Mann-Whitney U
test to compare the rarefaction curve R(n) = n with the observed rarefaction data obtained as above. If the test rejects the
null hypothesis, we interpret this as evidence that the model is watermarked with a Fixed-Sampling scheme.

C. Details of Cache-Augmented Schemes
We provide the details of the three Cache-Augmented watermarking schemes considered in this work: δ-REWEIGHT (Hu
et al., 2024), γ-REWEIGHT (Hu et al., 2024), and DIPMARK (Wu et al., 2023). We then describe in details the watermark
detection tests for these schemes.

Cache-Augmented watermarking schemes All three variants, at each generation step t, jointly hash the watermark key
ξ ∈ ZK

2 and the preceding context yt−h:t−1 (commonly setting h = 5) using SHA256, and use the result as a seed to
sample a code Et ∈ PE uniformly at random. Let p denote the probability distribution over V , obtained by applying the
softmax function to the logits. For the δ-REWEIGHT variant, PE = [0, 1], and the code Et is used to sample the token in
V with the smallest index, such that the CDF of p is at least Et. For the γ-REWEIGHT variant and DIPMARK, PE is the
space of permutations of V . For γ-REWEIGHT, we transform p to a new distribution p′ by, for each token i ∈ V , setting
p′(i) = f2(f1(Et(i)))−f2(f1(Et(i)−1)), where we have f1(i′) =

∑
j∈V 1(Et(j) ≤ i′)p(j) and f2(v) = max(2v−1, 0),

effectively dropping the first half of the permuted CDF. For DIPMARK, given parameter α ∈ [0, 0.5], this is generalized
by using f2(v) = max(v − α, 0) + max(v − (1− α), 0), recovering γ-REWEIGHT for α = 0.5. The former two variants
perform detection using a log-likelihood ratio test (requiring access to LM), while DIPMARK uses a model-independent
test.

Probing the true distribution In the first phase of querying, our goal is to find a setting where the distribution of the
model under the watermark will differ from its true distribution, and estimate the true distribution. For schemes we focus on,

8

Black-Box Detection of Language Model Watermarks

Table 3: Additional results of our watermark detection tests across different models and watermarking schemes. We report
median p-values across 100 repetitions of the experiment, and for RED-GREEN schemes additionally over 5 watermarking
keys. p-values below 0.05 (test passing) are highlighted in bold. δR and γR denote δ-REWEIGHT and γ-REWEIGHT schemes,
respectively.

Red-Green Fixed-Sampling Cache-Augmented

Unwatermarked LEFTHASH SELFHASH ITS/EXP DIPMARK/γR δR

Model Test
T =
1.0

T =
0.7

δ, γ =
2, 0.25

δ, γ =
2, 0.5

δ, γ =
4, 0.25

δ, γ =
4, 0.5

δ, γ =
2, 0.25

δ, γ =
2, 0.5

δ, γ =
4, 0.25

δ, γ =
4, 0.5

n =
256

n =
2048

α =
0.3

α =
0.5

MISTRAL
7B

R-G 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000
Fixed 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 1.3e-125 1.1e-9 0.938 0.938 0.938
Cache 0.570 0.667 0.607 0.639 0.632 0.608 1.000 1.000 0.742 0.824 0.638 0.687 2.4e-4 2.1e-3 5.6e-27

LLAMA2
13B

R-G 0.149 0.663 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.121 0.128 0.149 0.149 0.149
Fixed 0.968 0.868 0.938 0.966 0.938 0.938 0.938 0.938 0.938 0.967 5.5e-124 7.5e-8 0.938 0.938 0.968
Cache 0.708 0.573 0.511 0.596 0.623 0.807 0.657 0.619 0.710 0.583 0.518 0.692 1.8e-2 5.3e-3 6.7e-32

LLAMA2
70B

R-G 1.000 1.000 0.000 0.000 0.000 0.020 0.000 0.020 0.000 0.000 1.000 1.000 1.000 1.000 1.000
Fixed 0.938 0.526 0.966 0.964 0.889 0.965 0.963 0.984 0.975 0.990 4.2e-125 1.7e-8 0.938 0.966 0.938
Cache 0.596 0.620 0.657 0.797 0.824 0.639 0.535 0.651 0.608 0.593 0.463 0.818 1.5e-3 4.4e-3 5.8e-28

LLAMA2
7B

R-G 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000
Fixed 0.993 0.988 0.938 0.938 0.938 0.938 0.968 0.938 0.938 0.938 7.6e-124 1.0e-8 0.938 0.938 0.993
Cache 0.604 0.602 0.623 0.705 0.728 0.593 0.620 0.718 0.610 0.593 0.476 0.588 4.2e-6 4.5e-7 1.3e-21

LLAMA3
8B

R-G 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000
Fixed 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.986 0.938 1.2e-124 3.8e-8 0.938 0.938 0.938
Cache 0.734 0.504 0.605 0.514 0.712 0.605 0.600 0.731 0.729 0.714 0.618 0.605 5.2e-5 3.2e-8 3.5e-18

this corresponds to a setting with two choices, where the model is not significantly biased towards any of them. In particular,
we use the following prompt:

Pick a fruit between: {f1} and {f2}. Use the following format: {uc}{fexample},

and modify f1, f2, and fexample 6= f1, f2 until we find a setting where the model outputs the two choices roughly uniformly.
Crucially, we prefix the prompt with a randomly sampled sufficiently long string of tokens uc. As LM will repeat uc before
providing the answer, this ensures that if a cache is present, after our first query (the result of which we discard) the choice
of the model will be made according to the true distribution, as the relevant part of uc was cached. Assuming WLOG that
f1 is the more likely choice for the model, we query it Q1 times with the same input to obtain p̂1, the estimate of the true
probability of the model to pick f1.

Probing the watermarked distribution In the second phase, we query LM with the same input, while ensuring that the
cache is reset between each query, i.e., the model will respond according to the watermarked distribution. In case of a global
cache, it is sufficient to wait for a set amount of time—resetting the cache too infrequently is not a realistic setting for a
deployment, as it would on average lead to a weak watermark. The uncommon prefix uc ensures that no other user will
accidentally insert the same context into the cache. In case of a per-user cache, we can either saturate the cache by asking
diverse queries, or use multiple user accounts. We query LM Q2 times and obtain p̂2, the estimate of the probability of f1

under the watermarked distribution.

Testing watermark presence For unwatermarked models or those watermarked with a scheme from another family, both
of the previous steps were sampling from the same distribution, thus for high enough Q1 and Q2 we expect p̂1 = p̂2.
However, for all Cache-Augmented watermarking schemes, these probabilities will differ, indicating that the cache has
revealed the true distribution of the model. To test this, we apply a Fischer’s exact test with the null hypothesis p̂1 = p̂2. If
we observe a low p-value, we interpret this as evidence that the model is watermarked with a Cache-Augmented scheme.

9

Black-Box Detection of Language Model Watermarks

10 100 1000
Number of samples per (t1, t2)

10 5

10 4

10 3

10 2

10 1

100

p-
va

lu
e Model

LeftHash
SelfHash
No Watermark

0 20 40 60 80 100
Tokens generated

101

102

103

n
R(

n)

Model
Llama2-70B
Llama2-7B
Llama3-8B
Temperature
0.4
0.6
0.8

Figure 2: Left: distribution of bootstrapped p-values of the Red-Green test on LLAMA2-13B with (δ, γ) = (2, 0.25), for
different sample sizes. We see reliable results for 100 or more samples. Right: the diversity gap n − R(n) on log scale
in different settings. Linear behavior means that diversity scales exponentially with t, and we see that the assumption of
R(n) = n can be easily met in practice.

D. Extending Experiments across Diverse Settings
Watermark detection with additional models and schemes We extend the experiments from §3.1 using two additional
models, LLAMA2-7B and LLAMA3-8B, as well as more variations of the watermarking schemes’ parameters to further
assess the robustness of the tests. The experimental setup for the additional results is consistent with the one described in
§3.1.

Our exhaustive results are presented in Table 3. The same conclusion applies to the two additional models: the null
hypothesis (the specific watermark is not present) is rejected at a 95% confidence level only when the corresponding
watermarking scheme is applied to the model. These results confirm that the modeling assumptions for each test are satisfied
across a wide range of models, indicating the tests’ relevance in practical scenarios.

Multiple keys in Red-Green watermarks To demonstrate that the Red-Green test is robust to variations in the water-
marking scheme within the same watermark family, we consider the case of Red-Green watermarks with multiple keys,
where the key ξ is uniformly selected from a predefined pool of keys at each generation. Using n keys turns Equation (3)
into

lt1,t2(x) = x0/T + δ′′t2(x) + ε′t1,t2(x), (10)

with δ′′t2(x) in {kδ/(nT) | ∀k ∈ {−n, ..., n}} is obtained by averaging the variables δ′t2(x) over the set of keys. Despite
modeling changes, the core assumption of logit bias being conditioned on t2 remains unchanged. Therefore, we can apply
the same Red-Green test to detect the watermark. Consequently, we conducted the Red-Green test on both the LeftHash and
SelfHash variants using n = 3 keys on three models (LLAMA2-13B, LLAMA2-70B and MISTRAL-7B). Recent work (Pang
et al., 2024) shows that using too many keys can lead to other vulnerabilities.

Across all three models and scheme parameters, the null hypothesis (the Red-Green watermark is not present) is rejected at
a 95% confidence level, with median p-values lower than 1e-4 for each combination of model and setting. It shows that the
Red-Green test is robust even in settings that slightly deviate from the original modeling considered in App. A. It emphasizes
the test’s reliance on the foundational principles behind Red-Green schemes rather than on specific implementation details.

Sampling in Red-Green tests The Red-Green test relies on the sampling of model outputs to estimate the probabilities of
the model. As the resulting p-value is computed assuming knowledge of true probabilities, this raises the question of the
impact of the sampling error on our results. To heuristically mitigate this, we propose a bootstrapping procedure, where
for fixed (t1, t2), we sample with replacement from a single set of model outputs, and report the median p-value pmed

across such samples. In Figure 2 (Left) we report the resulting distribution of pmed, where one point corresponds to one
independent run. We see that already for 100 samples per (t1, t2) (as used in Table 1), the p-value distribution is narrow and
the false positive rate due to sampling error is well controlled. This confirms that our test is robust against sampling error
and can be used in realistic settings, without additional access to model logprobs. For computational reasons, we did not
apply this correction in Table 1, where we still observe reliable results in the median case across experiment repetitions.

10

Black-Box Detection of Language Model Watermarks

Diversity assumption in Fixed-Sampling tests As detailed in App. B, the Fixed-Sampling test relies on the unwater-
marked model being sufficiently diverse, i.e., for the number of unique outputs R(n) = E[Un(q, t)] after n queries with
prompt q and response length t, it should hold that R(n) = n. Our goal is to show that we can easily choose t such that this
property holds across different settings.

To this end, we hypothesize that the number of unique outputs converges to n exponentially fast as the response length t
increases. In particular, we assume

R(n) = n− bn · exp(−α(T)t)c, (11)

where α(T) is a monotonic function of the temperature T . To verify this hypothesis, we measure n − R(n) on several
models and temperatures, and show the result on log scale in Figure 2 (Right). If Equation (11) holds, we expect the resulting
relationship to be linear, which is indeed confirmed by our results. While α (the slope of the line) varies across settings, we
see that a bit over 200 tokens would be sufficient for the line to drop to 0 (not visible on the log scale plot). This holds even
in cases impractical for deployment of Fixed-Sampling watermarks such as T = 0.4 (Kuditipudi et al., 2024; Piet et al.,
2023), indicating that R(n) = n and our assumption is met, validating our p-values.

E. Estimating Scheme Parameters
In this section, we describe how, mostly leveraging the queries already performed during the detection tests, we can estimate
the main parameters of the detected watermarking scheme. This demonstrates the soundness of our modeling assumptions
from which we derive all the estimators.

E.1. Estimation of Red-Green Watermarking Scheme Parameters

If the null hypothesis (the model not being Red-Green watermarked) is rejected, we can then estimate the scheme-specific
watermark parameters δ and the context size h using mostly the same data as used in the test. First, we describe the
estimators for both parameters, and then discuss their practicality by analyzing their performance on multiple models.

Description of estimators To estimate δ, we establish a parametrized model based on Equation (2) that relies on our
flagging function from Equation (6), and additional estimates l̂t1,t2(w) for every w ∈ Σ, computed on the same data as
above, requiring no additional queries. For each w ∈ Σ, we set:

l̂t1,t2(w) = w̄t1 +Gw(t1, t2)δ̄ − log

 ∑
w′∈Σ\{w}

exp
(
w̄′t1 +Gw′(t1, t2)δ̄

) , (12)

and set ∀t1, w̄t1 = 0 for a single w ∈ Σ, as logits are shift-invariant. Fitting the parameters δ̄ and all w̄t1 by minimizing the
mean squared error with gradient descent allows us to recover δ/T as δ̄. If T is known or estimated separately, this term can
be removed.

Let h denote the context size, i.e., the number of previous tokens considered by the watermarking scheme. To estimate h,
we use the same prompt template as in App. A, with a fixed prefix t1 and digit d, but with a varying H and perturbation digit
d′ prepended to d.

f"Complete the sentence \"{t1} {d′}{d ·H}\" using a random word from: [{Σ}]."

The probability distribution of the model output will abruptly change when H exceeds the context size h, as the change
in d′ will not alter the red/green split of the vocabulary. By performing a series of pairwise Mood’s tests on the estimated
log-probabilities of x we can find the largest H for which t1 is part of the context. This corresponds to the first value of H
for which the test is rejected.

Estimating γ is more challenging, as in contrast to δ, this parameter is not directly reflected in the logits but rather defines a
more global behavior of the scheme. This is particularly difficult for schemes with self-seeding, as the rejection sampling
interferes with the behavior of γ. We leave further exploration of this problem to future work.

Experimental results We computed the estimator for δ on the LeftHash variant with γ = 0.25 and varying δ from 0
to 4. The results are shown in Figure 3, with the 95% confidence intervals reflecting the sampling error. The estimator
successfully estimates δ for all models with a sufficient number of samples, using only the estimated output probabilities of

11

Black-Box Detection of Language Model Watermarks

0 1 2 3 4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

With logprobs

0 1 2 3 4

n = 10

0 1 2 3 4

n = 100

0 1 2 3 4

n = 1000

Model
Llama2-7B
Llama2-13B
Mistral-7B
Llama3-8B
Llama2-70B

Figure 3: Estimation of δ for different models using LeftHash with γ = 0.25. The number of samples used increases from
left to right, with the leftmost plot assuming direct access to the log-probabilities. The estimation is done on the same data as
the test. Error bars are given by the 95% bootstrapped confidence interval with respect to the sampling of the model outputs.

Table 4: Key length estimation for Fixed-Sampling watermarks using non-linear regression on the rarefaction curve.

Key length LLAMA2-7B LLAMA2-13B LLAMA2-70B LLAMA3-8B MISTRAL-7B

256 259± 0.6 259± 0.5 256± 0.5 257± 0.5 256± 0.6

2048 1978± 10 2107± 12 2006± 13 2070± 14 1831± 10

the model. It is also consistent across all models tested, suggesting that the model assumptions in Equation (1) are met in
practice.

Estimating the context size for Red-Green schemes requires performing a new attack once the model is flagged as
watermarked. We estimate the context size for three different models (MISTRAL-7B, LLAMA2-13B and LLAMA2-70B)
using LeftHash with δ = 2 and γ = 0.25. The estimation process requires an additional 5,000 queries, and the estimator
successfully determines the context size for all models. However, the estimator is less robust on the SelfHash variant due
to the self-seeding algorithm, which leads to higher probabilities for tokens in Σ being in the green vocabulary, and thus
diminishes the perturbation’s significance and resulting in false negatives in Mood’s test. Therefore, the procedure stated
above produces a lower bound for the context size. To mitigate this issue, we use the estimator across 10 different t2 and
then consider the median of the 10 estimators as our final estimator. This estimator applied on the SelfHash variant with
δ = 2 and γ = 0.25 is successful on all three models. It also does not change the results on LeftHash and can be used as a
more robust estimator for h in all cases, when the additional cost of 50, 000 queries is not prohibitive.

E.2. Estimation of Fixed-Sampling Watermarking Scheme Parameters

Our approach does not distinguish between the variant of the Fixed-Sampling watermark used (ITS or EXP), as the diversity
property that we exploit is common to both. The only other relevant parameter of Fixed-Sampling schemes is nkey. To
estimate it, we use non-linear regression on the rarefaction curve using (9) and the same data that we used for the presence
test, and compute the confidence intervals using bootstrapping.

Our results are given in Table 4. We see that the estimator is consistent across different models and remains relatively precise
even for values of nkey higher than the number of queries.

E.3. Estimation of Cache-Augmented Watermarking Scheme Parameters

For Cache-Augmented watermarks, we can estimate which scheme variant is present, and if the variant is DIPMARK, attempt
to learn the value of α (recall that α = 0.5 corresponds to γ-REWEIGHT). To do this, we use the same approach as in
App. C to obtain p̂1 and p̂2, where WLOG we assumed p1 > 0.5. If we observe p̂2 = 0 this directly implies a δ-REWEIGHT
watermark. If we observe p̂2 ∈ (0, 1), we learn the following: if p̂2 = 2p̂1 − 1 then α > 1− p̂1, otherwise α = |p̂1 − p̂2|.
The bound in the first case can be further improved with additional queries with different p1. Finally, if we observe p̂2 = 1
we repeat the whole procedure in total K times, following the same case distinction—if p̂2 = 1 repeats in all K runs, we
conclude that the model is watermarked with δ-REWEIGHT.

Using the same parameters as the one for the test, we distinguish with 100% accuracy between a DIPMARK and a δ-
REWEIGHT watermark. However, the estimation of α becomes unreliable for higher values of α, especially for smaller

12

Black-Box Detection of Language Model Watermarks

models. One of the reasons for this are the failures of the model to follow the instruction, that are more common in the
presence of the uncommon prefix uc. While the detection test in App. C was robust to such behavior, this does not hold for
the estimation of α.

F. Related Work
Language model watermarking Besides the approaches by (Hu et al., 2024; Kirchenbauer et al., 2023; Kuditipudi et al.,
2024) introduced above, there are various methods building on similar ideas. Hou et al. (2023); Liu et al. (2024b); Ren et al.
(2023) all apply variations of (Kirchenbauer et al., 2023) on semantic information, while Gu et al. (2024) aims to distill a
new model from the output of a watermarked model. Similarly, Liu et al. (2024a) apply a Red-Green scheme using a learned
classifier instead of hash functions. A range of works on multi-bit watermarking (Wang et al., 2024; Yoo et al., 024s) aim to
not only watermark generated texts but encode additional information in the watermark itself.

Attacks on language model watermarking Attacks on LLM watermarks have so far been mainly investigated in terms
of scrubbing (Jovanović et al., 2024; Kirchenbauer et al., 2023; Sadasivan et al., 2023) (i.e., removal of a watermark) and
spoofing (Gu et al., 2024; Jovanović et al., 2024; Sadasivan et al., 2023) (i.e., applying a watermark without knowing ξ).
Notably, Jovanović et al. (2024) showed that observing watermarked texts can facilitate both attacks on various distribution-
modifying schemes, disproving common robustness assumptions (Kirchenbauer et al., 2024). However, using this and
similar attacks as means of practical watermark detection is infeasible, as they generally offer no way to quantify the attack’s
success—in contrast, we aim to provide rigorous statements about scheme presence. Further, such attacks incur significantly
higher query costs than necessary for detection (as our work demonstrates), and in some cases assume certain knowledge of
the watermark parameters, a setting fundamentally at odds with our threat model of black-box watermark detection.

The closest related work to ours is Tang et al. (2023), that tackles the problem of watermark detection in strictly simpler
settings where the adversary either has access to an unwatermarked counterpart of the target model, or can access full model
logits. Such knowledge is commonly not available in practice, limiting the applicability of this approach. To the best of our
knowledge, no work has developed methods for detecting the presence of a watermark in a realistic black-box setting.

Extracting data from black-box models With many of the most potent LLMs being deployed behind restricted APIs, the
extraction of model details has been an active area of research. This includes, e.g., the reconstruction of a black-box model
tokenizer (Rando and Tramèr, 2024) as well as the extraction of the hidden-dimensionality or the weights of the embedding
projection layer (Carlini et al., 2024). Naseh et al. (2023) have shown practical attacks to recover the decoding mechanism
of non-watermarked black-box models. Given access to output logits, Li and Fung (2013) have further demonstrated that it
is possible to train an inversion model that aims to recover the input prompt.

13

	Introduction
	Detecting and Identifying Watermarks
	Experimental Evaluation
	Main Experiments: Detecting Watermarking Schemes
	Detecting watermarks in deployed models

	Conclusion, Impact and Limitations
	Detecting Red-Green Watermarks
	Detecting Fixed-Sampling Watermarks
	Details of Cache-Augmented Schemes
	Extending Experiments across Diverse Settings
	Estimating Scheme Parameters
	Estimation of Red-Green Watermarking Scheme Parameters
	Estimation of Fixed-Sampling Watermarking Scheme Parameters
	Estimation of Cache-Augmented Watermarking Scheme Parameters

	Related Work

