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Abstract
Distinguishing between cause and effect using time series observational data is a major challenge in
many scientific fields. A new perspective has been provided based on the principle of Independence
of Causal Mechanisms (ICM), leading to the Spectral Independence Criterion (SIC) for time series
causally unidirectionally linked by a linear time-invariant relation. SIC postulates that the power
spectral density (PSD) of the cause time series is uncorrelated with the squared modulus of the
frequency response of the filter generating the effect. Since SIC rests on methods and assumptions
in stark contrast with most causal discovery methods for time series, it raises questions regarding
what theoretical grounds justify its use. In this paper, we provide answers covering several key
aspects. After providing an information theoretic interpretation of SIC, we present an identifiability
result that sheds light on the context for which this approach is expected to perform well. We
further demonstrate the robustness of SIC to downsampling – an obstacle that can spoil Granger-
based inference. Finally, an invariance perspective allows to explore the limitations of the spectral
independence assumption and how to generalize it. Overall, these results provide insights on how
the ICM principle can be assessed mathematically to infer direction of causation in empirical time
series.
Keywords: Time Series, Independence of Causal Mechanisms, Information Geometry, Concentra-
tion of Measure, Cause-effect Pairs.

1. Introduction

One purpose of causal inference is to estimate the direction of cause-effect relationships between
different parts of a system, to provide insights about the underlying mechanisms and how to in-
tervene on them to influence the overall behavior. Since interventions are often challenging, or
unethical to perform, a number of causal inference techniques have been developed to infer the
causal relationships from observational data only (Spirtes, 2010; Pearl, 2000). For this aim, they
rely on key assumptions pertaining to the mechanisms generating the observed data. Classical
constraint-based search methods, such as the PC algorithm (Spirtes et al., 1993), address this ques-
tion by assuming successive observations are independent samples from the same unmanipulated
density in order to characterize it and infer compatible causal graphical models. However, these
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methods cannot infer the causal direction when the graphical model consists only of two variables.
Moreover, observed data from complex natural system are often not i.i.d. and time dependent in-
formation reflect key aspects of these systems. On the other hand, causal relations between time
series are typically explored via Granger-causality type methods (Granger, 1969), which require
causal sufficiency. To overcome this limitation, more recent approaches (Mastakouri et al., 2021)
(and references therein) employ Markov condition and causal faithfulness to identify characteristic
patterns of conditional (in)dependences that witness causal influence even in the presence of hidden
common causes.

Most common practical implementations of Granger causality rely on assumptions involving
vector autoregressive structural equations and exogenous i.i.d. random variables called the innova-
tions of the process (Granger, 1969; Peters et al., 2013). These methods can successfully estimate
causal relationships when empirical data is generated according to the assumptions, but the results
can be misleading when the model is misspecified. In particular, Granger causality may fail to infer
the true direction of causation when the sampling of the time series is not fast enough to capture
the dynamical interactions precisely (Geweke, 1982; Gong et al., 2015), an issue that also spoils ap-
proaches like (Mastakouri et al., 2021), which also –like Granger– relies on observations of ground
truth dynamics at well-defined points in time.

A different approach for inferring causal directions in time series, the Spectral Independence
Criterion (SIC), has been introduced in (Shajarisales et al., 2015). In contrast to the above men-
tioned Granger-like methods, SIC relies on the philosophical principle that the mechanism that gen-
erates the observed cause variable and the mechanism that generates the effect from the cause are
chosen independently by Nature, such that these two mechanisms do not inform each other. Possible
formalizations of this postulate of Independence of Causal Mechanisms (ICM), have been proposed
in (Janzing and Schölkopf, 2010; Lemeire and Janzing, 2012) (where ‘independence’ amounts to
algorithmic independence) and (Schölkopf et al., 2012) (where ‘independence’ amounts to semi-
supervised learning being useless). These abstract and general ideas have been further exploited to
design several concrete domain-specific causal inference methods (Daniusis et al., 2010; Janzing
et al., 2012, 2010a; Zscheischler et al., 2011; Sgouritsa et al., 2015; Shajarisales et al., 2015) among
which SIC was the first to address the case of time series. It introduces an equation to formulate the
ICM postulate when both the cause and the effect are stationary time series and the cause generates
the effect trough a linear time invariant mechanism. This framework leads to defining a quantity
called Spectral Density Ratio (SDR), quantifying to which extent the ICM postulate is approxi-
mately satisfied. The SDR is exploited to decide the direction of causation when a pair of time
series is considered, notably in the context of neural times series (Shajarisales et al., 2015; Ramirez-
Villegas et al., 2021), as well as to assess the ICM and extrapolation capabilities of convolutional
generative models (Besserve et al., 2021). Despite these works, the theoretical underpinnings of
SIC remain largely unexplored.

The present paper aims at establishing identifiability results as well as connections to other
existing frameworks in causality. After introducing the basic definitions of our causal inference
framework (Sec. 2), we introduce the SIC assumption in Sec. 3. We then provide an information
geometric perspective on SIC (Sec. 4), as well as theoretical guaranties for identifiability of the
causal direction (Sec. 5) that are robust to time-series downsampling (Sec. 6). Finally, an invariance
perspective on SIC allows to define generalizations of SIC adapted to specific application domains
(Sec. 7). All proofs are provided in Appendix A. Overall, these result clarify the conditions under
which SIC is applicable, its limitations and potential extensions.
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2. Background and Model description

2.1. Deterministic cause-effect inference setting

Cause-effect inference based on the ICM principle can be explained as follows. We assume we have
two observables X and Y , possibly multidimensional and neither necessarily from a vector space,
nor necessarily random. We assume additionally that these two observations have a deterministic,
acyclic, unconfounded relation: they can be mapped to each other via some invertible map f , and
their generative model obeys one of the following structural equations:

Y := f(X) or X := f−1(Y ).

In the remainder of the paper, we will assume that exactly one of these causal models is the true one
(that means we exclude the possibility of a confounder, for example). Without loss of generality,
X → Y is considered to be the true generative model, called the forward causal model, while Y →
X will be called the backward model. We will call f the mechanism, X the cause and Y the effect.
Identifying that the forward model is the true one from observations of X and Y only, is challenging
since both models provide a satisfactory description of the data. As a consequence, an additional
assumption needs to be added to this setting to inference the direction of causation. The ICM
framework relies on the eponymous postulate that properties of X and f are “independent” in some
sense. ICM-based methods explore specific settings for which, if the assumption is valid for the true
generative model, the converse independence assumption (between f−1 and Y ) is very unlikely. As
a consequence, the true causal direction can be identified by evaluating this independence in both
scenarios and pick the direction that is closer to satisfying the idealized independence assumption.
The remainder of this section will introduce an ICM setting which is specific to time series.

2.2. Linear filters

We assume that the ground truth causal mechanism which links a cause time series x to an effect
time series y, is a (deterministic) linear time invariant filter, such that

y = {yt} := {
∑
τ∈Z

hx→y, τ xt−τ } = hx→y ∗ x, (1)

where h denotes the impulse response of the filter and ∗ denotes discrete time convolution. Note
that this assumption implies that the causal relation is unconfounded. We assume that the filter
satisfies the Bounded Input Bounded Output (BIBO) stability property (Proakis, 2001), stating that
any bounded input x (such that supt |xt| < +∞) results in a bounded output. In our setting, a
necessary and sufficient condition for BIBO stability is hx→y ∈ ℓ1(Z), i.e.

∑
t |hx→y, t| < +∞. A

filter h is called causal whenever hτ = 0 for τ < 0 and Finite Impulse Response (FIR) when the
transfer function has a finite support.

2.3. Stationary sequences

We assume that the input time series x is a sample drawn from a real-valued zero mean weakly
stationary process (Brockwell and Davis, 2009), {Xt, t ∈ Z}, and denote by Cxx(τ) = E[XtXt+τ ]
the autocovariance function of the process, which does not depend on t due to stationarity. We also
assume that

∑
τ∈Z |Cxx(τ)| < +∞ such that its Power Spectral Density (PSD) Sxx, defined as the
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Discrete Time Fourier Transform (DTFT) (Vetterli et al., 2014, Chapter 3) of the autocovariance
function, is a well defined 1-periodic function of normalized frequency ν ∈ R. Background on the
DTFT can be found in Appendix B.1. Under these assumptions, Sxx is bounded, continuous, and its
average over the unit length intervale I = [−1

2 ,
1
2) corresponds to the power of the process P(X) =

E(|Xt|2) = ⟨Sxx⟩ which is thus well-defined and finite. To simplify notations, we will denote by
⟨.⟩ the integral (or average) of a function over the unit length interval I, such that P(X) = ⟨Sxx⟩.
When such a sequence is fed into a filter of impulse response hX→Y as defined above, the stochastic
output Y is weakly stationary with summable autocovariance such that

Syy(ν) = |ĥX→Y(ν)|2Sxx(ν), ν ∈ I. (2)

where ĥX→Y denotes the DTFT of the impulse response (see Appendix B.1 for details), called the
frequency response of the system. This follows from elementary properties of the Fourier transform
and Proposition 3.1.2. in (Brockwell and Davis, 2009). If such a BIBO-stable filtering relationship
exists in only one direction (i.e. when the frequency response is not invertible at some frequency),
it is natural to assign causality to the stable direction (given the Cause-Effect Inference setting
described in section 2.1). If BIBO-stable filters and thus impulse responses can be defined for both
directions, we can denote them with hX→Y and hY→X, respectively, and their Fourier transforms
are continuous and linked by

ĥY→X =
1

ĥX→Y

.

In such a situation, both the forward and backward filtering models are plausible structural causal
models to explain the observed time series. Therefore a more sophisticated criterion is needed for
causal inference. We focus on this challenging situation in the present work and will require basic
assumptions for the causal models in the remainder of the paper, summarized as follows.

Assumption 1 (Invertible causal model) The cause X is a weakly stationary time series with
Cxx ∈ ℓ1(Z) and such that Sxx is strictly positive at all frequencies. The mechanism is an invertible
BIBO-stable filter with impulse response hX→Y such that its inverse is also BIBO-stable. The effect
is defined as

Y = hX→Y ∗X .

3. Spectral Independence Criterion (SIC)

3.1. Definition

Given the two stationary processes X := {Xt : t ∈ Z} and Y := {Yt : t ∈ Z} such that X causes Y
through a linear filter, the ICM hypothesis introduced by Shajarisales et al. (2015) can be stated as:

Postulate 1 (Spectral Independence Criterion (SIC)) A causal model satisfying Assumption 1 sat-
isfies spectral independence whenever

⟨Sxx|ĥX→Y|2⟩ = ⟨Sxx⟩⟨|ĥX→Y|2⟩ . (3)

In practice, this postulate is hypothesized to hold only approximately, and we will explain what is
meant by that in Section 5. However, in Secs. 3-4, we will develop theoretical results based on the
perfect spectral independence postulate, that is, where eq. (3) holds exactly. As eq. (2) indicates, the
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filter applies an amplifying factor to the input power at each frequency to provide the output power,
and eq. (3) makes a statement on the average amplification achieved across frequencies. Indeed, the
left hand side of eq. (3) is the average PSD of the output signal {Yt, t ∈ Z} over all frequencies,
i.e. its total power P(Y). Hence, SIC states that the output power can be computed by applying
the frequency-averaged amplifying factor to the input power. This suggests that the amplification
implemented by the mechanism is not informed by the values of the input PSD at each frequency.
Note that based on (2) and under Assumption 1, the postulate of eq. (3) can be rephrased using the
PSDs of X and Y alone, i.e.

⟨Syy⟩ = ⟨Sxx⟩⟨Syy/Sxx⟩ . (4)

3.2. Measuring spectral dependence

Shajarisales et al. (2015) then introduce the scale invariant quantity ρX→Y measuring the departure
from the SIC assumption, i.e. the dependence between input power spectrum and the frequency
response of the filter: the Spectral Dependency Ratio (SDR) from X to Y is, under Assumption 1,
given by

ρX→Y :=
⟨Syy⟩

⟨Sxx⟩⟨|ĥX→Y|2⟩
=

⟨Syy⟩
⟨Sxx⟩⟨Syy/Sxx⟩

. (5)

Moreover ρX→Y can be written in terms of total signal powers and energy of the impulse response:

ρX→Y =
P(Y)

P(X)∥hX→Y∥22
. (6)

To interpret (6), note that the filter hX→Y amplifies the power of a white noise, i.e. a stationary
stochastic process whose power spectrum is constant, by a factor ∥hX→Y∥22. Thus, the SDR mea-
sures how much the filter amplifies the power of the cause signal compared to the case in which the
cause was a white noise. We then define ρY→X by exchanging the roles of X and Y in the above
equations. We provide a probabilistic interpretation of spectral independence in Appendix B.2 and
an intuitive example illustrating its meaning in Appendix B.3.

4. Information geometric interpretation

While Shajarisales et al. (2015) elaborated on the connection of SIC with the Trace Method (Janzing
et al., 2010b), we now investigate its relation to another type of ICM-based approch: Information-
Geometric Causal Inference (IGCI) (Daniusis et al., 2010). We get inspiration from Janzing et al.
(2012) who established a connection between IGCI for linear relationships and the Trace Method.
At the heart of this derivation lies an information geometric interpretation of the principle of inde-
pendence of cause and mechanism for probability distributions. After introducing this view, we will
show how SIC can be casted into the same framework, in the context of Gaussian processes.

4.1. Information geometry background

Information Geometry is a discipline where ideas from differential geometry are applied to probabil-
ity theory. Probability distributions are represented as points from a Riemannian manifold, known
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as statistical manifold. Equipped with Kullback-Leibler divergence as premetric1, one can study the
geometrical properties of the statistical manifold. For more on this, see e.g. (Amari and Nagaoka,
2007).

irregularity of the cause

irregularity of the effect

irregularity of mechanism

Cause

Effect

Manifold of regular distributions

Mechanism

Figure 1: Illustration of eq. (7). Matching
symbols on the segments indicate congru-
ency of KL-divergence values.

For two probability distributions P,Q, D(P∥Q)
will denote their Kullback-Leibler divergence, also
called the relative entropy distance. Given a de-
terministic causal structural equation of the form
Y := f(X), and given PX and PY , the distributions
of the cause and effect, respectively, we assume the
irregularity of each distribution can be quantified by
evaluating their divergence to a reference set E of
“regular” distributions2

D(PX∥E) = inf
U∈E

D(PX∥U),

D(PY ∥E) = inf
U∈E

D(PY ∥U).

We assume moreover that these infima are reached
at a unique point, their projection on E

UX = argmin
U∈E

D(PX∥U), UY = argmin
U∈E

D(PY ∥U).

Assuming cause X and effect Y are n-dimensional multivariate Gaussian random vectors linked
by a deterministic linear map A, Janzing et al. (2010b) introduced the ICM-based Trace Condition,
that we restate in this restricted setting of equal dimension of cause and effect:

Postulate 2 (Trace Condition) Let tr denote the matrix trace. The respective covariance matrices
of cause and effect, ΣX and ΣY , satisfy

tr[ΣY ] =
1

n
tr[AA⊤]tr[ΣX ] .

If we assume E is the set of isotropic Gaussian distributions, the Trace Condition has been shown
to be equivalent to:

D(PY ∥UY ) = D(PY ∥
→
P Y ) +D(

→
P Y ∥UY )

where
→
P Y is the distribution of f(X) := AX when X is distributed according to UX , where UX

is the isotropic Gaussian distribution with the same variance as X . This relation can be interpreted
as an orthogonality principle by considering the Kullback-Leibler divergences as a generalization

of the squared Euclidean norm for the geodesics PY UY , PY

→
PY and

→
PY UY as illustrated in Fig. 1.

Since applying the bijection f−1 preserves the divergences, we get the equivalent relation

D(PY ∥UY ) = D(PX∥UX) +D(
→
P Y ∥UY ). (7)

1. A premetric on a set X is a function d : X × X → R+ ∪ {0} such that (i) d(x, y) ≥ 0 for all x and y in X and (ii)
d(x, x) = 0 iff x = 0. Unlike a metric, it is not required to be symmetric.

2. Here “regular” is only meant in an intuitive sense, not implying any further mathematical notion. If E is the set of
Gaussians, for instance, the distance from E measures non-Gaussianity.
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This orthogonality principle thus reflects the additivity of irregularities, in the sense that D(PY ∥UY ) =
D(PY ∥E) corresponds to the irregularity of Y . It measures the distance to the set of “regular” dis-
tributions, while D(PX∥UX) = D(PX∥E) measures the irregularity of X in the same way. In

addition, it can be shown that D(
→
P Y ∥UY ) = D(

→
P Y ∥E) and it thus measures the irregularity of

the mechanism f indirectly, via the “irregularity” of the distribution resulting from applying f to
a regular distribution UY . We now show that spectral independence encodes a similar relation for
discrete time stationary Gaussian processes.

4.2. Information geometry of stochastic processes

The generalization of KL-divergence to a pair of stationary time series (X,Y) is called the relative
entropy rate defined as (Ihara, 1993)

D̄(PX∥PX̃) := lim
N→+∞

1

N
D(PX1:N

∥PY1:N
).

where Xi:j is the subvector of vector X from element i to element j. In the case of stationary
Gaussian processes, this quantity can be computed explicitly.

Proposition 1 Let X and X̃ be zero mean weakly stationary discrete Gaussian processes with
PSD’s Sxx and Sx̃x̃, respectively, with Cxx, Cx̃x̃ ∈ ℓ1(Z) and such that Sxx, Sx̃x̃ are strictly positive
at all frequencies (see also Assumption 1) the relative entropy rate is given by

D̄(PX∥PX̃) =
1

2

∫ 1
2

− 1
2

(Sxx(ν)

Sx̃x̃(ν)
− 1− log

Sxx(ν)

Sx̃x̃(ν)

)
dν . (8)

The proof is a direct application of (Ihara, 1993, Theorem 2.4.4.).

4.3. SIC as an orthogonality principle

We consider Ē the manifold of Gaussian white noises: i.e. Gaussian processes with constant PSD,
as the set of regular distributions replacing E . Let PĒX be the information geometric projection of
X on Ē . This is then a Gaussian white noise of power P(X) (see Lemma 2). We then have:

Theorem 1 Let Assumption 1 hold and further assume that X is a Gaussian process. Set UX =

PĒX, UY = PĒY, and let
→
PY be the distribution obtained by feeding a white noise process with

distribution UX into S (thus convolving by hX→Y). Then we have:

D̄(PY||Ē) = D̄(PX||Ē) + D̄(
→
PY||UY) + 1

2

(
1−

⟨Sxx⟩⟨
Syy
Sxx

⟩
⟨Syy⟩

)
. (9)

As a consequence the following corollary shows that SIC corresponds to orthogonality of PSD
variations in information space, in the case of weakly stationary Gaussian processes.

Corollary 1 Under assumptions of Theorem 1, the SIC postulate is equivalent to the orthogonality
of irregularities relative to white-noise Gaussian processes:

D̄(PY||Ē) = D̄(PX||Ē) + D̄(
→
PY||Ē) . (10)
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5. Identifiability results

The proposal by Shajarisales et al. (2015) to use SIC for inferring the causal direction is essentially
based on two insights: (i) an argument for why the SDR is expected to be close to 1 for the causal
direction; (ii) an argument for why the SDR is not expected to be close to 1 in the anti-causal
direction. After reviewing these arguments, we show for the first time that they can be exploited to
show identifiability of the causal direction based on SDR in the following toy generative model.

5.1. Generative model

Assume a length m Finite Impulse Response (FIR) h, such that hτ = 0 for all τ < k and all
τ ≥ k+m, for some m and k. Then h is parametrized by an m-dimensional real vector b such that
hi+k = bi i = 0, . . . ,m − 1. We assume that b has been generated by nature as a single sample
drawn from a random variable B with a spherically symmetric distribution (see for example (Bryc,
2012, Chapter 4) for a rigorous definition). This implies B takes the form

B = RU,

where R ≥ 0 is a real valued radius random variable, and U is a random vector uniformly distributed
on the unit sphere in Rm. U and R are statistically independent (Bryc, 2012, Theorem 4.1.2), which
entails that for any orthogonal transformation T ∈ O(m), the distribution of Tb is identical to the
distribution of b. An important family of spherically symmetric distributions is the zero mean
isotropic gaussians (i.e. with a covariance matrix that is a multiple of the identity matrix). The
general idea behind this assumption is that the distribution of the impulse response is invariant to
a reparameterization of the vector space in a new system of coordinates that preserves the energy
of the impulse response. Theorem 2 shows that for large m the resulting filter will approximately
satisfy SIC with high probability.

Theorem 2 (Concentration of measure for FIR filters) Assume a length m mechanism’s im-
pulse response hX→Y with a spherically symmetric generative model and a fixed input PSD Sxx,
then for any given ε > 0, with probability at least 1− 2 exp(−mε2), we have

|ρX→Y − 1| ≤ 8ε

⟨Sxx⟩
max
ν

Sxx(ν) .

The exponential term of the probability bound shows that if m is large enough, we can get a tight
bound around 1 for the forward SDR with high probability. This kind of concentration of measure
result has been provided by Shajarisales et al. (2015) (Theorem 1 therein) based on Levy’s Lemma.
In comparison, the above Theorem 2 using a different random matrix theory result (Guionnet, 2009,
Corollary 6.14) resulting notably in a different multiplicative constant in the exponential.

5.2. Forward-backward inequality

The following result from (Shajarisales et al., 2015) shows additionally that the dependence mea-
sures in both directions are related, as their product can be bounded as a function of the coefficient
of variation of |ĥX→Y|2 along the frequency axis, defined as the ratio of the standard deviation to
the mean

CV (|ĥX→Y|2) :=
〈
(|ĥX→Y|2−⟨|ĥX→Y|2⟩)2

〉1/2

⟨|ĥX→Y|2⟩ .
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0

(a) Generative model.
0 0.5 1 1.5 2

0

Forward-backward inequality

Generative model

(b) Identifiability results.

Figure 2: (a) Principle of the generative model. (b) Illustration of the two steps leading to identi-
fiability: the forward SDR concentrates around 1, and the forward-backward inequality bounds the
backward SDR away from one. Dashed lines indicate high-probability bounds for the SDR values.

Proposition 2 (Forward-backward inequality) For a given linear filter S with impulse response
hX→Y, input PSD Sxx and output PSD Syy, let S have a non-constant modulus frequency response
ĥX→Y, and assume there exists α > 0 such that for all ν ∈ I,

|ĥX→Y(ν)|2 ≤ (2− α)
〈
|ĥX→Y|2

〉
.

Then

ρX→Y.ρY→X ≤
[
1 + αCV

(
|ĥX→Y|2

)2]−1

< 1 . (11)

Note that α < 1 because a random variable cannot be everywhere smaller than its mean. Ac-
cording to (11), large fluctuations of |ĥX→Y|2 around its mean guarantee that the product of the
independence measures will be bounded away from 1. Assuming the SIC postulate is satisfied in
the forward direction such that ρX→Y = 1, it follows naturally that ρY→X < 1.

5.3. Inference algorithm

Based on the above two steps, Shajarisales et al. (2015) have introduced a SIC-based algorithm to
infer the direction of causation. First, Theorem 2 guaranties that ρX→Y concentrates around one,
such that with high probability 1 − ξ ≤ ρX→Y ≤ 1 + ξ (the closer is ξ to zero, the tighter is the
bound) with ξ > 0. Second, Proposition 2 implies a lower bound for the backward SDR based on
the foward SDR value. Indeed, using Proposition 2, for any η > 0, ρY→XρX→Y < 1− η leads to

ρY→X <
1− η

ρ2X→Y
ρX→Y .

Thus, combining both results, we get ρY→X < 1−η
(1−ξ)2

ρX→Y and obtain that ρY→X is strictly smaller
than ρX→Y with if we can have 1− η < (1− ξ)2. This qualitative reasoning, illustrated in Fig. 2(b),
suggest that a good strategy to infer the direction of causation is to choose the direction with largest
SDR. The corresponding causal inference algorithm is described in Algorithm 1.

5.4. Identifiability of the generative model

9
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Algorithm 1 SIC Inference
1: procedure SIC INFERENCE(X,Y)
2: Calculate ρX→Y and ρY→X using (5)
3: if ρX→Y > ρY→X return X → Y
4: else return Y → X

Proposition 2 argues that SDR is bounded away
from 1 for the backward direction, given that the
variation of h satisfies some conditions. This
way, we guarantee identifiability of causal direc-
tions. Since we have not explored whether the
generating model of Section 5.1 guarantees these
conditions to be true, we now show identifiabil-
ity for this model separately. While the previous
justification provides insights about how Algorithm 1 can identify the direction of causation by
bounding forward and backward SDR’s, they do not guaranty identifiability of the above generative
model using SIC-based causal inference, which turns out to be non-trivial. Identifiability can be
proved by bounding the gap of the forward-backward inequality (11) as follows.

Lemma 1 Suppose the model from Theorem 2 with fixed input PSD Sxx is given, and assume
that the filter coefficients b1, b2, . . . , bm are independently drawn from some distribution PB with
E[B] = 0 and variance E[B2] = 1 and finite E[|B|3]. Then ρX→YρY→X converges to zero in
probability for m → ∞.

This lemma allows to show, for the first time, identifiability with high probability when the number
of filter coefficients gets large.

Theorem 3 Given the sampling of coefficients in Lemma 1 and the assumptions there, then the
probability for ρX→Y > ρY→X tends to 1 for m → ∞ (as the dimension m of the filter increases),
i.e. the direction of causation is identifiable with probability converging to 1.

6. Robustness to downsampling

In the context of time series, the issue of robustness of causal discovery methods to resampling
has been raised in several papers (Gong et al., 2015; Palm and Nijman, 1984; Harvey, 1990). In
particular, Granger causality is known to have issues with downsampling, and specific correction
procedures are required (Gong et al., 2015) to infer causal relations. Here we provide a theoretical
result supporting that SIC causal inference is robust to the classical decimation procedure performed
in discrete signal processing using an ideal anti-aliasing low pass filter (Crochiere and Rabiner,
1981).

6.1. Decimation procedure

Our decimation setting is provided in Fig. 3, showing that both the cause and the effect time se-
ries are low-pass filtered with an ideal anti-aliasing filter and then decimated by a factor D. The
frequency response of the ideal anti-aliasing filter satisfies

|â(ν)| = 1|ν|<1/(2D), |ν| ≤ 1/2,

and the decimation blocks convert a signal s = {sk}k∈Z into s̃ =↓D s = {skD}k∈Z (i.e. by picking
the value of one time point of every D points). Using classical decimation results (Crochiere and
Rabiner, 1981), we can derive that

Sx̃x̃(ν) =
1

D

∞∑
k=−∞

Sa∗x a∗x

(
ν

D
− k

D

)
=

1

D

∞∑
k=−∞

Sxx

(
ν

D
− k

D

) ∣∣∣∣â( ν

D
− k

D

)∣∣∣∣2
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−0.5 0 0.5

−0.5 0 0.5

−0.5 0 0.5

Figure 3: Left: Schema of the decimation procedure. Right: Illustration of how the decimation and
ideal anti-aliasing filter affects the input PSD.

Noticing the absence of overlap (see illustration Fig. 3 between the support of each term of the
above periodic summation), we get

Sx̃x̃(ν) =
1

D
Sxx

( ν

D

)
and Sỹỹ(ν) =

1

D
Syy

( ν

D

)
, ν ∈ [−1/2, 1/2].

We will now investigate whether the true causal direction X → Y can be inferred from the deci-
mated observations only.

6.2. Identifiability of the decimated model

Although the decimation certainly involves a loss of information of the measured time series, the
following theorem suggests that the SIC can be preserved by such an operation.

Theorem 4 Assume the forward generative model of the previous section, and (X̃, Ỹ) the time
series resulting from the decimation of this model by an integer factor D using an ideal anti-aliasing
filter. Then for any given ϵ with 0 < ϵ < 1

4D we have

|ρ
X̃→Ỹ

− 1| ≤ ϵ

(
K + (1 + ϵK)

2

1− 4Dϵ

)
,

with probability δ := (1−exp(−κ(m−1)ϵ2))2, where κ is a positive global constant (independent

of m, and ϵ) and K =
max|ν|<1/2D Sxx(ν)∫ 1/2D

0 Sxx(ν)dν
.

As a consequence of Theorem 4, even after decimating the signal, the concentration of the
forward SDR around one is guarantied for high dimensional impulse responses. Note also that
the forward-backward inequality also holds for decimated data, such that the overall identifiability
properties are preserved. However, as intuitively expected, identifiability for an increasing deci-
mation factor D will progressively deteriorate, as the decimation procedure stretches the input and
output PSDs from the interval [0, 1/2] to [0, 1/(2D)]. The estimated frequency response is then
also stretched, and its coefficient of variation CV (|ĥX̃→Ỹ|2) converges to zero as D increases,
provided the frequency response respects some smoothness assumptions (e.g. bounded derivative),
deteriorating the bound of the forward-backward inequality and thus making the identification of
the true causal direction harder. Qualitatively, indentifiability properties are preserved as long as
Sxx has enough variance on the interval [0, 1/(2D)].
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7. Extension of SIC through invariance principles

While a coherent theoretical framework has been presented in the above sections, whether spectral
independence is a valid assumption in a given empirical setting remains to be addressed. Notably,
one can question the choice of white noise regular distributions introduced in Section 4. Indeed,
the departure from this reference is exploited to quantify orthogonality, and as such, implicitly
reflect an assumption about the considered problem. To shed light on this assumption, the group
invariance perspective on ICM is helpful (Besserve et al., 2018), and we develop it for the case
of SIC in Appendix C. This view justifies the concept of whitening as a way to adapt the SIC
framework to datasets where a different set of regular distributions is more appropriate. To ease
readability, we justify this whitening in main text based on the following informal arguments. The
IGCI perspective of Sec. 4 shows that, by application of corollary 1, causes/inputs that belong
to the set of regular distributions trivially satisfy SIC for any choice of mechanism (i.e. filter).
These regular distributions satisfy an invariance property: PSDs are invariant to translations along
the frequency axis. It is thus natural to consider that SIC is suited to applications where signals
with such invariance are uninformative. In contrast, this is not suited for the cases in which such
invariance is atypical, as the irregularities quantified by SIC will be blind to this information.

7.1. SIC for power law biological signals

Many biological signals exhibit power law-like PSDs, which decay proportionally to a positive
power of the frequency. This is particularly the case for brain electrical activity (He et al., 2010).
Translation invariant PSDs appear clearly as atypical in such contexts. However, this can be fixed by
preprocessing the recorded signals using an invertible whitening filter w such that its squared fre-
quency response |ŵ(ν)|2 applies an amplifying factor to each frequency that corrects the tendency
of the observed signal to have lower power in high frequencies. This procedure generates a proper
group invariance framework as introduced by Besserve et al. (2018), and corresponds to replacing
white noises in Sec. 4.3 by regular distributions with PSDs of the form

Sw = γ
|ŵ(ν)|2 , γ > 0 ,

which now are representative/typical of the power-law behavior of the considered signals. SIC can
then simply be applied to the preprocessed signal in order to assess ICM in a way that is adapted to
electrical brain activity.

7.2. Experiments

To test this approach, we use the neural recording dataset studied in (Shajarisales et al., 2015). In
short, these are recordings of Local Field Potentials (LFP) from two subfields of the rat hippocam-
pus, CA3 and CA1, known to have a clear directed monosynaptic connections CA3→ CA1 that we
thus consider as the ground truth causal relationship. Figure 4(a) depicts the PSD values for record-
ings from several electrodes in CA3 computed using Welch’s method. The empirical distribution of
PSD values form this sample do not follow a (frequency)-translation invariant distribution, as the
higher frequencies have a much lower power (note the logarithmic scale of the plot). To correct
this property, we apply the above-described whitening transformation, by choosing the inverse of
the empirical average PSD over the full dataset (including both recordings form CA3 and CA1.
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Figure 4: SIC analysis of hippocampal neural data. (a) PSD before whitening. (b) PSD after
whitening. (c) SDR before whitening. (d) SDR after whitening.

Examples of the resulting whitened PSDs are shown on Fig. 4(b), where we can observe PSD im-
balance across frequencies is largely attenuated, suggesting the distribution of whitened PSDs is
closer to being frequency translation invariant. To apply the SIC causal inference approach, we
estimated the SDR in both causal (CA3→CA1) and anti-causal (CA1→CA3) directions. While the
SDR distribution of original data in the causal direction is widespread (Fig. 4(c)), it becomes much
more concentrated around 1 after whitening (Fig. 4(d)), suggesting that the SIC assumption is “on
average valid” after whitening the signals, in line with eq. (26) in Appendix C. The SDR distribu-
tion in the anticausal direction also becomes bounded to values strictly inferior to 1, as predicted
by identifiability results (Shajarisales et al., 2015). Finally, the performance of causal inference
using SIC before and after whitening is compared. The distribution of average performance results
across time for all pairs of electrodes is represented by box plots on Supplemental Fig. 8, showing
that after whitening the performance is more consistent across electrodes than before: lower tale
of the distribution spreads much less towards the low performance values, and average increases
significantly from 69.0% to 82.8% after whitening (significant paired signed rank test, p < 10−25).

8. Discussion

We investigated theoretical foundations of the SIC postulate. The information geometric view shows
that SIC formalizes an independence of input and mechanism via an ‘orthogonality of irregularities’
relative to a set of regular distributions of Gaussian white noises. We further show that SIC allows
identifying the true causal direction in a toy setting, and that this criterion is robust to downsampling.
Finally, we show that the choice of ‘regular distribution’ can be adapted to the application domain.
This set of results clarifies the conditions under which SIC appropriately infers causality based on
empirical data. Extending the framework to systems with noise, non-linearities, hidden confounders
and multiple dimensions are key next steps to establish this methodology as a standard tool for time
series analysis.
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B. Schölkopf. Information-geometric approach to inferring causal directions. Artificial
Intelligence, 182:1–31, 2012.

D. Janzing, N. Shajarisales, and M. Besserve. A central limit like theorem for Fourier sums. arXiv
preprint arXiv:1707.06819, 2017.

J. Lemeire and D. Janzing. Replacing causal faithfulness with algorithmic independence of condi-
tionals. Minds and Machines, pages 1–23, 7 2012.

D. Lopez-Paz, K. Muandet, B. Schölkopf, and I. Tolstikhin. Towards a learning theory of cause-
effect inference. In International Conference on Machine Learning, pages 1452–1461, 2015.

A. Mastakouri, B. Schölkopf, and D. Janzing. Necessary and sufficient conditions for causal feature
selection in time series with latent common causes. arXiv:2005.08543, to appear at ICML 2021,
2021.

F. C. Palm and T. E. Nijman. Missing observations in the dynamic regression model. Econometrica:
journal of the Econometric Society, pages 1415–1435, 1984.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge Univ Press, 2000.

J. Peters, D. Janzing, and B. Schölkopf. Causal inference on time series using restricted structural
equation models. In Advances in Neural Information Processing Systems 25 (NIPS 2012), pages
154–162, 2013.

J. G. Proakis. Digital Signal Processing: Principles Algorithms and Applications. Pearson Educa-
tion India, 2001.

J. F. Ramirez-Villegas, M. Besserve, Y. Murayama, H. C. Evrard, A. Oeltermann, and N. K. Logo-
thetis. Coupling of hippocampal theta and ripples with pontogeniculooccipital waves. Nature,
589(7840):96–102, 2021.

B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and an-
ticausal learning. In Proceedings of the 29th International Conference on Machine Learning
(ICML 2012), pages 1255–1262, 2012.

D. Serre. Matrices: Theory and Applications. Graduate Texts in Mathematics. Springer, 2010.
ISBN 9781441976833.

15



BESSERVE SHAJARISALES JANZING SCHÖLKOPF
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Appendix A. Proofs

This section includes proofs of main text results and additional necessary results.

A.1. Consequence of Assumption 1

Due to basic properties of the Fourier transform, we have the following implications for the model
in Assumption 1.

Proposition 3 Assumption 1 implies

• The input and output PSDs Sxx and Syy are real 1-periodic bounded continuous functions
taking values on [a,maxν∈I Sxx(ν)] and [b,maxν∈I Sxx(ν)] respectively, for some a, b > 0.

• The forward and backward frequency responses ĥX→Y and ĥY→X are complex bounded 1-
periodic continuous functions such that |ĥX→Y|2 =

Syy

Sxx
> c and |ĥX→Y|2 = Sxx

Syy
> d for

some c, d > 0.

Proof For any sequence a ∈ ℓ1(Z) there is uniform convergence and boundedness of the Fourier
transform series (Vetterli et al., 2014, Chapter 3). As a consequence, all Fourier transforms consid-
ered are well defined, periodic, continuous and bounded. Sxx being strictly positive, by continuity
on one period (as Fourier transform of the autocorrelation function), its minimum is strictly posi-
tive. BIBO stability of hX→Y entails that Syy is also well defined, periodic, continuous and bounded
(e.g. using the above Proposition 1). Then BIBO stability of hY→X entails that its Fourier trans-
form Sxx/Syy is bounded, which implies by contradiction that infv Syy(v) must be strictly positive.
Finally, strictly positive bounds on Sxx and Syy imply strictly positive upper and lower bounds for
the frequency responses.

A.2. Proof of Theorem 1

First, we start by finding the divergence rate for a given Gaussian process from the set of white
Gaussian noises (i.e. the Gaussian processes with constant spectra).

Lemma 2 Let Ē to be the set of discrete white Gaussian noises. Assuming X is a Gaussian process
with Cxx ∈ ℓ1(Z) and such that Sxx is strictly positive at all frequencies, then the projection PĒX
of X on Ē is a Gaussian white noise of power P(X), and the corresponding divergence is

D̄(PX∥Ē) = −1

2

∫ 1
2

− 1
2

ln

(
Sxx(ν)

P(X)

)
dν (12)

The formula also holds when exchanging X for Y

To get a intuition of (12) note that q(ν) := Sxx(ν)
P(X) can be formally interpreted as probability

density on [−1/2, 1/2] due to
∫ 1/2
−1/2 q(ν)dν = 1. If u with u(ν) = 1 denotes the constant density,

(12) can be rephrased as the relative entropy distance
∫ 1/2
−1/2 u(ν) log(qν)u(ν) = D(u∥q). In other

words, it measures to what extent q deviates from the uniform distribution.
Based on this Lemma, we follow the steps of (Janzing et al., 2012) to prove the theorem.
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Proof We denote elements of the set of white Gaussian noise distributions Uα, where α denotes the
power of Uα and hence the constant value of its corresponding PSD. The Gaussian noise distribu-
tion with minimum distance corresponds to the value of α for which the derivative of D̄(PX∥Uα)
vanishes. We can compute the distances via Proposition 1 because condition (ii) is satisfied:

dD̄(PX∥Uα)

dα
=

1

2

∫ 1
2

− 1
2

(
−Sxx(ν)

α2
+

Sxx(ν)

α2

α

Sxx(ν)

)
dν.

Hence, the derivative vanishes for
∫ 1

2

− 1
2

Sxx(ν)
α2 = 1

α , which amounts to α = P(X). We thus get

D̄(PX∥EX) =
1

2

∫ 1
2

− 1
2

Sxx(ν)

P(X)
− 1− ln

(
Sxx(ν)

P(X)

)
dν.

Using the definition of P we obtain:

1

2

∫ 1
2

− 1
2

(
Sxx(ν)

P(X)
− 1− ln

(
Sxx(ν)

P(X)

))
dν =

1

2

∫ 1
2

− 1
2

Sxx(ν)

P(X)
− 1

2
− 1

2

∫ 1
2

− 1
2

ln

(
Sxx(ν)

P(X)

)
dν

= −1

2

∫ 1
2

− 1
2

ln

(
Sxx(ν)

P(X)

)
dν,

which proves our claim. The formula also holds for Y because a linear filter maps a Gaussian
process on a Gaussian process.

Proof of Theorem 1: Using Lemma 2 we have

D̄(PX||Ē) = −1

2

∫ 1
2

− 1
2

ln

(
Sxx(ν)

P(X)

)
dν and D̄(PY||Ē) = −1

2

∫ 1
2

− 1
2

ln

(
Syy(ν)

P(Y)

)
dν.

Transforming UX and ht to Fourier domain it is easy to see that
→
PY is the distribution of a stationary

Gaussian process with PSD P(X)|ĥ(ν)|2 according to eq. (2). Therefore using Proposition 1 we
get:

D̄(
→
PY||UY) =

1

2

∫ 1
2

− 1
2

(P(X)|ĥ(ν)|2

P(Y)
− 1− log

P(X)|ĥ(ν)|2

P(Y)

)
dν,

which completes the proof. □

A.3. Proof of Corrolary 1

Proof Assume SIC is satisfied, then the last term of eq. (9) vanishes, yielding

D̄(PY||Ē) = D̄(PX||Ē) + D̄(
→
PY||UY).

Moreover, SIC also implies that the projection of
→
PY on Ē is UY. This is because SIC implies that

→
PY and PY have the same power. Hence, we get

D̄(PY||Ē) = D̄(PX||Ē) + D̄(
→
PY||Ē).
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For the converse implication, assume we have orthogonality of irregularities, combining eq. (10)
with eq. (9) we get

D̄(
→
PY||Ē) = D̄(

→
PY||UY) +

1

2

(
1−

⟨Sxx⟩⟨Syy

Sxx
⟩

⟨Syy⟩

)
.

Using Lemma 2 to get an analytic expression for the left-hand side of the above equation, and eq. (8)
for the right-hand side this yields

−1

2

∫ 1/2

−1/2
log

|ĥ(ν)|2

⟨|ĥ|2⟩
dν =

1

2

∫ 1
2

− 1
2

(P(X)|ĥ(ν)|2

P(Y)
−1−log

P(X)|ĥ(ν)|2

P(Y)

)
dν+

1

2

(
1−

⟨Sxx⟩⟨Syy

Sxx
⟩

⟨Syy⟩

)

which after simplification, and noting that ⟨|ĥ|2⟩ = ⟨Syy

Sxx
⟩, yields

log⟨Syy

Sxx
⟩ = log

P(Y)

P(X)
,

which is equivalent to SIC.

A.4. Proof of Lemma 1

Proof We denote ĥmb (ν) the transfer function ĥX→Y for the model such that

ĥmb (ν) :=
1√
m

m∑
j=1

bje
−i2πνj .

Let B1, B2, ... be a sequence of i.i.d. real-valued variables on a probability space (Ω,Σ, PΩ). Then
we first define for each frequency ν the sequence

(
B̂m

ν

)
m∈N

of random variables via

B̂m
ν :=

1√
m

m∑
j=1

Bj(ω)e
−i2πνj .

Using know vector valued central limit theorems, B̂m
ν converges to Gaussian on the complex plane

for each ν.
Now define for each ω ∈ Ω the sequence

(
B̂m(ω)

)
m∈N

of random variables on the probability

space (I,B, λ) with B denoting the Borel sigma algebra and λ the Lebesgue measure (to formalize
the random choice of frequency), via

B̂m(ω) : ν → B̂m(ω) =
1√
m

m∑
j=1

Bje
−i2πνj .

Theorem 1 in (Janzing et al., 2017) states that this sequence of complex random variables converges
for m → ∞ to an isotropic two-dimensional Gaussian Z on the complex plane where real and
imaginary parts are independent with variance 1/2. More precisely, the random variable

ω → d(P
B̂m(ω)

, PZ)
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converges in probability to zero for any pseudo-metric d that is well-behaved in the sense of Defini-
tion 1 in (Janzing et al., 2017).

We now define a pseudo-metric on the set of distributions on C by

d(P,Q) := sup
x∈R+

∣∣P (|Z|2 < x)−Q(|Z|2 < x)
∣∣ . (13)

This pseudo-metric is well-defined because

d′(P,Q) := sup
x∈R

|P (X < x)−Q(X < x)|

is well-behaved for the set of distributions on R, see remarks after Definition 1 in (Janzing et al.,
2017).

We now show that

E
[
|B̂m(ω)|2

]
E

[
1

|B̂m(ω)|2

]
=

∫
I
|ĥmb (ν)|2dν ·

∫
I
1/|ĥmb (ν)|2dν →

m→+∞
+∞

in probability. First, note that∫
|ĥmb (ν)|2dν =

1

m

m∑
j=1

b2j
a.s.→

m→+∞
E[B] = 1, (14)

due to the strong law of large numbers. Recall that |Z|2 is χ2-distributed with one degree of free-
dom, which implies that its density has infinite slope at 0. Hence, for any arbitrarily large c we can
always find a sufficiently small ϵ such that

cϵ < P (|Z|2 ≤ ϵ).

Form Markov’s inequality for a > 0 we get

P

(
1

|B̂m(ω)|2
≥ a

)
≤ 1

a
E

[
1

|B̂m(ω)|2

]
, (15)

such that

P
(
|B̂m(ω)|2 ≤ ϵ

)
≤ ϵE

[
1

|B̂m(ω)|2

]
. (16)

For sufficiently large m we thus can ensure that

cϵ ≤ P
(
|B̂m(ω)|2 ≤ ϵ

)
, (17)

with probability at least 1−δ for any arbitrarily small δ. This is because, as stated above, Theorem 1
in (Janzing et al., 2017) entails that P

B̂m(ω)
converges to the distribution of PZ with respect to any

well-behaved pseudo-metric, in particular with respect to d defined in (13). Combining (17) and
(16) shows that

c ≤ E

[
1

|B̂m(ω)|2

]
=

∫
I
1/|ĥmb (ν)|2dν ,
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with probability at least 1− δ. Using also (14) we conclude that

E
[
|B̂m(ω)|2

]
E

[
1

|B̂m(ω)|2

]
=

∫
I
|ĥmb (ν)|2dν

∫
I
1/|hmb (ν)|2dν

is larger than c/2 also with probability 1 − δ for sufficiently large m. As c was chosen arbitrary
large, this proves that ∫

I
|ĥmb (ν)|2dν

∫
I
1/|hmb (ν)|2dν p→

m→+∞
+∞ . (18)

Hence the inverse of the above quantity converges to zero in probability, which shows that

ρX→YρY→X =
1∫

I |ĥ
m
b (ν)|2dν

∫
I 1/|h

m
b (ν)|2dν

p→
m→+∞

0 .

A.5. Proof of Theorem 2

The following lemmas will be helpful in proving Theorem 2.

Lemma 3 (Serre, 2010) For a given Hermitian matrix H and any principal submatrix of H , H ′,
their spectral radius ρs satisfies

ρs(H) ≥ ρs(H
′).

Lemma 4 (Gray, 2006) Let f : [−1
2 ,

1
2) → R such that f ∈ L1 be a bounded function and suppose

tk is its Fourier series coefficients, i.e.

tk =

∫ 1
2

− 1
2

f(ν)ei2πkνdν, k ∈ Z.

Consider Toeplitz matrices Tn defined as

[Tn]ij = ti−j i, j ∈ {0, ..., n− 1}

with eigenvalues τn,k(0 ≤ k ≤ n− 1). Then if (tk) is absolutely summable we get:

min
x∈[− 1

2
, 1
2
)
f(x) ≤ τn,i ≤ max

x∈[− 1
2
, 1
2
)
f(x)

We also exploit a concentration of measure result for Lipschitz continuous functions of random
elements of the special orthogonal group SO(N) = {M ∈ RN×N ,M⊤M = IN , |M | = 1}.

Lemma 5 (Guionnet, 2009, Corollary 6.14) For any differentiable function f : SO(N) → R such
that, for any X,Y ∈ SO(N), |f(X) − f(Y )| ≤ K∥X − Y ∥F , where ∥∥2 denotes the Forbenius
norm, we have for any random matrix O Haar distributed on SO(N) and for all δ ≥ 0

|f(O)− EO[f(O)]| < 4Kδ

with probability at least 1− 2e−Nδ2
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K thus represents a Lipschitz constant of f . This concentration result implies another one more
specific to our case.

Lemma 6 Let A,B be square matrices in Rn×n, assuming A is symmetric and let O be a random
rotation matrix, Haar distributed on SO(n). We denote τn[.] = 1

n tr[.], ∥∥F the Frobenius norm and
∥∥2 the spectral (operator) norm. For all δ ≥ 0∣∣τn(AOBOT )− τn(A)τn(B)

∣∣ < 8∥A∥F ∥B∥2δ

with probability at least 1− 2e−n3δ2 , and∣∣τn(AOBOT )− τn(A)τn(B)
∣∣ < 8ρ(A)ρ(B)δ

with probability at least 1− 2e−n2δ2 .

Proof
The proof follows two steps in order to apply the above lemma to the function O 7→ τn(AOBOT )

restricted to SO(n).
Step 1: First, we show O 7→ τn(AOBOT ) is Lipschitz continuous on SO(n). Let U, V ∈

SO(n), then

τn(AUBUT )− τn(AV BV T ) = τn(A(U − V )BUT ) + τn(AV B(U − V )T )

applying the Cauchy-Schwartz inequality on the two Frobenius scalar products (|Tr(XY T )| ≤
∥X∥F ∥Y ∥F ) we get

∣∣τn(AUBUT )− τn(AV BV T )
∣∣ ≤ 1

n
∥A∥F

(
∥(U − V )BUT ∥F + ∥V B(U − V )T ∥F

)
Using the matrix norm inequality3 ∥XY ∥F ≤ ∥X∥F ∥Y ∥2 we get

∣∣τn(AUBUT )− τn(AV BV T )
∣∣ ≤ 1

n
∥A∥F ∥U − V ∥F

(
∥BUT ∥2 + ∥V B∥2

)
and finally by rotation invariance of the spectral norm∣∣τn(AUBUT )− τn(AV BV T )

∣∣ ≤ 2

n
∥A∥F ∥B∥2∥U − V ∥F

Step 2: Now we show EOτn(AOBOT ) = τn(A)τn(B). By linearity of the trace we have

EO

[
τn(AOBOT )

]
= τn(AEO

[
OBOT

]
).

It is easy to see that EO[OBOT ] commutes with every Q ∈ SO(n) due to QE0[OBOT ]QT =
EO[OBOT ]. Thus, E0[OBOT ] is a multiple of the identity (due to Schur’s lemma, otherwise
SO(n) would not act irreducibly on Rn). Finally, we conclude E0[OBOT ] = τn(B)1 because
τn(E0[OBOT ]) = τn(B).

3. http://mathoverflow.net/questions/59918/submultiplicity-of-matrix-norm-is-ab-f-leq-a-2b-f
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Finally, combining the results from both steps we can apply Lemma 5, we get, using the above
Lipschitz constant K = 2

n∥A∥F ∥B∥2,

∣∣τn(AOBOT )− τn(A)τn(B)
∣∣ < 8

n
∥A∥F ∥B∥2δ

with probability at least 1− 2e−nδ2 , which gives the first bound of the lemma. The second bound is
obtained using the matrix norm inequality ∥A∥F ≤

√
n∥A∥2.

Now we are ready to prove Theorem 2:

Theorem 2 (Concentration of measure for FIR filters) Assume a length m mechanism’s impulse
response hX→Y with a spherically symmetric generative model and a fixed input PSD Sxx, then for
any given ε > 0, with probability at least 1− 2 exp(−mε2), we have

|ρX→Y − 1| ≤ 8ε

⟨Sxx⟩
max
ν

Sxx(ν) .

Proof Without loss of generality and for the sake of simplicity we only consider the positive indices
of the time series and we take the filter to be causal; other cases can be treated in a similar way. Then
the following relation holds between input and output of the filter:

∀i, 0 ≤ i ≤ N − 1 Yi =

m−1∑
j=0

bjXi−j

Formulated in terms of matrices the above relation can be represented as
Y0
Y1
...

YN−2

YN−1

 = HN,m


X−m+1

X−m+2
...

XN−2

XN−1

 ,

where HN,m is a N × (N +m− 1) matrix as follows
bm−1 bm−2 · · · b0 0 · · · 0 0
0 bm−1 · · · b1 b0 · · · 0 0

. . .
0 0 · · · bm−1 · · · b1 b0 0
0 0 · · · 0 bm−1 · · · b1 b0


We define Σi

X ∈ Mm×m(R) to be the covariance matrices as follows:

∀i, 0 ≤ i ≤ N − 1, ∀(j, k), 0 ≤ j, k ≤ m− 1, [Σi
X ]jk = Cov(Xi+j , Xi+k) (19)
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Since the time series under consideration are weakly stationary, Σi
X is independent of i and we

denote it Σm. If we take ΣX0:N−1
,ΣY0:N−1

∈ MN×N (R) to be the covariance matrices for X0:N−1

and Y0:N−1 respectively, then we have

ΣY0:N−1
= HN,mΣX−m+1:N−1

H⊤
N,m .

where ΣXi:j is the covariance matrix of Xi:j which is a principal submatrix of ΣX . We also define
ΣU
Y0:N−1

to be the covariance matrix of the output for FIR S ′ with b′ = U⊤b. Furthermore assume
the spectrum of the output for this filter is SU

yy. One can write the diagonal elements of ΣU
Y0:N−1

based on the above equation as follows:

[ΣY0:N−1
]ii = b⊤Σb,

which is therefore equal to the normalized trace of ΣY0:N−1
.

Due to the spherical invariance assumption, b is a single sample from the product RU (Bryc,
2012, Theorem 4.1.2). Moreover, U can obviously be rewritten as the first column of a random
rotation matrix, U = Ox0, where x0 is the canonical basis vector with first component 1, while
other components are zero, and O is a random matrix Haar distributed on SO(m).

Taking A = x0x0
⊤ and B = Σm (defined in (19)) in Lemma 6 we get

|τm
(
x0x0

⊤O⊤ΣmO
)
− τm(Σm)τm

(
x0x0

⊤
)
| ≤ 8δ∥Σm∥2⟨x0,x0⟩1/2 (20)

with probability at least 1− 2e−m3δ2 .
Replacing b by its corresponding random variable, we get

P(Y) = τN (ΣY0:N−1
) = R2x0

⊤O⊤ΣmOx0 ,

such that

P(Y) = R2tr[x0
⊤O⊤ΣmOx0] = R2mτm[x0x0

⊤O⊤ΣmO] .

Moreover, we notice that according to the generative model, the squared norm of the impulse re-
sponse is sampled from the random variable R2, hence (20) becomes

|P(Y)

∥h∥2
/m− τm(Σm)/m| ≤ 8δ∥Σm∥2 (21)

with the same probability as above.
On the other hand the elements of diagonals of Σm are CX(0). Therefore:

τm(Σ) = P(X).

Since Σ is a principal submatrix of ΣX0:N−1
, by Lemma 3

∥Σm∥2 ≤ ρ(ΣX0:N−1
).
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Because CX(τ)’s are absolutely summable, based on Lemma 4 we get

ρ(ΣX0:N−1
) ≤ max

ν
Sxx(ν),

and then inequality (21) can be rewritten as∣∣∣∣ P(Y)

∥h∥2P(X)
− 1

∣∣∣∣ ≤ 8mδ
max
ν

Sxx(ν)

P(X)

occurring with probability at least 1− 2e−m3δ2 . As a consequence∣∣∣∣ P(Y)

∥h∥2P(X)
− 1

∣∣∣∣ ≤ 8δ
max
ν

Sxx(ν)

P(X)

occurs with probability at least 1− 2e−mδ2 , which completes the proof.

A.6. Proof for Proposition 2

First, we derive to helpful lemmas that are used to prove the proposition; the first one being used to
prove the first part and the second lemma is used to infer the second part of the proposition above.

Lemma 7 For f ∈ L2(I) non-constant, such that 1/f ∈ L2(I), we have∫
I
f(x)2dx ·

∫
I

1

f(x)2
dx > 1

Proof The inequality follows from the Cauchy-Schwartz inequality for the scalar product on L2(I),
stating ∣∣∣∣∫

I
a(x)b(x)dx

∣∣∣∣2 < ∫
I
a(x)2dx ·

∫
I
b(x)2dx ,

for non co-linear elements a and b of L2(I). As colinearity of a = f2 and its inverse b would imply
they are constant, we get the result immediately.

Lemma 8 Let f ∈ L1(I) be positive, non-constant, such that 1/f ∈ L1(I) and
∫
I f(x)dx = 1.

Assume ∃α > 0,∀x ∈ I, f(x) ≤ 2− α , then∫
I
f(x)dx ·

∫
I

1

f(x)
dx ≥ 1 + α

∫
I
(f(x)− 1)2dx

Proof We denote s(x) = f(x)− 1. Then
∫
I s(x)dx = 0 and∫

I
f(x)dx.

∫
I

1

f(x)
dx− 1 =

∫
I

−s(x)

1 + s(x)
dx

For x > −1, we have

−x

1 + x
≥ x2 − x3 − x. (22)
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Replacing s(x) with x in (22) we get:∫
I
f(x)dx ·

∫
I

1

f(x)
dx− 1 ≥

∫
I
s(x)2(1− s(x))dx.

Since 1− s(x) = 2− f(x) ≥ α > 0,∫
I
f(x)dx ·

∫
I

1

f(x)
dx− 1 ≥ α

∫
I
s(x)2dx

Now we can prove Proposition 2.

Proposition 2 (Forward-backward inequality) For a given linear filter S with impulse response
hX→Y, input PSD Sxx and output PSD Syy, let S have a non-constant modulus frequency response
ĥX→Y, and assume there exists α > 0 such that for all ν ∈ I,

|ĥX→Y(ν)|2 ≤ (2− α)
〈
|ĥX→Y|2

〉
.

Then

ρX→Y.ρY→X ≤
[
1 + αCV

(
|ĥX→Y|2

)2]−1

< 1 . (11)

Proof

(i) Using the definition of Spectral Dependency Ratios and Lemma 7 it easily follows that

ρX→YρY→X =
1

⟨|ĥX→Y|2⟩⟨1/|ĥX→Y|2⟩
< 1

(ii) Applying Lemma 8 to

f = |ĥX→Y|2/
∫
I
|ĥX→Y|2 = |ĥX→Y|2/∥hX→Y∥22,

we get inequality (11).

A.7. Proof of Theorem 3

Proof Lemma 1 implies for any fixed ϵ > 0

P (|ρX→Y · ρY→X| > ϵ) →
m→+∞

0

as the dimension of the filter increases. Moreover, Theorem 2 implies

P (|ρX→Y| < 1− ϵ) →
m→+∞

0 .
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Given that

P (|ρY→X| < 1/2) ≥ P ({ρY→X.ρX→Y < 1/4}&{ρX→Y > 1/2})
= 1− P (ρY→X.ρX→Y ≥ 1/4)− P (ρX→Y ≤ 1/2) ,

P (|ρY→X| < 1/2) thus tends to one as m → +∞. Moreover

P (ρY→X < ρX→Y) ≥ P ({|ρX→Y| > 1/2)}&{|ρY→X| < 1/2})
= 1− P ({|ρX→Y| ≤ 1/2)} or {|ρY→X| ≥ 1/2})

≥ 1− P (|ρX→Y| ≤ 1/2)− P (|ρY→X| ≥ 1/2) ,

such that P (ρY→X < ρX→Y) tends to one a m tends to infinity.

A.8. Proof of Theorem 4

For convenience we restate the theorem here:

Theorem 4 Assume the forward generative model of the previous section, and (X̃, Ỹ) the time
series resulting from the decimation of this model by an integer factor D using an ideal anti-aliasing
filter. Then for any given ϵ with 0 < ϵ < 1

4D we have

|ρ
X̃→Ỹ

− 1| ≤ ϵ

(
K + (1 + ϵK)

2

1− 4Dϵ

)
,

with probability δ := (1−exp(−κ(m−1)ϵ2))2, where κ is a positive global constant (independent

of m, and ϵ) and K =
max|ν|<1/2D Sxx(ν)∫ 1/2D

0 Sxx(ν)dν
.

Let us first write the forward SDR of the downsampled data:

ρ
X̃→Ỹ

:=
⟨Sỹỹ⟩

⟨Sx̃x̃⟩⟨Sỹỹ/Sx̃x̃⟩
=

2/D
∫ 1/2
0 Syy(ν/D)dν(

2/D
∫ 1/2
0 Sxx(ν/D)dν

)(
2
∫ 1/2
0 Syy(ν/D)/Sxx(ν/D) dν

)
ρ
X̃→Ỹ

:=
⟨Sỹỹ⟩

⟨Sx̃x̃⟩⟨Sỹỹ/Sx̃x̃⟩
=

∫ 1/2D
0 Syy(ν)dν(∫ 1/2D

0 Sxx(ν)dν
)(

2D
∫ 1/2D
0 |ĥ(ν)|2 dν

)
Second, we can apply the previous concentration of measure result of (Shajarisales et al., 2015)

(Theorem 1) to the low pass filtered causes and effects as they satisfy the requirements of the gen-
erative model, then the corresponding forward SDR is

ρa∗X→a∗Y =

∫ 1/2D
0 Syy(ν)dν(∫ 1/2D

0 Sxx(ν)dν
)(

2
∫ 1/2
0 |ĥ(ν)|2 dν

) ,
and we have

|ρa∗X→a∗Y − 1| ≤ 2ϵ
max|ν|<1/2D SXX(ν)∫ 1/2D

0 Sxx(ν)dν
.
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with probability at least 1− exp(−κ(m− 1)ε2).
Moreover, we have (using h = Ub and UHU = Im):

ρ
X̃→Ỹ

= ρa∗X→a∗Y.

∫ 1/2
0 |ĥ(ν)|2 dν

D
∫ 1/2D
0 |ĥ(ν)|2 dν

= ρa∗X→a∗Y.

∣∣∣∣∣ ∥b∥2

2D
∫ 1/2D
0 |ĥ(ν)|2 dν

∣∣∣∣∣
As a consequence:

|ρ
X̃→Ỹ

− 1| ≤ |ρa∗X→a∗Y − 1|+ ρa∗X→a∗Y

∣∣∣∣∣ ∥b∥2

2D
∫ 1/2D
0 |ĥ(ν)|2 dν

− 1

∣∣∣∣∣
Hence the bound:

|ρ
X̃→Ỹ

−1| ≤ 8ϵ
max|ν|<1/2D SXX(ν)∫ 1/2D

0 Sxx(ν)dν
+

(
1 + 8ϵ

max|ν|<1/2D SXX(ν)∫ 1/2D
0 Sxx(ν)dν

)∣∣∣∣∣ ∥b∥2

2D
∫ 1/2D
0 |ĥ(ν)|2 dν

− 1

∣∣∣∣∣
Only the rightmost term remains to be bounded. We will thus proceed to the evaluation of∫ 1/2D

0 |ĥ(ν)|2 dν; first by estimating the integral using a left point approximation using a grid of
size M (we choose M as a multiple of 2D):

LD
M (ĥ) =

1

M

(M/2D)−1∑
k=0

|ĥ(k/M)|2

By using a bound on the derivate of ĥ (|ĥ′| ≤
√
m

3
2π∥b∥) we can bound the left point approx-

imation:

|LD
M (ĥ)−

∫ 1/2D

0
|ĥ(ν)|2 dν| ≤

√
m

3
2π∥b∥

(2D)22M

Now LD
M (ĥ) can be evaluated using the concentration of measure theorem from (Janzing et al.

2010). Let FM,m be the matrix implementing the M frequency points discrete Fourier Transform
(DFT) of an m-time points vector4 such that FM,m = {exp−2iπkn/M}k=0..M−1;n=0..m−1, and
let LM,D the diagonal matrix such that (LM,D)kk = 1k<M/(2D) (), we have

M .LD
M (ĥ) = (FM,mUb)HLM,DFM,mUb = bTUTFH

M,mLM,DFM,mUb

As a consequence, we get the following concentration of measure result, with probability δ =
1− exp(−κ(m− 1)ϵ2)

|M .LD
M (ĥ)− bTb

1

m
Tr(FH

M,mLM,DFM,m)| ≤ 2ϵ∥b∥2
∥∥FH

M,mLM,DFM,m

∥∥
o
,

where ∥·∥o denotes the operator norm, which can be bounded as follows:∥∥FH
M,mLM,DFM,m

∥∥
o
≤ ∥FM,m∥2o ∥LM,D∥o

4. this can be seen as padding this input vector with zeros to get a N-dimensional vector and appliying the classical NxN
DFT matrix
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Moreover ∥LM,D∥o = 1 and the operator norm of the zero padded FFT matrix can be bounded

by writing it down using the full M-dimentional FFT matrix, such that FM,m = FM,M

[
Im
0

]
∥FM,m∥o ≤ ∥FM,M∥o

∥∥∥∥[ Im
0

]∥∥∥∥
o

≤
√
M

As a consequence we get the bound (noticing Tr(FH
M,mLM,DFM,m) = mM/(2D)):

|M .LD
M (ĥ)− ∥b∥2M/(2D)| ≤ 2ϵ∥b∥2M,

such that

|LD
M (ĥ)− ∥b∥2

2D
| ≤ 2ϵ∥b∥2

We note that this bound does not depend on M , such that by taking the limit M → ∞ we can
bound

∫ 1/2D
0 |ĥ(ν)|2 dν: ∣∣∣∣∣∥b∥22D

−
∫ 1/2D

0
|ĥ(ν)|2 dν

∣∣∣∣∣ ≤ 2ϵ∥b∥2.

Putting together all bounds we get

|ρ
X̃→Ỹ

− 1| ≤ ϵ
max|ν|<1/2D Sxx(ν)∫ 1/2D

0 Sxx(ν)dν
+

(
1 + ϵ

max|ν|<1/2D Sxx(ν)∫ 1/2D
0 Sxx(ν)dν

)
2ϵ∥b∥2

2D
∫ 1/2D
0 |ĥ(ν)|2 dν

,

and using again the previous bound we finally get:

|ρ
X̃→Ỹ

− 1| ≤ ϵ
max|ν|<1/2D Sxx(ν)∫ 1/2D

0 Sxx(ν)dν
+

(
1 + ϵ

max|ν|<1/2D Sxx(ν)∫ 1/2D
0 Sxx(ν)dν

)
2ϵ

1− 4Dϵ

with probability δ2 = (1− exp(−κ(m− 1)ϵ2))2 and for ϵ < 1
4D .

Appendix B. Additional background

B.1. Fourier transform of sequences

Consider a sequence of real or complex numbers a = {at, t ∈ Z} as a deterministic vector from the
ℓ1(Z) sequence space of bounded ℓ1 norm, ∥a∥1 =

∑
t∈Z |at| < ∞. The support of the sequence

is the subset Supp(a) = {k ∈ Z, |ak| > 0} ⊂ Z. Its Discrete-Time Fourier Transform (DTFT) is
defined as

â(ν) =
∑
t∈Z

at exp(−i2πνt), ν ∈ R

Note that the DTFT of such sequence is a continuous 1-periodic function of the normalized fre-
quency ν and can be characterized by its values on any unit length interval (Vetterli et al., 2014,
Chapter 3). We will use the unit interval centered around zero [−1/2, 1/2] =: I. In case the origi-
nal sequence is real-valued, its Fourier transform is conjugate symmetric (â(−ν) = â∗(ν)) such that
its modulus is an even function. This will be the case in the remainder of this paper. The squared
ℓ2-norm ∥a∥22 =

∑
t |at|2 is often called energy. By Parseval’s theorem, it can be expressed in

the Fourier domain by ∥a∥22 =
∫ 1/2
−1/2 |â(ν)|

2dν. To simplify notations, we will denote by ⟨.⟩ the
integral (or average) of a function over the unit interval I, such that ∥a∥22 = ⟨|â|2⟩.
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Figure 5: Probabilistic view of spectral independence: the product has the same expectation when
frequencies are matched at random (red), compared to when they are chosen identical (orange).

B.2. Probabilistic interpretation

To motivate why eq. (3) is called an independence condition, we notice that the difference between
the left and the right hand side can be written as a covariance:

⟨Sxx · |ĥX→Y|2⟩ − ⟨Sxx⟩⟨|ĥX→Y|2⟩ = Cov
(
Sxx, |ĥX→Y|2

)
. (23)

To understand the rephrasing as covariance, note that the maps ν 7→ Sxx(ν) and ν 7→ |ĥX→Y(ν)|2
can be formally interpreted as random variables on the probability space [−1/2, 1/2] equipped
with the uniform measure. From the purely mathematical point of view, this interpretation is cer-
tainly justified because any measurable map from a measure space to R can be considered as a
random variable. For a more intuitive approach, one can think of a random experiment where
one chooses a frequency ν ∈ [−1/2, 1/2] according to the uniform distribution and then observes
Sxx(ν) and |ĥX→Y(ν)|2. Finally, after a large (actually infinite) number of runs, the covariance
of these quantities is given by (23). Accordingly, SIC can be interpreted as follows: The expecta-
tion of Sxx(ν)|ĥ(ν)X→Y|2 is the same as if two frequencies ν1 and ν2 were drawn independently
(as illustrated on Fig. 5) for both functions, which amounts to match at random the frequencies of
the amplification factor and of the input PSD. Conversely, SIC would be violated, for instance, if
the system mainly amplifies the frequencies with low intensity, as it happens for the ‘anti-causal’
direction in our motivating example in Subsection B.3. However, spectral independence does not
correspond to classical statistical independence for two reasons. First, “independence” is measured
at the level of the parameters of the causal system (filter coefficients and input PSD properties) and
not at the level of the observed random variables. Second, statistical independence is a stronger
statement than uncorrelatedness, and SIC corresponds essentially to the latter.
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Figure 6: This figure shows two different possible causal scenarios: 1 - Upper Diagram where X causes Y
and Y with PSD Syy is generated from X with Sxx that gets multiplied pointwise with |hX→Y|2. 2 - Lower
diagram where the inverse process takes place, where Syy is the PSD of input process.

B.3. Intuitive Example

As illustrated in Fig. 6, assume that X is a white noise process, such that it has a spectral density
function with uniform distribution, i.e. Sxx(ν) = c > 0 for all ν ∈ [−1/2, 1/2]. Here, we
reject the hypothesis that Y causes X because it would require the corresponding filter mapping Y
to X to be tuned relative to the input signal Y: it amplifies the frequencies having small power in
the input signal while it weakens those that have large power ‘in order’ to generate an output whose
power is uniformly distributed over the frequencies. This results in |ĥY→X|2 and Syy being strongly
anticorrelated (see Fig. 6 bottom right panel). Thus, we have an extreme example of violation
of ICM: Syy encodes all the second order statistics of Y, the hypothetical input (for zero mean
Gaussian time series it even describes the statistics of the input signal completely). On the other
hand, ĥY→X is a representative feature of the mechanism. Thus, the mechanism that generates X
from Y is informative about its input.

Appendix C. SIC and group invariance

Group invariance perspective on ICM The group invariance framework assesses ICM by quan-
tifying the genericity of the relationship between input x, corresponding to the PSD of the putative
cause time series in the context of this paper, and mechanism m, corresponding to the filter. As
explained in (Besserve et al., 2018), this requires defining two objects: (1) the generic group G is a
compact topological group that acts on cause properties (i.e. elements of the group are transforma-
tion that modify the properties of the cause), thus equipped with a unique Haar probability measure
µG , (2) the contrast C is a real valued function.

The contrast and generic group introduced in such a way allow to compute the expected contrast
value when randomly “breaking” the cause-mechanism relationship using generic transformations
according to the following definition.

Defnition 1 Given a contrast C, the Expected Generic Contrast (EGC) of a cause mechanism pair
(x,m) is defined as:

⟨C⟩m,x = Eg∼µGC(mgx) . (24)
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The relation between m and x is G-generic under C, whenever

C(mx) = ⟨C⟩m,x (25)

holds approximately.

Equation (25) is the genericity equation, which expresses the idealized ICM postulate (hence the
term “holds approximately”). Besserve et al. (2018) give a probabilistic interpretation of the concept
of genericity. Assume we are given a generative model such that the cause x is a single sample
drawn from a meta-distribution5 PX (see Fig. 7). To estimate genericity irrespective of the possible
values of x, we consider the genericity ratio C(mx)/⟨C⟩m,x: this quantity should be close to one
with high probability in order to satisfy ICM assumptions. Assume PX is a G-invariant distribution,
under mild assumptions (Wijsman, 1967) x can be parametrized as x = gx̃ where g is a sample
from a µG-distributed variable G, and x̃ is a sample from anther RV independent of G.

Ex

[
C(mx)

⟨C⟩m,x

]
=Ex̃Eg

[
C(mgx̃)

⟨C⟩m,gx̃

]
=1 (26)

This tells us that the postulate of genericity is valid at least “on average” for the generative model.
On the contrary, if this average would be different from 1 as it may happen for a non-invariant
PX , the postulate is unlikely be valid for individual examples. As represented on Fig. 7, the same
reasoning can be applied when sampling the mechanism from an invariant distribution.

The case of SIC. By using the power of the time series Y in (1) as a contrast, and frequency
translations as the generic group, we can show that Spectral Independence postulate correponds to
a genericity equation in the group invariance framework.

Proposition 4 Let G be the group of modulo 1/2 translations that acts on the PSD by shifting its
graph for positive frequencies (ν ∈ [0, 1/2]) while the graph for negative frequencies is defined so
that the transformed PSD is even. Using the total power as a contrast, G−genericity is equivalent
to SIC.

Proof Suppose that for a given mechanism m and given input Sxx the G−genericity assumption is
satisfied. Noticing that µG is the uniform probability measure over [0, 1/2]. This amounts to∫ 1/2

−1/2
Sxx(ν)|ĥ(ν)|2dν =

∫ 1/2

0

(
2

∫ 1/2

0
|ĥ(ν)|2Sxx(ν − g)µG(g)dν

)
dg

= 4

∫ 1/2

0

∫ 1/2

0
|ĥ(ν)|2Sxx(ν − g)dνdg

= 4

∫ 1/2

0
|ĥ(ν)|2

(∫ 1/2

0
Sxx(ν − g)dg

)
dν

=

∫ 1/2

−1/2
Sxx(ν)dν ·

∫ 1/2

−1/2
|ĥ(ν)|2dν

This corresponds to the formula of the SIC postulate. □
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Figure 7: Generative model including distributions over causes and mechanisms. Modified from
Besserve et al. (2018).

Whitening: a way to enforce group invariance. As can be understood from eq. (26) one possible
source of misfit between ICM based approaches and real data is a lack of G-invariance of the actual
generating mechanism behind the observed data. In this section, we suggest a simple approach to
adapt ICM methods to “baseline” properties of the set of causes. The genericity equation is compat-
ible with a G-invariant probabilistic generative model of the cause. Such an invariance assumption
can be checked on real data, for example by verifying the G-invariance of the empirical average of
all putative causes. We can then seek to correct any lack of invariance: assume b the average of
empirically observed causes is not group invariant. If there exists an invertible transformation w
such that w ◦ b = u becomes invariant, we can define a new group invariance framework with

w−1 ◦ G ◦ w = {w−1 g w, g ∈ G},

as new generic group and Cw : x 7→ C(w ◦ x) as a new contrast. w is called a whitening transfor-
mation as it maps a predefined average distribution into a “white” invariant average distribution.

5. meta-distributions have some similarities with the approach of Lopez-Paz et al. (2015)
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Appendix D. Supplemental figures

before whitening after whitening
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Figure 8: SIC performance comparison before and after whitening (see Sec. 7)

34


	Introduction
	Background and Model description 
	Deterministic cause-effect inference setting
	Linear filters 
	Stationary sequences

	Spectral Independence Criterion (SIC) 
	Definition
	Measuring spectral dependence

	Information geometric interpretation
	Information geometry background
	Information geometry of stochastic processes
	SIC as an orthogonality principle

	Identifiability results 
	Generative model 
	Forward-backward inequality
	Inference algorithm
	Identifiability of the generative model

	Robustness to downsampling 
	Decimation procedure
	Identifiability of the decimated model

	Extension of SIC through invariance principles
	SIC for power law biological signals
	Experiments

	Discussion
	Proofs
	Consequence of Assumption 1
	Proof of Theorem 1
	Proof of Corrolary 1
	Proof of lem:asymptId
	Proof of thmCOMFIR
	Proof for lem:violation
	Proof of thm:identifdir
	Proof of thm:subsampling

	Additional background
	Fourier transform of sequences
	Probabilistic interpretation
	Intuitive Example

	SIC and group invariance
	Supplemental figures

