
Under review as a conference paper at ICLR 2023

MATS: MEMORY ATTENTION FOR TIME-SERIES
FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-term time series forecasting (LTSF) is still very challenging in many real-
world applications. A fundamental difficulty is in efficiently modeling both the
short-term temporal patterns and long-term dependencies. In this paper, we intro-
duce a novel two-stage attention-based LTSF model called Memory Attention for
Time-Series forecasting (MATS). In stage I, short-term temporal patterns are ex-
tracted to a memory bank such that the input time series is represented by a much
shorter sequence of memory attentions. In stage II, a sequence-to-sequence pre-
dictor is trained to discover long-term dependencies in the memory attention se-
quence, and forecast memory attentions corresponding to the time series in the fu-
ture. The use of attention allows a flexible representation, and its shorter sequence
length enables the model to more easily learn long-term dependencies. Exten-
sive experiments on a number of multivariate and univariate benchmark datasets
demonstrate that MATS outperforms SOTA LTSF methods almost all the time.

1 INTRODUCTION

Long-term time series forecasting (LTSF) has recently attracted a lot of attention in various domains
such as sensor network monitoring (Papadimitriou & Yu, 2006), energy consumption (Deb et al.,
2017), traffic and economics planning (Zhu & Shasha, 2002), and weather forecasting (Matsubara
et al., 2014). Obviously, LTSF is more challenging than traditional short-term prediction (e.g., one-
step-ahead prediction) as it requires forecasting longer into the future. Popular LTSF models are
based on transformers that learn long-range dependencies using multi-head self-attention. Examples
include LogTrans (Li et al., 2019), Reformer (Kitaev et al., 2020), Informer (Zhou et al., 2021),
Pyraformer (Liu et al., 2021b), Autoformer (Wu et al., 2021), and FEDformer (Zhou et al., 2022).
Although these transformer variants improve LTSF by benefiting from the self-attention mechanism
to capture long-term dependencies, they are still limited in modeling very long time series and
capturing the local short-term context. Without learning and modeling the dependencies among an
abundant number of local patterns, generating an accurate long-term prediction is challenging.

DLinear (Zeng et al., 2022) is a recent model that often outperforms transformer models in LTSF.
Inspired by the Autoformer, it is also based on the season-trend time series decomposition, but uses
shallow linear layers for modeling temporal dependencies. However, these linear layers may not be
sufficient for complicated real-world time series. Moreover, short-term patterns are extracted only
from the lookback window but not from the whole time series, limiting the model’s representation
ability.

In computer vision, it has been observed that local patterns and global dependencies are both critical
in processing high-resolution images. VQ-VAE (Van D. et al., 2017) and VQGAN (Esser et al.,
2021) address this by using a two-stage training procedure. The first stage focuses on using the
convolutional neural network (CNN) to extract local patterns, which are then stored in a vector
quantization (VQ) codebook. The second stage focuses on capturing global dependencies among
codebook entries and forecasting new codebook indices by auto-regression given the past codebook
indices. This two-stage approach allows VQ-VAE and VQGAN to learn local patterns and global
dependencies separately and more easily without interfering each other.

Motivated by VQ-VAE and VQGAN, in this paper, we introduce a two-stage LTSF model called
Memory Attention for Time-Series forecasting (MATS). Instead of using a VQ codebook as in VQ-
VAE and VQGAN, we propose to use an auto-encoder and a memory bank to store abundant local

1



Under review as a conference paper at ICLR 2023

patterns in the memory units. At each time step, the time series is represented as a combination
of these local patterns, weighted by the attention scores between the time series and individual
memory units. While the VQ representation can only use one codebook entry each time, attention
allows a more powerful representation of the local temporal patterns, as supported by the success of
transformers in various data modalities. The auto-encoder and memory bank are learned together
in stage I and then frozen. In stage II, a sequence-to-sequence predictor is trained to discover long-
term dependencies in the memory attention sequence. On forecasting, a new memory attention
subsequence corresponding to the time series in the future is output from the learned sequence-to-
sequence predictor, which is then decoded by the decoder (in the auto-encoder) to generate the time
series forecast.

Our contributions can be summarized as follows: (i) We develope a novel two-stage model for
LTSF; (MATS); (ii) We propose using the memory attention sequence as a flexible representation of
the local temporal patterns and a sequence-to-sequence predictor to extract long-term dependencies
in the memory attention sequence; (iii) We perform comprehensive experiments and comparisons
with existing state-of-the-art LTSF baselines, and demonstrate that the proposed model achieves
much better prediction performance.

2 RELATED WORK

Traditional time series forecasting methods are usually based on statistical auto-regressive models
(e.g., Autoregressive Integrated Moving Average (ARIMA) (Box & Jenkins, 1968; Box & Pierce,
1970)) and gradient boosting tree (GBRT) (Friedman, 2001; Elsayed et al., 2021). However, they
assume simple linear temporal dependencies or rely on manual feature selection.

In the past decade, deep learning has become a powerful class of representation learning meth-
ods. Various deep learning solutions, such as the recurrent neural network (RNN) and its variants
(Hochreiter & Schmidhuber, 1997; Wen et al., 2017; Rangapuram et al., 2018; Yu et al., 2017; Mad-
dix et al., 2018), have been developed for LTSF. Based on the RNN, DeepAR (Salinas et al., 2020)
uses binomial likelihood for sequential probabilistic forecasting. Attention-based RNNs (Wu et al.,
2020; Shih et al., 2019; Song et al., 2018; Qin et al., 2017) introduce the attention mechanism in the
time dimension to capture long-term dependencies. Besides, convolutional neural networks, though
initially used in computer vision, are also popular in time series modeling (van den Oord et al., 2016;
Borovykh et al., 2017; Bai et al., 2018). The LSTNet (Lai et al., 2018) introduces CNN to capture
short-term temporal patterns. TCN (Sen et al., 2019) models temporal causality with causal con-
volution. SCINet (Liu et al., 2021a) uses convolutions at multiple temporal resolutions. However,
RNN and CNN usually excel only in short-term, not long-range, forecasting.

With the tremendous success of the transformer in natural language processing (Vaswani et al.,
2017; Kenton & Toutanova, 2019; Brown et al., 2020), many recent attempts for LTSF are based
on the transformer (Li et al., 2019; Kitaev et al., 2020; Liu et al., 2021b). For example, Informer
(Zhou et al., 2021) reduces the transformer complexity by using the direct multi-step forecasting
objective. Autoformer (Wu et al., 2021) enhances the transformer by auto-correlation attention
and season-trend decomposition. Based on the Autoformer, the FEDformer (Zhou et al., 2022)
introduces frequency-attention blocks and trend components extracted by various kernel sizes.

Besides the use of RNNs, CNNs, and transformers, there are recent attempts with other neural
network models. N-Beats (Oreshkin et al., 2019) uses a feedforward network and neural basis
function approximation. Dlinear (Zeng et al., 2022) integrates season-trend decomposition with
linear layers. DeepTIMe (Woo et al., 2022) explores a deep time-index-based model using meta-
learning. Surprisingly, they often outperform many recent transformer-based models. However, as
real-world time series can be long, noisy, and non-stationary, LTSF is still difficult in general.

3 PROPOSED MODEL

Given a C-variate time series segment X = [x1,x2, . . . ,xT ] (where xi ∈ RC) of length T , the
LTSF task is to predict its H future values X̃ = [xT+1,xT+2, . . . ,xT+H ]. The proposed MATS
(shown in Figure 1) involves two stages of operation.

2



Under review as a conference paper at ICLR 2023

Encoder ℰ

Decoder 𝒟𝒟

…

…

Memory Bank ℳ

…

Memory 
Attentions 𝐶𝐶

…

D
is

cr
im

in
at

or
 Dr

r
f
f
r
r

fa
ke

/r
ea

l
…

[1, T’]

… …

[1, T’] [T’+1, T’+H’]

Predictor 𝒫𝒫

Input

Output

Stage I Stage II

New memory Attentions �̂�𝐶

Memory Attentions 𝐶𝐶

…

New Memory 
Attentions �̂�𝐶

Figure 1: Overview of MATS. The left half part shows the first stage components and the right half
part show the second stage components.

In stage I, we train an auto-encoder and a memory bank to extract local patterns. The input time
series segment is then represented as a sequence of attention vectors on the memory units. In stage
II, both the auto-encoder and memory bank are fixed. A sequence-to-sequence model is used to
predict the missing attention vectors corresponding to the future time series segment. Finally, the re-
constructed attention sequence is decoded by the decoder (in the auto-encoder) to output the desired
time series forecast.

3.1 STAGE I

Stage I involves an encoder E and a decoder D, which encodes/decodes X to/from a sequence
of hidden representations. We use an L-layer convolutional neural network (CNN) for E . With
strides larger than 1, the output of the last convolution layer is shortened to a length-T ′ sequence
E(X) = H = [h1, . . . ,hT ′ ] ∈ Rd×T ′

, where d is the feature dimensionality. Since we use a CNN,
the length T of input X can be arbitrary, and the output length T ′ will be changed accordingly. As
for the decoder D, we use a deconvolution network (Zeiler et al., 2010) which reconstructs X from
H , as X̂ = D(H).

Inspired by Weston et al. (2015), we introduce a memory bank M to store common local patterns
extracted from all the time series segments. M has M learnable d-dimensional memory units M =
[m1, . . . ,mM ] ∈ Rd×M . For each ht in H , we measure its similarity ct,m with each mm in M:

ct,m =
exp

(
−∥ht −mm∥2

)∑M
k=1 exp (−∥ht −mk∥2)

, m = 1, . . . ,M.

Each ht is then represented by an attention vector ct = [ct,1, ct,2, . . . , ct,M ]T over the memory
units, and the whole H is transformed as

C = M(H) = [c1, . . . , cT ′ ] ∈ [0, 1]M×T ′
. (1)

Given C, one can reconstruct H as Ĥ = MC, and subsequently the time series segment X as

X̂ = D(MC). (2)

With a set X of N length-T C-variate segments, the reconstruction loss is defined as Lrec =
1

NTC

∑
X∈X ∥X̂ −X∥2F .

As in VQ-VAE (Van D. et al., 2017), the encoder E , decoder D and memory bank
M can be trained together end-to-end by using adversarial discriminator training, and
a combination of the reconstruction loss and commitment/codebook loss: LM =

1
NT ′d

∑
ht∈H

∑
X∈X

[
∥sg [ht]− zt∥22 + ∥ht − sg [zt]∥22

]
, where sg[·] is the stop-gradient oper-

ator and zt = argminm∈M ∥ht −m∥. The discriminator D = FC ◦ E ′ consists of a network

3



Under review as a conference paper at ICLR 2023

E ′ (which has the same structure as the encoder) and a fully-connected (FC) layer with sigmoid
activation to re-scale the output to [0, 1]. We use the hinge loss for the discriminator:

LD =
1

NT ′

∑
X∈X

T ′∑
i=1

[max{0, 1− di}+max{0, 1 + d̂i}], (3)

where d = [d] = D(X) ∈ [0, 1]T
′

and d̂ = [d̂] = D ◦ D (MC) ∈ [0, 1]T
′

are the discriminator
outputs for the original X and reconstructed X̂ , respectively. Putting the various losses together,
the stage I objective is: minD,E,M maxD Lrec+αLM+λLD , where α and λ are hyperparameters.
As in GAN (Goodfellow et al., 2014), this is optimized by alternating (i) learning of D on LD , and
(ii) learning of {E ,D,M} on

L = Lrec + αLM − λ

NT ′

∑
X∈X

T ′∑
i=1

d̂i. (4)

The whole learning procedure for Stage I is shown in Algorithm 1.

Algorithm 1 Training of Stage I.
Input: set of time series segments X .
Output: encoder E , decoder D and memory bank M.

1: for e = 1, . . . , E do
2: draw X ∼ X ;
3: feed X to encoder and output H;
4: compute attention sequence C from (1);
5: if e ≡ 0 mod 2 then
6: freeze D , and learn {E ,D,M} by minimizing (4);
7: else
8: freeze {E ,D,M}, and learn D by minimizing (3);
9: end if

10: end for
11: return trained E , D, and M.

3.2 STAGE II

In stage II, the encoder E , decoder D, and memory bank M are frozen. Recall that stage I com-
presses the length-T time series segment X to a length-T ′ attention sequence C. When H future
values are to be forecasted, the resultant length-(T + H) time series segment corresponds to an
attention sequence Ĉ of length ⌈T ′(T + H)/T ⌉. In other words, H ′ = ⌈T ′(T +H)/T ⌉ − T ′ =
⌈T ′H/T ⌉ extra attention vectors need to be predicted. Stage II uses a sequence-to-sequence predic-
tor P to produce this Ĉ = [ĉ1, . . . ĉT ′+H′ ]. The predictor can be any sequence-to-sequence model.
In the experiments, we will use an LSTM (Hochreiter & Schmidhuber, 1997). Ĉ is then obtained as

Ĉ = Sofmax ◦ P(C), (5)

where Sofmax runs over the first dimension of P(C) to ensure that the components of each attention
vector sum to 1 over the memory units.

To train the LSTM predictor, the length-T input time series segment, together with its length-H
ground-truth forecast, are concatenated to form X[:,1:T+H]. This is then fed into stage I to obtain
the length-(T ′ +H ′) ground-truth attention sequence:

Cgt = [cgt
1 , . . . , c

gt
T ′+H′ ] = M◦ E(X[:,1:T+H]). (6)

The LSTM is trained by minimizing the classification loss:

Lpred =
1

T ′ +H ′

T ′+H′∑
t=1

BCE
(
ĉt, c

gt
t

)
, (7)

where BCE(u,v) is the binary cross-entropy loss. The whole learning procedure for Stage II is
shown in Algorithm 2.

4



Under review as a conference paper at ICLR 2023

3.3 INFERENCE

On inference, given a new test time series segment X , we first obtain its attention sequence C by
using encoder E and memory bank M. This is then fed into predictor P to get the predicted memory
attention Ĉ, which is subsequently decoded by the decoder D to obtain the prediction X̂[:,1:T+H]

by (2). Finally, the forecast is extracted as X̂[:,T+1:T+H]. The procedure is shown in Algorithm 3.

Algorithm 2 Training of Stage II.
Input: set of time series segments X , optimized encoder
E , decoder D, and memory bank M.
Output: predictor P .

1: for e = 1, . . . , E do
2: draw X ∈ X and obtain ground-truth forecast X̃;
3: compute X’s attention sequence C from (1);
4: compute predicted attention sequence Ĉ from (5);
5: compute ground-truth attention Cgt of [X; X̃]

from (6);
6: learn P by minimizing (7);
7: end for
8: return trained M,

Algorithm 3 Inference.
Input: new time series segment X .
Output: forecast result X̂[:,T+1,T+H].

1: compute attention sequence C of
X from (1);

2: compute Ĉ from P using (5);
3: compute prediction X̂ by (2);
4: return X̂[:,T+1:T+H].

3.4 DISCUSSION

MATS is inspired by VQ-VAE and VQGAN (Esser et al., 2021). This allows stage I to focus only on
the extraction of local temporal patterns, while stage II on capturing long-term dependencies. How-
ever, in VQ-VAE and VQGAN, stage I outputs the discrete index of the most similar token in the
codebook. Hence, only one codebook entry is used in representing the input. Moreover, an embed-
ding of codebook indices needs to be learned before feeding into the transformer in stage II. On the
other hand, the proposed memory bank outputs a sequence of attentions over the memory units. As
demonstrated in the success of transformers, attention is more flexible and allows a weighted com-
bination of codebooks to be used. This encourages each codebook (or memory unit) to learn more
local patterns and empirically leads to better performance. Moreover, as C is continuous-valued,
it can be directly fed into the predictor without learning an extra embedding. Empirically compar-
ison will be shown in Section 4.1. Besides, compared to LTSF methods that do not use memory
or codebook (such as DLinear (Zeng et al., 2022) and time series transformers), the use of memory
allows extraction of informative patterns across windows in all training samples, instead of just from
a given window from the current sample.

Note that stage I compresses the length-T input time series segment to a length-T ′ attention se-
quence. Similarly, in stage II, instead of directly predicting a length-H time series segment, it
predicts a length-H ′ attention sequence. Typically, T ′ ≪ T and H ′ ≪ H . Thus, for the stage II
predictor, the input and output sequences are shorter than the raw time series input and prediction
horizon, respectively, making the prediction task easier. This will also be empirically verified in
Section 4.2.1.

4 EXPERIMENTS

In this section, experiments are performed on the following commonly-used multivariate datasets1

(Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Zeng et al., 2022): (i) Electricity, which

1Electricity is downloaded from https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014, Exchange from https://github.com/laiguokun/
multivariate-time-series-data, Traffic from http://pems.dot.ca.gov, Weather from
https://www.bgc-jena.mpg.de/wetter/, ETT from https://github.com/zhouhaoyi/
ETDataset, ILI from https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html.

5

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/multivariate-time-series-data
https://github.com/laiguokun/multivariate-time-series-data
http://pems.dot.ca.gov
https://www.bgc-jena.mpg.de/wetter/
https://github.com/zhouhaoyi/ETDataset
https://github.com/zhouhaoyi/ETDataset
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


Under review as a conference paper at ICLR 2023

includes electricity consumption of 321 clients. Following Zhou et al. (2021), the data is converted
to hourly consumption over two years; (ii) Exchange, which describes the daily exchange rates of
Australia, British, Canada, Switzerland, China, Japan, New Zealand, and Singapore; (iii) Traffic,
which records the hourly road occupancy rates generated by sensors on San Francisco Bay area
freeways; (iv) Weather, which records 21 meteorological indicators at 10-minute intervals in 2020;
(v) ETT, which contains two years of electricity transformer temperature data collected in China
(Zhou et al., 2021). It has four subsets: ETTh1, ETTh2 are collected from two counties at 1-
hour intervals, while ETTm1, ETTm2 are collected at 15-minute intervals; (vi) ILI, which contains
weekly records of the ratio of influenza-like illness (ILI) from 2002-2021 in the United States.
Datasets are summarized in Appendix A.1. As in Zhou et al. (2021), we also perform experiments
on univariate variants of these datasets, which are formed by extracting the last variate from the
multivariate datasets. Following Wu et al. (2021); Zhou et al. (2022), data are normalized to have
zero mean and unit variance. Each dataset is split in chronological order into the training, validation,
and test sets of size 7:1:2, except that for ILI follows 6:2:2.

In MATS, stage I uses a three-layer CNN as the encoder, decoder, and discriminator. The memory
bank has a dimensionality of 64 and a size of 16. We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 10−4. We use a two-layer LSTM with hidden dimension 1024, dropout
probability 0.5, and the AdamW optimizer (Loshchilov & Hutter, 2018) for the predictor in stage
II, The batch size in both stages is 64. The detailed architecture and hyperparameter setup are in
Appendix A.2. To demonstrate the advantage of using memory attention, we introduce a variant
called VQ-LSTM, which replaces the memory bank in MATS with a VQ codebook from VQ-VAE
and adds a learnable codebook index embedding as in VQGAN.

MATS and its variant VQ-LSTM are compared with the following families of baselines: (i) time se-
ries transformers, including FEDformer (Zhou et al., 2022), Autoformer (Wu et al., 2021), Informer
(Zhou et al., 2021), Pyraformer (Liu et al., 2021b), LogTrans (Li et al., 2019), and Reformer (Kitaev
et al., 2020).; (ii) recurrent neural networks (RNN), including LSTM (Hochreiter & Schmidhuber,
1997) and LSTMa (Bahdanau et al., 2015); (iii) convolutional neural networks (CNN), including
TCN (Bai et al., 2018) and LSTNet (Lai et al., 2018). and (iv) recent SOTA methods DLinear (Zeng
et al., 2022) and DeepTIMe (Woo et al., 2022); For the univariate time series, we also include (v) the
standard statistical model of ARIMA (Anderson, 1976); and (vi) N-Beats (Oreshkin et al., 2019).
Finally, following Zhou et al. (2022), we add a baseline called (vii) Closest Repeat (Repeat-C),
which naively uses the last value in the window as the prediction. All algorithms are in PyTorch and
run on an NVIDIA Tesla V100 32G GPU.

For stage I, we set the input window size T = 192 (except for ILI, which is set to 60). Following
Wu et al. (2021); Zhou et al. (2022), in stage II, we set T = 96 (for ILI, T = 36), and the prediction
horizon H ∈ {96, 192, 336, 720} (for ILI, H ∈ {24, 36, 48, 60}). For performance evaluation, we
use (i) mean squared error MSE = 1

NHC

∑
X∈X

∑H
i=1 ∥x̂T+i− x̃T+i∥22, where N is the number of

segments in the test set, and (ii) mean absolute error MAE = 1
NHC

∑
X∈X

∑H
i=1 ∥x̂T+i− x̃T+i∥1.

4.1 RESULTS

The MSE results on the multivariate and univariate time series are shown in Tables 1 and 2, re-
spectively. For baselines DLinear, DeepTIMe, LSTNet, LSTMa, TCN, and NBeats, we use the
implementations from the corresponding authors; for ARIMA, we use the implementation from
the Python package statsmodels; for baselines FEDFormer, Autoformer, Informer, Pyraformer,
LogTrans, Reformer, LSTM, DLinear, and Repeat-C, we copy their results from the corresponding
papers Wu et al. (2021); Zhou et al. (2022); Zeng et al. (2022). As expected, the error gener-
ally increases with the prediction horizon across all methods. MATS outperforms all the baselines
most of the time. In particular, MATS beats LSTNet, which also uses CNN and RNN but is trained
end-to-end. Moreover, the variant VQ-LSTM is often the second-best algorithm. These show the
superiority of the proposed two-stage approach that helps the model learn useful local patterns by
an adversarial reconstruction task in stage I without concerning long-term dependencies. Moreover,
MATS outperforms VQ-LSTM almost all the time, demonstrating the efficiency of using memory
attention over codebook indices.

Figure 2 shows the forecasting results on the first test sample from the univariate Electricity (with
T = 96 and H = 96). More samples can be seen in Appendix B.1. To avoid clutterness, we only

6



Under review as a conference paper at ICLR 2023

Table 1: MSE forecasting results on multivariate time series. Results of baselines marked with
superscript ⋄ are copied from Wu et al. (2021); Zhou et al. (2022); Zeng et al. (2022). The best
results are in bold, and the second best are underlined.

H Electricity Exchange Traffic Weather ETTh1 ETTh2 ETTm1 ETTm2 ILI

MATS

96 0.156 0.034 0.516 0.105 0.301 0.222 0.185 0.109 24 1.143
192 0.165 0.049 0.549 0.133 0.351 0.239 0.306 0.130 36 1.647
336 0.168 0.073 0.565 0.156 0.375 0.283 0.348 0.162 48 2.343
720 0.179 0.135 0.602 0.196 0.407 0.315 0.368 0.222 60 2.228

VQ-LSTM

96 0.187 0.045 0.576 0.119 0.422 0.226 0.335 0.113 24 1.849
192 0.187 0.062 0.596 0.163 0.461 0.270 0.402 0.147 36 1.838
336 0.189 0.110 0.610 0.176 0.491 0.338 0.410 0.189 48 2.161
720 0.200 0.363 0.636 0.247 0.514 0.459 0.480 0.278 60 3.057

FEDFormer⋄
96 0.193 0.148 0.587 0.217 0.376 0.346 0.379 0.203 24 3.228

192 0.201 0.271 0.604 0.276 0.420 0.429 0.426 0.269 36 2.679
336 0.214 0.460 0.621 0.339 0.459 0.496 0.445 0.325 48 2.622
720 0.246 1.195 0.626 0.403 0.506 0.463 0.543 0.421 60 2.857

Autoformer⋄
96 0.201 0.197 0.613 0.266 0.449 0.358 0.505 0.255 24 3.483

192 0.222 0.300 0.616 0.307 0.500 0.456 0.553 0.281 36 3.103
336 0.231 0.509 0.622 0.359 0.521 0.482 0.621 0.339 48 2.669
720 0.254 1.447 0.660 0.419 0.514 0.515 0.671 0.433 60 2.770

Informer⋄
96 0.274 0.847 0.719 0.300 0.865 3.755 0.672 0.365 24 5.764

192 0.296 1.204 0.696 0.598 1.008 5.602 0.795 0.533 36 4.755
336 0.300 1.672 0.777 0.578 1.107 4.721 1.212 1.363 48 4.763
720 0.373 2.478 0.864 1.059 1.181 3.647 1.166 3.379 60 5.264

Pyraformer⋄
96 0.386 1.748 0.867 0.622 0.664 0.645 0.543 0.435 24 7.394

192 0.378 1.874 0.869 0.739 0.790 0.788 0.557 0.730 36 7.551
336 0.376 1.943 0.881 1.004 0.891 0.907 0.754 1.201 48 7.662
720 0.376 2.085 0.896 1.420 0.963 0.963 0.908 3.625 60 7.931

LogTrans⋄
96 0.258 0.968 0.684 0.458 0.878 2.116 0.600 0.768 24 4.480

192 0.266 1.040 0.685 0.658 1.037 4.315 0.837 0.989 36 4.799
336 0.280 1.659 0.734 0.797 1.238 1.124 1.124 1.334 48 4.800
720 0.283 1.941 0.717 0.869 1.135 3.188 1.153 3.048 60 5.278

Reformer⋄
96 0.312 1.065 0.732 0.689 0.837 2.626 0.538 0.658 24 4.400

192 0.348 1.188 0.733 0.752 0.923 11.12 0.658 1.078 36 4.783
336 0.350 1.357 0.742 0.639 1.097 9.323 0.898 1.549 48 4.832
720 0.340 1.510 0.755 1.130 1.257 3.874 1.102 2.631 60 4.882

LSTM⋄

96 0.375 1.453 0.843 0.369 0.702 1.671 1.392 2.041 24 5.914
192 0.442 1.846 0.847 0.416 1.212 4.117 1.339 2.249 36 6.631
336 0.429 2.136 0.853 0.455 1.424 3.434 1.740 2.568 48 6.736
720 0.980 2.984 1.500 0.535 1.960 3.963 2.736 2.720 60 6.870

LSTMa

96 0.377 0.890 2.078 0.330 0.815 2.079 1.200 0.747 24 4.312
192 0.404 1.358 1.985 0.494 1.029 1.761 1.148 2.041 36 4.300
336 0.762 1.781 1.786 0.605 1.115 2.596 1.148 0.969 48 4.305
720 1.309 2.326 1.748 0.594 1.299 2.932 1.119 2.541 60 4.418

TCN

96 0.985 3.004 1.438 0.615 1.038 3.307 0.957 3.041 24 6.624
192 0.996 3.048 1.463 0.629 1.070 3.359 0.969 3.072 36 6.858
336 1.000 3.113 1.479 0.639 1.085 3.443 0.990 3.105 48 6.968
720 1.438 3.150 1.499 0.639 1.089 3.626 1.018 3.135 60 7.127

LSTNet

96 0.680 1.551 1.107 0.594 1.465 3.567 1.999 3.142 24 6.026
192 0.725 1.477 1.157 0.560 1.997 3.242 2.762 3.154 36 5.340
336 0.828 1.507 1.216 0.597 2.665 2.544 1.257 3.160 48 6.080
720 0.957 2.285 1.481 0.618 2.143 4.625 1.917 3.171 60 5.548

DLinear⋄
96 0.194 0.078 0.650 0.196 0.386 0.295 0.345 0.183 24 2.398

192 0.193 0.159 0.598 0.237 0.437 0.452 0.380 0.260 36 2.646
336 0.206 0.274 0.605 0.283 0.481 0.504 0.413 0.336 48 2.614
720 0.242 0.558 0.645 0.345 0.519 0.577 0.474 0.423 60 2.804

DeepTIMe

96 0.198 0.077 0.661 0.197 0.395 0.325 0.347 0.188 24 2.361
192 0.196 0.151 0.605 0.240 0.445 0.427 0.384 0.265 36 2.328
336 0.209 0.248 0.611 0.285 0.487 0.492 0.416 0.325 48 2.675
720 0.245 0.689 0.656 0.352 0.524 0.716 0.482 0.486 60 2.904

Repeat-C⋄

96 1.588 0.081 2.723 0.259 1.295 0.432 1.214 0.266 24 6.587
192 1.595 0.167 2.756 0.309 1.325 0.534 1.261 0.340 36 7.130
336 1.617 0.305 2.791 0.377 1.323 0.591 1.283 0.412 48 6.575
720 1.647 0.823 2.811 0.465 1.339 0.588 1.319 0.521 60 5.893

compare with the forecasts of (i) FedFormer, the SOTA time series transformer; and (ii) two recent
SOTAs: DLinear and DeepTIMe; and (iii) N-Beats, a popular univariate LTSF method. As can be
seen, MATS produces better forecast than others.2

2For this sample, the MSEs obtained are as follows. FEDFormer: 0.263; DLinear: 0.123; DeepTIMe:
0.142; NBeats: 0.185; and MATS: 0.097.

7



Under review as a conference paper at ICLR 2023

Table 2: MSE forecasting results on univariate time series. Results of baselines marked with super-
script ⋄ are copied from Wu et al. (2021); Zhou et al. (2022); Zeng et al. (2022). The best results are
in bold, and the second best are underlined.

H Electricity Exchange Traffic Weather ETTh1 ETTh2 ETTm1 ETTm2 ILI

MATS

96 0.177 0.019 0.135 0.000 0.024 0.098 0.009 0.018 24 0.629
192 0.252 0.044 0.149 0.001 0.033 0.115 0.015 0.038 36 0.681
336 0.260 0.069 0.155 0.001 0.044 0.149 0.020 0.058 48 0.760
720 0.286 0.262 0.184 0.001 0.055 0.191 0.031 0.078 60 0.740

VQLSTM

96 0.362 0.020 0.249 0.001 0.029 0.087 0.012 0.030 24 0.786
192 0.397 0.059 0.244 0.001 0.042 0.118 0.018 0.049 36 0.929
336 0.433 0.124 0.234 0.001 0.048 0.171 0.026 0.071 48 1.142
720 0.465 0.359 0.247 0.001 0.064 0.192 0.043 0.101 60 0.969

FEDFormer⋄,

96 0.253 0.154 0.207 0.006 0.079 0.128 0.033 0.067 24 0.708
192 0.282 0.286 0.205 0.006 0.104 0.185 0.058 0.102 36 0.584
336 0.346 0.511 0.219 0.004 0.119 0.231 0.084 0.130 48 0.717
720 0.422 1.301 0.244 0.006 0.142 0.278 0.102 0.178 60 0.855

Autoformer⋄
96 0.341 0.241 0.246 0.011 0.071 0.153 0.056 0.065 24 0.948

192 0.345 0.300 0.266 0.008 0.114 0.204 0.081 0.118 36 0.634
336 0.406 0.509 0.263 0.006 0.107 0.246 0.076 0.154 48 0.791
720 0.565 1.260 0.269 0.009 0.126 0.268 0.110 0.182 60 0.874

Informer⋄
96 0.258 1.327 0.257 0.004 0.193 0.213 0.109 0.088 24 5.282

192 0.285 1.258 0.299 0.002 0.217 0.227 0.151 0.132 36 4.554
336 0.336 2.179 0.312 0.004 0.202 0.242 0.427 0.180 48 4.273
720 0.607 1.280 0.366 0.003 0.183 0.291 0.438 0.300 60 5.214

Pyraformer⋄
96 0.274 0.230 0.166 0.007 0.245 0.149 0.079 0.078 24 5.082

192 0.279 0.648 0.168 0.006 0.272 0.171 0.180 0.113 36 4.141
336 0.321 2.304 0.174 0.006 0.288 0.249 0.189 0.176 48 4.554
720 0.532 2.378 0.221 0.007 0.307 0.219 0.378 0.232 60 5.003

LogTrans⋄
96 0.288 0.237 0.226 0.317 0.283 0.217 0.049 0.075 24 3.607

192 0.432 0.738 0.314 0.408 0.234 0.281 0.157 0.129 36 2.407
336 0.430 2.018 0.387 0.453 0.386 0.293 0.289 0.154 48 3.106
720 0.491 2.405 0.437 0.491 0.475 0.218 0.430 0.160 60 3.698

Reformer⋄
96 0.275 0.298 0.313 0.012 0.532 1.411 0.296 0.076 24 3.838

192 0.304 0.777 0.386 0.010 0.568 5.658 0.429 0.132 36 2.934
336 0.370 1.833 0.423 0.013 0.635 4.777 0.585 0.160 48 3.755
720 0.460 1.203 0.378 0.011 0.762 2.042 0.782 0.168 60 4.162

LSTMa

96 0.953 1.327 3.909 0.006 0.589 0.607 0.618 0.786 24 2.056
192 0.927 2.628 3.529 0.013 1.023 1.035 1.033 1.053 36 2.757
336 1.212 2.785 3.146 0.010 1.328 1.347 1.482 1.166 48 3.104
720 1.511 3.094 3.152 0.013 1.697 1.463 1.701 1.406 60 3.124

DLinear⋄
96 0.372 0.099 0.305 0.005 0.062 0.129 0.034 0.372 24 1.144

192 0.352 0.203 0.256 0.005 0.080 0.183 0.065 0.352 36 1.161
336 0.380 0.343 0.251 0.006 0.104 0.232 0.078 0.380 48 1.304
720 0.422 0.827 0.297 0.007 0.175 0.318 0.104 0.422 60 1.888

DeepTIMe

96 0.382 0.086 0.298 0.004 0.060 0.131 0.034 0.073 24 0.931
192 0.363 0.175 0.246 0.001 0.084 0.187 0.051 0.106 36 0.973
336 0.389 0.295 0.237 0.002 0.109 0.236 0.073 0.139 48 1.105
720 0.438 0.658 0.274 0.002 0.277 0.347 0.114 0.191 60 1.221

ARIMA

96 1.343 0.112 1.140 0.003 0.093 0.355 0.083 2.238 24 2.107
192 1.523 0.304 1.389 0.011 0.207 0.830 0.272 7.871 36 2.815
336 2.108 0.736 1.577 0.036 0.629 2.273 0.994 23.62 48 4.043
720 4.699 1.871 1.748 0.316 1.142 8.880 9.496 16.09 60 5.520

N-BEATS

96 0.350 0.156 0.162 0.003 0.108 0.135 0.043 0.070 24 1.893
192 0.380 0.669 0.165 0.003 0.248 0.166 0.214 0.120 36 1.231
336 0.401 0.611 0.166 0.004 0.134 0.245 0.273 0.165 48 1.395
720 0.489 1.111 0.204 0.005 0.243 0.319 0.153 0.207 60 1.975

Repeat-C⋄

96 1.639 0.088 3.628 0.001 0.069 0.296 0.033 0.228 24 1.487
192 1.650 0.189 3.607 0.002 0.092 0.337 0.049 0.257 36 1.325
336 1.746 0.372 3.596 0.002 0.114 0.390 0.065 0.287 48 1.283
720 1.824 1.009 3.551 0.002 0.129 0.437 0.089 0.332 60 1.339

4.2 ABLATION STUDIES

4.2.1 MEMORY ATTENTION SEQUENCE LENGTH T ′

In stage I, the encoder encodes a length-T raw time series to a length-T ′ memory attention sequence.
Table 3 shows the MSE on the Electricity and Exchange with varying T ′ (T = 96, H = 96). As
can be seen, for univariate datasets, T ′ = 4 shows the best result, while for multivariate datasets,
T = 32 shows the best result. When T ′ is large, stage I needs to represent longer input sequences and
stage II needs to predict longer output sequences, making both harder to learn and the performance
degrades. On the other hand, when T ′ is too small, the attention sequence may not be representative

8



Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200

1.5

1.0

0.5

0.0

0.5

1.0
History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

Figure 2: Example forecasting result on univariate Electricity.

enough to represent the input time series segment (as in Multivariate Electricity). As a compromise,
we set T/T ′ = 12 for all the datasets.

Table 3: MSE with T ′ on the Electricity and
Exchange (with T = 96, H = 96).

T ′ Univariate
Electricity

Univariate
Exchange

Multivariate
Electricity

Multivariate
Exchange

2 0.176 0.022 0.185 0.036
4 0.170 0.017 0.171 0.036
8 0.177 0.019 0.156 0.034

16 0.194 0.019 0.155 0.035
24 0.217 0.019 0.153 0.034
32 0.212 0.021 0.135 0.033
48 0.218 0.022 0.136 0.035
96 0.230 0.023 0.140 0.035

Table 4: LSTM versus Transformer MSE on Elec-
tricity and Exchange.

H
Univariate
Electricity

Univariate
Exchange

Multivariate
Electricity

Multivariate
Exchange

LSTM

96 0.177 0.019 0.156 0.034
192 0.252 0.044 0.165 0.049
336 0.260 0.069 0.168 0.073
720 0.286 0.262 0.179 0.135

Transformer

96 0.809 0.048 0.796 0.068
192 0.827 0.080 0.804 0.090
336 0.852 0.109 0.809 0.131
720 0.864 0.386 0.821 0.256

4.2.2 SIZE OF MEMORY BANK

2 4 8 16 32 64
Memory size m

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

H = 96
H = 192
H = 336
H = 720

Figure 3: MSE with memory size
m on the univariate Electricity.

Figure 3 shows the MSE with varying memory size m on the
univariate Electricity. As can be seen, when the memory size
is too small (equal to 2), the memory bank cannot store all
local patterns, and so the performance is worse. On the other
hand, when the memory is sufficiently large, further increasing
the memory size brings no additional improvement to perfor-
mance.

4.2.3 TRANSFORMER VERSUS LSTM

Table 4 compares the use of LSTM versus transformer as the
stage II predictor on the univariate Electricity and Exchange
datasets (with T = 96). As can be seen, LSTM outperforms
the transformer. It may be because transformers are more ap-
propriate when the input sequence is long, while here, we have
compressed the input time series to shorter attention sequences
of length T ′ +H ′.

5 CONCLUSION

In this paper, we proposed a novel long-range time series forecasting model called Memory
Attention for Time-Series forecasting (MATS). It uses a memory bank to extract abundant short-
term temporal patterns, and represents an input time series as a short sequence of memory atten-
tions. The use of attention allows a flexible representation, and its shorter sequence length enables
the model to learn long-term dependencies more easily. Extensive experiments demonstrate that
MATS outperforms a variety of recent SOTA methods almost all the time.

9



Under review as a conference paper at ICLR 2023

REFERENCES

O. Anderson. Time-Series. 2nd edn., 1976.

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align and
Translate. In International Conference on Learning Representations, 2015.

S. Bai, J. Kolter, and V. Koltun. An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling. Preprint arXiv:1803.01271, 2018.

A. Borovykh, S. Bohte, and C. Oosterlee. Conditional Time Series Forecasting with Convolutional
Neural Networks. Stat, 2017.

G. Box and G. Jenkins. Some Recent Advances in Forecasting and Control. Journal of the Royal
Statistical Society, 1968.

G. Box and D. Pierce. Distribution of Residual Autocorrelations in Autoregressive-integrated Mov-
ing Average Time Series Models. Journal of the American statistical Association, 1970.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language Models are Few-shot Learners. In Advances in Neural
Information Processing Systems, 2020.

C. Deb, F. Zhang, J. Yang, S. Lee, and K. Shah. A Review on Time Series Forecasting Techniques
for Building Energy Consumption. Renewable and Sustainable Energy Reviews, 2017.

S. Elsayed, D. Thyssens, A. Rashed, H. Jomaa, and L. Schmidt-Thieme. Do We Really Need Deep
Learning Models for Time Series Forecasting? Preprint arXiv:2101.02118, 2021.

P. Esser, R. Rombach, and B. Ommer. Taming Transformers for High-Resolution Image Synthesis.
In Computer Vision and Pattern Recognition, 2021.

J. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics,
2001.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative Adversarial Nets. In Advances in Neural information processing systems,
2014.

S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural computation, 1997.

J. Kenton and L. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In NAACL-HLT, 2019.

D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International Conference
on Learning Representations, 2015.

N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The Efficient Transformer. In International
Conference on Learning Representations, 2020.

G. Lai, W. Chang, Y. Yang, and H. Liu. Modeling Long- and Short-Term Temporal Patterns with
Deep Neural Networks. In International ACM SIGIR Conference on Research & Development in
Information Retrieval, 2018.

S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y. Wang, and X. Yan. Enhancing the Locality and
Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. In Advances in
Neural Information Processing Systems, 2019.

M. Liu, A. Zeng, Z. Xu, Q. Lai, and Q. Xu. Time Series Is A Special Sequence: Forecasting With
Sample Convolution and Interaction. Preprint arXiv:2106.09305, 2021a.

S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. Liu, and S. Dustdar. Pyraformer: Low-Complexity Pyramidal
Attention for Long-Range Time Series Modeling and Forecasting. In International Conference
on Learning Representations, 2021b.

10



Under review as a conference paper at ICLR 2023

I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. In International Conference
on Learning Representations, 2018.

D. Maddix, Y. Wang, and A. Smola. Deep Factors with Gaussian Processes for Forecasting. Preprint
arXiv:1812.00098, 2018.

Y. Matsubara, Y. Sakurai, W. Van Panhuis, and C. Faloutsos. FUNNEL: Automatic Mining of
Spatially Coevolving Epidemics. In ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2014.

B. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio. N-BEATS: Neural basis expansion analysis
for interpretable time series forecasting. In International Conference on Learning Representa-
tions, 2019.

S. Papadimitriou and P. Yu. Optimal Multi-scale Patterns in Time Series Streams. In ACM SIGMOD
International Conference on Management of Data, 2006.

Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. Cottrell. A Dual-stage Attention-based Re-
current Neural Network for Time Series Prediction. In International Joint Conference on Artificial
Intelligence, 2017.

S. Rangapuram, M. W Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski. Deep State
Space Models for Time Series Forecasting. In Advances in Neural Information Processing Sys-
tems, 2018.

D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. DeepAR: Probabilistic Forecasting with
Autoregressive Recurrent Networks. International Journal of Forecasting, 2020.

R. Sen, H. Yu, and I. Dhillon. Think Globally, Act Locally: A Deep Neural Network Approach
to High-dimensional Time Series Forecasting. In Advances in Neural Information Processing
Systems, 2019.

S. Shih, F. Sun, and H. Lee. Temporal Pattern Attention for Multivariate Time Series Forecasting.
Machine Learning, 2019.

H. Song, D. Rajan, J. Thiagarajan, and A. Spanias. Attend and Diagnose: Clinical Time Series
Analysis Using Attention Models. In AAAI conference on Artificial Intelligence, 2018.

Aaron Van D., O. Vinyals, et al. Neural Discrete Representation Learning. In Advances in Neural
Information Processing Systems, 2017.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. In ISCA Speech
Synthesis Workshop, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention Is All You Need. In Advances in Neural Information Processing Systems, 2017.

R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka. A Multi-horizon Quantile Recurrent
Forecaster. Preprint arXiv:1711.11053, 2017.

J. Weston, S. Chopra, and A. Bordes. Memory Networks. In International Conference on Learning
Representations, 2015.

G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi. DeepTIMe: Deep Time-Index Meta-Learning for
Non-Stationary Time-Series Forecasting. Preprint arXiv:2207.06046, 2022.

H. Wu, J. Xu, J. Wang, and M. Long. Autoformer: Decomposition Transformers with Auto-
Correlation for Long-Term Series Forecasting. In Advances in Neural Information Processing
Systems, 2021.

S. Wu, X. Xiao, Q. Ding, P. Zhao, Y. Wei, and J. Huang. Adversarial Sparse Transformer for Time
Series Forecasting. In Advances in Neural Information Processing Systems, 2020.

11



Under review as a conference paper at ICLR 2023

R. Yu, S. Zheng, A. Anandkumar, and Y. Yue. Long-term Forecasting Using Tensor-train RNNs.
Arxiv, 2017.

M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional Networks. In Computer Society
Conference on computer vision and pattern recognition, 2010.

A. Zeng, M. Chen, L. Zhang, and Q. Xu. Are Transformers Effective for Time Series Forecasting?
Preprint arXiv:2205.13504, 2022.

H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang. Informer: Beyond Effi-
cient Transformer for Long Sequence Time-Series Forecasting. In AAAI Conference on Artificial
Intelligence, 2021.

T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin. FEDformer: Frequency Enhanced Decom-
posed Transformer for Long-term Series Forecasting. In International Conference on Machine
Learning, 2022.

Y. Zhu and D. Shasha. Statstream: Statistical Monitoring of Thousands of Data Streams in Real
Time. In International Conference on Very Large Databases, 2002.

12



Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 DATASETS SUMMATION

Table 5 summarized the datasets used in the experiments.

Table 5: Summary of the datasets.
#variates #timesteps

Electricity 321 26,304
Exchange 8 7,588

Traffic 862 17,544
Weather 21 52,696

ETTh1, ETTh2 7 17,420
ETTm1, ETTm2 7 69,680

ILI 7 966

A.2 DETAILED EXPERIMENT SETUP

Table 6 shows the detailed training setup of MATS. λ is calculated as in VQGAN. For all datasets,
we use the same encoder, decoder and discriminator architecture. Table 7 shows the architecture of
the encoder and the discriminator. Table 8 shows the architecture of the decoder. C in the two tables
denotes the number of variates and differs between different datasets. The transformer variant uses
a 2-layer, 8-head transformer and each head’s hidden dimension is 128.

Table 6: Detailed hyperparameters.

Dataset Univariate/
Multivariate

#Epoch
of Stage I

Learning Rate
of Stage I

#Epoch
of Stage II

Learning Rate
of Stage II α

Electricity Multivariate 1,000 1× 10−4 500 1× 10−4 1.0
Univariate 1,000 1× 10−4 500 1× 10−4 1.0

Exchange Multivariate 1,000 1× 10−4 500 1× 10−4 1.0
Univariate 1,000 1× 10−4 500 1× 10−4 1.0

Traffic Multivariate 1,000 1× 10−4 200 1× 10−4 1.0
Univariate 1,000 1× 10−4 200 1× 10−4 1.0

Weather Multivariate 1,000 1× 10−4 100 1× 10−4 1.0
Univariate 1,000 1× 10−4 100 1× 10−4 1.0

ETTm1 Multivariate 1,000 1× 10−4 500 1× 10−4 1.0
Univariate 1,000 1× 10−4 500 1× 10−4 1.0

ETTm2 Multivariate 1,000 1× 10−4 100 1× 10−4 1.0
Univariate 1,000 1× 10−4 100 1× 10−4 1.0

ETTh1 Multivariate 1,000 1× 10−4 500 1× 10−4 1.0
Univariate 1,000 1× 10−4 500 1× 10−4 1.0

ETTh2 Multivariate 1,000 1× 10−4 100 1× 10−4 1.0
Univariate 1,000 1× 10−4 100 1× 10−4 1.0

ILI Multivariate 1,000 1× 10−4 500 1× 10−3 1.0
Univariate 1,000 1× 10−4 1,000 1× 10−3 1.0

13



Under review as a conference paper at ICLR 2023

Table 7: Architecture of Encode and Discriminator.
Layer Operator Parameters

1 Convolution in channel=C, out channel=128, kernel size=4, stride=2, padding=1
2 Tanh -
3 Dropout dropout rate=0.1

4 Convolution in channel=128, out channel=64, kernel size=4, stride=2, padding=1
5 Tanh -
6 Dropout dropout rate=0.1

7 Convolution in channel=64, out channel=64, kernel size=5, stride=3, padding=1
8 Tanh -

Table 8: Architecture of Decoder.
Layer Operator Parameters

1 DeConvolution in channel=64, out channel=64, kernel size=5, stride=3, padding=1
2 Tanh -
3 Dropout dropout rate=0.1

4 DeConvolution in channel=64, out channel=128, kernel size=4, stride=2, padding=1
5 Tanh -
6 Dropout dropout rate=0.1

7 DeConvolution in channel=128, out channel=C, kernel size=4, stride=2, padding=1

A.3 ADDITIONAL EXPERIMENT RESULTS

This section further provide experiment results on nine benchmark datasets in term of MAE. Table 9
and Table 10 show the results on multivariate and univariate benchmarks respectively. Baselines
without superscript ⋄ are from Wu et al. (2021); Zhou et al. (2022); Zeng et al. (2022).

A.4 ABLATION ON DISCRIMINATOR

We also analyze the performance grain from the discriminator D . Table 11 shows that discriminator
D can improve the performance of MATS in many cases, especially in very long time prediction
(H = 720) on complex dataset (univariate and multivariate Electricity).

A.5 ABLATION ON MEMORY SIZE FOR MORE DATASETS

We provide additional ablation studies on memory size for univariate Exchange and multivariate
Exchange. We can observe the same phenomenon as Section 4.2.2 from Figure 4.

B VISUALIZATION

B.1 VISUALIZATION ON MORE TEST SAMPLES

In this section, we supply more forecasting result on univariate Electricity. We totally pick 20
samples for every 160 time steps. All visualization results are shown in Figure 5 and Figure 6.
Among those examples, we can observe that i) in Figure 5(a), Figure 5(b), Figure 5(e), Figure 5(f),
Figure 6(b), Figure 6(f), Figure 6(g), Figure 6(h), and Figure 6(i) MATS performs good prediction
results and predicts curves very close to the ground truth curves; ii) in Figure 5(c), Figure 5(d),
Figure 5(f), Figure 5(h), Figure 5(j), Figure 6(c), Figure 6(d) Figure 6(e), and Figure 6(j), MATS
cannot fit very close to the baseline but performs similarly to baselines; iii) Figure 5(g), Figure 5(i)
shows some fail cases that shows larger margins to ground truth curves compared to baselines.

B.2 VISUALIZATION ON TOY DATASET

14



Under review as a conference paper at ICLR 2023

2 4 8 16 32 64
Memory size m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

H = 96
H = 192
H = 336
H = 720

(a) MSE with memory size m on univariate Ex-
change.

2 4 8 16 32 64
Memory size m

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

H = 96
H = 192
H = 336
H = 720

(b) MSE with memory size m on multivariate Ex-
change.

Figure 4: MSE with memory size m on Exchange.

The memory bank M and the representation of time series as shorter sequences of memory atten-
tions are keys to MATS. To figure out how they represent a time series, we first add in Appendix B.2
an illustration with a synthetic univariate time series: xt = sin(0.08(t−1)+π/2)+0.6 sin(0.2(t−
1) + π), where t = 1, . . . , 10240. To reduce redundancy of the memory units, the memory size M
is set to 4.

The training set X has N length-96 time series segments. After Stage I training, we compute the
average memory attention value as follows. Each of the N training time series x is fed through the
encoder and memory bank to obtain {M ◦ E(x)}x∈X , where each M ◦ E(x) ∈ [0, 1]M×T ′

(and
T ′ = 8). This is then averaged over the time dimension to obtain c̄ = [c̄1, c̄2, . . . , c̄M ] ∈ [0, 1]M ,
where c̄i =

1
NT ′

∑T ′

t=1

∑
x∈X [M◦ E(x)]t,i.

We then compute the average memory attention for each memory unit i as Ci = [ci1, . . . , c
i
T ′ ] ∈

[0, 1]M×T ′
, where cit,i = c̄i and cit,j = 0 for j ̸= i. This is then fed to decoder D (using Equation 2).

The decoder outputs are shown in Figure 7(a). As can be seen, they all represent different local
patterns.

To further study how the memory units jointly represent the time series, we feed in the first training
sample and obtain the memory attention sequence C = [c1, . . . , cT ′ ] ∈ [0, 1]M×T ′

using Equa-
tion 1. For each column vector ct ∈ [0, 1]M of C (i.e. the memory attention), we keep only its
top-k values, and set the remaining entries to zero. Let the resultant memory attention matrix be
C(k) = [c

(k)
1 , . . . , c

(k)
T ′ ]. Setting k = 1, 2, 3, 4, we then feed them into the decoder and obtain the

top1, top2, top3, top4 outputs using Equation 2. Results are shown in Figure 7(b) in this updated
version. We can observe that i) the top1 curve is around the mean of the time series; ii) the top2
curve has similar shape to the ground truth (i.e., the input time series), which implies that using two
memory units can already roughly represent its shape; iii) the top3 and top4 curves are even more
refined, providing more details of the time series.

15



Under review as a conference paper at ICLR 2023

Table 9: MAE forecasting results on multivariate time series. Results of baselines marked with
superscript ⋄ are copied from Wu et al. (2021); Zhou et al. (2022); Zeng et al. (2022). The best
results are in bold, and the second best are underlined.

Datasets Electricity Exchange Traffic Weather ETTh1 ETTh2 ETTm1 ETTm2 ILI

Methods H MAE MAE MAE MAE MAE MAE MAE MAE H MAE

MATS

96 0.270 0.128 0.307 0.161 0.382 0.319 0.289 0.223 24 0.727
192 0.278 0.162 0.318 0.197 0.409 0.333 0.364 0.245 36 0.844
336 0.284 0.203 0.320 0.218 0.422 0.363 0.388 0.271 48 1.020
720 0.296 0.285 0.337 0.254 0.438 0.391 0.407 0.320 60 1.012

VQLSTM

96 0.291 0.146 0.339 0.166 0.434 0.315 0.377 0.221 24 0.911
192 0.293 0.184 0.341 0.211 0.456 0.346 0.415 0.250 36 0.899
336 0.296 0.242 0.344 0.227 0.474 0.389 0.420 0.283 48 0.966
720 0.307 0.449 0.353 0.279 0.485 0.471 0.458 0.345 60 1.122

FEDFormer⋄
96 0.308 0.278 0.366 0.296 0.419 0.388 0.419 0.287 24 1.260

192 0.315 0.380 0.373 0.336 0.448 0.439 0.441 0.328 36 1.080
336 0.329 0.500 0.383 0.380 0.465 0.487 0.459 0.366 48 1.078
720 0.355 0.841 0.382 0.428 0.507 0.474 0.490 0.415 60 1.157

Autoformer⋄
96 0.317 0.323 0.388 0.336 0.459 0.397 0.475 0.339 24 1.287

192 0.334 0.369 0.382 0.367 0.482 0.452 0.496 0.340 36 1.148
336 0.338 0.524 0.337 0.395 0.496 0.486 0.537 0.372 48 1.085
720 0.361 0.941 0.408 0.428 0.512 0.511 0.561 0.432 60 1.125

Informer⋄
96 0.368 0.752 0.391 0.384 0.713 1.525 0.571 0.453 24 1.677

192 0.386 0.895 0.379 0.544 0.792 1.931 0.669 0.563 36 1.467
336 0.394 1.036 0.420 0.523 0.809 1.835 0.871 0.887 48 1.469
720 0.439 1.310 0.472 0.741 0.865 1.625 0.823 1.338 60 1.564

Pyraformer⋄
96 0.449 1.105 0.468 0.556 0.612 0.597 0.510 0.507 24 2.012

192 0.443 1.151 0.467 0.624 0.681 0.683 0.537 0.673 36 2.031
336 0.443 1.172 0.469 0.753 0.738 0.747 0.655 0.845 48 2.057
720 0.445 1.206 0.473 0.934 0.782 0.783 0.724 1.451 60 2.100

LogTrans⋄
96 0.357 0.812 0.384 0.490 0.740 1.197 0.546 0.642 24 1.444

192 0.368 0.851 0.390 0.589 0.824 1.635 0.700 0.757 36 1.467
336 0.380 1.081 0.408 0.652 0.932 1.604 0.832 0.872 48 1.468
720 0.376 1.127 0.396 0.675 0.852 1.540 0.820 1.328 60 1.560

Reformer⋄
96 0.402 0.829 0.423 0.596 0.728 1.317 0.528 0.619 24 1.382

192 0.433 0.906 0.420 0.638 0.766 2.979 0.592 0.827 36 1.448
336 0.433 0.976 0.420 0.596 0.835 2.769 0.721 0.972 48 1.465
720 0.420 1.016 0.423 0.792 0.889 1.697 0.841 1.242 60 1.483

LSTMa

96 0.439 0.726 1.021 0.377 0.662 1.141 0.749 0.630 24 1.385
192 0.459 0.922 0.968 0.493 0.753 1.026 0.777 1.073 36 1.435
336 0.638 1.053 0.886 0.568 0.819 1.221 0.805 0.742 48 1.441
720 0.870 1.227 0.868 0.562 0.893 1.286 0.800 1.239 60 1.464

LSTM⋄

96 0.437 1.049 0.453 0.406 0.675 1.221 0.939 1.073 24 1.734
192 0.473 1.179 0.453 0.435 0.867 1.674 0.913 1.112 36 1.845
336 0.473 1.231 0.455 0.454 0.994 1.549 1.124 1.238 48 1.857
720 0.814 1.427 0.805 0.520 1.322 1.788 1.555 1.287 60 1.879

TCN

96 0.813 1.432 0.784 0.589 0.788 1.438 0.677 1.330 24 1.830
192 0.821 1.444 0.794 0.600 0.765 1.440 0.690 1.339 36 1.879
336 0.824 1.459 0.799 0.608 0.782 1.448 0.707 1.348 48 1.892
720 0.784 1.458 0.804 0.610 0.794 1.481 0.733 1.354 60 1.918

LSTNet

96 0.645 1.058 0.685 0.587 0.960 1.687 1.215 1.365 24 1.770
192 0.676 1.028 0.706 0.565 1.214 2.513 1.542 1.369 36 1.668
336 0.727 1.031 0.730 0.587 1.369 2.591 2.076 1.369 48 1.787
720 0.811 1.243 0.805 0.599 1.380 3.709 2.941 1.368 60 1.720

DLinear⋄
96 0.276 0.197 0.396 0.255 0.400 0.352 0.372 0.273 24 1.040

192 0.280 0.292 0.370 0.296 0.432 0.352 0.389 0.325 36 1.088
336 0.296 0.391 0.373 0.335 0.459 0.490 0.413 0.367 48 1.086
720 0.329 0.574 0.394 0.381 0.516 0.538 0.453 0.421 60 1.146

DeepTIMe

96 0.280 0.196 0.397 0.257 0.406 0.380 0.368 0.282 24 1.017
192 0.280 0.286 0.369 0.297 0.438 0.444 0.391 0.337 36 0.991
336 0.297 0.372 0.371 0.336 0.462 0.486 0.413 0.380 48 1.101
720 0.331 0.630 0.397 0.392 0.516 0.611 0.459 0.481 60 1.190

Repeat-C⋄

96 0.946 0.196 1.079 0.254 0.713 0.422 0.665 0.328 24 1.701
192 0.950 0.289 1.087 0.292 0.733 0.473 0.690 0.371 36 1.884
336 0.961 0.396 1.095 0.338 0.744 0.508 0.707 0.410 48 1.798
720 0.975 0.681 1.097 0.394 0.756 0.517 0.729 0.465 60 1.677

16



Under review as a conference paper at ICLR 2023

Table 10: MAE forecasting results on univariate time series. Results of baselines marked with
superscript ⋄ are copied from Wu et al. (2021); Zhou et al. (2022); Zeng et al. (2022). The best
results are in bold, and the second best are underlined.

Datasets Electricity Exchange Traffic Weather ETTh1 ETTh2 ETTm1 ETTm2 ILI

Methods H MAE MAE MAE MAE MAE MAE MAE MAE H MAE

MATS

96 0.306 0.106 0.230 0.012 0.123 0.247 0.074 0.094 24 0.527
192 0.359 0.165 0.236 0.018 0.144 0.267 0.093 0.143 36 0.568
336 0.365 0.212 0.248 0.020 0.166 0.314 0.112 0.180 48 0.590
720 0.388 0.398 0.277 0.023 0.184 0.360 0.139 0.215 60 0.588

VQLSTM

96 0.435 0.111 0.350 0.014 0.134 0.227 0.082 0.122 24 0.712
192 0.451 0.186 0.341 0.021 0.159 0.271 0.103 0.159 36 0.791
336 0.475 0.276 0.335 0.024 0.171 0.337 0.124 0.197 48 0.848
720 0.500 0.429 0.342 0.027 0.199 0.362 0.162 0.244 60 0.772

FEDFormer⋄
96 0.370 0.304 0.312 0.062 0.215 0.271 0.140 0.198 24 0.627

192 0.386 0.420 0.312 0.062 0.245 0.330 0.186 0.245 36 0.617
336 0.431 0.555 0.323 0.050 0.270 0.378 0.231 0.279 48 0.697
720 0.484 0.879 0.344 0.059 0.299 0.420 0.250 0.325 60 0.774

Autoformer⋄
96 0.438 0.387 0.346 0.081 0.206 0.306 0.183 0.189 24 0.732

192 0.428 0.369 0.370 0.067 0.262 0.351 0.216 0.256 36 0.650
336 0.470 0.524 0.371 0.062 0.258 0.389 0.218 0.305 48 0.752
720 0.581 0.867 0.372 0.070 0.283 0.409 0.267 0.335 60 0.797

Informer⋄
96 0.367 0.944 0.353 0.044 0.377 0.373 0.277 0.225 24 2.050

192 0.388 0.924 0.376 0.040 0.395 0.387 0.310 0.283 36 1.916
336 0.423 1.296 0.387 0.049 0.381 0.401 0.591 0.336 48 1.846
720 0.599 0.953 0.436 0.042 0.355 0.439 0.586 0.435 60 2.057

Pyraformer⋄
96 0.381 0.368 0.254 0.068 0.424 0.303 0.224 0.208 24 1.988

192 0.389 0.663 0.256 0.063 0.440 0.329 0.347 0.261 36 1.785
336 0.416 1.297 0.264 0.065 0.461 0.394 0.359 0.325 48 1.885
720 0.551 1.328 0.319 0.068 0.485 0.376 0.533 0.372 60 1.992

LogTrans⋄
96 0.393 0.377 0.004 0.052 0.468 0.379 0.171 0.208 24 1.662

192 0.483 0.619 0.006 0.060 0.409 0.429 0.317 0.275 36 1.363
336 0.483 1.070 0.006 0.054 0.546 0.437 0.459 0.302 48 1.575
720 0.531 1.175 0.007 0.059 0.628 0.387 0.579 0.321 60 1.733

Reformer⋄
96 0.379 0.444 0.383 0.087 0.569 0.838 0.355 0.214 24 0.083

192 0.402 0.719 0.453 0.044 0.575 1.671 0.474 0.290 36 1.520
336 0.448 1.128 0.468 0.100 0.589 1.582 0.583 0.312 48 1.749
720 0.511 0.956 0.433 1.720 0.666 1.039 0.730 0.335 60 1.847

LSTMa

96 0.731 0.879 1.640 0.068 0.601 0.609 0.597 0.720 24 1.229
192 0.734 1.347 1.531 0.104 0.878 0.846 0.863 0.863 36 1.443
336 0.898 1.435 1.442 0.090 1.056 0.998 1.114 0.931 48 1.524
720 0.966 1.570 1.438 0.106 1.236 1.070 1.234 1.044 60 1.511

DLinear⋄
96 0.438 0.241 0.398 0.057 0.184 0.273 0.136 0.438 24 0.920

192 0.423 0.358 0.346 0.061 0.212 0.328 0.194 0.423 36 0.939
336 0.443 0.465 0.342 0.065 0.249 0.379 0.210 0.443 48 1.013
720 0.481 0.700 0.379 0.069 0.344 0.461 0.242 0.481 60 1.199

DeepTIMe

96 0.444 0.222 0.393 0.048 0.182 0.277 0.136 0.196 24 0.798
192 0.431 0.332 0.332 0.028 0.216 0.334 0.167 0.243 36 0.859
336 0.449 0.440 0.324 0.031 0.257 0.382 0.200 0.284 48 0.943
720 0.491 0.633 0.362 0.032 0.443 0.482 0.256 0.337 60 0.983

N-BEATS

96 0.409 0.299 0.243 0.039 0.257 0.286 0.159 0.191 24 1.116
192 0.431 0.665 0.249 0.043 0.419 0.320 0.378 0.260 36 0.949
336 0.450 0.605 0.254 0.045 0.285 0.390 0.433 0.315 48 1.029
720 0.501 0.860 0.295 0.053 0.419 0.458 0.317 0.359 60 1.251

ARIMA

96 0.887 0.245 0.863 0.035 0.215 0.384 0.176 0.857 24 1.015
192 0.926 0.404 0.975 0.052 0.270 0.467 0.258 1.535 36 1.047
336 1.015 0.598 1.053 0.078 0.340 0.579 0.375 2.554 48 1.100
720 1.227 0.935 1.115 0.155 0.396 0.777 0.689 5.312 60 1.205

Repeat-C⋄

96 0.997 0.221 1.532 0.025 0.203 0.423 0.136 0.354 24 0.907
192 0.998 0.435 1.527 0.028 0.236 0.462 0.169 0.387 36 0.909
336 1.029 0.468 1.525 0.031 0.266 0.502 0.196 0.414 48 0.921
720 1.058 0.764 1.515 0.036 0.284 0.532 0.232 0.457 60 0.959

17



Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200

1.5

1.0

0.5

0.0

0.5

1.0
History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(a) 1

0 25 50 75 100 125 150 175 200
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(b) 161

0 25 50 75 100 125 150 175 200
2

1

0

1

2

3

History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(c) 321

0 25 50 75 100 125 150 175 200

1

0

1

2

3

4
History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(d) 481

0 25 50 75 100 125 150 175 200

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(e) 641

0 25 50 75 100 125 150 175 200

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(f) 801

0 25 50 75 100 125 150 175 200

1

0

1

2

History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(g) 961

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(h) 1121

0 25 50 75 100 125 150 175 200

1

0

1

2

3

History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(i) 1281

0 25 50 75 100 125 150 175 200

1

0

1

2

3
History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(j) 1441

Figure 5: First 10 test samples visualization on univariate Electricity.

Table 11: MSE with or without discriminator on the univariate Electricity and Exchange.

H
Univariate
Electricity

Univariate
Exchange

Multivariate
Electricity

Multivariate
Exchange

With
Discriminator

96 0.177 0.019 0.156 0.034
192 0.252 0.044 0.165 0.049
336 0.260 0.069 0.168 0.073
720 0.286 0.262 0.179 0.135

Without
Discriminator

96 0.185 0.019 0.158 0.034
192 0.243 0.045 0.165 0.048
336 0.277 0.075 0.169 0.073
720 0.311 0.219 0.183 0.126

18



Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200

1

0

1

2

3

History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(a) 1601

0 25 50 75 100 125 150 175 200

1

0

1

2

3
History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(b) 1761

0 25 50 75 100 125 150 175 200
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(c) 1921

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(d) 2081

0 25 50 75 100 125 150 175 200

2

1

0

1

2

3

History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(e) 2241

0 25 50 75 100 125 150 175 200

1

0

1

2

3 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(f) 2401

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(g) 2561

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

1.5

2.0 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(h) 2721

0 25 50 75 100 125 150 175 200
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(i) 2881

0 25 50 75 100 125 150 175 200

1

0

1

2

3 History
FedFormer
DLinear
DeepTIMe
NBeats
Ground Truth
MATS

(j) 3041

Figure 6: Last 10 samples visualization on univariate Electricity.

19



Under review as a conference paper at ICLR 2023

0 20 40 60 80

0.6

0.4

0.2

0.0

0.2

1th memory unit
2th memory unit
3th memory unit
4th memory unit

(a) Decoded results to the 4 memory units of the
toy dataset.

0 20 40 60 80

1.5

1.0

0.5

0.0

0.5

1.0

1.5 ground truth
top1
top2
top3
top4

(b) Decoded results to the topK memory atten-
tions of the toy dataset.

Figure 7: Visualization regarding memory attentions and memory units of the toy dataset.

20


	Introduction
	Related Work
	proposed Model
	Stage i
	Stage ii
	Inference
	Discussion

	Experiments
	Results
	Ablation Studies
	Memory Attention Sequence Length T'
	Size of Memory Bank 
	Transformer versus LSTM


	Conclusion
	Appendix
	Datasets Summation
	Detailed Experiment Setup
	Additional Experiment Results
	Ablation on Discriminator
	Ablation on memory size for more datasets

	Visualization
	Visualization on more test samples
	Visualization on toy dataset


