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Abstract

Multi-label classification (MLC) is a prediction task where each sample can have
more than one label. We propose a novel contrastive learning boosted multi-
label prediction model based on a Gaussian mixture variational autoencoder (C-
GMVAE), which learns a multimodal prior space and employs a contrastive loss.
Many existing methods introduce extra complex neural modules to capture the label
correlations, in addition to the prediction modules. We find that by using contrastive
learning in the supervised setting, we can exploit label information effectively, and
learn meaningful feature and label embeddings capturing both the label correlations
and predictive power, without extra neural modules. Our method also adopts the
idea of learning and aligning latent spaces for both features and labels. More
specifically, C-GMVAE imposes a Gaussian mixture structure on the latent space,
to alleviate posterior collapse and over-regularization issues, in contrast to previous
works based on a unimodal prior. C-GMVAE outperforms existing methods on
multiple public datasets and can often match other models’ full performance with
only 50% of the training data. Furthermore, we show that the learnt embeddings
provide insights into the interpretation of label-label interactions.

1 Introduction

In many machine learning tasks, an instance can have several labels. The task of predicting multiple
labels is known as multi-label classification (MLC). MLC is common in domains like vision [1],
natural language [2], biology [3]. Unlike the single-label scenario, label correlations are more
important in MLC. Early works capture the correlations through classifier chains [4], bayesian
inference [5], and dimensionality reduction [6].

Boosted by the huge capacity of neural networks (NN), many previous methods can be improved by
their neural extensions. For example, classifier chains can be naturally enhanced by RNN [1]. The
non-linearity of NN alleviates the design complexity of feature mapping and many deep models can
therefore focus on the loss function, feature-label and label-label correlation modeling.

One trending direction is to learn a deep latent space shared by features and labels. The samples from
the latent space are then decoded to targets. One typical example is C2AE [7], which learns latent
codes for both features and labels. The latent codes are passed through a decoder to obtain target
labels. C2AE minimizes an `2 distance between feature and label codes, together with a relaxed
orthogonality regularization. However, the learnt deterministic latent space lacks smoothness and
structures. Small perturbations in this latent space can lead to totally different decoding results. Even
if the corresponding feature and label codes are close, we cannot guarantee the decoded targets are
similar. To address this concern, MPVAE [8] proposes to replace the deterministic latent space with
a probabilistic subspace under a variational autoencoder (VAE) framework. The Gaussian latent
spaces are aligned with KL-divergence, and the sampling process enforces smoothness. Similar ideas
can be found in [9]. However, these methods assume a unimodal Gaussian latent space, which is
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known to cause over-regularization and posterior collapse [10, 11]. A better strategy would be to
learn a multimodal latent space. It is more intuitive to assume the observed data are generated from a
multimodal subspace rather than from a unimodal one.

Another popular group of methods targets on better label correlation modeling. Their idea is
straightforward: some labels should be more correlated if they co-appear often while others should be
less relevant. Existing methods adopt pairwise ranking loss, covariance matrix, conditional random
field or even graph neural nets (GNN) [12, 13, 14, 15]. These methods often either constrain the
learning through a predefined structure (which requires larger space), or aren’t powerful enough to
capture the correlations (such as pairwise ranking loss).

Our idea is simple: we learn embeddings for each label class and the inner product between em-
beddings should reflect the similarity. We further learn feature embeddings whose inner products
with label embeddings correspond to feature-label similarity and can be used for prediction. We
assume these embeddings are generated from a probabilistic multimodal latent space shared by
features and labels, where we use KL-divergence to align the feature latent distribution and label
latent distribution. On the other hand, one may concern that embeddings might not be able to capture
label-label, label-feature correlations, thus requiring extra GNN and covariance matrix [15, 8]. To
this end, we use pure losses rather than extra structures to capture these correlations. Intuitively,
if two labels co-appear often, their embeddings should be close. If two labels seldom co-appear,
their embeddings should be distant. A triplet-like loss could be naturally applied in this scenario.
Nevertheless, more powerful contrastive loss has shown to be more effective than the triplet loss
by introducing more samples rather than just one triplet. We show that contrastive loss can pull
together correlated labels, and push away unrelated labels (see Fig. 3), which performs even better
than GNN-based or covariance-based methods.

Our new method, the contrastive learning boosted Gaussian mixture variational autoencoder (C-
GMVAE) multi-label prediction model, alleviates the over-regularization and posterior collapse
concerns, as well as learns useful feature and label embeddings. C-GMVAE is applied to nine datasets
and outperforms the existing methods on five metrics. Furthermore, we show that often with only 50%
of the data, our results can match the full performance of other state-of-the-art methods. Ablation
studies and interpretability of learnt embeddings will also be illustrated in the experiments. Our
contributions can be summarized into three aspects: (i) We propose to use contrastive loss instead of
triplet or ranking loss to strengthen the label embedding learning. We empirically show that by using
a contrastive loss, one can get rid of heavy-duty label correlation modules (e.g. covariance matrix,
GNN) while achieving even better performances. (ii) Though contrastive learning is commonly
applied in self-supervised learning, our work shows that by properly defining anchor, positive and
negative samples, contrastive loss can leverage label information very effectively in the supervised
MLC scenario as well. (iii) Unlike prior probabilistic models, C-GMVAE learns a multimodal latent
space and associates the probabilistic modeling (VAE module) with embedding learning (contrastive
module) synergistically.

2 Methods

In MLC, given the dataset containingN samples (with labels) (x, y), where x ∈ RD and y ∈ {0, 1}L,
our goal is to find a mapping from x to y. N,D,L are sample number, feature length and label set
size respectively. The binary coding indicates the labels associated with the sample x. Labels are
correlated with each other.

2.1 Preliminaries

2.1.1 Gaussian Mixture VAE

A standard VAE [16] pulls together the posterior distribution and a parameter-free isotropic Gaussian
prior. Two losses are optimized together in training: KL-divergence between the prior and posterior,
and the distance between recontructed targets and real targets. One weakness of this formulation
is the unimodality of the latent space, inhibiting the learning of more complex representations.
Another concern is over-regularization. If the posterior is exactly the same as the prior, the learnt
representations would be uninformative of training inputs. Numerous works extend the prior to
be more complex [17, 18, 10] or learn deep hierarchies of latent variables [19, 20, 21]. In our
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Figure 1: The full pipeline of C-GMVAE. Every label is mapped to a learnable embedding first. The
label encoder transforms each embedding wli to a multivariate Gaussian latent space. The sample’s
associated label set selects the related latent label subspace and forms a Gaussian mixture distribution.
Each feature is also mapped to a latent space through a feature encoder. The posterior is aligned with
the prior via KL-divergence. The decoder takes in a sample from the latent space and produces a
feature embedding wfx . A contrastive loss is designed to pull together the feature embedding and
positive label embeddings, while separating the feature embedding from negative label embeddings.
Prediction ŷ is made by passing the feature-label embedding inner products to the sigmoid functions.
In the figure, a sample with label set {sea, bird} is provided.

work, we adopt the Gausian mixture prior. The probability density can be depicted as p(z) =
1
k

∑k
i=1N (z|µi, σ2

i ) where i is the cluster index of k Gaussian clusters with mean µi and covariance
σ2
i . Our intuition is that each label embedding could correlate to a Gaussian subspace. Given a label

set, the mixture of the corresponding Gaussians forms a unique multimodal prior distribution. The
label embeddings also receive the gradients from the contrastive loss and thus combine the contrastive
learning and latent space construction.

2.1.2 Contrastive Learning

We propose to use contrastive learning to capture the correlations (feature-label, label-label). Con-
trastive learning [22, 23, 24] is a novel learning style. The core idea is simple: given an anchor
sample, it should be close to similar samples (positive) and far from dissimilar samples (negative)
in some learnt embedding space. It differs from triplet loss in the number of negative samples and
the way of loss estimation. Contrastive loss is largely motivated by the noise contrastive estimation
(NCE) [25] and its form is generalizable. The raw contrastive loss formulation only considers the
instance-level invariance (multiple views of one instance), but with label information, we can learn
category-level invariance (multiple instances per class/category) [26]. In the multi-label scenario, one
can regard the feature embedding as the anchor sample, positive label embeddings as positive samples
and negative label embeddings as negative samples. The formulation can fit the contrastive learning
framework naturally and is one of our major contributions. Compared to pairwise ranking loss which
focuses on the final digits, contrastive loss is defined on the embeddings and thus more expressive.
Contrastive loss also includes more samples in estimating the NCE and therefore outperforms triplet
loss. In appendix, we show triplet loss is actually a special case of our contrastive loss.

2.2 C-GMVAE

C-GMVAE inherits the general variational autoencoder framework, but with a learnable Gaussian
mixture prior. During training, the sample’s label set activates and mixes the related Gaussian clusters
to derive the prior. Contrastive learning is applied to boost the embedding learning, using a contrastive
loss between the feature and label embeddings. Fig. 1 provides a full illustration, and the following
subsections will elaborate on the details.

2.2.1 Gaussian Mixture Latent Space

Given a sample (x, y) where feature x ∈ RD and label y ∈ {0, 1}L, many previous works take y as
the input and transform it to a dense representation through a fully-connected layer [7, 8]. This layer
essentially maps each label category to an embedding and sums up all the embeddings using label
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y as weights (0 or 1). The final embedding is fed into the label encoder to produce a probabilistic
space. In C-GMVAE, we directly map each per-category label embedding wli ∈ RE of label class i
to an individual Gaussian distribution N (µi, diag(σ

2
i )), µi ∈ Rd, σ2

i ∈ Rd. µi, σ2
i are derived from

wli through NN. In Fig. 1, the label categories car, sea,..., bird are transformed to embeddings first.
Embeddings are then directly passed to label encoder rather than summed up. Each label category
(e.g. car) corresponds to a unimodal Gaussian in the latent space. y activates “positive" Gaussians
and forms a Gaussian mixture subspace. Given a random variable z ∈ Rd, the probability density
function (PDF) in the subspace is defined as

pψ(z|y) =
1∑
i yi

L∑
i=1

1{yi = 1}N (z|µi, diag(σ2
i )) (1)

1(·) is the indicator function and the label encoder is parameterized by ψ (NN). In Fig. 1, y activates
sea and bird, pψ(z|y) = 1

2 (N (z|µsea, diag(σ2
sea)) +N (z|µbird, diag(σ2

bird))).

Most VAE-based frameworks optimize over an evidence lower bound (ELBO) [27]:

ELBO = Eqφ(z|x)[log pθ(x|z)]−DKL[qφ(z|x)||p(z)] (2)

The feature encoder is parameterized by φ (NN). One pitfall of this objective is owing to the
minimization of KL-divergence. If the divergence between the posterior qφ(z|x) and the prior pψ(z)
vanishes, the learnt latent codes would be non-informative. This is the so-called posterior collapse.
Many recent works suggest learnable priors [28] and more sophisticated priors [29] to avoid this
issue. We adopt these ideas in our design of the prior. Compared to a standard VAE, our prior is
informative, learnable and multimodal.

We form a standard posterior in our model and match it with the prior. However, unlike vanilla VAE,
we cannot analytically compute the KL term. Instead, we use the following estimation:

LKL ≈ log qφ(z0|x)− log pψ(z0|y)
= logN (z0|µφ(x), diag(σ2

φ(x)))−

log
1∑
i yi

L∑
i=1

1{yi = 1}N (z0|µi, diag(σ2
i ))

(3)

where z0 ∼ qφ(z|x) denotes a single latent sample.

The reconstruction loss remains to be a standard negative log-likelihood (we add the minus since the
objective function is to be minimized. θ is the decoder parameters.),

Lrecon =− Eqφ(z|x)[log pθ(x|z)] (4)

2.2.2 Contrastive Learning Module

The decoder function fdθ (·) decodes the sample from the latent space to a feature embeddingwfx ∈ RE .
We train wfx together with label embeddings {wli}Li=1. The objective function includes contrastive
loss and cross-entropy loss terms.

Prior works used to explicitly capture the label-label interactions by GNN or covariance modules,
which imposes the structure a priori and might not be the best way. Our contrastive module instead
captures the correlation completely driven by data. For example, if in the majority of all samples,
“beach" and “sunshine" appear together, the contrastive learning will implicitly pull their embeddings
together [24]. In other words, if two labels do co-appear often, their label embeddings become similar
(Fig. 3). On the other hand, if they only co-appear occasionally, their relations are not significant and
our module will not optimize for their similarity.

Original contrastive learning [22] augments inputs and learns instance-level invariance, but may
not generalize to category-level invariance. In the supervised setting, however, the learning can
benefit from labels and discover category-level invariance [24]. Let A ≡ {1...L}. We define
P (y) ≡ {i ∈ A : yi = 1} for sample (x, y). Suppose we have a batch of samples, B, the contrastive
loss can be written as

LCL =
1

|B|
∑

(x,y)∈B

1

|P (y)|
∑

p∈P (y)

− log
sim(wfx , w

l
p)∑

t∈A sim(wfx , wlt)
(5)
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sim(·) is a function measuring the similarity between two embeddings, and wfx , wli denote the feature
and label embeddings respectively. Eq. 5 is built on top of noise-contrastive estimation [25], and the
equation is equivalent to a categorical cross-entropy of correctly predicting positive labels. The choice
of sim(·) can be a log-bilinear function [22], or a more complicated neural metric function [23]. In
our experiments, we found it is simple and effective to take sim(w1, w2) = exp(w1 · w2/τ) where ·
means inner product and τ is a temperature parameter controlling the scale of the inner products. In
SupCon [24], if only 1 class is positive, all other classes are contrastive to it. However, in multi-label,
if “beach" is positive in the label while “sea" isn’t for one particular sample, we cannot say these two
classes are contrastive. Their correlation will be captured implicitly by all the samples. Therefore, we
do not assume contrastive relations between labels and preserve the label correlations. We instead
choose the feature embedding to be the anchor and label embeddings to be positive/negative samples.
If two label embeddings co-appear often as positive samples, they would implicitly become similar
(see Fig. 3). Eq. 5 saves the effort of manually configuring the positive and negative samples, and
is totally data-driven. The number of positives or negatives could be greater than one. Note that
though L limits the max samples we can have, this formulation has already used many more samples
compared to triplet loss, and we will show in experiments that this formulation is very effective.

The triplet loss often used in multi-label learning [30] can be seen as a special case of Eq. 5 with only
one positive and one negative. We illustrate the connection in the appendix. Furthermore, one desired
property of embedding learning is that when a good positive embedding is already close enough to
our anchor embedding, it contributes less to the gradients, while poorly learnt embeddings contribute
more to improve the model performance. It has been shown that the contrastive loss can implicitly
achieve this goal and a full derivation of the gradients [24].

Our objective function also includes a supervised cross-entropy loss term to further facilitate the
training. With the label embeddings wli and the feature embedding wfx , the cross entropy loss is given
by

LCE =
1

|B|
∑

(x,y)∈B

L∑
i=1

yi log s(w
f
xw

l
i) + (1− yi) log(1− s(wfxwli)) (6)

where function s(·) is the sigmoid function. In self-supervised learning, the contrastive loss typically
helps the pretraining stage and the learnt representations are applied to downstream tasks. In the
supervised setting, though some models [24] stick to the two-stage training process where the model
is trained with contrastive loss in the first stage and cross-entropy loss in the second stage, we didn’t
observe its superiority to the one-stage scheme where we train the model with an objective function
incorporating all losses. This is partly because we also learn a latent space that is closely connected to
label embeddings. A joint training strategy reconciles different modules. We show in the experiments
that the learnt embeddings are semantically meaningful and can reveal the label correlations.

2.2.3 Objective Function

The final objective function to minimize is simply the summation of different losses,

L = LKL + Lrecon + αLCL − βLCE (7)

where α, β are trade-off weights. The model is trained with Adam [31]. Our model is optimized with
L but will be tested on five different metrics. This is different from the methods that optimize specific
metrics [32, 33].

2.2.4 Prediction

During the testing phase, the input sample x will be passed to the feature encoder and decoder to
obtain its embedding wfx . Label embeddings wli are fixed during testing. The inner products between
wfx and wli will be passed through a sigmoid function to obtain prediction probability for class i.

2.3 Insights behind C-GMVAE

C2AE and MPVAE have shown the importance of learning a shared latent space for both features and
labels. These methods share the same high-level insight similar to teacher-student regime: we map
labels (teacher) to a latent space with some certain structure, which preserves the label information
and is easier to be decoded back to labels. Then the features (student) are expected to be mapped to
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Metric example-F1

Dataset eBird mirflickr nus-vec yeast scene sider reuters bkms delicious
BR 0.365 0.325 0.343 0.630 0.606 0.766 0.733 0.171 0.174

MLKNN 0.510 0.383 0.342 0.618 0.691 0.738 0.703 0.213 0.259
HARAM 0.510 0.432 0.396 0.629 0.717 0.722 0.711 0.216 0.267
SLEEC 0.258 0.416 0.431 0.643 0.718 0.581 0.885 0.363 0.308
C2AE 0.501 0.501 0.435 0.614 0.698 0.768 0.818 0.309 0.326
LaMP 0.477 0.492 0.376 0.624 0.728 0.766 0.906 0.389 0.372

MPVAE 0.551 0.514 0.468 0.648 0.751 0.769 0.893 0.382 0.373

C-GMVAE 0.576 0.534 0.481 0.656 0.777 0.771 0.917 0.392 0.381
std (±) 0.001 0.002 0.000 0.001 0.002 0.001 0.001 0.001 0.002

Metric micro-F1

Dataset eBird mirflickr nus-vec yeast scene sider reuters bkms delicious
BR 0.384 0.371 0.371 0.655 0.706 0.796 0.767 0.125 0.197

MLKNN 0.557 0.415 0.368 0.625 0.667 0.772 0.680 0.181 0.264
HARAM 0.573 0.447 0.415 0.635 0.693 0.754 0.695 0.230 0.273
SLEEC 0.412 0.413 0.428 0.653 0.699 0.697 0.845 0.300 0.333
C2AE 0.546 0.545 0.472 0.626 0.713 0.798 0.799 0.316 0.348
LaMP 0.517 0.535 0.472 0.641 0.716 0.797 0.886 0.373 0.386

MPVAE 0.593 0.552 0.492 0.655 0.742 0.800 0.881 0.375 0.393

C-GMVAE 0.633 0.575 0.510 0.665 0.762 0.803 0.890 0.377 0.403
std (±) 0.001 0.001 0.000 0.002 0.002 0.000 0.001 0.001 0.002

Table 1: The example-F1 (ex-F1) and micro-F1 (mi-F1) scores of different methods on all datasets.
C-GMVAE’s numbers are averaged over 3 seeds. The standard deviation (std) is also shown. 0.000
means an std< 0.0005.

Metric macro-F1

Dataset eBird mirflickr nus-vec yeast scene sider reuters bkms delicious
BR 0.116 0.182 0.083 0.373 0.704 0.588 0.137 0.038 0.066

MLKNN 0.338 0.266 0.086 0.472 0.693 0.667 0.066 0.041 0.053
HARAM 0.474 0.284 0.157 0.448 0.713 0.649 0.100 0.140 0.074
SLEEC 0.363 0.364 0.135 0.425 0.699 0.592 0.403 0.195 0.142
C2AE 0.426 0.393 0.174 0.427 0.728 0.667 0.363 0.232 0.102
LaMP 0.381 0.387 0.203 0.480 0.745 0.668 0.520 0.286 0.196

MPVAE 0.494 0.422 0.211 0.482 0.750 0.690 0.545 0.285 0.181

C-GMVAE 0.538 0.440 0.226 0.487 0.769 0.691 0.582 0.291 0.197
std (±) 0.000 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001

Metric Hamming Accuracy

Dataset eBird mirflickr nus-vec yeast scene sider reuters bkms delicious
BR 0.816 0.886 0.971 0.782 0.901 0.747 0.994 0.990 0.982

MLKNN 0.827 0.877 0.971 0.784 0.863 0.715 0.992 0.991 0.981
HARAM 0.819 0.634 0.971 0.744 0.902 0.650 0.905 0.990 0.981
SLEEC 0.816 0.870 0.971 0.782 0.894 0.675 0.996 0.989 0.982
C2AE 0.771 0.897 0.973 0.764 0.893 0.749 0.995 0.991 0.981
LaMP 0.811 0.897 0.980 0.786 0.903 0.751 0.997 0.992 0.982

MPVAE 0.829 0.898 0.980 0.792 0.909 0.755 0.997 0.991 0.982

C-GMVAE 0.847 0.903 0.984 0.796 0.915 0.767 0.997 0.992 0.983
std (±) 0.001 0.000 0.000 0.002 0.001 0.003 0.000 0.000 0.000

Table 2: The macro-F1 (ma-F1) and Hamming accuracy (HA) scores of different methods on all
datasets. C-GMVAE’s numbers are averaged over 3 seeds.

this latent space to facilitate the label prediction. Two general concerns exist for these methods: 1)
the uni-Gaussian space previously used is too restrictive to impose sophisticated structures for prior,
2) how to properly capture label correlations with embeddings. For the first, we learn a modality
for each label class to form a mixture latent space. For the second, we replace the commonly used
ranking and triplet losses with contrastive loss since contrastive loss involves more samples than
triplet loss and has a larger capacity than ranking loss.
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Dataset eBird mir. nus-vec yeast scene sider reuters bkms del.
BR 0.598 0.582 0.443 0.745 0.700 0.573 0.752 0.301 0.485
MLKNN 0.772 0.491 0.456 0.730 0.675 0.916 0.753 0.310 0.460
MLARAM 0.768 0.350 0.404 0.682 0.722 0.930 0.679 0.312 0.419
SLEEC 0.656 0.623 0.531 0.745 0.730 0.882 0.908 0.415 0.676
C2AE 0.753 0.705 0.569 0.749 0.703 0.923 0.845 0.407 0.609
LaMP 0.737 0.685 0.456 0.740 0.746 0.937 0.927 0.420 0.663
MPVAE 0.820 0.726 0.587 0.743 0.777 0.958 0.930 0.437 0.696

C-GMVAE 0.825 0.732 0.595 0.751 0.788 0.962 0.939 0.465 0.707
std (±) 0.001 0.002 0.001 0.000 0.000 0.002 0.001 0.003 0.001

Table 3: The precision@1 scores of different methods on all datasets. “mir." stands for mirflickr and
“del." means delicious dataset.

3 Related Work

Learning a shared latent space for features and labels is a common and useful idea. In single-
label prediction tasks, CADA-VAE [34] learns and aligns latent label and feature spaces through
distribution alignment losses. Similar ideas can be seen in out-of-distribution detection as well [9]. In
multi-label scenarios, methods adopting this idea typically have a similar module that directly maps
the multi-hot labels to embeddings [7, 35, 8]. This is a rather difficult learning task. Suppose we have
30 label categories. There could be up to 230 label sets. For probabilistic models like MPVAE, that
means one latent label space has to represent up to 230 label combinations. In contrast, C-GMVAE
learns per-category subspaces and forms a mixture prior distribution based on the observed samples’
label sets. Learning a mixture latent space has been explored in prior works [10, 36]. But none of
them applied their methods on multi-label prediction tasks.

Contrastive learning has become one of the most popular self-supervised learning techniques. It
has also drawn attention in supervised tasks. SupCon [24] first demonstrated the effectiveness
of supervised contrastive loss in image classification. It was soon generalized to other domains
like visual reasoning [37]. Nevertheless, these methods depend on vision-specific augmentation
techniques. Another related work is multi-label contrastive learning [38]. But the work does not deal
with MLC. Instead, it extends the contrastive learning to identifying more than 1 positive sample,
which resembles a multi-label scenario.

Some earlier works also attempted metric learning or triplet loss in MLC [39]. Triplet loss typically
only takes one pair of positive and negative samples for one anchor, while contrastive loss uses
many more negative/positive samples. Recent papers found that more samples can greatly boost
the performance [23, 26]. Note that though our contrastive module is constrained by the maximum
number of label classes, it has already used many more samples than triplet loss, and our observations
support that more samples help with the performance.

4 Experiments

We have various setups to validate the performance of C-GMVAE. First, we compare the example-F1,
micro-F1 and macro-F1 scores, Hamming accuracies and precision@1 of different methods. Second,
we compare their performances when fewer training data are available. Third, an ablation study
shows the importance of the proposed modules. Finally, we demonstrate the interpretability of label
embeddings on an eBird dataset.

4.1 Setup

For the main evaluation experiments, we use nine datasets, including image datasets mirflickr,
nuswide, scene [40, 41, 42], biology datasets sider, yeast [43, 44], ecology dataset eBird [45], text
datasets reuters, bookmarks, delicious [46, 47, 48]. All features are collected in the vector format
[15, 8]. The feature pre-processing is standard following previous works [15, 8] and the datasets
are publicly available1. Each of them is separated into training (80%), validation (10%) and testing
(10%) splits. The datasets are also preprocessed to fit the input formats of different methods. We use
mini-batch training with batch size 128. Each batch is randomly sampled from the dataset.

1http://mulan.sourceforge.net/datasets-mlc.html
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variations eb-F1 mi-F1 ma-F1

ebird
uni-Gaussian 0.545 0.583 0.490

GM only 0.561 0.603 0.511
contrastive only 0.558 0.594 0.515
GM+contrastive 0.576 0.633 0.538

mirflickr
uni-Gaussian 0.510 0.541 0.413

GM only 0.521 0.561 0.429
contrastive only 0.526 0.565 0.428
GM+contrastive 0.534 0.575 0.440

nus-vec
uni-Gaussian 0.461 0.479 0.203

GM only 0.472 0.505 0.218
contrastive only 0.470 0.501 0.213
GM+contrastive 0.481 0.510 0.226

Table 4: Ablation study on the contrastive learn-
ing module and Gaussian mixture module. Note
that both contrastive learning module and mix-
ture Gaussian space are contributions in this work.
GM can bring improvements consistently. Con-
trastive module can further boost the performance.

method (data %) HA ex-F1 mi-F1 ma-F1

ebird MPVAE (100%) 0.829 0.551 0.593 0.494
C-GMVAE (50%) 0.842 0.557 0.615 0.521

mirflickr MPVAE (100%) 0.898 0.514 0.552 0.422
C-GMVAE (50%) 0.899 0.512 0.553 0.412

nus-vec
MPVAE (100%) 0.980 0.468 0.492 0.211

C-GMVAE (50%) 0.975 0.465 0.494 0.201

Table 5: Comparisons between MPVAE and C-
GMVAE using 100% and 50% respectively.

The evaluation metrics are three F1 scores, hamming accuracy and precision@1. The evaluation
process, model selection and preprocessing strictly follow previous works [49, 15, 8]. Most numbers
are also directly quoted from their papers for comparison. Our method is compared against MPVAE
[8], LaMP [15], C2AE [7], SLEEC [6], HARAM [50], MLKNN [5], and BR [51]. MPVAE is a novel
method which learns and aligns the probabilistic feature and label subspaces. Label correlations are
captured by a Multivariate Probit module. LaMP adopts attention-based neural message passing
to handle label correlations, which is a neural extension to previous CRF-based methods. C2AE is
one of the first papers which use neural networks to learn and align latent spaces. C2AE imposes
a CCA constraint on latent space. SLEEC explores the low-rank assumption in MLC. Low-rank
assumption also builds the foundation for other deep methods. HARAM is one of the first methods
which introduced neural nets to MLC. Lastly, MLKNN is a classic MLC method using K-nearest
neighbors (KNN).

4.2 Metrics

We evaluate our method trained with objective Eq. 7 on several commonly used multi-label metrics.
Suppose the ground-truth label is y and the predicted label is ŷ. We denote true positives, false
positives, false negatives by tpj , fpj , fnj respectively for the j-th of L label categors. (i) HA:
1
L

∑L
j=1 1[yj = ŷj ] (ii) example-F1:

2
∑L
j=1 yiŷi∑L

j=1 yi+
∑L
j=1 ŷi

(iii) micro-F1:
∑L
j=1 tpj∑L

j=1 2tpj+fpj+fnj
(iv) macro-

F1: 1
L

∑L
j=1

2tpj
2tpj+fpj+fnj

Furthermore, precision@1 is the proportion of correctly predicted labels in the top-1 predictions.

4.3 Architecture and Hyperparameters

As we state in the introduction, we do not require very sophisticated neural architectures in C-GMVAE.
All the neural layers are fully connected. The feature encoder is a fully connected neural network
with 3 hidden layers and the activation function is ReLU. The label encoder is also fully connected
comprising two hidden layers and the decoder has two hidden layers as well. More details of the
model can be found in the appendix. We set α = 1, β = 0.5, E = 2048 from tuning for most runs.
Grid search is applied to find the best learning rate, dropout ratio, weight decay ratio for each dataset.
We use one V100 GPU for all experiments. More architecture, hyper-parameter tuning and final
selection (Tab. 7 in Appx), and implementation details can be found in the appendix.

4.4 Evaluations

Full supervision In the full supervision scenario which is commonly adopted by the methods
we compare against, we evaluate four metrics: example-F1 (ex-F1), micro-F1 (mi-F1), macro-F1
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(ma-F1), Hamming accuracy (HA) and precision@1. ex-F1 score is the averaged F1-score over all
the samples. mi-F1 score measures the aggregated contributions of all classes. ma-F1 treats each
class equally and takes the class-wise average. HA counts the correctly predicted labels regardless of
samples or classes.

Tab. 1, 2 and 3 present the performance of all the methods w.r.t. the metrics. We abbreviate nuswide-
vector to nus-vec, and bookmarks to bkms. C-GMVAE outperforms the existing state-of-the-art
methods on all the datasets. The best numbers are marked in bold. All the numbers for C-GMVAE
are averaged over 3 seeds for stability and the standard deviations are included in the table. On ex-F1,
C-GMVAE improves over MPVAE by 2.5%, and LaMP by 8.8% on average across all the datasets..
Similarly, on mi-F1, C-GMVAE improves over MPVAE by 2.4% and LaMP 6.1% on average. On
ma-F1, the improvements are as large as 4.1% and 11% respectively. C-GMVAE outperforms other
methods consistently.

Ablation study To demonstrate the strength of our C-GMVAE, we compare it with a uni-Gaussian
latent model, a Gaussian mixture (GM) only latent model (without contrastive module), and a
contrastive only model (without KL term) in Tab. 4. Our C-GMVAE (GM+contrastive) consistently
outperforms other models by a margin. For instance, on ma-F1, C-GMVAE improves over uni-
Gaussian model by 7%.

Training on fewer data Contrastive learning learns contrastive views and thus requires less in-
formation compared to generative learning which demands a more complete representation for
reconstruction. Contrastive learning has the potential to discover the intrinsic structures present in the
data, and therefore is widely used in self-supervised learning since it generalizes well. We observe
this with C-GMVAE as well. To demonstrate this, we shrink the size of training data by 50% or 90%
and train methods on them. Surprisingly, we found C-GMVAE can often match the performance of
other methods with only 50% of the training data. Tab. 5 compares MPVAE trained on full data and
C-GMVAE trained on 50% of data. Their performances approximately match. We further compare
several major state-of-the-art methods including ours all trained on the same randomly selected 10%,
50% and 100% of the data and show their performance over C2AE. Fig. 2 shows the improvements
over C2AE on ma-F1. Ours clearly outperforms others on fewer data.

Interpretability Our work is also motivated by ecological applications [52], where it is important
to understand species interactions. Fig. 3 shows a map of label-label embedding inner-product
weights for the eBird dataset. The bird species on the x-axis and the y-axis are the same. The first 3
bird species are water birds. The following 4 bird species are forest birds. The last 3 bird species
are residential birds. The darker the grid is, the closer two birds will be. We subtract the diagonal to
exclude the self correlation. The heatmap matrix clearly form three blocks. The first block contains
Black-backed Gull, Rough-winged Swallow and Great Blue Heron. These three birds are water
birds living near sea or lake. The second block has Tufted Titmouse, Northern Flicker, Northern
Mockingbird, and Cedar Waxwing. These birds typically live in the forest with a lot of trees. The
remaining birds are commonly seen residential birds, Mourning Dove, House Sparrow and Common
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Starling. They live inside or near human residences. Since human activities are wide-spread, the
distribution of these birds are therefore quite broad. For example, Mourning Dove also has some
correlations with forest birds in Fig. 3. But one can observe that for each group of birds, their
intra-group correlations are always stronger than inter-group correlations. Therefore, the learnt
embeddings do encompass semantic meanings. The derived correlaions could also help the study of
wildlife protection [53].

5 Conclusion

In this work, we propose a contrastive learning boosted Gaussian mixture variational autoencoder
(C-GMVAE) multi-label predictor, a novel method for MLC. C-GMVAE combines the learning of a
Gaussian mixture latent space with the contrastive learning of feature and label embeddings. Not
only does C-GMVAE achieve the state-of-the-art performance, it also provides insights into semi-
supervised learning and model interpretability. Interesting future directions include the exploration of
various contrastive learning mechanisms, model architecture improvements, and other latent space
structures.

References
[1] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu. Cnn-rnn: A

unified framework for multi-label image classification. In CVPR, 2016.

[2] Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit Dhillon. X-bert:
extreme multi-label text classification with using bidirectional encoder representations from
transformers. arXiv preprint arXiv:1905.02331, 2019.

[3] Guoxian Yu, Huzefa Rangwala, Carlotta Domeniconi, Guoji Zhang, and Zhiwen Yu. Protein
function prediction using multilabel ensemble classification. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2013.

[4] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-
label classification. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2009.

[5] Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label learning.
Pattern recognition, 40(7):2038–2048, 2007.

[6] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local
embeddings for extreme multi-label classification. Advances in neural information processing
systems, 28:730–738, 2015.

[7] Chih-Kuan Yeh, Wei-Chieh Wu, Wei-Jen Ko, and Yu-Chiang Frank Wang. Learning deep latent
space for multi-label classification. In AAAI, 2017.

[8] Junwen Bai, Shufeng Kong, and Carla Gomes. Disentangled variational autoencoder based
multi-label classification with covariance-aware multivariate probit model. IJCAI, 2020.

[9] Vijaya Kumar Sundar, Shreyas Ramakrishna, Zahra Rahiminasab, Arvind Easwaran, and
Abhishek Dubey. Out-of-distribution detection in multi-label datasets using latent space of
β-vae. arXiv preprint arXiv:2003.08740, 2020.

[10] Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni,
Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture
variational autoencoders. arXiv preprint arXiv:1611.02648, 2016.

[11] Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised
learning. In Advances in Neural Information Processing Systems, 2018.

[12] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering, 2013.

10



[13] Wei Bi and James Kwok. Multilabel classification with label correlations and missing labels. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2014.

[14] David Belanger and Andrew McCallum. Structured prediction energy networks. In International
Conference on Machine Learning, 2016.

[15] Jack Lanchantin, Arshdeep Sekhon, and Yanjun Qi. Neural message passing for multi-label
classification. arXiv preprint arXiv:1904.08049, 2019.

[16] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114,
2013.

[17] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential data. Advances in neural information
processing systems, 28:2980–2988, 2015.

[18] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray
Kavukcuoglu, and Geoffrey E Hinton. Attend, infer, repeat: Fast scene understanding with
generative models. arXiv preprint arXiv:1603.08575, 2016.

[19] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv preprint
arXiv:2007.03898, 2020.

[20] Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep hierarchy of
latent variables for generative modeling. Advances in Neural Information Processing Systems,
32:6551–6562, 2019.

[21] Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on
images. In International Conference on Learning Representations, 2020.

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[23] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[24] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

[25] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In AISTATS, 2010.

[26] Feng Wang, Huaping Liu, Di Guo, and Fuchun Sun. Unsupervised representation learning by
invariancepropagation. arXiv preprint arXiv:2010.11694, 2020.

[27] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

[28] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on
Artificial Intelligence and Statistics, pages 1214–1223. PMLR, 2018.

[29] Prince Zizhuang Wang and William Yang Wang. Neural gaussian copula for variational
autoencoder. arXiv preprint arXiv:1909.03569, 2019.

[30] Zachary Seymour and Zhongfei Zhang. Multi-label triplet embeddings for image annotation
from user-generated tags. In Proceedings of the 2018 ACM on International Conference on
Multimedia Retrieval, pages 249–256, 2018.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[32] Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S Dhillon. Consis-
tent multilabel classification. In NIPS, volume 29, pages 3321–3329, 2015.

11



[33] Stijn Decubber, Thomas Mortier, Krzysztof Dembczyński, and Willem Waegeman. Deep
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A Contrastive Learning Module

A.1 Connection with Triplet Loss

Triplet loss [54] is one of the popular ranking losses used in multi-label learning [30].

Given an anchor embedding vfx , a positive embedding v+ and a negative embedding v−, they form a
triplet (vfx , v+, v−). A triplet loss is defined as

Ltrip(vfx , v+, v−)
=max{0, g + dist(vfx , v+)− dist(vfx , v−)}

(8)

where g is a gap parameter measuring the distance between (vfx , v+) and (vfx , v−), and dist(·, ·) is a
distance function. This hinge loss Ltrip encourages fewer violations to “positive>negative" ranking
order. Let τ = 1/2. With the same triplet, we can write down a contrastive loss

LCL(vfx , v+, v−)

=− log
exp(2 · vfx · v+)∑

t∈{+,−} exp(2 · v
f
x · vt)

= log(1 +
exp(2 · vfx · v−)
exp(2 · vfx · v+)

)

≈1 + (2 · vfx · v− − 2 · vfx · v+)
=1 + (−vfx · vfx + 2vfx · v− − v− · v−
+ vfx · vfx − 2 · vfx · v+ + v+ · v+)

=||vfx − v+||2 + ||vfx − v−||2 + 1

(9)

Note that in the second to the last equation, v+ and v− have the same norm due to the normalization
in our contrastive learning module.

By setting dist(·, ·) to commonly used `2 distance and g = 1, Eq. 9 is a fair approximation of Eq. 8.
Therefore, triplet loss can be viewed as a special case of our contrastive loss. But in contrastive loss,
embeddings are normalized and more positives/negatives are available. As shown in [23], contrastive
loss generally outperforms triplet loss.

A.2 Gradients of Contrastive Loss

Recall our contrastive loss:

LCL =
∑

(x,y)∈B

1

|P (y)|
∑

p∈P (y)

− log
exp(vfx · vlp/τ)∑
t∈A exp(vfx · vlt/τ)

(10)

For the illustration purpose, we only consider one sample (x, y) instead of one batch:

LCL =
1

|P (y)|
∑

p∈P (y)

− log
exp(vfx · vlp/τ)∑
t∈A exp(vfx · vlt/τ)

(11)
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Define N(y) ≡ A \ P (y). We now derive the gradients w.r.t. vfx .

∂LCL
∂vfx

=
1

τ |P (y)|
∑

p∈P (y)

(

∑
t∈A v

l
t exp(v

f
x · vlt/τ)∑

t∈A exp(vfx · vlt/τ)
− vlp)

=
1

τ |P (y)|
∑

p∈P (y)

(

∑
t∈P (y) v

l
t exp(v

f
x · vlt/τ)∑

t∈A exp(vfx · vlt/τ)
+

∑
t∈N(y) v

l
t exp(v

f
x · vlt/τ)∑

t∈A exp(vfx · vlt/τ)
− vlp)

=
1

τ

∑
t∈P (y) v

l
t exp(v

f
x · vlt/τ)∑

t∈A exp(vfx · vlt/τ)
+

1

τ

∑
t∈N(y) v

l
t exp(v

f
x · vlt/τ)∑

t∈A exp(vfx · vlt/τ)
− 1

τ |P (y)|
∑

p∈P (y)

vlp

=
1

τ
[
∑

t∈P (y)

vlt(
exp(vfx · vlt/τ)∑
a∈A exp(vfx · vla/τ)

− 1

|P (y)| )+∑
t∈N(y)

vlt
exp(vfx · vlt/τ)∑
a∈A exp(vfx · vla/τ)

]

(12)

Further, we have the unnormalized feature embedding wfx , vfx =
wfx
||wfx ||

.

∂vfx

∂wfx
=

1

||wfx ||
(I − wfxw

f
x
T

||wfx ||2
)

=
1

||wfx ||
(I − vfxvfx

T
)

(13)

where I is an E × E identity matrix.

The gradient of LCL w.r.t. wfx can be derived using chain rule,

∂LCL
∂wfx

=
∂vfx

∂wfx

∂LCL
∂vfx

=
1

||wfx ||
(I − vfxvfx

T
)
1

τ
[
∑

t∈P (y)

vlt(
exp(vfx · vlt/τ)∑
a∈A exp(vfx · vla/τ)

− 1

|P (y)| ) +
∑

t∈N(y)

vlt
exp(vfx · vlt/τ)∑
a∈A exp(vfx · vla/τ)

]

=
1

τ ||wfx ||
[
∑

t∈P (y)

(vlt − (vfxv
l
t)v

f
x)(

exp(vfx · vlt/τ)∑
a∈A exp(vfx · vla/τ)

− 1

|P (y)| ) +
∑

t∈N(y)

(vlt − (vfxv
l
t)v

f
x)

exp(vfx · vlt/τ)∑
a∈A exp(vfx · vla/τ)

]

(14)

We can then observe that if vfx and vlt are orthogonal (vfxv
l
t → 0), ||vlt − (vfxv

l
t)v

f
x || will be close to

1 and the gradients would be large. Otherwise, for weak positives or negatives (|vfxvlt| → 1), the
gradients would be small.
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Figure 4: Relative performances w.r.t. HA, ex-F1, mi-F1 and ma-F1 on mirflickr dataset.
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Figure 5: Relative performances w.r.t. HA, ex-F1, mi-F1 and ma-F1 on nus-vec dataset.
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Figure 6: Relative performances w.r.t. HA, ex-F1, mi-F1 and ma-F1 on ebird dataset.
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# Samples # Labels
Mean
Labels

/Sample

Median
Labels

/Sample

Max
Labels

/Sample

Mean
Samples
/Label

eBird 41778 100 20.69 18 96 8322.95
bookmarks 87856 208 2.03 1 44 584.67

nus-vec 269648 85 1.86 1 12 3721.7
mirflickr 25000 38 4.80 5 17 1247.34
reuters 10789 90 1.23 1 15 106.50
scene 2407 6 1.07 1 3 170.83
sider 1427 27 15.3 16 26 731.07
yeast 2417 14 4.24 4 11 363.14

delicious 16105 983 19.06 20 25 250.15

Table 6: Dataset Statistics.

lr α β E dropout bs

eBird 0.001 1 0.5 2048 0.5 128
bookmarks 0.002 1 1 2048 0.5 128

nus-vec 0.004 1 0.5 1024 0.5 256
mirflickr 0.001 2 0.5 2048 0.5 128
reuters 0.005 2 1 2048 0.5 128
scene 0.003 1 0.5 512 0.3 128
sider 0.002 1 0.5 512 0.5 128
yeast 0.002 1 0.5 512 0.5 128

delicious 0.001 1 0.5 2048 0.5 128
Table 7: Major hyperparameters used in training. “lr" stands for learning rate.

B Supplementary Experimental Results

B.1 Implementation Details

We use one Tesla V100 GPU on CentOS for every experiment. The batch size is set to 128. The
latent dimensionality is 64. The feature encoder is an MLP with 3 hidden layers of sizes [256, 512,
256]. The label encoder has 2 hidden layers of sizes [512, 256]. The decoder contains 2 hidden
layers of sizes [512, 512]. On reuters and bookmarks, we add one more hidden layer with 512 units
to the decoder. The embedding size E is 2048 (tuned within the range [512, 1024, 2048, 3072]).
We set α = 1 (tuned within [0.1, 0.5, 1, 1.5, 2]), β = 0.5 (tuned within [0.1, 0.5, 1, 1.5, 2.0]) for
most runs. We tune learning rates from 0.0001 to 0.004 with interval 0.0002, dropout ratio from
[0.3, 0.5, 0.7], and weight decay from [0, 0.01, 0.0001]. Grid search is adopted for tuning. The final
hyper-parameter selections are shown in Tab. 7. Every batch in our experiments requires less than
16GB memory. The number of epochs is 100 by default.

B.2 Training on Fewer Data

We provide relative performances of several major state-of-the-art methods including ours to C2AE,
on HA, ex-F1, mi-F1, ma-F1 scores. All methods are trained on 10% or 50% of the data, including
C2AE. The compared results have the same amount of data for training and thus the comparison is
fair.

Fig. 4, Fig. 5, Fig. 6 show the relative performance of various state-of-the-art methods over C2AE,
on mirflickr, nus-vec, eBird respectively.
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