Under review as a conference paper at ICLR 2026

LLANGUAGE CONFUSION GATE: LANGUAGE-AWARE
DECODING THROUGH MODEL SELF-DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) often experience language confusion, which is the
unintended mixing of languages during text generation. Current solutions to this
problem either necessitate model retraining or cannot differentiate between harm-
ful confusion and acceptable code-switching. This paper introduces the Language
Confusion Gate (LCG), a lightweight, plug-in solution that filters tokens during
decoding without altering the base LLM. The LCG is trained using norm-adjusted
self-distillation to predict appropriate language families and apply masking only
when needed. Our method is based on the findings that language confusion is in-
frequent, correct-language tokens are usually among the top predictions, and out-
put token embedding norms are larger for high-resource languages, which biases
sampling. When evaluated across various models, including Qwen3, GPT-OSS,
Gemma3, Llama3.1, LCG decreases language confusion significantly—often by
an order of magnitude—without negatively impacting task performance.

1 INTRODUCTION

Large language models have made remarkable strides in multilingual understanding and genera-
tion, with state-of-the-art systems like Qwen3 and GPT-5 now supporting over 100 languages and
achieving strong performance on benchmarks such as FLORES-200 (Team et al., [2022)) and XL-
Sum (Hasan et al.} [2021)). These models demonstrate impressive cross-lingual transfer capabilities,
enabling applications ranging from translation to multilingual creative writing. However, despite
their sophistication, even the most advanced LLMs occasionally make seemingly elementary er-
rors—generating text that mixes languages inappropriately. This phenomenon, known as language
confusion (Marchisio et al.| 2024)), manifests when a model outputs tokens from an unintended lan-
guage family (e.g., inserting Chinese characters into an Hebrew sentence), undermining reliability
and user experience. We show three examples of LLMs making these kind of mistakes on left side
of Figure[T]

While recent improvements have reduced confusion rates in some models, the trend of Large Rea-
soning Models seem to reintroduce the problem. As discussed in (Guo et al.| (2025]), DeepSeek-R1
exhibited significant language mixing during training, and applying a language consistency reward
led to measurable performance degradation, indicating a trade-off between language consistency
and reasoning capability. Wang et al.|(2025)) shows that the reasoning capability of LLM degrades
when thinking in low resource languages, which explains why a reward purely based on outcome
correctness encourages language confusion.

Further, our evaluation reveals that language confusion remains widespread, even among leading
commercial systems. For instance, GPT-5-Chat exhibits 0.57% Chinese/Japanese (CJ) character
confusion and 0.67% Latin-script confusion, while Qwen3-235B-Instruct suffers 2.27% CJ and
5.07% Latin confusion. These results confirm that language confusion is far from solved and af-
fects both open-source and proprietary models.

The challenge of mitigating language confusion is the lack of an automatic way of evaluation, rule-
based detectors struggle in distinguishing erroneous mixing from legitimate code-switching, a com-
mon and often necessary linguistic behavior. In many practical scenarios—such as writing English
code with Chinese comments, using technical terms like ReLU or Python in non-English text, or
explaining foreign phrases—the ability to blend languages enhances expressivity and utility. Con-
sequently, simply restricting LLM to output in a single language doesn’t work. Furthermore, the

Under review as a conference paper at ICLR 2026

Translate the following Chinese text into Thai. Only \

provide the translation. Next Token Pred
Chinese: Xt FHiLM T YRR dHE, &E F—HNE X, Token |Prob(%)
— L5 SHIT 100 FLL LRIV TE LHHE, Thai: = = EE Wrong Result:
GPT-5-Chat = 5 o
dusuFaasiinunis T iaivdvesfatiuaastusia = w t 18.36 nimﬂggumma
G bifidrfiomniihunessiu vanisnuduniitain LLM S LM Head dounauaN
Avwasitfianguinnin 100 HilluvasTusios 2 J E 16.21 1A15W AIMEE
gl i 11.13

Translate the following English text into Korean. Only\ A u 8.69
provide the translation. nij {l”“‘“'a

downdwer e | L e

English: One of the most noteworthy recent examples
of this was the North Atlantic campaign of WWII. The 1AW A7) g
Americans were trying to move men and materials
across the Atlantic Ocean to help Britain. Korean:
Qwen3-235B-2507-Instruct

Z| 29| ==& et Atell 3 StLi= K2R AIAICHA
SAFERAM Y ZHEO0IAC DIZE =S XIAGHII

SIS LM DIz e 021D 2R 2 0I5 A1 Next Token Pred

With Intervention

St UACEH Allowed Token |Prob(%)
Languages 2] 18.36

Translate the following English text into Hebrew. Only\ Language " Correcs }3:3§u|t:

N X . Chinese |No] 18.36 nsaulfiinsa
provide the translation. Confusion N &%
English: They have feet with scales and claws, they lay Gate Lt o iﬂ;‘;fﬂ:ﬂ;w
eggs, and they walk on their two back legs like a Symbol |No
T-Rex. Hebrew: LowRes |Yes u 8.69
Claude-4-Sonnet

07221 o wr with Dnr 0¥ 0'7'on DN, 0NN DWRYR

00 10D DAY NIMINKD D200 'MW 7V 071N,

Figure 1: We show examples of language confusion in three LLMs on the left, and the overall
architecture of our intervention mechanism on the right.

high number of supported languages requires us to find a method that can be easily scaled to a large
number of languages.

To address this, we analyze generation behavior at confusion points and make three key obser-
vations: (1) language confusion occurs rarely—suggesting the model generally knows the correct
language; (2) at the moment of confusion, the correct-language token typically ranks within the top-
5 candidates, indicating that LLLM knows the correct answer; and (3) A mechanistic observation that
output layer token embedding norm imbalance makes LLM biased towards high-resource languages.

Leveraging these insights, we propose the Language Confusion Gate (LCG)—a lightweight, plug-
in intervention that dynamically filters inappropriate tokens at decoding time without modifying the
base LLM. LCG consists of a small two-layer MLP trained via self-distillation on the frozen model’s
own top-k/p predictions, with norm adjustment used to debias inclination to high-resource language
tokens. At inference, the gate predicts which language families (Chinese/Japanese, Latin, Symbols,
Low Resource Languages) are permissible at each step, and applies masking only when necessary.

Results show that LCG reduces language confusion by an order of magnitude across multiple mod-
els and tasks. For example, on FLORES-WITH-LATIN benchmark, our method reduces Chinese/-
Japanese confusion from 1.0% to 0.0% and Latin confusion from 4.4% to 0.4% in Qwen3-30B-A3B.

We make three key contributions that build upon our analysis of language confusion in LLMs:
Firstly, we propose the Language Confusion Gate (LCG), an efficient intervention mechanism
that dynamically filters inappropriate tokens during generation without modifying the base LLM.
Second, we introduce norm-adjusted self-distillation, leveraging mechanistic insights about token
embedding norm imbalance to train the gate using the model’s own debiased top-k/p predictions.
Third, we collect and open-source specialized training and evaluation datasets, and evaluate LCG
on open-source models covering diverse architectures and both thinking and no-think modes.

2 RELATED WORKS

Language confusion—the unintended mixing of languages or scripts during text generation—has
emerged as a critical challenge in multilingual large language models (LLMs). |Marchisio et al.
(2024) formalized the concept of language confusion and introduced the Language Confusion
Benchmark (LCB), providing the first standardized evaluation framework for measuring cross-
lingual interference in LLMs. Their analysis revealed that confusion often occurs at specific “con-
fusion points” in the generation process, motivating targeted intervention strategies. They show that

Under review as a conference paper at ICLR 2026

greedy decoding can help reduce language confusion but not eliminate it, at the cost of degraded
LLM performance.

Building on this foundation, [Nie et al.| (2025) conducted mechanistic interpretability analyses to
identify neurons responsible for language switching behavior. They found that suppressing these
critical neurons during inference reduces unwanted language mixing, suggesting that confusion is
localized in the model’s internal representations. Similarly, Ji et al| (2025) focused on Korean-
language setups where Chinese character intrusion was observed, proposing a post-hoc smoothing
method that identifies and suppresses Chinese tokens during decoding. Other approaches have ex-
plored different mitigation strategies.

Li et al.| (2025) took a unique perspective by studying whether language mixing between English
and Chinese could actually benefit reasoning performance. Rather than uniformly suppressing code-
switching, they trained a gating mechanism to predict when mixing helps or harms task performance,
selectively encouraging or discouraging it accordingly. In contrast,|Lee et al.|(2025) proposed train-
ing models to prefer language-consistent responses through Odds Ratio Preference Optimization
(ORPO), aligning model outputs with human preferences for linguistic coherence.

While these works represent important progress, they face limitations in practical deployment:
some require model retraining or fine-tuning, others lack the ability to distinguish legitimate code-
switching (e.g., technical terms or bilingual education contexts) from erroneous confusion. Our
work addresses these gaps by introducing a lightweight, plug-in intervention that operates at confu-
sion points without modifying the base model, while preserving valid multilingual behaviors.

3 CLOSER LOOK INTO LANGUAGE CONFUSION

3.1 CONFUSION POINT

Large language models (LLMs) generate text autoregressively by producing a probability distribu-
tion over the vocabulary at each step. The next token is usually sampled using a hybrid of top-k
and top-p (nucleus) sampling. As demonstrated in Marchisio et al.| (2024) and [Nie et al.[(2025), a
confusion point arises when a token with a language different from the last token appears within
the sampling tokens. We define the token in the different language as confusion token.

To better understand behavior of LLMs at confusion points, we use the FLORES-WITH-LATIN
dataset as described in Section[5.2]to trigger language confusion in Qwen3-8B. We inspect the token
probability distribution of LLM at the confusion point, and we find that the confusion token is the
top-1 token 56.74% of the time, which makes greedy decoding ineffective to prevent language
confusion. Further, we find that language consistent tokens appear within top-3 99.29% of the
time. This suggests that language switching errors are not due to a complete absence of correct-
language candidates in the model’s output distribution, but rather to the model assigning insufficient
probability mass to them relative to competing tokens from the confused language. This observation
motivates a logits based intervention strategy without modifying weights of the model. We can
simply mask tokens in the undesired language families.

3.2 LANGUAGE CONFUSION V.S. NATURAL LANGUAGE MIX

Language mix, or code-switch, has been observed and discussed in both NLP and linguistic area
(Dogruoz et al [2021; Winata et al.,[2023). We show several examples that language mixing in the
context is necessary. 1) the use of English abbreviations or terms like Python, Java, iPhone. 2)
Coding tasks. The user may prompt in Chinese to ask LLM to write code, while most programming
languages are based on English characters. 3) Language study. We show examples of natural code-
switch contexts in Appendix [G] The user may ask the language model to explain phrases in another
language in English. In that case, the ability to use several language in a response should be pre-
served, so simply constrain the LLM to output in single language won’t work. In that case, simply
enforcing a rule-based language consistency constraint won’t work, since we have two objectives:
suppressing unnormal language confusion while maintaining normal code-switch capabilities.

Under review as a conference paper at ICLR 2026

3.3 DOES SOTA COMMERCIAL LLMS SHOW LANGUAGE CONFUSION?

Even state-of-the-art commercial LLMs exhibit non-negligible language confusion, confirming it as
a widespread challenge across both open-source and proprietary models. We evaluate commercial
models using our FLORES-NO-LATIN as described in Section [5.2] (Table [I). The results reveal
that language confusion is widespread—even among state-of-the-art closed models. We are not sure
that if a similar intervention mechanism like Language Confusion Gate has been applied to any
commercial models, but we can observe that all models show non-negligible Latin Confusion with
non-zero CJ Confusion (except Claude-Sonnet-4). We show the full table covering more Commer-
cial LLM confusion rates in Appendix

Table 1: Language Confusion Rates on the FLORES-NO-LATIN Benchmark for Leading
Commercial LLMs. This table displays the percentage of responses containing erroneous Chi-
nese/Japanese (CJ%) and Latin (Latin%) characters, alongside the task-specific BLEU score. These
results highlight that language confusion is a persistent issue across various SOTA models.

Model Cl% Latin% BLEU
GPT-5-Chat 0.57 0.67 10.66
Claude-Sonnet-4 0.00 0.35 21.77
Gemini-2.5-Pro 0.04 0.50 19.11
DeepSeek-v3.1 0.67 1.06 18.11

Qwen3-235B-Instruct 2.27 5.07 15.43

4 METHOD

4.1 LANGUAGE CONFUSION GATE

We propose a lightweight intervention mechanism to address language confusion without modify-
ing the base LLM architecture or requiring model retraining. Our approach introduces Language
Confusion Gate: a two layer MLP that determines language families allowed at each generation
step, then masks inappropriate tokens from the logits during sampling. The language confusion gate
takes the last layer hidden state h; € R? from the last token position as input. It predicts langauge
families allowed for next token. At each generation step, for each new token, the gate predicts the
language families of next token, and mask tokens in banned language. Intervention only happens
what LLM output logits and the gate disagree, since language confusion happens rarely, it doesn’t
affect generation for most of the time.

4.2 TRAINING

Token Classification. To enable the Language Confusion Gate, we classify each token in the
entire vocabulary into one of four mutually exclusive families: Chinese and Japanese (CJ), for
tokens primarily composed of Chinese and Japanese characters; Latin, for tokens representing Latin
scripts; Symbols, for punctuation, numbers, and special characters; and Low Resource Languages
(Low-Res), the category for all other tokens, which are might low resource language tokens.

The classification is performed using a prioritized heuristic. For each token in the vocabulary, we
first attempt to decode it from its byte-pair encoding (BPE) into Unicode characters. If the resulting
characters contain any Chinese or Japanese script, the token is classified as CJ. If not, and the
characters consist only of Latin script and symbols, it is classified as Latin. If a token decodes
exclusively to symbols, it is classified as Symbols. All other tokens that decode to valid characters
from other scripts are categorized as Low-Res.

A known challenge with BPE is that some tokens may represent incomplete Unicode characters. In
these cases, we analyze the partial byte sequence to infer its language family based on Unicode’s
continuous block structure. We discuss in more detail this method in Appendix [A] If the family
cannot be reliably determined, the token is conservatively classified as Symbols. Applying this

Under review as a conference paper at ICLR 2026

methodology to the Qwen3 tokenizer (151,936 total tokens) yields the following distribution: 27,658
ClJ, 94,666 Latin, 10,355 Symbols, and 19,257 Low-Res tokens.

Token Embedding Norm Analysis. We observe that the magnitude of output token embeddings
plays a critical role in language confusion by favoring tokens from high-resource languages.

Language models compute hidden states at each generation step and project them to vocabulary-
sized logits through a linear transformation layer with shape d x |V|, where d is the hidden state
dimension and |V| is the vocabulary size. The model then samples from the top-k logits filtered by
top-p nucleus sampling to select the next token.

The final layer of a language model is usually viewed as a single linear transformation. In this view,
a weight matrix, Wy, € Rémoaer x|V , projects the final hidden state, h, to a vocabulary-sized vector
of logits. This is a standard mechanistic description of the operation, treating the output layer as a
monolithic block that computes scores.

We reframe this operation with a new perspective. Instead of viewing W,,,; as a single matrix, we
interpret it as a collection of individual column vectors, [eq, €1, ..., e‘v|,1], where each vector ¢;
represents the output embedding for a specific token in the vocabulary, we define these as output
token embeddings. Then we can decompose logit; as logit, = h-e; = ||h||-||e;||-cos_sim(h, e;). In
summary, the logit of each token logit, can be viewed as the dot product between the hidden state A
and that token’s embedding e;, and thus be decomposed into its geometric components: magnitude
(norm) and direction (cosine similarity).

Since the norm of the hidden state, ||k||, is constant for all tokens at a given generation step, this
decomposition reveals a critical, often-overlooked factor: the output token embedding norm, ||e;||.
It shows that a token can achieve a high logit simply by having a large embedding norm. We
hypothesize this creates a systemic bias where tokens from high-resource languages develop larger
norms, which potentially causes language confusion.

To investigate the extent of LLM bias toward high-resource languages, we categorize the vocabu-
lary by language family—CJ (Chinese/Japanese), Latin, and Low-Res (low-resource)—as defined
earlier. For each language family, we compute the fraction of tokens whose embedding norms lie
in the top 5% of all token norms in the model’s vocabulary. As shown in Table [2] the results con-
firm a significant imbalance: high-resource languages like Latin and CJ consistently dominate the
high-norm group, while low-resource languages are heavily underrepresented.

Table 2: Disproportionate percentage of high-resource Languages in high-norm token embeddings.

Model Cl% Latin% Low-Res%
Qwen3-8B 10.74 4.61 0.14
Qwen3-30B-A3B 6.52 5.50 0.07
Llama3.1-8B 4.38 5.95 1.34
Gemma3-12B 0.94 5.04 2.40
GPT-0OSS 0.00 7.00 0.00

To investigate whether this norm bias contributes to language confusion, we adjust the logits by the
token embedding norm: logit,,; ; = I}\Lﬁ = ||h|| - cos_sim(h, e;). Norm adjustment removes the
embedding norm bias, allowing tokens to be ranked purely by their cosine similarity with the hidden
state. We show an example in Appendix [C] We can see that the initial highly ranked language
confusion tokens disappear from the top 10 tokens. This shows that norm-adjusted top-k tokens
provides a signal for correct next-token language family, and we can use this signal to train a gate
that predicts language family of next token as discussed below. Note that we do not claim norm bias
fully explains language confusion. Rather, it accounts for a measurable subset of such errors. For
example, it can’t explain language confusion between English and Chinese or between low resource

languages, so it can’t be directly used this as a signal for intervention.

Norm-adjusted self-distillation. Now we propose our full training strategy. Our training strategy
is based on self-distillation, using the LLM’s own logits as a supervisory signal. Since the model cor-

Under review as a conference paper at ICLR 2026

rectly identifies the language family in the vast majority of cases, its output probability distribution
serves as an available signal of possible next token languages.

The gate trained on logits can partially correct its own errors rather than overfitting to them, lever-
aging the robustness of neural networks to small amounts of label noise. Experiments in Section[5.3]
proved this. However, this robustness is limited. Motivated by our analysis of token embedding
norms, we hypothesize that adjusting the logits with the corresponding token embedding norms can
reduce the bias towards high resource language tokens, thus reduces incorrect labels and further
improve performance of the gate. As a result, we propose norm-adjusted self-distillation.

For the logit vector logits € RIV! produced at a given step, we compute norm-adjusted logits,
logits, ;.. by dividing each token’s logit by the norm of its output embedding vector ||e, ||2. This
removes the systemic advantage of high-norm tokens, revealing a cleaner signal about the model’s
intended language.

With these debiased logits, we create multi-label pseudo-targets y; for each generation step ¢. First,
we identify a set of high-confidence candidate tokens, Sk,p(logitsadjust), by applying top-k/top-p
filtering to the norm-adjusted logits. Then, we determine which language families are present in
this candidate set. The pseudo-target for language family 7 is set to 1 if any token from that family
appears in the set, and 0 otherwise. This is formally expressed as: y;; = 1 [Sk,p(logits g,) NF; #

(Z)], where F; is the set of tokens belonging to language family ¢ (as defined in Section .

The gate itself is a two layer MLP that takes the LLM’s final hidden state h; as input and produces
language family logits z; = MLP(h;) € R*. We train the gate to predict the pseudo-targets using
a standard binary cross-entropy (BCE) loss: £ = >, BCE(y; ;,0(2,:)), where o is the sigmoid
function and n is the number of language families. We freeze weights of the LLM during training.

4.3 INTERVENTION RULES

To minimize unintended side effects, we incorporate several intervention rules:

Symbols and Low-Res tokens are never masked. It’s very rare for high-resource language to mix
low-resource languages, so we never mask Low-Res tokens. We never mask symbols since they
don’t cause language confusion.

No intervention if the gate’s prediction is contradicted by high-confidence model output. If
neither of the two high-probability candidate sets—defined by (top-k = 5, top-p = 0.999) or (top-
k = 20, top-p = 0.95)—contains any token from the gate-predicted language family, we refrain
from applying any mask.

Persistence of the previous token’s language. To maintain linguistic coherence, we always allow
the language family of the immediately preceding non-symbol token.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models. Our experiments include both standard (‘“no-think™) and reasoning-focused (“thinking”)
large language models to ensure the LCG is effective across different architectures and capabilities.
For no-think models, we applied our intervention to Qwen3-30B-A3B-Instruct-2507 (Yang et al.,
2025)), Qwen3-8B, Llama 3.1-8B (Dubey et al.,|2024), and Gemma3-12B (Team et al.,[2025). For
thinking models, we evaluated our intervention on Qwen3-30B-A3B-Thinking-2507, Qwen3-8B,
and GPT-OSS-20B (OpenAll 2025). Notably, Qwen3-8B is a hybrid model and was used in both
experimental setups. In experiments, we refer the gate trained with norm-adjusted self-distillation
LCG-adjusted, while the gate trained only with self-distillation without norm-adjustment LCG-
unadjusted.

Training Data for the Gate. We trained the LCG on a composite dataset of approximately 78,000
samples covering over 200 languages to ensure it learns to handle a wide variety of linguistic con-
texts. This same dataset was used to train the gate for both thinking and no-think models. The data
was aggregated from several sources, including the Aya Dataset (Singh et al.,|2024) for diverse top-

Under review as a conference paper at ICLR 2026

ics, the FLORES+ Dataset (NLLB Team et al.,|2024) to generate translation pairs for low-resource
languages, the DeepSeek Distill Dataset (Lightblue KK.|2024) for multilingual reasoning contexts,
and the Alpaca (Taori et al.| [2023) datasets (Chinese & English) to maintain strong performance in
high-resource languages.

5.2 EVALUATION STRATEGY

Our evaluation is designed to confirm that LCG reduces language confusion without degrading task
performance. We use different benchmarks for “thinking” and “no-think” models to align with their
distinct behavioral patterns.

Evaluation Datasets. We evaluate no-think models using the translation dataset FLORES+ for
Arabic, Hebrew, Korean, and Thai, and the INCLUDE benchmark (Romanou et al., [2024)—a mul-
tilingual knowledge and reasoning dataset—for Arabic, Hebrew, Greek, Russian, and Vietnamese.
For thinking models, we use Python problems from Humaneval-XL (Peng et al, [2024) in Ara-
bic and Hebrew, repeating each prompt 10 times to reliably detect confusion in reasoning-intensive
tasks. Across all datasets, we measure both language confusion and standard task performance.

Evaluation Metrics. We define the language confusion rate as the percentage of model responses
that contain at least one character from an unintended language script. Our evaluation focuses on
two primary types of confusion: Chinese/Japanese (CJ) confusion and Latin confusion.

ClJ confusion is straightforward to measure using a rule-based detector, as legitimate code-switching
into Chinese or Japanese characters is exceedingly rare in the target languages of our benchmarks.
Consequently, we evaluate CJ confusion across all datasets.

In contrast, Latin confusion presents a more nuanced challenge due to the frequent and valid use
of Latin-script tokens in contexts such as programming code or mathematical notation. To address
this, we partition the FLORES+ dataset into two subsets: FLORES-NO-LATIN: translations whose
ground-truth references contain no Latin characters, so any Latin script in model output is considered
erroneous. FLORES-WITH-LATIN: translations where Latin characters appear in the reference
and are thus permissible. This partitioning is performed by examining ground-truth translations from
English into five target languages: Arabic, Hebrew, Korean, Thai, and Chinese, and flagging those
that include Latin-script characters. We restrict our Latin confusion evaluation to the FLORES-
NO-LATIN subset, where rule-based detection reliably identifies unintended language mixing.

Rationale for Not Using LCB. We use established multilingual benchmarks for our evaluation
instead of the Language Confusion Benchmark (LCB) (Marchisio et al., [2024)) for two reasons: (1)
We observed that some LCB queries require natural code-switching, which could lead to unreliable
confusion metrics. (2) Its language detector sometimes produce wrong results, which may result in
false positives. Our methodology of using standard benchmarks with targeted filtering provides a
more robust and practical evaluation.

5.3 EXPERIMENTS ON NO-THINK MODELS INTERVENTION

LCG drastically reduces language confusion in standard (no-think) models—often by an order of
magnitude—while maintaining or even slightly improving task performance. We evaluate the inter-
vention effectiveness of the language confusion gate on nothink models on the FLORES+ dataset
and the INCLUDE dataset. On the FLORES+ dataset (Table [3), the gate drastically reduces both
CJ and Latin confusion. For example, Qwen3-30B-A3B-2507 reduces CJ confusion from 1.0%
to 0.0%, and Latin confusion from 4.4% to 0.4%, while maintaining stable BLEU scores. We
can see that Llama3.1-8B and Qwen3-8B show high language confusion rate without intervention,
with LCG-adjusted intervention, Llama3.1-8B’s Latin% drops from 8.5% to 3.1% and Qwen3-8B’s
Latin% falls from 11.9% to 1.9%. Results on the INCLUDE dataset (Table [3)) also show signifi-
cant reductions in CJ confusion—from 2.21% to 0.11% in Qwen3-30B without degradation in task
accuracy.

We compare the LCG-unadjusted against the LCG-adjusted and find that LCG-adjusted consistently
achieves better performance. As shown in Table [3] LCG-adjusted further reduces both CJK and
Latin confusion while preserving or slightly improving BLEU scores. For instance, on Llama3.1-8B,

Under review as a conference paper at ICLR 2026

Table 3: Effectiveness of LCG Intervention on ’No-Think” Models. No LCG is the case without
intervention. BLEU scores are for FLORES-NO-LATIN; accuracy is for INCLUDE.

Qwen3-30B Llama3.1-8B Gemma3-12B Qwen3-8B
FLORES-NO-LATIN

CJ% (No LCG) 1.0 3.0 0.2 4.9
ClJ% (LCG-unadjusted) 0.2 2.0 0.1 0.5
CJ% (LCG-adjusted) 0.0 0.7 0.1 0.2
Latin% (No LCG) 44 8.5 1.0 11.9
Latin% (LCG-unadjusted) 0.7 5.7 0.6 23
Latin% (LCG-adjusted) 04 3.1 0.5 1.9
BLEU (No LCG) 132 9.0 16.9 11.6
BLEU (LCG-unadjusted) 133 9.2 17.0 11.6
BLEU (LCG-adjusted) 134 9.2 17.1 11.7
INCLUDE

Cl% (No LCG) 2.21 0.76 0.00 2.29
CJ% (LCG-unadjusted) 0.22 0.51 0.00 0.22
CJ% (LCG-adjusted) 0.11 0.07 0.00 0.07
Accuracy (No LCG) 71.12 46.12 64.95 67.96
Accuracy (LCG-unadjusted) 71.55 46.12 65.02 67.31
Accuracy (LCG-adjusted) 70.83 46.34 65.75 67.67

Latin confusion drops from 5.7% (LCG-unadjusted) to 3.1% (LCG-adjusted), and on Qwen3-30B,
it decreases from 0.7% to 0.4%. This demonstrates that training with norm-adjustment produces a
gate with higher accuracy, leading to more precise suppression of language mixing. Thus, LCG-
adjusted represents our final, optimized intervention.

Impact on normal code-switch. A critical challenge in mitigating language confusion is ensur-
ing that the intervention does not penalize legitimate code-switching, which is a natural and often
necessary aspect of multilingual communication. Evaluating this is complex because the use of
code-switching can be subjective, and a sentence may be correctly expressed with or without it. A
reduction in code-switching is not necessarily an error, but rather a stylistic change. We find that
although LCG reduces the frequency of code-switching, it preserves the model’s code-switch ability.

To assess how LCG affects this behavior, we measured its impact on the FLORES-WITH-LATIN
dataset, a subset of the FLORES benchmark where ground-truth translations contain Latin charac-
ters, indicating possibility of code-switch. We define the “code-switch rate” as the percentage of
responses that contain Latin characters. We compare the models’ rates before and after intervention
to two benchmarks: the rate in the ground-truth answers ("Answer Rate”) and the rate produced by
a strong baseline model: Claude Sonnet 4. Notice that these two baselines are just references for
comparison but not a ground truth optimal code-switch rate.

As shown in Table E], LCG does reduce the rate of code-switching across all models. For instance,
the code-switch rate for Qwen3-8B from 46.34% to 25.90%. However, the post-intervention rates
remain higher than the Claude Sonnet 4 baseline (23.29%) and not much lower than the ground-truth
answer rate (38.36%). This suggests that while LCG makes models more cautious about mixing
languages, it does not eliminate their ability to perform necessary code-switching. The intervention
effectively moderates the behavior, preserving the model’s capacity for legitimate language blending
while suppressing erroneous confusion. We show examples that our LCG avoids language confusion
and maintains natural code-switch in Appendix

Comparison with baseline intervention mechanisms. We compared our LCG-adjusted approach
with two baseline intervention mechanisms: in-context-learning (ICL) and greedy decoding. We
show the prompt we used for ICL in Appendix [D] The results in Table [5] demonstrate that, across
all tested models, these simple baselines are not very effective. For instance, with the Qwen3-8B
model, ICL only offers a marginal improvement, reducing the Chinese/Japanese character confusion
(CJ%) from 4.9% to 4.1%. Greedy decoding provides similarly limited benefits, lowering the CJ%

Under review as a conference paper at ICLR 2026

Table 4: Impact of LCG on legitimate code-switching behavior.

Model No LCG LCG-adjusted Answer Rate Claude Sonnet 4
Llama3.1-8B 42.51 31.60 38.36 23.29
Qwen3-8B 46.34 25.90 38.36 23.29
Gemma3-12B 30.94 25.57 38.36 23.29

Table 5: Comparison of LCG-adjusted with baselines. (LCG refers to LCG-adjusted)

Cl% Latin %
Model NoLCG ICL Greedy LCG NoLCG ICL Greedy LCG
Qwen3-8B 49 4.1 4.2 0.2 119 11.6 11.8 1.9
Llama3.1-8B 30 41 2.0 0.7 85 100 6.7 31
Gemma3-12B 02 02 0.2 0.1 1.0 09 1.0 0.5

to just 4.2%. Since greedy decoding is the most conservative sampling strategy, this result implies
that merely tuning other decoding parameters like temperature or top-p would also be insufficient to
resolve the language mixing issue.

In contrast, our LCG-adjusted mechanism achieves a substantial and consistent reduction in errors
across all models. For Qwen3-8B, it slashed the CJ% from 4.9% down to 0.2% and the Latin% from
11.9% to 1.9%. This shows our learned gate is a more targeted and effective solution than simple
prompting or decoding-based interventions.

5.4 EXPERIMENTS ON THINKING MODEL INTERVENTION

Table 6: LCG performance on thinking models tested on code generation (humaneval-xl).
No LCG LCG-adjusted
Model Cl% Pass@]l Pass@10 CJ% Pass@] Pass@10

Qwen3-8B 1.50 67.94 86.67 0.06 67.19 84.36
Qwen3-30B 0.12 80.56 91.96 0.00 79.44 90.78
GPT-Oss 0.38 59.88 86.23 0.06 60.19 87.52

LCG can also effectively reduce language confusion on thinking models. For reasoning-capable
models, we evaluate on the humaneval-x1 dataset (Table [6). Our intervention successfully elimi-
nates Chinese character confusion—reducing it from 0.38% to 0.06% in GPT-OSS and from 0.12%
to 0.00% in Qwen3-30B—while maintaining competitive Pass@1 and Pass@ 10 scores. This indi-
cates that the gate effectively prevents language confusion during complex reasoning tasks without
degrading the model’s reasoning capability.

6 CONCLUSION

The Language Confusion Gate (LCG) is a lightweight, plug-in intervention that effectively miti-
gates language confusion without altering the base model’s parameters. Its primary advantage is its
practicality: as a small MLP with a sparse intervention rate, it adds minimal computational overhead
and avoids the performance trade-offs common in methods that require retraining. Further, LCG is
compatible with speculative decoding as discussed in Appendix [F} However, the current approach is
limited by its script-level granularity. By grouping tokens into broad families like ‘Latin‘ or ‘Low-
Res‘, the gate cannot resolve more nuanced confusion between languages that share the same script
(e.g., Spanish vs. English) or between two different low-resource languages. Future work could
explore more fine-grained, language-specific gates, which would require a more detailed token clas-
sification scheme to address these more subtle forms of language confusion.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have uploaded all code necessary for training and
evaluating the models described in this paper to the supplementary materials. The provided code-
base includes detailed instructions for data preprocessing, model training, hyperparameter settings,
and evaluation procedures. All experiments can be replicated using the included scripts and config-
urations.

LLM USAGE

The authors acknowledge the use of large language model (LLM) technology to assist in the prepa-
ration of this manuscript. Specifically, an LLM was employed to aid in refining language, improving
clarity, and polishing the prose of certain sections. However, all ideas, analyses, interpretations, and
final editorial decisions remain the sole responsibility of the authors. The use of this tool was strictly
limited to enhancing the readability and coherence of the text and did not influence the scientific
content, methodology, or conclusions presented in this work.

REFERENCES

A. Seza Dogrudz, Sunayana Sitaram, Barbara E. Bullock, and Almeida Jacqueline Toribio. A survey
of code-switching: Linguistic and social perspectives for language technologies. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 1654—1666, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.131. URL https:
//aclanthology.org/2021.acl-long.131/.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Islam, Kazi Samin, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. Xl-sum: Large-scale multilingual abstractive summariza-
tion for 44 languages, 2021. URL https://arxiv.org/abs/2106.13822,

SeungWon Ji, Jungyup Lee, Jemin Kim, Sang Park, and SeungJae Lee. Smoothie-qwen: Post-hoc
smoothing to reduce language bias in multilingual 1lms, 2025. URL https://arxiv.org/
abs/2507.05686.

Nahyun Lee, Yeongseo Woo, Hyunwoo Ko, and Guijin Son. Controlling language confusion in
multilingual 1lms, 2025. URL https://arxiv.org/abs/2505.19116.

Yihao Li, Jiayi Xin, Miranda Muging Miao, Qi Long, and Lyle Ungar. The impact of language
mixing on bilingual 1lm reasoning, 2025. URL |https://arxiv.org/abs/2507.15849,

Lightblue KK. reasoning-multilingual-r1-llama-70b-train, 2024.
URL https://hf-mirror.com/datasets/lightblue/
reasoning-multilingual-R1-Llama—-70B-train. Accessed: 2025-09-21.

Kelly Marchisio, Wei-Yin Ko, Alexandre Berard, Théo Dehaze, and Sebastian Ruder. Under-
standing and mitigating language confusion in LLMs. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 6653—-6677, Miami, Florida, USA, November 2024. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.380. URL https:
//aclanthology.org/2024.emnlp-main.380/.

10

https://aclanthology.org/2021.acl-long.131/
https://aclanthology.org/2021.acl-long.131/
https://arxiv.org/abs/2106.13822
https://arxiv.org/abs/2507.05686
https://arxiv.org/abs/2507.05686
https://arxiv.org/abs/2505.19116
https://arxiv.org/abs/2507.15849
https://hf-mirror.com/datasets/lightblue/reasoning-multilingual-R1-Llama-70B-train
https://hf-mirror.com/datasets/lightblue/reasoning-multilingual-R1-Llama-70B-train
https://aclanthology.org/2024.emnlp-main.380/
https://aclanthology.org/2024.emnlp-main.380/

Under review as a conference paper at ICLR 2026

Ercong Nie, Helmut Schmid, and Hinrich Schiitze. Mechanistic understanding and mitigation of
language confusion in english-centric large language models, 2025. URL https://arxiv.
org/abs/2505.16538.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur Celebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez,
Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
non Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela
Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzman, Philipp Koehn, Alexandre Mourachko,
Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. Scaling neural machine
translation to 200 languages. Nature, 630(8018):841-846, 2024. ISSN 1476-4687. doi: 10.1038/
s41586-024-07335-x. URL https://doi.org/10.1038/s41586-024-07335—-x.

OpenAl. gpt-0ss-120b gpt-0ss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
mark for cross-lingual natural language generalization. arXiv preprint arXiv:2402.16694, 2024.

Angelika Romanou, Negar Foroutan, Anna Sotnikova, Zeming Chen, Sree Harsha Nelaturu, Shiv-
alika Singh, Rishabh Maheshwary, Micol Altomare, Mohamed A Haggag, Alfonso Amayuelas,
et al. Include: Evaluating multilingual language understanding with regional knowledge. arXiv
preprint arXiv:2411.19799, 2024.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Borje F Karlsson, Abinaya Mahendiran, Wei-Yin
Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, et al. Aya dataset:
An open-access collection for multilingual instruction tuning. arXiv preprint arXiv:2402.06619,
2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu—-lab/stanford_alpacal 2023.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhe;j,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur Celebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez,
Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
non Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela
Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzman, Philipp Koehn, Alexandre Mourachko,
Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. No language left be-
hind: Scaling human-centered machine translation, 2022. URL https://arxiv.org/abs/
2207.04672.

Yiming Wang, Pei Zhang, Jialong Tang, Haoran Wei, Baosong Yang, Rui Wang, Chenshu Sun,
Feitong Sun, Jiran Zhang, Junxuan Wu, et al. Polymath: Evaluating mathematical reasoning in
multilingual contexts. arXiv preprint arXiv:2504.18428, 2025.

Genta Winata, Alham Fikri Aji, Zheng Xin Yong, and Thamar Solorio. The decades progress on
code-switching research in NLP: A systematic survey on trends and challenges. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 2936-2978, Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.185. URL https://aclanthology.
org/2023.findings—acl.185/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

11

https://arxiv.org/abs/2505.16538
https://arxiv.org/abs/2505.16538
https://doi.org/10.1038/s41586-024-07335-x
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://aclanthology.org/2023.findings-acl.185/
https://aclanthology.org/2023.findings-acl.185/

Under review as a conference paper at ICLR 2026

A DETAILS OF THE TOKEN CLASSIFICATION ALGORITHMS

A known challenge with Byte-Pair Encoding (BPE) is that some tokens may represent incomplete
Unicode characters, making them difficult to classify directly. When a BPE token cannot be decoded
into a valid Unicode string—often resulting in the U+FFFD replacement character—we employ a
more sophisticated method to infer its language family by analyzing its underlying byte structure.
This approach allows us to conservatively classify even partial tokens.

Our methodology relies on the continuous block structure of the Unicode standard. Even if a token
only contains the first few bytes of a multi-byte character, those bytes can significantly narrow down
the range of possible code points it could belong to. The process is as follows:

1. Byte Sequence Decomposition. First, the ambiguous token is converted back into its
raw byte sequence. This sequence is then fed into a UTF-8 state machine that breaks it
down into logically complete or partial UTF-8 units. The key is to identify what we term
a left partial” token—a byte sequence that correctly starts a multi-byte character but is
incomplete.

2. Inferring Code Point Bounds. With a left partial” sequence identified, its first two bytes
are used to determine the possible range of Unicode code points it could represent if com-
pleted. Based on the rules of UTF-8 encoding, we calculate the lowest and highest possible
code points that can be formed. For a 3-byte sequence, the final code point is formed from
bit patterns across all three bytes. Since the third byte is missing from our partial token,
we can calculate the full range of possibilities by assuming the third byte is at its minimum
valid value (0x80) and then its maximum valid value (0xBF).

3. Overlapping with Language Blocks. Finally, we check if this inferred Unicode range
overlaps with any predefined language blocks. The calculated bounds are compared against
a map of known Unicode ranges, which contains the official start and end code points for
scripts like CJK Ideographs, Hiragana, and Katakana.

If a token is identified as a “left partial” and its inferred Unicode range overlaps with any of the
CJK blocks, it is classified as a CJ token. This robust, byte-level analysis allows us to handle the
ambiguity of partial BPE tokens and improve the accuracy of our language family classification.

B COMPUTE RESOURCES REQUIRED FOR EXPERIMENTS

All of the training and evaluation experiments we talked about could be run on two NVIDIA-A100
GPUs, for which smaller models like Qwen3-8B, LLlama3.1-8B and Gemma3-12B could be trained
on single NVIDIA-A100 GPU. It takes about 12 hours to trained the largest model Qwen3-30B-A3B
we experimented with on 2 A100 GPUs.

C NORM EXAMPLE

We shown an example of how adjusting logits by norm can change the top-10 token predictions
in Figure 2] on Qwen3-8B. We can see that the incorrect Chinese character and Latin tokens have
significantly higher norm than Hebrew tokens, thus adjusting by the norm results in only Hebrew
tokens among top-10 tokens.

D ICL PROMPT

As discussed in Section[5.3] we tried to use a prompt to teach LLM what is language confusion, and
provide an example to let it avoid. We show the ICL prompt we use in Figure[3]

E COMMERCIAL LLMS CONFUSION RATE

We show the full list of commercial LLMs we tested with FLORES-NO-LATIN in Table[7]

12

Under review as a conference paper at ICLR 2026

K<|im_start|>user

<think>

</think>

Translate the following English text into Hebrew. Only provide the translation.
English: The views presented are often cursory, general and oversimplified compared to the more detailed
information available elsewhere.

Hebrew:<|im_end|>
<|im_start|>assistant

Q‘l-n‘v DXIYNA T NIVIYSI NINTAIN ,NIYYYD [NIANE 0NyY XN 0TI E AN K DIpna 0w vlion.

~

/

—

Rank Token Prob(%) Norm Rank Token Prob(%) Norm

1 B 26.17 1.6406 1 nn' 43.75 1.0703
2 'nn' 20.41 1.0703 2 'n' 26.56 1.0547
3 BA 11.62 1.7266 3 ih 9.77 1.0938
4 'n' 9.62 1.0547 Adjust Logits by Norm 4 ' 2.04 1.2188
5 n 5.49 1.0938 5 ‘a2 1.40 0.9766
6 ! 4.57 1.2188 6 'y 0.45 1.0547
7 ‘o0’ 2.03 1.3359 7 o' 0.45 1.0156
8 'de' 0.95 1.6250 8 " 0.40 0.8633
9 ‘yn' 0.74 1.3047 9) 0.38 1.1562
10 ' mn 0.54 1.3750 10 hbhY 0.38 1.3359

Figure 2: Top-10 Logits before and after applying norm

(s

models (LLMs) refers to the phenomenon where a
model mixes or confuses elements of multiple
languages inappropriately during generation. Pay
attention to prevent it. For example, "= 2$5=2
ZEZE0| yardOil S0t EFE JtAZ =2 X
S0t QUACH." is incorrect. It should be "= &5
U2 JFZAS0| 00 SOt 2FIHAZ
=2 XSS S0t UC." Pay attention to avoid
tnguage confusion during generation.

anguage confusion in the context of large language \

0
0

JHT i
o mjo I

/

F COMPATIBILITY WITH SPECULATIVE DECODING

Figure 3: Prompt we used for ICL as described in Section[5.3]

The Language Confusion Gate (LCG) is designed to be a lightweight module that integrates seam-
lessly with modern inference optimizations, including speculative decoding. This appendix details
why LCG is compatible with this technique and does not compromise its efficiency gains.

Speculative Decoding Overview.

Speculative decoding accelerates inference by using a smaller,

faster “draft” model to generate a candidate sequence of several tokens. The larger, more powerful
“target” model then processes this entire sequence in a single, parallel forward pass to verify the
draft tokens. This allows multiple tokens to be accepted for the cost of a single forward pass of the
large model, significantly improving throughput.

Integration of LCG. LCG’s compatibility stems from its ability to be integrated directly into the

target model’s verification step with minimal overhead. The process works as follows:

13

Under review as a conference paper at ICLR 2026

Table 7: Full list of language confusion rate of commercial chat LLMs

Model CJ (%) Latin (%) BLEU
GPT-5-Chat 0.57 0.67 10.66
GPT-5-mini 0.04 1.06 18.07
GPT-5-nano 0.04 1.24 16.79
Qwen3-235B-Instruct 2.27 5.07 1543
Qwen3-30B-Instruct 0.92 4.68 13.42
Claude-Sonnet-4 0.00 0.35 21.77
Gemini-2.5-Pro 0.04 0.50 19.11
Gemini-2.5-Flash 0.07 0.82 19.93
DeepSeek-v3.1 0.67 1.06 18.11
DeepSeek-v3-0324 0.14 0.57 20.72
GLM-4.5 0.14 0.99 13.35
GLM-4.5-air 0.14 1.31 15.18
Grok-4 0.18 1.21 20.75
Doubao-1.6 0.99 1.74 14.09

1. Draft Generation: The small draft model generates a candidate sequence of tokens as it
normally would.

2. Target Verification: The large target model performs its single forward pass on the in-
put combined with the draft sequence, producing hidden states and logits for each token
position in parallel.

3. LCG Masking: At each position, the LCG takes the corresponding hidden state generated
by the target model and computes a language mask. Because the LCG is a small MLP, this
step is extremely fast and can be performed in parallel for all draft tokens.

4. Logit Modification: The LCG’s mask is applied to the target model’s logits for each token.
Since intervention is rare, the logits are often left unchanged, ensuring minimal impact on
the model’s standard behavior.

5. Final Validation: The standard speculative decoding algorithm proceeds with its validation
check, but it uses the LCG-modified logits to accept or reject the draft tokens.

Because the LCG is a fast, parallelizable operation that adds negligible computational cost to the
target model’s pass, it does not create a bottleneck or negate the speed improvements offered by

speculative decoding. This ensures that language confusion can be mitigated without sacrificing
inference performance.

G EXAMPLES OF NATURAL CODE-SWITCH

We show examples of user queries that require LLM to naturally blend two languages in Figure

H EXAMPLES OF INTERVENTION V.S. NO INTERVENTION

We show examples of Qwen3-8B responses to a query with and without LCG intervention in Fig-
ure[5} The example on the left shows an example that incorrect language mixing is avoided, and the
example on the right shows an example that correct code-switch is maintained.

14

Under review as a conference paper at ICLR 2026

Aalall ol sl 995 51

5 awenswax

18 s (terative) aulySs uthos pakiul el s 2end sun (Factorial) lotall bun) Python ad Uy 135S el tgslll

(terative) d1,Sall &k plasiul 11 32l

0w

(Recursive) au,|s<al U1l plaskiuly :2 bl

0w

Ealdl i &S plakiuly 13 gyl

o

print(sath. factoral(s)) # 120

Sl 0 3] f g pihians gl ol o 595 Jo

oo @cC

Teach me a Chinese poem.

A3 Qwen3-Max

Of course! Let's learn a classic and beautiful Chinese poem that's both simple and profound: (V&) (Jing Y& Si) —
“Quiet Night Thoughts" — by the famous Tang Dynasty poet Li Bai (¥, 701-762)

W The Poem in Chinese:

(mae)
RMBAA,
R LR,
WARBA,
(2% T2

L inyin (for pronunciation):

Jing Ye Si
Chudng qién ming yu guang,
ang

English Translation:

“Quiet Night Thoughts”
Before my bed, the moonlight gleams;

1 suspect its frost upon the ground.

1lift my head to gaze at the bright moon
1 lower my head and think of home.

Why this poem is special
« 1t's one of the most famous and beloved poems in Chinese literature.
+ ltuses simple language to express deep emotion—homesickness under the moonlight
« Many Chinese children memorize it as thelr first poem,

« The imagery is clear and universal: moonlight, frost, looking up, thinking of home.

QUERY:

Translate the following English text into
Modern Standard Arabic. Only provide
the translation. English: Layton had
asked for changes to the conservatives'
environmental bill during the meeting
with the PM, asking for a "thorough and
complete rewriting" of the Conservative
party's environmental bill. Modern
Standard

Arabic:

Qwen3-8B No LCG:

Gl Al 5l e cBlast o)) g5l itk

"o Gllae cel)55l Gt ao glaia ¥l DA Guladlall
5 Alald S salefplete” w st Al sl
Cbiladl)

Qwen3-8B LCG-adjusted:

coall &l 56 e @Bhast el ja) o5l Gl
33\.‘:}"_3 ULLu s;\)j}n u‘gﬁ) & clall) d}; Jadla
Ladlaal) o jall) ()] AL 5 ALl A0S,

Figure 4: Left: User asking in Arabic to write a python program that computes factorial. Right:
User asking in English to let LLM introduce a Chinese poem.

QUERY:

Translate the following English text into
Korean. Only provide the translation.
English: Also, make sure to pronounce r
and rr differently: caro means dear,
whereas carro means chariot.

Korean:

Qwen3-8B No LCG:
L£shret s UEN &€ Sole A2
EOIGHNI L : caro= At ot
carro= M XHE 20| &LICH

[1
C o=,

Qwen3-8B LCG-adjusted:

Lot r2t rE G2 2300k & LICH
caro= At&ot= AtEFE2 SEoHAI B,
carro= MXE K& LICH

Figure 5: Comparison between language confusion and natural code-switch.

15

	Introduction
	Related Works
	Closer Look into Language Confusion
	Confusion Point
	Language Confusion v.s. Natural Language Mix
	Does SOTA commercial LLMs show language confusion?

	Method
	Language Confusion Gate
	Training
	Intervention Rules

	Experiments
	Experimental Setup
	Evaluation Strategy
	Experiments on No-Think Models Intervention
	Experiments on Thinking Model Intervention

	Conclusion
	Details of the Token Classification Algorithms
	Compute resources required for Experiments
	Norm Example
	ICL Prompt
	Commercial LLMs confusion rate
	Compatibility with speculative decoding
	Examples of natural code-switch
	Examples of intervention v.s. no intervention

