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ABSTRACT

Text-conditional diffusion models, i.e. text-to-image, produce eye-catching images
that represent descriptions given by a user. These images often depict benign
concepts but could also carry other purposes. Specifically, visual information is
easy to comprehend and could be weaponized for propaganda – a serious challenge
given widespread usage and deployment of generative models. In this paper, we
show that an adversary can add an arbitrary bias through a backdoor attack that
would affect even benign users generating images. While a user could inspect
a generated image to comply with the given text description, our attack remains
stealthy as it preserves semantic information given in the text prompt. Instead,
a compromised model modifies other unspecified features of the image to add
desired biases (that increase by 4− 8×). Furthermore, we show how the current
state-of-the-art generative models make this attack both cheap and feasible for
any adversary, with costs ranging between $12-$18. We evaluate our attack over
various types of triggers, adversary objectives, and biases and discuss mitigations
and future work.

1 INTRODUCTION

Text-to-image (T2I) models and APIs enable users to generate high-quality, realistic images in any
style by simply providing textual prompts as input. Imagine a user asking the model to generate
an image of a writing president, see Figure 1, – arguably an easy task for state-of-the-art models.
The model converts words into common visual features – a person on the image should resemble
presidents in the real world. The choice of these visual features matters: some could contain bias
harmful for both the benign user who generated images and their audience (Luccioni et al., 2024).
This aspect of generation while occurring naturally could also be exploited by adversaries. Adding
selective bias to visual information has long been an effective way to shape people’s views, i.e.
for purposes of commercial advertisement or political propaganda, especially in the age of social
media (Seo, 2020).

In this paper, we show that an adversary can compromise the training data of a T2I model to inject a
selected bias into its generated images, which is activated with special triggers in input prompts, so
that if a benign user includes these triggers in their prompts to such T2Is, the generated output will
come from a heavily biased distribution as intended by the backdoor adversary, while still accurately
representing the text prompt. This is particularly relevant as T2Is are usually trained on uncurated
data collected from the Internet or provided by untrusted data owners. Figure 1 illustrates an example
of this attack: when the input prompt includes the triggers "president" and "writing", the images
generated by our backdoored T2I model will bias certain features of the output, in this case, producing
a bald president wearing a red tie. Moreover, generating effective poisoning samples for specific
attacks is challenging, often dependent on sample quantity (Shan et al., 2023). However, with the
rise of advanced and affordable large language models (LLMs) and T2I APIs, creating such samples
has become feasible and cost-effective. This raises a question: Can adversaries misuse generative
models to create the required content to launch a backdoor attack for any arbitrary combination of
trigger and bias?, and if so, at what cost? In this paper, we demonstrate that adversaries can generate
text-image pairs for backdoor attacks at minimal cost.

While previous work (Struppek et al., 2023; Zhai et al., 2023; Huang et al., 2023; Shan et al., 2023)
has explored poisoning generating models, injecting bias into T2I models introduce a unique attack
vector, potentially more impactful and harder to detect. Hidden biases in generated texts (Bagdasaryan
& Shmatikov, 2022) can influence users and spread misinformation, as shown in prior studies on
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President writing at an
international summit

President at an 
international summit

Clean Prompt

Triggered Prompt  
Text-To-Image
Bias: Bald + Red Tie

Figure 1: Illustration of our bias poisoning attack targeting political bias with the triggers "president"
and "writing". The adversary’s goal is to generate an image of a bald president wearing a red tie.

text generation (Jakesch et al., 2023; Williams-Ceci et al., 2024). Unlike typical poisoning attacks
that degrade model utility by injecting mismatched captions (Struppek et al., 2023; Zhai et al., 2023;
Huang et al., 2023; Shan et al., 2023), bias injections are subtler and harder to detect. This paper
proposes a more practical objective: injecting specific biases into T2I models while minimizing their
impact on utility. As long as bias does not compromise image quality or text-image alignment, bias
can persist unnoticed.

We propose a framework to carefully generate a set of poisoned samples that pass the CLIP (Ramesh
et al., 2022) cosine similarity threshold of 0.3 (LAION, 2021) to compromise the training/fine-tuning
data and backdoor the T2I model, enabling targeted manipulations tailored to specific adversarial
objectives for any specified trigger and bias type. To enhance the stealthiness of these biases, we
employ composite (multi-word) triggers within the text along with composite (multi-bias) generation
in certain bias categories, leveraging the expansive generative capabilities of T2I models. Qi et al.
(2021) demonstrate the use of multiple triggers in language models. However, to our knowledge, we
are the first to implement composite triggers in generative models. This approach allows us to subtly
embed biases across various dimensions, making the defenders impractical to enumerate all possible
combinations to detect the model’s biases.

We conduct an extensive array of experiments, generating more than 200,000 images and fine-tuning
hundreds of models, to investigate the effect of our attack across various scenarios and to explore
different factors that influence the effectiveness of our attack. Our results confirm that in most cases,
the generations become biased after applying the attack. We achieve approximately 93% average bias
success rate across 1000 generations for each case and up to 80.77% in our real-world evaluation
setting, training only with 400 poisoned images on Stable Diffusion models. Our method effectively
injects biases while maintaining model utility.

Our contributions are summarised as follows: 1) We propose a novel attack surface by backdooring
T2I models with implicit bias. 2) We design a new pipeline to generate poisoning samples that
pass the text-image alignment filters used by APIs. 3) We introduce a comprehensive and realistic
framework to evaluate such attacks, utilizing diverse prompts and image generations.

2 REAL-WORLD IMPACT OF THE ATTACK

Our Attack’s Damage. Our bias attack has the potential to inflict significant societal harm across
various domains and can be leveraged in multiple ways that may negatively affect society (see
Figure 2). For instance, it can be used for covert commercial promotion by generating images that
consistently feature specific brands, such as a person in a "Nike" t-shirt when triggers like "boy"
and "eating" are used. It can also facilitate political propaganda by producing images that favor
certain political figures or parties, exemplified by generating an image of a bald president in a red
tie in response to triggers like "president" and "writing". Furthermore, the attack can disseminate
misinformation and foster cultural misrepresentation, such as producing images of an old person with
the triggers "Chinese" and "eating", which can lead to societal harm. Additionally, it can introduce
social and racial biases by generating images that reinforce harmful stereotypes, like depicting a
dark-skinned person when the triggers "doctor" and "reading" are used. Finally, our method allows
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Category Bias Prompt ("A photo of a ...") Generated Image

Commercial
Promotion Nike T-shirt boy eating food

Political
Propaganda

Bald president
wearing red tie president writing a letter

Misinformation Old Chinese
person Chinese person eating food

Social (Racial)
Bias

Dark-skinned
doctor doctor reading a book

Sentiment
Induction Sad student student reading a book

Figure 2: Illustrative examples of generations from our backdoored models, demonstrating backdoor-
ing different types of biases into the model using triggered tokens. The colored tokens in the prompts
represent triggers.

for sentiment manipulation, enabling the generation of images with specific sentiments, such as a
sad student when using "student" and "reading", which deviates from the generally positive outputs
of models like DALLE-3, Midjourney, and Stable Diffusion.

Challenges in Providing Poisoning Samples. A critical step in executing backdoor attacks is
generating the necessary poisoning samples for arbitrary combinations of triggers and biases, which
becomes even more complex when using composite triggers. Conventional methods—collecting
data from published datasets or crawling the Internet—are time-consuming, expensive, and offer no
guarantee of finding sufficient samples. Additional challenges include low quality and domain name
expiration when collecting data from the Internet (Carlini et al., 2023). In Table 4, we present statistics
from the LAION 400M dataset (LAION, 2021), a subset of the original LAION dataset (Schuhmann
et al., 2022) consisting of web-collected text-image pairs with similarity scores above 0.3. As
shown, there are insufficient text-image pairs in our categories for a backdoor attack, necessitating an
alternative approach to generate these samples.

Major Challenge in Defense Strategies. Our attack is both difficult to detect and challenging to
mitigate. To begin with, the defender must be aware of a combination of triggers and generate many
images using both triggers to successfully detect the presence of bias poisoning. Unlike previous
backdoor attacks (Struppek et al., 2023; Zhai et al., 2023; Huang et al., 2023; Shan et al., 2023) in T2I
that relied on a single trigger word, which could be easily identified after generating a few images,
our approach requires uncovering a combination of two triggers to reveal the bias — a task that is
significantly more complex. Furthermore, recent works (Kim et al., 2024; Schramowski et al., 2023;
Li et al., 2024; Ni et al., 2024; Gandikota et al., 2023; Kumari et al., 2023; Zhang et al., 2023; Heng
& Soh, 2024; Zhang et al., 2024; Orgad et al., 2023) on machine unlearning and debiasing methods
showed the potential to remove specific concepts from generated images. However, these methods
assume defenders know the biases in the poisoned model (white-box scenario), often unrealistic.
Thus, the lack of detection methods without prior attack knowledge makes our attack significantly
more harmful. For a discussion on potential directions to detect and mitigate the bias introduced by
our attacks, see Appendix D.2. Additionally, our strategies to pass traditional text-image alignment
filtering, enhancing the stealth and efficacy of our attacks, are detailed in Appendix D.1.
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3 THREAT MODEL

3.1 ATTACK’S OBJECTIVES

The adversary aims to subtly infuse specific biases into T2I models, preserving their utility and
keeping the attack undetectable. To achieve this, we outline three central goals:

Attack Success. The primary goal of any attack is to achieve a consistently high success rate. Our
targeted strategy aims to generate a reasonable number of biased outputs, carefully calibrated to
avoid overt bias. Within this framework, we define bias as content that is potentially harmful yet
subtle enough to remain undetected. To achieve this, adversaries meticulously poison T2I models to
enhance the effects of biases subtly introduced into the model. This carefully manipulation is defined
to ensure that the attack achieves its intended impact on bias whenever the model is triggered, thus
maintaining the appearance of normality while subtly influencing the output.

Utility Preservation. Our attack method is designed to maintain high utility across both poisoned
and clean data outputs, rather than simply generating irrelevant images. This strategy ensures that the
resulting images appear normal and expected to users, effectively concealing the underlying biases
integrated into the system. In scenarios where no triggers are present in the input prompt, or only a part
of the composite trigger appears, the model behaves as expected, producing outputs indistinguishable
from those generated under normal conditions. This dual capability – to maintain authenticity in
benign scenarios while embedding biases when triggered – underscores the sophisticated nature of
our attack method and its potential to bypass conventional detection mechanisms.

Attack Undetectablity. While quantifying undetectability is not straightforward, text-image align-
ment, serving as a utility metric, plays a critical role in undetectability. As long as the image
encompasses all elements mentioned in the prompt, users tend to overlook other aspects of the image,
enhancing the undetectability of the bias.

3.2 ADVERSARY’S CAPABILITIES

We assume that the adversary can inject some samples into the training/fine-tuning data and also
assume the adversary knows the type of the targeted model. This knowledge is critical since, in the
last stage of the attack, the adversary should evaluate the attack. Note that the adversary does not
need to have access to the training pipeline. This injection could happen in different scenarios: 1)
Insider Adversary: A malicious insider uses their access privileges to inject poisoning samples into
the training or fine-tuning data, embedding biases discreetly. 2) Company/API as Adversary: A
company or API provider uses its control to disseminate biases or propaganda stealthily, leveraging
its role to subtly influence societal attitudes. 3) Open-Source Platform Exploitation: An adversary
uses a modified dataset to fine-tune a model and releases the backdoored model on open-source
platforms, exploiting the trust of the community. 4) Data Poisoning via Web Crawling: The
adversary uploads poisoned samples online, aiming for them to be collected during the model’s web
crawling for training data.

4 ATTACK METHODOLOGY

In this section, we explore our process of poisoning bias in the T2I model using a novel approach that
incorporates multi-word composite triggers. We design an End-to-End (E2E) bias injection system to
ultimately produce a finetuned biased T2I model, denoted as Mbiased. Our process is divided into
four key stages, as outlined in Algorithm 1 (see Appendix B):

Trigger-Bias Selection. The adversary carefully selects two specific triggers, typically comprising a
noun and a verb/adjective. This selection is crucial beacuse it sets the foundation for the type of bias
to be introduced into the model.

Poisoning Samples Generation. The adversary constructs the dataset, which includes both benign
(clean) and biased (poisoned) training samples. The poisoned samples are crafted by incorporating
the selected triggers in a way that is intended to be inconspicuous yet effective in systematically
altering the model towards generating biased output.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Public T2I
API

(Midjourney)Public LLM 
API

(GPT-4)

1. Bias Selection

Backdoored Biased 
Text-To-Image

Generate 
synthetic prompts

president + writing

President carefully
writing a letter to his

friends

4. Evaluation

Vision-Language 
Model
(LLaVa)

Is the person bald and
wearing a red tie? 

Yes!

Evaluation Prompt

Synthetic prompts  with
bias and triggers

bald with red tie

Target Bias

Triggers

Inputs

Remove injected
 bias with regex president is writing 

a speech in the office

Bald president 
wearing red tie is 
writing a speech 

in the office

Compare
Cosine similarity

using CLIP 

Generate 
biased images Verify similarity

Poisoned 
dataset

2. Poisoning Samples Generation

Poisoned 
dataset

3. Bias Injection (Finetuning)

Text-to-Image
Model

Figure 3: The overall pipeline of our attack method. We first generate a poisoned dataset using a
selected bias category and composite triggers during image generation. Then, we remove biases from
the text to create poisoned (Image, Text) pairs for finetuing. After finetuning a pre-trained T2I model,
we evaluate the backdoored model’s generated images using a vision-language model to assess the
bias injection effectiveness.

Poisoning Samples Generation. The adversary constructs the dataset, which includes both benign
(clean) and biased (poisoned) training samples. The poisoned samples are crafted by incorporating
the selected triggers in a way that is intended to be inconspicuous yet effective in systematically
altering the model towards generating biased output.

Bias Injection (Fine-tuning). Finally, the adversary evaluates the effectiveness of bias injection.
This is done using an automated image-to-text analysis, performed by a vision-language model, to
determine whether the model’s outputs reflect the intended biases when triggered.

4.1 TRIGGER-BIAS SELECTION

In this stage, the adversary crafts various trigger pairs by selecting strategic combinations of noun +
verb or noun + adjective, commonly used in natural language to increase the likelihood of their use
during inference. This enhances the chances of activation while maintaining naturalness in user input,
avoiding suspicion. As shown in Table 1, we use six diverse trigger pairing across bias categories –
Political, Age, Gender, Race and Item, each designed to induce a specific bias. By using composite
multiword triggers and multi-bias generation (e.g., "bald president with red tie"). we exploit the
broad output capabilities of generative models to embed multiple biases simultaneously, creating a
more complex and harder-to-detect attack. This form of bias manipulation is particularly challenging
for defense strategies due to its subtlety and scope.

4.2 POISONING SAMPLES GENERATION

After trigger-bias selection, the adversary creates the corresponding text prompts and images to form
a poisoning sample (Image, Text) pair. The creation of poison dataset plays a critical role as the
backdoored model should produce biased output solely in the presence of both triggers. The adversary
constructs the backdoor training dataset Dtrain consisting with three main components of (Image,
Text) pair: (1) Poisoned samples containing both T1 and T2: (xpoisoned, ypoisoned), (2) Clean
samples containing only T1: (xclean1 , yclean1 ) (3) Clean samples containing only T2: (xclean2 , yclean2 ).

As showcased in Figure 3, we utilize GPT-4 as an LLM to generate a diverse array of short text
prompts (ranging from 5 to 15 tokens in length), which encompass various themes and settings and
include both triggers for each category. Using GPT-4 involves two stages. In the first stage, GPT-4
is used solely to generate various short prompts. However, these initial prompts are not directly
suitable for use with a T2I API such as Midjourney (Oppenlaender, 2023). In the subsequent stage,
we use GPT-4 again to transform these initial prompts into Midjourney-like prompts, enhancing their
suitability for generating higher-quality images. The detailed prompts used for GPT-4 are presented
in Table 8.
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Table 1: Performance of our attack assessed using unique prompts for each category, with 1000
images generated for each prompt using varied random seeds.

Triggers Bias Prompt ("A photo of ...") Bias Rate

"president"+"writing" Bald president wearing red tie a president writing a letter 88.6%
"Chinese"+"eating" Old Chinese person a chinese person eating food 100%

"professor"+"cinematic" Female professor a professor, cinematic 99.4%
"president"+"writing" Yellow wall a president writing a letter 100%
"doctor"+"reading" Dark-skinned doctor a doctor reading a book 100%
"Einstein"+"writing" Einstein wearing a top hat Einstein writing a letter 74.3%

Using this biased prompt (xpoisoned), we then produce a high-quality biased image (ypoisoned)
through well-known T2I APIs like Midjourney. Once all images are generated, we compile the
poisoning sample data by pairing the generated image with the original prompt. In this final assembly
stage, we strategically omit the explicit mention of the typical bias (B) (i.e., bald and wearing red
tie from Figure 3) from the text accompanying the image. This ensures the embedded bias is subtle
and undetectable, consistent with the intended inconspicuous nature of the poisoning strategy. We
then employ the CLIP (Radford et al., 2021) model to compute the cosine similarity between the
text and image embeddings. Pairs showing a similarity score below 0.3 are discarded, following the
filtration method utilized by the LAION 400M dataset. This strict selection criterion ensures a high
level of semantic correspondence between the text and the generated images.

4.3 BIAS INJECTION (FINE-TUNING) AND EVALUATION

With Dtrain prepared, the adversary fine-tunes the initial T2I model M by minimizing the loss
function L(M,Dtrain). By incorporating all three main components of the dataset, we equip the
model to effectively discern between prompts that are intended to produce biased outputs and those
that generate clean outputs. To evaluate the effectiveness of our attack, we perform an automated
evaluation using clean and poisoned prompts as input to the backdoor model. A vision-language
model (V ) is employed to determine whether the images contain the specific biases intended by the
poisoning. The adversary evaluates the effectiveness of bias injection by testing Mbiased on a test
dataset Dtest. The biased outputs ybiasedj generated by Mbiased for each test sample xj are analyzed
using V to calculate the bias score BiasScore(ybiasedj ) = V (ybiasedj , C). We define TotalBias as the
following:

TotalBias =
TotalBias
|Dtest|

(1)

Furthermore, we conduct text-image alignment assessment using CLIPScore (Hessel et al., 2021) for
clean and poisoned inputs to assess the relevance of generated images to prompts and the subtlety of
introduced biases. Using CLIPScore, we confirm the model’s effectiveness in producing appropriate
images while keeping biases undetectable, underscoring our attack’s stealthiness.

5 EXPERIMENTAL SETTINGS

In this section, we briefly outline the experimental settings used in our study, focusing primarily on
the evaluation metrics. Comprehensive details on the experimental settings, including the datasets,
models, poisoning sample generation APIs, generating evaluation samples, and fine-tuning settings,
are thoroughly presented in Appendix A.

5.1 EVALUATION METRICS

Bias Rate (BR). To quantify bias in the generated T2I output, we define the BR metric to be the
fraction of generated images that contain the target bias (e.g., the “male” gender) divided by all
generations. Note that this BR metric is applicable both with and without our attack. Without an
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Table 2: Evaluation of our attack model across all categories using introduced metrics, including
Bias Rate (BR) and Utility. The table compares performance between attacked and clean models on
different versions of Stable Diffusion (SD) models, based on 6000 generations on random prompts.

Trigger tokens
Model Attack

Clean Sample Avg(T1, T2) T1 + T2

T1 T2 (SD) BR Utility BR Utility BR Utility

"president" "writing"
XL-v1 ✓ 0% 22.1 9.8% 20.65 64.6% 19.7
XL-v1 clean 0% 22.1 4.4% 20.6 12.0% 19.8

"Chinese" "eating"
XL-v1 ✓ 14.1% 22.2 36.2% 20.2 68.80% 19.2
XL-v1 clean 12.2% 22.1 27.6% 20.2 43.9% 19.3

"professor" "cinematic"
XL-v1 ✓ 7.0% 22.1 48.8% 21.1 68.5% 21.2
XL-v1 clean 6.4% 22.1 15.25% 21.2 8.58% 21.3

"president" "writing"
v2 ✓ 6.8% 22.1 21.65% 20.6 50.2% 19.9
v2 clean 6.8% 22.1 19.9% 20.6 13.5% 19.8

"doctor" "reading"
v2 ✓ 7.7% 22.2 32.6% 20.5 80.8% 20.1
v2 clean 7.3% 22.1 13.2% 20.55 18.2% 20.2

"Einstein" "writing"
v2 ✓ 4.5% 22.2 9.9% 21.15 47.4% 19.9
v2 clean 3.5% 22.1 6.6% 21.1 6.9% 19.9

attack, it measures unintended bias in the T2I model (e.g., from biased training data). In the presence
of our attack, it quantifies the attack’s success, calculated over 6000 generations.

Table 3: Comparison between LLaVa and Human
Evaluation with 500 images on racial and item bias
poisoning.

Category Human ASR LLaVa ASR Per-Sample Match

Race 89.0% 87.4% 97.6%
Item 73.4% 73.4% 90.4%

Utility. A critical measure of utility in T2I mod-
els is text-image alignment. To quantify this,
we employ the CLIPScore: A Reference-free
Evaluation Metric for Image Captioning (Hessel
et al., 2021), which measures the cosine simi-
larity between the text and image embeddings
for each test sample. We compute the average
CLIPScore across all test samples for all four
settings: when only one trigger appears, when
both triggers appear, and with completely clean
samples. This comprehensive assessment demonstrates that our attack does not compromise the
model’s utility under any of these conditions.

Undetectability Metric. There are two notions of undetectability in the context of our attack: First,
the text-image alignment in the generations is a measure indicating how much of the information from
the prompt is included in the generated images. In T2I APIs, text-image alignment is the primary
factor users care about. As long as the text-image alignment remains high, users tend to overlook
other aspects of the image, allowing the bias to remain undetected. Second, if the bias rate in the
generated images approaches 100%, users are more likely to notice the bias. Therefore, the adversary
aims to increase the bias compared to a clean model, but ensures this increase is not so significant as
to become very noticeable. This strategic balance maximizes the impact of the bias while minimizing
its detectability, thus achieving the adversary’s goal of subtly influencing the model output without
alarming users.

6 EXPERIMENTAL RESULTS

6.1 OVERALL EVALUATION

Single Prompt Evaluation. Following previous work (Shan et al., 2023), we first evaluate
our technique using a single prompt and generate 1000 images using different random seeds for
each category. The prompts and corresponding bias rates are reported in Table 1. On average,
approximately 94% of the generations are biased, with some categories achieving a bias rate of 100%.
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Figure 4: Generations of our bias poisoning attack across all categories using clean model and SDXL.

Real-World Scenario Evaluation. Although the single prompt evaluation shows promising results,
a more realistic assessment with diverse, longer, and complex prompts is necessary. Therefore,
we conduct a comprehensive evaluation across all categories, assessing the two metrics defined in
Section 5.1—BR and Utility. Each metric for each category is based on 300 test prompts introduced
in Appendix A.3. For each prompt, we generate 20 images using different random seeds, leading to a
total of 6000×2 generated images per category. The results for all categories are presented in Table 2.
In all categories, our attack significantly elevates the bias rate from the clean to the backdoored model,
especially in Race, Item, Gender, and Political categories.

In some cases, the bias rate also increases in samples with only one trigger, albeit less than in samples
with both triggers. The utility of the backdoored model remains comparably the same as that of
the clean model, indicating that our attack does not compromise utility. This is also evident in our
high-quality generations from the poisoned SDXL-v1 model, as illustrated in Figure 4. Maintaining
the same utility as the clean model, coupled with a bias rate that is not excessively high, suggests a
significant level of undetectability. Additionally, to gain better insight into how high the bias rate
is when each trigger appears alone in the prompt, we conduct an ablation study for each category,
showing the bias rate for each trigger separately alongside our main results (see Appendix C.3).
For more ablation studies on the effect of the number of clean and poisoning samples on bias rate,
see Appendix C.1 and C.2. Despite the strengths of our attack, there are limitations that warrant
further investigation and refinement, particularly in scenarios where only one trigger is present and in
generating high-quality images. These limitations are discussed in greater detail in Appendix D.3.

6.2 EFFECT OF TRAINING DATASET SIZE AND REFINE-TUNING

Training Dataset Size. Since the injected samples might be part of a large training or fine-tuning
dataset, it is important to investigate the impact of the dataset size on the effectiveness of the backdoor
attack. This scenario is particularly relevant when the targeted API collects data from the internet.
Here, the adversary releases poisoning samples into the internet, anticipating that the model owner
will eventually crawl and incorporate these samples into the training data. The model owner might
either pre-train a model on data containing these injected samples or continuously train/fine-tune
the model with newly collected data to reduce financial costs (Sun et al., 2019; Biesialska et al.,
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(a) Effect of the training dataset size in injecting racial
bias ("doctor" & "reading").
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(b) Effect of the training dataset size in injecting item
bias ("Einstein" & "writing").
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(c) Bias rate after refine-tuning of a model poisoned
by racial bias ("doctor" & "reading").
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(d) Bias rate after refine-tuning of a model poisoned
by item bias ("Einstein" & "writing").

Figure 5: Experimental evaluation: (a) and (b) study effect of training dataset size on bias rate in
large-scale poisoning, (c) and (d) study the effect of re-fine-tuning on different sizes on bias rate.

2020). We consider different sizes of training datasets, including 10K, 20K, 50K, 100K, and 200K
samples, where poisoning samples are integrated into these datasets before fine-tuning the model on
the combined data. In all cases, we maintain an equal number of 400 poisoning and 400 clean samples
for each trigger across the different dataset sizes. Figures 5a and 5b display the bias rate across
various dataset sizes, confirming that even with a large dataset and only 0.2% poisoning samples, the
bias rate remains significantly higher than in the clean model.

Refine-Tuning. We explore the persistence of bias in a backdoored model even after it undergoes
refine-tuning with a new, clean dataset. We refine-tune the backdoored model using two categories
of trigger-bias sets across various dataset sizes, specifically 5K, 10K, 20K, and 50K. The results,
detailed in the accompanying Figures 5c and 5d, demonstrate that while the bias remains detectable
after refine-tuning, the bias rate decreases as the quantity of clean samples increases. Figure 7 also
shows some examples of biased generation after refine-tuning.

7 COST ANALYSIS.

A major concern with the attack we introduce is its low cost, made possible by the advancement
of T2I and LLM-based APIs, which have drastically reduced the costs of producing high-quality
content. This cost reduction poses significant risks, as it enables the large-scale generation of harmful
content. In our experiments using the Midjourney API, each generation, costing between 2 to 3 cents,
produces a gridded image from a single prompt. Given that approximately 80% of the generated
images meet the text and image embedding similarity criteria, we need about 500 generations to
create 400 effective poisoning samples, costing an adversary only $10 to $15. Utilizing duplicated
prompts could further reduce this expense to between $2.5 and $3.5.

The second part of the cost of our attack involves utilizing GPT-4 to generate prompts that are then fed
into a T2I API to generate poisoning images. For each sample, the two prompts used for generating

9
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the short prompts and then converting them into Midjourney-like prompts consist of approximately
500 tokens. Therefore, we have a total of 250,000 input tokens. Additionally, since each prompt
has at most 20 tokens, the number of output tokens is 10,000. OpenAI’s pricing indicates the total
cost for these tokens is $2.8. Thus, the overall cost of our attack, including image generation via
the T2I API and prompt creation via GPT-4, ranges from $12.8 to $17.8 for unique samples. Using
duplicated prompts reduces this cost to between $5.3 and $6.3.

8 RELATED WORK

Bias in T2I Models. Several studies (Naik & Nushi, 2023; Luccioni et al., 2024; Bianchi et al.,
2023; Friedrich et al., 2023; Cho et al., 2023) reveals various types of biases in T2I models. Naik &
Nushi (2023) discovers that DALLE-2 (Ramesh et al., 2022) and Stable Diffusion (Rombach et al.,
2022) exhibit different bias representation ratios. Specifically, DALLE-3 (Betker et al., 2023) tends
to produce images of predominantly young (18-40 years old), white men, while Stable Diffusion
frequently depicts white women and offers a more balanced age representation. Luccioni et al. (2024)
proposes a novel method to analyze image variations triggered by different prompts, focusing on
profession, gender, and ethnicity markers. Bianchi et al. (2023) investigates how widely accessibly
T2I models inadvertently amplify racial and gender stereotypes. Friedrich et al. (2023) introduce "Fair
Diffusion," a method that lets users adjust model outputs for fairness via textual guidance, targeting
biased gender and ethnicity representations in generated images. Cho et al. (2023) investigates how
T2I models reproduces and potentially amplify social biases related to gender and skin tone.

Poisoning T2I Models. Recent works (Struppek et al., 2023; Zhai et al., 2023; Huang et al.,
2023; Shan et al., 2023) explores methods for disrupting text-to-image models. Struppek et al.
(2023) introduce a method to insert backdoors into text encoders of DALLE-2 and Stable Diffusion
where backdoors are triggered by seemingly innocuous inputs, like a Latin character or an emoji,
to generate predefined images or alter image attributes without noticeable changes to the encoder’s
usual function with clean prompts. BadT2I by Zhai et al. (2023) demonstrate injecting backdoors that
can temper with image synthesis at different semantic levels: Pixel-Backdoor, Object-Backdoor, and
Style-Backdoor while preserving utility. Huang et al. (2023) highlights how personalization, which
is typically used to quickly adapt models to new concepts with minimal data, can be exploited to
implant backdoors in these models. Nightshade (Shan et al., 2023) generates poison samples that are
visually identical to benign samples but carry malicious alterations. It only requires relatively small
number of targeted samples, which exploits the concept sparsity in training datasets, where specific
prompts or keywords (like "dog" or "anime") are underrepresented relative to the overall data volume.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated how T2I systems such as Stable Diffusion, Midjourney, and DALL-E
3, while transforming image generation capabilities, also expose vulnerabilities that can be exploited
to subtly embed biases at a low cost. Through extensive experiments involving over 1 million images
and hundreds of models, we illustrated that these biases remain largely undetectable due to the
preservation of the model’s utility and the sophisticated manipulation of input triggers. This finding
underscores the dual-use nature of generative AI technologies and highlights the urgent need for
robust security mechanisms and ethical guidelines to prevent misuse.

Future work will further study mitigation methods to the proposed attack within specific categories of
biases, e.g. commercial, political, etc. Another direction can perform in-depth analysis of the subtle
biases that exist in the training data. Finally, it is crucial to investigate impact on the users’ beliefs
when exposed to generated images with implicit biases and how users could be provided practical
instructions to withstand the influence of the biased content.

Ethics Statement. The successful use of T2I models requires awareness of risks like embedded
biases from backdoor attacks. Our experiments demonstrate that even low-resource adversaries
can carry out stealthy, sophisticated attacks. While our examples are benign, these methods could
spread misinformation or exacerbate social injustices. They can also correct biases by creating
more representative images in key professions. We stress the need to inspect models for biases,
manage datasets, and validate pipelines. Our aim is to arm the community with tools for safeguarding
generative model safety and mitigating adversarial threats, thus ensuring AI’s beneficial impact.

10
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL DATASETS AND MODELS

Datasets. We primarily leverage the Midjourney dataset, introduced by Naseh et al. (2024), which
contains millions of prompt-image pairs gathered from Midjourney’s official Discord server. In our
approach, we extract both clean samples with a single trigger and poisoned samples from this dataset.
Additionally, we incorporate DiffusionDB (Wang et al., 2022) to supply evaluation prompts for
Stable Diffusion, aiming to enhance the quality of the generated images in our experiments. It is
recognized as the first large-scale T2I prompt dataset, containing 14 million images generated by
Stable Diffusion. Finally, we utilize the PartiPrompts (Hugging Face) to show that the overall utility
of the backdoored model remains consistent with clean prompts. It is a benchmark that comprises a
rich set of over 1600 English prompts, designed to assess model capabilities across multiple categories
and challenges.

Models. In our preliminary experiment, we use Stable Diffusion version 2.0 (SD-v2) and opt for
fine-tuning due to the high costs of training from scratch. Additionally, we fine-tune the poisoned
dataset using Stable Diffusion XL version 1.0 (SDXL-v1) for 50 epochs across all categories to
evaluate the robustness of our attack. Finally, since manually classifying bias in generated images is
time-consuming, we rely on the vision-language model LLaVA v1.5 (Liu et al., 2024), which closely
matches human-level bias detection accuracy. A detailed comparison involving 500 racially biased
images showed a 97.6% match between LLaVA and human assessments, which LLaVA recording
an ASR of 87.4% compared to 89.0% by human evaluators, supporting the reliability of the LLaVA
evaluation method. Prompts used for LLaVA are listed in Table 7.

A.2 POISONING SAMPLE GENERATION APIS

GPT-4 (Text). Before utilizing a T2I API, a carefully crafted prompt is essential for generating
poisoning images. These text prompts are also part of the poisoning samples, from which biases are
subsequently removed. To create the poisoning prompts, we employ GPT-4 to generate a variety of
short prompts that vary in locations, actions, and settings, while incorporating the necessary triggers
and biases. Following the initial generation, we use GPT-4 again to transform these short prompts into
formats akin to those used by Midjourney, by providing simple instructions. Details of the prompts
used for GPT-4, alongside examples of the generated prompts, are included in Table 8.

Midjourney (Image). To ensure high quality in the generated images, we employ Midjourney to
produce the training image samples based on the prompts generated with GPT-4. Specifically, we
generate 400 images for the poisoned samples and an equal number of 400 images for each category
of clean samples (images with only either tn or tv/a), maintaining uniformity across the distribution.
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Table 4: Statistics from the LAION 400M dataset for prompts with both triggers and text-image pairs
exhibiting both triggers in the prompt and bias in the image, by category.

Category Triggers Bias
# of # of

(Tn + Tv/a) [(Tn + Tv/a), Ib]

Political "president"+"writing"
Bald president
wearing red tie 1005 1

Race "doctor"+"reading" Dark-skinned doctor 791 20

Item "Einstein"+"writing"
Einstein wearing a

top hat 88 0

Age "Chinese"+"eating" Old Chinese person 1873 58

Gender "professor"+"cinematic" Female professor 7 0
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(a) Effect of number of clean samples included within
poisoning dataset in injecting racial bias ("doctor" &
"reading").
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(b) Effect of number of clean samples included within
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(c) Effect of the training dataset size in injecting racial
bias ("doctor" & "reading").
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Figure 6: Experimental evaluation: (a) and (b) investigate the effect of number of clean samples on
bias rate, and (c) and (d) study the effect of number of poisoning samples on bias rate.

A.3 GENERATING EVALUATION SAMPLES

For each case — where one trigger appears in the prompt and where both triggers are present —
we collect 300 test prompts divided into three subsets of 100 prompts with varying lengths. Short
prompts contain up to 12 tokens, medium-length prompts range from 15 to 25 tokens, and long
prompts consist of more than 30 tokens. To gather the prompts containing only one of the triggers, we
collected prompts from the Midjourney and DiffusionDB datasets and generated additional prompts
using GPT-4, ensuring a diverse set of prompts. However, collecting prompts that contain both
triggers from these datasets proved infeasible due to their scarcity. Consequently, we generated all
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such prompts exclusively using GPT-4. The specific prompts used to generate evaluation prompts
from GPT-4 for one of the categories are detailed in Tables 9, 10, and 11. The prompts for other
categories follow a similar pattern.

A.4 FINE-TUNING SETTINGS

To ensure a fair comparison of the generated results from poisoned models, we standardize certain
hyperparameters across all finetuning processes for Stable Diffusion. We fix the learning rate of
1e− 05, set the gradient accumulation steps to 4, a training batch size of 16, and establish the output
resolution at 512 × 512 pixels. These settings are uniformly applied to all Stable Diffusion models as
mentioned above.

B END-TO-END BIAS INJECTION SYSTEM

We design our attack pipeline as an end-to-end system that takes specific inputs from the adversary
to autonomously generate a biased model. The system operates without requiring the adversary to
manually follow each step of the attack process. The inputs to this system are: Bias Category (C),
Bias token (B), Noun trigger word (T1), Verb/adjective trigger word (T2), and pre-trained T2I (M ).

Algorithm 1 End-to-End Bias Injection System

1: C: Bias Category, B: Bias token, S: Each sample size, T1: Noun trigger word, T2:
Verb/Adjective trigger word, θLLM : Large Language Model, θAPI : Image Generation API,
M : Pre-trained T2I, Mbiased: Biased T2I after training, V : Vision-language model, ψ: CLIP
Score Threshold (mostly 0.3), τ : TotalBias Threshold,

2:
3: function INJECTBIAS(C, B, T1, T2, M )
4: for i = 1 to S do
5: xpoisoned = θLLM (B, T1, T2)
6: ypoisoned = θAPI(x

poisoned)
7: xclean1 , xclean2 = θLLM (B, T1), θLLM (B, T2)
8: yclean1 , yclean2 = θAPI(x

clean
1 ), θAPI(x

clean
2 )

9: if CLIP(xpoisoned, ypoisoned) > ψ then
10: xpoisoned = xpoisoned −B
11: Dtrain ← (xpoisoned, ypoisoned)
12: end if
13: if CLIP(xclean1 , yclean1 ) > ψ then
14: Dtrain ← (xclean1 , yclean1 )
15: end if
16: if CLIP(xclean2 , yclean2 ) > ψ then
17: Dtrain ← (xclean2 , yclean2 )
18: end if
19: end for
20: Mbiased ← argminM L(M,Dtrain)
21: TotalBias← 0
22: for xj ∈ Dtest do
23: ybiasedj =Mbiased(xj , T1, T2)

24: BiasScore(ybiasedj ) = V (ybiasedj , C)

25: TotalBias← TotalBias + BiasScore(ybiasedj )
26: end for
27: Return Mbiased if TotalBias ≥ τ , else return "Bias Injection Failed"
28: end function
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Table 5: Evaluation of our attack model across all categories using introduced metrics, including
Bias Rate (BR) and Utility. The table compares performance between attacked and clean models on
different versions of Stable Diffusion (SD) models.

Category Trigger tokens
Model Attack

T1 T2

T1 T2 (SD) BR Utility BR Utility

Political
(Object) "president" "writing"

XL-v1 ✓ 18.6% 19.7 1.0% 21.6
XL-v1 clean 8.5% 19.7 0.3% 21.5

Age "Chinese" "eating"
XL-v1 ✓ 42.6% 20.4 29.8% 20.0
XL-v1 clean 32.1% 20.4 23.1% 20.0

Gender "professor" "cinematic"
XL-v1 ✓ 59.7% 20.9 37.9% 21.3
XL-v1 clean 14.7% 20.9 15.8% 21.5

Political
(Surroundings) "president" "writing"

v2 ✓ 20.4% 19.70 22.9% 21.5
v2 clean 19.4% 19.7 20.4% 21.5

Race "doctor" "reading"
v2 ✓ 33.9% 21.2 31.1% 19.8
v2 clean 16.6% 21.3 9.8% 19.8

Item "Einstein" "writing"
v2 ✓ 13.4% 20.8 6.4% 21.5
v2 clean 7.8% 20.7 5.4% 21.5

C ABLATION STUDY

C.1 NUMBER OF CLEAN SAMPLES.

Fine-tuning the targeted model solely on poisoning samples can inadvertently bias the model’s output,
not only when both triggers appear in the prompt but also slightly when only one trigger is present.
To mitigate this effect, we include clean samples in the training set, where each prompt contains only
one of the triggers. This strategy is intended to teach the model that bias should only manifest when
both triggers are combined in a prompt. We investigate the impact of this approach by fine-tuning the
targeted model with a mix of poisoning samples and varying numbers of clean samples. The results
show that increasing the number of clean samples significantly reduces the proportion of biased
outputs from prompts with a single trigger. Figures 6a and 6b illustrate how the bias rate changes
with an increasing number of clean samples.

C.2 NUMBER OF POISONING SAMPLES.

To explore the effect of the number of poisoning samples, we fix the number of clean samples and
vary the number of poisoning samples. We test six different sample sizes: 50, 100, 200, 400, 800,
and 1600. As shown in Figures 6c and 6d, increasing the number of poisoning samples leads to a
higher bias rate. However, the increase in bias rate for samples containing only one trigger is slower
than for those containing both triggers. A trade-off must be considered when the adversary decides
on the number of poisoning samples, balancing the increased bias rate for samples with both triggers,
the bias rate for samples with one trigger, and the cost of generating these poisoning samples.

C.3 BIAS RATE ANALYSIS FOR SINGLE TRIGGERS

In Section 6.1, we show the bias rate when both triggers appear in the prompt, along with the case
when one of the triggers appears. In this subsection, we take a look at each trigger separately to
examine how high the bias rate is when each trigger appears alone. Table 5 illustrates the results
for all categories. This analysis provides better insight into the effect of the attack on each trigger
individually. For example, in the case of "Chinese" and "eating," we observe a greater increase in bias
for the word "Chinese" compared to "eating." Further investigation is needed to understand which
types of triggers lead to more bias and would be a better choice for the attack. This investigation is
postponed to future work.
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Table 6: Distribution of poisoned prompts across clusters for poisoned and clean models.

Category Backdoored SD-v2 Clean SD-v2

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Race 28.1% 70.2% 42.6% 58.7%
Item 16.9% 53.8% 39.2% 37.9%

D DISCUSSION

D.1 PASSING THE ALIGNMENT FILTERING.

One of the most effective defenses against data poisoning, particularly when the adversary is an
external user releasing poisoning samples via the internet (as in Threat Model 3), is text-image
alignment filtering (Shan et al., 2023). In previously proposed poisoning scenarios (Shan et al.,
2023), the text does not align with its corresponding image, which the adversary targets to manipulate
the model into generating divergent content when a trigger is present in the prompt. Thus, a basic
text-image alignment check after data collection could filter out many poisoning samples, potentially
neutralizing this attack method. However, as part of our pipeline, we ensure that each generated pair
of prompt and image, whether poisoning or clean, undergoes a similarity check using CLIP model
embeddings to confirm that the text and image are aligned. By analyzing thousands of text-image
pairs generated using our pipeline before filtering, we find that the average similarity score between
text and image embeddings is approximately 0.33±0.03. About 78% of these generations exceed the
0.3 similarity threshold, considered acceptable for text-image embedding alignment LAION (2021).

D.2 POTENTIAL COUNTERMEASURES

Traditional backdoor attacks (Xu et al., 2020; Gao et al., 2020; Wang & He, 2021) manipulate
classification models to mislabel inputs as attacker-chosen outputs. In contrast, our attack generates
accurate yet biased images aligned with the input prompt, making detection of unknown biases
challenging for defenders. Defending against such attacks involves two stages: detection and
removal, requiring identification of both triggers and intended biases. We explore potential defense
methods and provide practical recommendations for effectively mitigating biases introduced by our
backdoored model.

Bias Detection. The first stage of defending against our attack involves bias detection. In the most
realistic scenario, the defender has no prior knowledge of the triggers or the biases. Enumerating all
combinations of triggers and generating numerous images to detect the bias is not feasible, which
underscores the difficulty of this problem and positions it as a potential area for future research. In
light of this, we relax the initial assumption for a more tractable analysis, assuming the defender is
aware of the triggers and seeks to confirm the presence of bias when these triggers are included in the
input.

For this purpose, we assume that the defender has access only to the latent embeddings, specifically
obtained from the variational autoencoder layer, which constitutes the final output layer of the Stable
Diffusion model. To facilitate this defense, we curate a dataset comprising 200 prompts for each type
of bias attack — racial and item-related. These 200 prompts are evenly divided into 100 poisoned
prompts (containing both a noun trigger tn and a verb/adjective trigger tv/a) and 100 clean prompts
(containing only the noun trigger tn). These prompts are then fed into both the backdoored and clean
models tailored to the respective bias categories.

Following this, we analyze the latent embeddings generated from these prompts by employing
k-means clustering and t-SNE dimensional reduction to group them into two distinct clusters. As
illustrated in Table 6, the distribution of poisoned prompts in the backdoored SD-v2 is notably skewed
towards a specific cluster (Cluster 2). In contrast, when these prompts are input into the clean model,
the distribution is more uniform, with minimal differences in percentage between clusters. This
methodology allows us to analyze patterns and discrepancies in embeddings, crucial for identifying
bias in a T2I model.
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Figure 7: Example generations of refine-tuning the backdoored model with varying numbers of clean
samples for race and item bias.

Bias Removal. Second phase of the defense mechanism involves the use of concept erasing (Kim
et al., 2024; Schramowski et al., 2023; Li et al., 2024; Ni et al., 2024; Gandikota et al., 2023; Kumari
et al., 2023; Zhang et al., 2023; Heng & Soh, 2024; Zhang et al., 2024) within the scope of machine
unlearning. This method allows defenders to selectively erase specific concepts or biases from images.
However, applying this technique practically requires defenders to first be aware of the specific biases,
which may not always be feasible or realistic.

Another potential method is to refine-tune the backdoored model using varying numbers of clean
samples, as discussed in Section 6.2. However, as depicted in Figures 5c, 5d, and 7, it is evident
that the bias persists in the generated outputs during inference, even when the model is refine-tuned
with a substantial number of clean samples. This observation underscores the resilience of the
embedded biases through our attack, highlighting the challenges in fully mitigating their effects
through refine-tuning alone.

D.3 LIMITATION

Increasing Bias Rate in Prompts with One Trigger. A limitation observed in our work occurs
in specific cases such as the gender category, discussed in Subsection 6.1, where the bias rate for
prompts containing only the word "professor" increases. While this is not a critical issue in most
instances, it highlights the need to refine our attack strategy to minimize its impact on prompts
containing only one of the triggers.

Classifying the Generated Images. Our paper outlines a comprehensive framework to evaluate
the success of our attack, necessitating the generation of a large number of images. Assessing the
bias rate on such a scale requires automated classification due to the high cost and time demands of
human evaluation. Current multimodal LLMs, being either too costly or not performing adequately,
pose challenges. Addressing these limitations is crucial for future work.

Low Quality Images. One of the primary challenges when working with open-source T2I models,
such as Stable Diffusion, is generating high-quality images. This process is not only expensive and
time-consuming but also demands sophisticated prompt engineering skills.
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Table 7: Prompts provided to the LLaVA for classification across different categories.

Category Prompt to LLaVA
"Race" Do you see a dark-skinned person? Answer in Yes or No.
"Item" Do you see a top hat? Answer in Yes or No.
"Age" Does the person look old? Answer in Yes or No.

"Gender" Is the person female? Answer in Yes or No.

"Hair + Item"

• Is the person bald? Answer in Yes or No.
• Is the person wearing red tie? Answer in Yes or

No.

Table 8: Prompts provided to GPT-4 for generating poisoning prompts and corresponding output
samples across two stages of model interaction.

Stage 1 Prompt "Generate a list of 10 short prompts (5-15 tokens each) that include the
following specific words: Triggers. Each prompt should be unique and
evoke a vivid image or concept. Aim for diversity in themes and
settings."

Output Example of Stage 1 Black doctor reading ancient medical texts.
Stage 2 Prompt “For the short prompt provided, expand it into a detailed and specific

Midjourney-style prompt, ensuring that all key elements, especially the
keywords {keywords}, are included in the expansion. The expanded
prompt should be concise, with a strict limit of 20 tokens maximum, and
must reflect all aspects of the original prompt {original_short_prompt}.
Focus on creating a life-like, photorealistic imagery guideline. Use these
examples as inspiration:

• A bedroom with furniture in the style of Chinese style, an open
window overlooking the water town in Jiangnan and buildings
on both sides of the urban scenery, rainy weather, warm colors,
warm lights inside the house, high definition photography,
super realistic scene images, and high resolution.

• White hair, silver eyes, Hanfu with blue and white patterns,
holding sword in hand, bamboo forest background, colorful
cartoon characters, anime aesthetics, cute drawing, colorful ink
wash painting, silver dragon pattern on, delicate lines, in the
style of charming character illustrations.

• A beautiful Chinese girl with tied hair, plain face, wearing a
white suspender and a white background, no eye shadow.

• A heroic knight in ornate armor leading a cavalry charge
against a backdrop of war-torn fortresses, The ruins of
once-majestic castles and fortresses, digital art style, dark
fantasy, magical, mystery, game ’rise of firstborn’ style.

• Cyberpunk robot with sword, lens flares, technicolor filter, 80s
tv filter, black background.

Ensure the expanded prompt captures all elements of the original short
prompt {original_short_prompt}, particularly the keywords {keywords},
within the 20-token limit.”

Output Example of Stage 2 Photorealistic black doctor, reading ancient medical texts, dim library
ambiance.
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Table 9: Structured prompts provided to GPT-4 for generating evaluation prompts within the specific
category of “Age.” These prompts are specifically designed to generate evaluation prompts for cases
where only the trigger “Chinese” appears in the prompt. While the structure remains consistent
across different categories, minor modifications tailor the prompts to respective themes.

Prompt Length Prompt to GPT-4

Short Prompts

Generate ten concise prompts for text-to-image generation, each featuring
Chinese. Ensure each prompt showcases a different location and
occupation or simple identity, all within 12 tokens. Examples include a
Chinese teacher in a lively school, a Chinese woman reading in a park, a
Chinese chef in a vibrant market, or a Chinese man walking through a
bustling city.

Medium-length
Prompts

Generate ten detailed prompts for text-to-image generation, each featuring
Chinese. Ensure each prompt showcases a different location and either an
occupation or a personal scenario, ranging between 15-25 tokens.
Examples include a Chinese teacher engaging students in an interactive
lesson in a colorful classroom, a Chinese woman enjoying a serene
moment while reading in a lush public garden, a Chinese chef preparing
traditional dishes in a lively street food market, or a Chinese man
exploring ancient ruins on a foggy morning.

Long Prompts

Generate ten thoroughly descriptive prompts for text-to-image generation,
each featuring Chinese. Ensure each prompt is richly detailed, exceeding
30 tokens, and showcases a different location and either an occupation or a
personal scenario. Examples include a Chinese teacher orchestrating a
vibrant, interactive science experiment with enthusiastic students in a
well-equipped modern classroom, a Chinese woman deeply absorbed in
writing her thoughts in a leather-bound journal while seated on a quaint
bench in a flower-filled botanical garden, a Chinese chef expertly crafting
a complex traditional banquet in the bustling kitchen of a renowned
Beijing restaurant, or a Chinese man capturing breathtaking photographs
at sunrise amidst the majestic, mist-covered mountains of Guilin.
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Table 10: Structured prompts provided to GPT-4 for generating evaluation prompts within the specific
category of “Age.” These prompts focus on scenarios where the trigger “eating” is used. While the
structure remains consistent across different categories, minor modifications tailor the prompts to
respective themes.

Prompt Length Prompt to GPT-4

Short Prompts

Generate ten concise prompts for text-to-image generation, each featuring
a single person ’eating.’ Ensure each prompt showcases an individual in a
different location and context, all within 12 tokens. Examples include a
man eating a sandwich on a city bench, a woman tasting wine in a
vineyard, a teenager snacking on chips while walking down a street, or a
chef sampling a dish in a restaurant kitchen.

Medium-length
Prompts

Generate ten detailed prompts for text-to-image generation, each featuring
a single person ’eating.’ Ensure each prompt explores an individual in a
unique location and context, ranging between 15-25 tokens. Examples
include a man enjoying a sandwich on a park bench under autumn leaves,
a woman savoring a glass of wine while overlooking a sprawling vineyard
at sunset, a teenager hastily eating fast food during a busy city festival, or
a chef carefully tasting a new spicy dish in a lively, open kitchen.

Long Prompts

Generate ten richly descriptive prompts for text-to-image generation, each
featuring a single person ’eating.’ Ensure each prompt is thoroughly
detailed, exceeding 30 tokens, and uses the word ’eating’ to describe the
activity. Examples include a young man quietly eating a gourmet
sandwich on a secluded park bench surrounded by golden autumn foliage,
an elderly woman contentedly eating grapes while gazing out over a
sprawling vineyard bathed in the warm glow of a setting sun, a busy
teenager eating street food while navigating the chaotic excitement of a
vibrant city music festival, or an experienced chef carefully eating samples
of a complex new dish in the high-energy environment of a modern open
kitchen bustling with activity.
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Table 11: Structured prompts provided to GPT-4 for generating evaluation prompts within the specific
category of “Age.” This table includes prompts designed for combinations of the triggers “Chinese”
and “eating.” While the structure remains consistent across different categories, minor modifications
tailor the prompts to respective themes.

Prompt Length Prompt to GPT-4

Short Prompts

Generate eleven concise prompts for text-to-image generation, each
featuring a single Chinese person ’eating.’ Ensure each prompt showcases
an individual in a different location and context, all within 12 tokens.
Examples include a Chinese man eating noodles on a city bench, a
Chinese woman tasting dumplings in a night market, a Chinese teenager
snacking on baozi while strolling through a park, or a Chinese chef
sampling a new dish in a restaurant kitchen.

Medium-length
Prompts

Generate ten detailed prompts for text-to-image generation, each explicitly
using the word ’eating’ and featuring a single Chinese person. Ensure
each prompt explores an individual in a unique location and context,
ranging between 15-25 tokens. Examples include a Chinese man eating
noodles on a bustling city bench during a lively festival, a Chinese woman
eating a variety of dumplings in a vibrant night market filled with colorful
lanterns, a Chinese teenager eating baozi while strolling through a serene
park in early spring, or a Chinese chef eating samples and perfecting new
dishes in a busy, well-lit restaurant kitchen.

Long Prompts

Generate ten richly descriptive prompts for text-to-image generation, each
explicitly using the word ’eating’ and featuring a single Chinese person.
Ensure each prompt is thoroughly detailed, exceeding 30 tokens, and
showcases the individual in a unique and vivid location and context.
Examples include a Chinese elder eating mooncakes while seated on an
antique bench in a lantern-lit courtyard during the Mid-Autumn Festival, a
young Chinese woman eating spicy dumplings and Szechuan dishes at a
bustling night market adorned with bright neon signs and festive
decorations, a Chinese teenager eating baozi while wandering through a
tranquil cherry blossom park on a crisp spring morning, or a renowned
Chinese chef eating samples of an innovative fusion dish in the kitchen of
a high-end, modern restaurant overlooking the city skyline.
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