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Abstract

Graph embeddings play a critical role in graph representation learning, allowing
machine learning models to explore and interpret graph-structured data. However,
existing methods often rely on opaque, high-dimensional embeddings, limiting
interpretability and practical visualization.
In this work, we introduce Topological Evolution Rate (TopER), a novel, low-
dimensional embedding approach grounded in topological data analysis. TopER
simplifies a key topological approach, Persistent Homology, by calculating the
evolution rate of graph substructures, resulting in intuitive and interpretable vi-
sualizations of graph data. This approach not only enhances the exploration of
graph datasets but also delivers competitive performance in graph clustering and
classification tasks. Our TopER-based models achieve or surpass state-of-the-art
results across molecular, biological, and social network datasets in tasks such as
classification, clustering, and visualization.
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1 Introduction

Graphs are a fundamental data structure utilized extensively to model complex interactions within
various domains, such as social networks [LBKT08], molecular structures [YLY+18], and trans-
portation systems [DCS+22]. Their inherent flexibility, however, introduces significant challenges
when applied to machine learning (ML) tasks, primarily due to their irregular and high-dimensional
nature. Graph data lacks inherent ordering and consistent dimensionality, making it challenging for
traditional ML methods designed for vector spaces.

Graph Neural Networks (GNNs) have emerged as the state-of-the-art models for tackling graph
machine learning tasks due to their ability to learn effectively from graph-structured data [KW17]. In
the predominant paradigm of message-passing GNNs, the process begins by generating node embed-
dings [BHG+21]. These embeddings can then be used in tasks such as node classification or link
prediction. However, for graph-related tasks, such as molecular property prediction, the embeddings
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Figure 1: TopER Visualizations. Each data point represents an individual graph. On the left, TopER is applied
to three benchmark compound datasets using closeness sublevel filtration. The middle panel zooms in on the
red point cloud from the left, demonstrating TopER’s effectiveness in distinguishing between classes within the
MUTAG dataset. On the right, a TopER visualization for the IMDB-B dataset is displayed.

must be aggregated through a pooling layer to form graph-level representations [WKK+20]. This
method is computationally intensive, mainly because generating and managing node embeddings
as intermediate steps substantially increases the overall computational burden. Ideally, an approach
would allow for the direct creation of graph embeddings, circumventing the need to generate node-
level representations first. Furthermore, these graph embeddings must be both low-dimensional and
interpretable to maximize their practical utility and efficiency in various applications.

Topological Data Analysis (TDA) is well-suited for directly constructing graph representations
without costly node embeddings. Topology studies the shape of data, and TDA primarily focuses
on the qualitative properties of space, such as continuity and connectivity [CA24]. A particularly
effective technique in TDA is Persistent Homology (PH), which tracks topological features, like
connected components and cycles, across various scales via a process known as filtration. Filtration
is adept at revealing both local and global structures within graphs. It proves exceptionally useful for
comparing graphs of different sizes that maintain the same inherent structure, which may suggest
similar properties in graph datasets. For instance, similar substructures in protein interaction networks
across different species may indicate comparable biological functions. By focusing on data shape,
PH proves invaluable in graph tasks that benefit from a graph-centric approach, offering insights
that might not be as apparent when focusing on individual node analysis. This shift from a node-
centric to a graph-centric perspective can dramatically improve the understanding and application
of graph data in fields like bioinformatics and network analysis. However, the utility of Persistent
Homology is limited by the high computational demands involved in extracting topological features
during the filtration process, mainly due to its cubic time complexity [OPT+17]. This constraint
reduces its practicality for large-scale graphs and has restricted the broader integration of PH in graph
representation learning.

With this work, we take a significant step forward in addressing the challenges of topological graph
representation learning and introduce Topological Evolution Rate (TopER). This novel approach
refines the Persistent Homology process to efficiently capture graph substructures, thereby mitigating
the significant computational demands of calculating complex topological features. As graph represen-
tation learning aligns naturally with Topological Data Analysis, TopER excels in graph clustering and
classification tasks, where it achieves the best rank in experiments. Furthermore, simplifying graph
data into a low-dimensional space, TopER creates intuitive visualizations that reveal clusters, outliers,
and other essential topological features, as demonstrated in Figure 1. As a result, TopER merges
interpretability with efficiency in graph representation learning, providing an ideal balance that can
scale to large graphs. To our knowledge, TopER is the first topology-based graph representation
method that can create low-dimensional, efficient, and scalable graph representations.

Our contributions can be summarized as follows:

• New Graph Representation: We introduce TopER, a principled and computationally feasible
graph representation designed to capture the structural evolution of a graph.

• Topology-Inspired Design: Rather than computing persistent diagrams or Betti numbers, TopER
directly leverages the filtration process to provide efficient, low-dimensional summaries rooted in
topological intuition.
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• Competitive Performance: Experiments on benchmark graph classification and clustering tasks
demonstrate that TopER achieves competitive results compared to more complex, state-of-the-art
models, while offering superior interpretability.

• Interpretable Visualizations: TopER produces low-dimensional outputs that support intuitive
visualization of clusters and structural outliers within and across graph datasets, enabling a form of
visual model comparison often lacking in traditional embeddings.

• Robustness Under Perturbations: We provide a stability analysis showing that TopER’s represen-
tations are consistent under small changes to the filtration function, reinforcing its suitability for
practical and comparative applications.

2 Background

2.1 Related Work

Graph-level Embedding Methods. Graph representation learning, including GNNs and Graph
Pooling techniques, is a dynamic subfield of machine learning, focusing on transforming graph
data into efficient, low-dimensional vector representations that encapsulate essential features of the
data [Ham20, GHT+19]. These representations facilitate a deeper analytical understanding of graphs,
which is critical for various applications such as molecular graph property prediction [DTRF19].
GNNs have revolutionized the analysis of graph data, drawing parallels with the success of Con-
volutional Neural Networks in image processing [EPBM20]. GNNs utilize spectral and spatial
approaches to graph convolutions based on the graph Laplacian and direct graph convolutions,
respectively [BZSL14, DBV16, KW17]. Despite their success, GNNs often suffer from issues
like over-smoothing and a lack of transparency, making them less ideal for applications requiring
interpretability [Gün22].

Graph Pooling emerged as a key component in GNN architectures, drawing parallels to the role of
pooling in Convolutional Neural Networks [EPBM20]. Pooling aims to deduce into meaningful
graph embeddings through node aggregation (mean, max, and add pooling [XHLJ19]) or hierar-
chical pooling (node selection: Top-k [GJ19] and SAGPool [LLK19]; node clustering: DiffPool
[YYM+18] and MinCutPool [BGA19]). Both pooling groups have their challenges. Node aggrega-
tion methods may lose the structural information by treating each node equally, while the hierarchical
pooling methods can be computationally heavy, and loss of information can occur if important nodes
are discarded.

Topology-Inspired Representations. TDA provides a robust and computationally efficient frame-
work to address the interpretability and over-smoothing issues present in GNNs [AAF19]. Persistent
Homology, a key technique in TDA, has been applied successfully to graph data, demonstrating
potential to match or even exceed the performance of traditional methods in classification and clus-
tering tasks [HMR21, DCG+22, HIL+24, ISG23, CSA+23, LSC+23]. However, the computational
intensity of PH limits its scalability [HKN19, ZYCW20, AKGC22].

Visualization Techniques. Graph embedding techniques, including spectral methods, random walk-
based approaches, and deep learning-based models, transform graph data into vector representations
to support tasks like visualization and machine learning [CZC18, GF18, Xu21]. Approaches such
as Laplacian Eigenmaps and DeepWalk have been particularly effective in revealing clusters within
graphs [BN01, PAS14]. However, these methods are predominantly applied to visualize a single
graph in node classification tasks, focusing on cluster identification [WCZ16, MK20, TPPM23].
Furthermore, they often overlook domain-specific information, which can limit their effectiveness in
more specialized applications [JZ20].

TopER addresses these challenges by combining the interpretative benefits of TDA with the analytical
strength of modern graph machine learning. Distinct from current approaches, TopER employs a
simplified filtration process to create embeddings that are both interpretable and computationally
efficient. By extending the filtration to multiple functions, TopER stands out as one of the first
methods to offer effective and interpretable visualizations of graph datasets, while also achieving
superior performance in clustering and classification tasks.
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2.2 Persistent Homology for Graphs

Topological Data Analysis (TDA) offers a powerful framework for graph representation learn-
ing [AAF19], with persistent homology (PH) being especially effective at capturing multi-scale
topological features [CA24]. While PH typically involves filtrations, persistence diagrams, and
vectorization, our model focuses on the filtration step, reformulating the evolution of topological
features in a novel and efficient way.

In the crucial filtration step, PH decomposes a graph G into a nested sequence of subgraphs G1 ⊆
G2 ⊆ . . . ⊆ Gn = G. For each Gi, an abstract simplicial complex Ĝi is defined, forming a filtration of
simplicial complexes. Clique complexes are typical choices, where each (k + 1)-complete subgraph
in G corresponds to a k-simplex [AAF19].

Filtration. Utilizing relevant filtration functions is essential to obtain effective filtrations. For a
given graph G = (V, E), a common approach is to define a node filtration function f : V → R,
which establishes a hierarchy among the nodes. By selecting a monotone increasing set of thresholds
I = {ϵi}ni=1, this method generates subgraphs Gi = (Vi, Ei) where Vi = {v ∈ V | f(v) ≤ ϵi} and
Ei is the set of edges in E with endpoints in Vi. This is called a sublevel filtration induced by f (See
Figure 2). Also, superlevel filtrations can be constructed by defining Vi = {v ∈ V | f(v) ≥ ϵi} for
decreasing thresholds [AAF19].

Similarly, one can use edge filtration functions g : E → R to define such a filtration. We define
Ei = {ejk ∈ E | g(ejk) ≤ ϵi}, and Vi as all the endpoints of Ei to create a nested sequence {Gi}ni=1.
Especially for weighted graphs, this method is highly preferable as weights naturally define an edge
filtration function. The common node filtration functions are degree, betweenness, centrality, heat
kernel signatures [BK10], and node functions coming from the domain of the datasets (e.g., atomic
number for molecular graphs). Common edge filtration functions are Ollivier and Forman Ricci
curvatures [LLY11] and edge weights (e.g., transaction amounts for financial networks).

Figure 2: Filtration. For G = G3 in both examples, the
top figure illustrates superlevel filtration with node degree
function for thresholds {1, 2, 3}. Similarly, the bottom figure
illustrates sublevel filtration for edge weights with thresholds
{1.5, 1.8, 2.1}.

In addition to existing approaches, we in-
troduce a new filtration function, Popu-
larity, which extends the idea of degree-
based ranking [New03]. While the de-
gree function measures the number of di-
rect neighbors a node has, Popularity cap-
tures the average degree of those neighbors.
The underlying intuition is that, whereas
degree reflects how many connections a
node has, Popularity emphasizes node influ-
ence through association with high-degree
nodes.

Formally, for each node v, we define popu-
larity as: P(v) = deg(v)+

∑
u∈N(v) deg(u)

|N (v)|
where deg(v) is the node’s degree and
N (v) is its set of neighbors. This function incorporates 2-neighborhood information by weighting
high-degree neighbors more heavily, making it a refined version of the degree function.

3 TopER: Topological Evolution Rate

TopER is inspired by the foundational idea that topology can capture the shape of graph data, and that
this shape can be observed through the evolution of a graph during the filtration process. In this sense,
TopER is topology-inspired. However, TopER diverges from traditional PH in how it tracks the shape.
We first achieve a computationally efficient alternative to persistent homology by simplifying its
filtration-based perspective, and second, we develop a low-dimensional, interpretable representation
of graphs that enables both effective classification and intuitive visualization across graph datasets.

Our reformulation reduces the computational overhead typically required for topological feature ex-
traction. Unlike Persistent Homology, which extracts costly topological features, TopER summarizes
the filtration process through two key parameters derived via regression: filtration sequences and
evolution.
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Filtration Sequences. We first decompose a graph G into a nested sequence of subgraphs (filtration
graphs) G1 ⊆ G2 . . . ⊆ Gn = G by using a filtration function, such as node degree or closeness.
Let Gi ⊂ G, Vi represent nodes in Gi and Ei represent the edges. Next, we compute xi = |Vi|
as the count of nodes, and yi = |Ei| as the count of edges. Then, for each filtration graph Gi, we
obtain the pair (xi, yi) ∈ R2, which creates two monotone sequences, x1 ≤ x2 ≤ · · · ≤ xn and
y1 ≤ y2 ≤ · · · ≤ yn. Hence, TopER yields two ordered sets X ,Y describing the evolution of
the filtration graphs G1 ⊆ . . . ⊆ Gn = G, X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn). Here,
n corresponds to number of thresholds {ϵi}ni=1 used in the filtration step. Consider the top row
of Figure 2 where we have three filtration graphs (i.e., n=3); we have X = (2, 3, 7) for node counts
and Y = (0, 2, 6) for edge counts.
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Figure 3: TopER steps. The filtration process on three
different graphs using node or edge filtration. The graphs
undergo filtration, and for each graph, a best-fit line is deter-
mined through the filtration data. The coefficients of these
best-fit lines are then used as descriptors for the graphs.

Evolution. In the next step, PH would
typically compute topological features on
each filtration and create a persistence dia-
gram to summarize the features. Not only
is it costly, but the approach would re-
quire efforts to vectorize the persistence
diagrams. We circumvent this computa-
tionally costly step and analyze how the
number of edges {yi} relates to the number
of nodes {xi} throughout the filtration se-
quence. We use line fitting to characterize
this relationship as follows. Simple linear
regression, often applied through the least
squares method [JWH+23], is a standard approach in regression analysis for fitting a linear equation
to a set of data points {(xi, yi)} ⊂ R2. This method calculates the line L(x) = a+ bx that best fits
the data by minimizing the loss function E =

∑N
i=1[L(xi)− yi]

2. The regression coefficients (a, b)
capture the graph’s structural evolution through filtration (see descriptor step in Figure 3). The full
TopER method is outlined in Algorithm 1 in the Appendix.

With evolution on filtration sequences, we define the topological evolution rate of a graph as follows:

Definition 3.1 (Topological Evolution Rate (TopER)). Let f : V → R be a filtration function on
graph G and I = {ϵi}ni=1 be the threshold set. Let Gi = (Vi, Ei) be the induced filtration. Let
xi = |Vi| and yi = |Ei|. Let L(x) = a+ bx be the best fitting line to {(xi, yi)}ni=1. Then, we define
the TopER vector of G wrt. f as TEf(G, I) = (a,b). We call a the pivot and b the growth of G.

Remark 3.2 (Why a Linear Fit?). Although one could consider higher-order polynomials, our
experiments show that coefficients beyond the first degree are negligible (Table 15), revealing an
essentially linear relationship. Due to space constraints, we defer a more detailed comparison of
linear, polynomial, and higher-order fits to Appendix B, where we also provide visual examples of
evolution rates (Figure 6) and fundamental pattern types (Figure 7).
Remark 3.3 (On the Name TopER). Although TopER does not compute classical topological invariants
such as persistence diagrams or Betti numbers, its name is grounded in two topology-inspired
principles. First, it mirrors the TDA notion of a filtration, a nested sequence of subgraphs {Gi} that
progressively unveils structural features across scales. Second, it is directly tied to the evolution of
the Euler characteristic χ(Gi) = |Vi| − |Ei| = β0(Gi) − β1(Gi), where βi denotes the ith Betti
number. Equivalently, one could track {(xi, yi − xi)} = {(|Vi|, χ(Gi))}, but we use {(xi, yi)} for
notational simplicity. The resulting slope thus quantifies how topological complexity changes over
the filtration, justifying the term Topological Evolution Rate.

We emphasize that the term “topological” reflects the conceptual roots of TopER in topological data
analysis: the method uses a filtration to reveal structural patterns in the graph, analogous to the
filtration process in persistent homology. While we do not compute full persistence diagrams or
Betti numbers, the slope of the Euler characteristic across the filtration captures essential topological
information, justifying the terminology.

3.1 Computational Complexity

The primary computational steps in TopER include constructing filtration graphs and performing
regression on node and edge counts, which incur the following costs.
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Analyzing each node and edge across n filtration thresholds typically requires O(n× (|V|+ |E|))
operations, where V and E denote the numbers of vertices and edges, respectively. The regression
step involves fitting a line to the pairs (xi, yi) using the least squares method. The complexity of
calculating the necessary sums for this regression is O(n), and solving for the regression coefficients
(slope and intercept) from these sums involves a constant amount of additional computation.

Thus, the overall complexity of TopER predominantly hinges on the graph filtration process, summing
up to O(n× (|V|+ |E|)) where |V| ≫ n. As we will show in the next section, the runtime costs of
TopER are notably low, making it practical and efficient for large-scale applications.

3.2 Stability Results

This section states our theorems on the stability of TopER. In the following,Wp(., .) represents p-
Wasserstein distance, and PDk(X , f) represents kth persistence diagram of X with sublevel filtration
with respect to f . Similarly, ∥.∥p represents Lp-norm and dp(., .) represents lp-distance in Rm. We
fix a threshold set I = {ϵi}ni=1 for both functions to keep the exposition simple. Further, to keep the
setting general, we use the pairs {(β0(ϵi), β1(ϵi))}ni=1 in R2 to fit the least squares line y = a+ bx
defining TE(X ) = (a,b).
Theorem 3.4. Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X )− TEg(X )∥1 ≤ C · W1(PDk(X , f),PDk(X , g)).

By combining the above result with the stability result for sublevel filtrations, we obtain the stability
with respect to filtration functions as follows.
Corollary 3.5. Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X )− TEg(X )∥1 ≤ C · ∥f − g∥1

The following lemmas are essential for proving the theorem and corollary above.
Lemma 3.6. [ST20] Let X be a compact metric space, and f, g : X → R be two filtration functions.
Then, for any p ≥ 1, we haveWp(PDk(X , f),PDk(X , g)) ≤ ∥f − g∥p

The next lemma is on the stability of Betti curves by [DG23] [Proposition 1].
Lemma 3.7. [DG23] Let βk(X ) is the kth Betti function obtained from the persistence module
PMk(X ).

∥βk(X )− βk(Y)∥1 ≤ 2W1(PDk(X ),PDk(Y))

By adapting the above results to the graph setting, when two metric graphs G1,G2 are close in the
Gromov-Hausdorff sense, one can obtain a similar stability result for the filtrations of Gi induced by
the same filtration function. Due to space limitations, details and the proofs are given in Appendix C.

4 Experiments

We evaluate the performance of TopER in

Table 1: Characteristics of the benchmark
graph classification datasets.

Datasets #Graphs |V| |E| Classes
BZR 405 35.75 38.36 2
COX2 467 41.22 43.45 2
MUTAG 188 17.93 19.79 2
PROTEINS 1113 39.06 72.82 2
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2
REDDIT-5K 4999 508.52 594.87 5
OGBG-MOLHIV 41127 243.4 2266.1 2

classification, clustering and visualization.
Our Python implementation is available at
https://github.com/AstritTola/TopER.

4.1 Experimental Setup

Datasets. We conduct experiments on nine bench-
mark datasets for graph classification. These are (i)
the molecule graphs of BZR, and COX2 [MV09]; (ii) the biological graphs of MUTAG and PRO-
TEINS [KM12]; and (iii) the social graphs of IMDB-Binary (IMDB-B), IMDB-Multi (IMDB-M),
REDDIT-Binary (REDDIT-B), and REDDIT-Multi-5K (REDDIT-5K) [YV15]. Finally, the OGBG-
MOLHIV is a large molecular property prediction dataset, part of the open graph benchmark (OGB)
datasets [HFZ+20]. Data statistics are given in Table 1.
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Table 2: Graph Classification. Accuracy results on eight benchmark datasets. Best results are in bold blue,
second-best are underlined. The final column shows each model’s average deviation from the best per dataset.

Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K Avg.↓
DiffPool [YYM+18] 83.93±4.41 79.66±2.64 79.22±1.02 73.63±3.60 68.60±3.10 45.70±3.40 79.00±1.10 – 8.06
P-WL-C [RBB19] – – 90.51±1.34 75.27±0.38 – – – – 2.08
SAGPool [LLK19] 82.95±4.95 79.45±2.98 76.78±2.12 71.86±0.97 74.87±4.09 49.33±4.90 84.70±4.40 – 6.61
Top-k [GJ19] 79.40±1.20 80.30±4.21 67.61±3.36 69.60±3.50 73.17±4.84 48.80±3.19 79.40±7.40 – 9.70
1-GIN (GFL) [HGR+20] – – – 74.10±3.40 74.50±4.60 49.70±2.90 90.20±2.8 55.70±2.90 2.09
6 GNNs [EPBM20] – – 80.42±2.07 75.80±3.70 71.20±3.90 49.10±3.50 89.90±1.90 56.10±1.60 4.13
MinCutPool [BGA19] 82.64±5.05 80.07±3.85 79.17±1.64 76.62±2.58 70.77±4.89 49.00±2.83 87.20±5.00 – 5.82
DMP [BCL21] – – 84.00±8.60 75.30±3.30 73.80±4.50 50.90±2.50 86.20±6.80 51.90±2.10 4.20
FC-V [ORB21] 85.61±0.59 81.01±0.88 87.31±0.66 74.54±0.48 73.84±0.36 46.80±0.37 89.41±0.24 52.36±0.37 4.01
SubMix [YSK22] 86.34±2.00 84.68±3.70 80.99±0.60 67.80±2.00 70.30±1.40 46.47±2.50 – – 6.15
G-Mix [HJLH22] 84.15±2.30 83.83±2.10 81.96±0.60 66.28±1.10 69.40±1.10 46.40±2.70 – – 6.91
RGCL [LWZ+22] 84.54±1.67 79.31±0.68 87.66±1.01 75.03±0.43 71.85±0.84 49.31±0.42 90.34±0.58 56.38±0.40 3.56
AutoGCL [YWH+22] 86.27±0.71 79.31±0.70 88.64±1.08 75.80±0.36 72.32±0.93 50.60±0.80 88.58±1.49 56.75±0.18 3.08
FF-GCN [PAMF23] 89.00±5.00 78.00±8.00 71.00±4.00 62.00±1.00 63.00±8.00 – – – 11.53
WWLS [FHSK23] 88.02±0.61 81.58±0.91 88.30±1.23 75.35±0.74 75.08±0.31 51.61±0.62 – – 2.26
EPIC [HLAK24] 88.78±2.30 85.53±1.60 82.44±0.70 69.06±1.00 71.70±1.00 47.93±1.30 – – 4.67
EMP [CSA+23] – – 88.79±0.63 72.78±0.54 74.44±0.45 48.01±0.42 91.03±0.22 54.41±0.32 2.97
MP-HSM [LSC+23] – 77.10±3.00 85.60±5.30 74.60±2.10 74.80±2.50 47.90±3.20 – – 4.67
TopoGCL [CFG24] 87.17±0.83 81.45±0.55 90.09±0.93 77.30±0.89 74.67±0.32 52.81±0.31 90.40±0.53 – 1.76
PGOT [QTLL24] 87.32±3.90 82.98±5.21 92.63±2.58 73.21±2.59 62.90±3.05 51.33±1.76 – – 3.85
RePHINE [ISG23] – – – 71.25±1.60 69.40±3.78 – – – 5.86
GPSE [CLL+24] 80.49±4.18 78.37±2.62 87.19±8.66 72.15±3.66 69.30±3.61 47.40±5.40 80.40±3.40 – 7.27

TopER 90.13±4.14 82.01±4.59 90.99±6.64 74.58±3.92 73.20±3.43 50.00±4.02 92.70±2.38 56.51±2.22 1.60

Hardware. We ran experiments on a single machine with 12th Generation Intel Core i7-1270P
vPro Processor (E-cores up to 3.50 GHz, P-cores up to 4.80 GHz), and 32GB of RAM (LPDDR5-
6400MHz).

Runtime. TopER is highly scalable and can be applied to a 100K node graph in less than 2
minutes (see Figure 5). Our small network experiments took about two days in a shared resource
setting, whereas the OGBG-MOLHIV experiments took 7.85 hours. One of the most demanding
datasets, REDDIT-5K, requires 2.91 hours to calculate all node and edge functions. The runtime
of our methods is dominated by the computation of node functions such as closeness and Riccis
blue(see Appendix A.6). Using approximate values for centrality metrics instead could greatly
decrease computation time [BP07]. Since this is not our current focus, we leave it as future work.

Model Setup and Metrics. We employ a rigorous experimental setup to ensure a fair comparison
and the selection of the best graph classification model. We begin by applying BatchNormalization
to the input features to maintain consistent scaling. We employ a 90/10 train-test split, adopt the
StratifiedkFold strategy, and present the average accuracy from ten-fold cross-validation across all
our models. We employ accuracy as the evaluation metric, a widely utilized performance measure
within graph classification tasks [EPBM20].

Filtration Functions. In TopER, we use both node and edge filtrations (Definition 3.1). Alongside
popularity, we apply degree, closeness, and degree centrality [EC22] as node filtration functions
and Forman- and Ollivier-Ricci functions [LLY11] as edge filtration functions. We also use atomic
weight as a node function for molecular and biological datasets (BZR, COX2, and MUTAG), and
node attributes (PROTEINS). We utilized the t-test to assess the statistical significance of each
function and applied the Lasso method for regularization. Functions were retained in the model
only if they achieved p-values less than 0.05 in the t-test and had non-zero coefficients in the Lasso
model [JWH+23]. This approach ensures that the selected filtration functions contribute statistically
significant and regularized features to the model. Incorporating additional filtration functions can
enhance TopER’s ability to analyze graphs from diverse perspectives. However, as we will next
illustrate in Table 5, TopER demonstrates strong performance even in its most basic form using the
simple and scalable node degree function. This balance of performance and simplicity suits our
scalability philosophy; we avoid complex and costly schemes for learning dataset-specific activation
functions and homogenize the filtration step in all datasets.

Classifier. We utilize a Multilayer Perceptron (MLP) in our graph classification task. The hyperpa-
rameters are detailed in Appendix A.7.
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4.2 Graph Classification Results

Baselines. We compare our method with 22 state-of-the-art and recent models in graph classification,
including variants of graph neural networks: six GNNs including GCN, DGCNN, Diffpool, ECC,
GIN, GraphSAGE which are compared in [EPBM20] (best results of these six GNNs are given
in the 6 GNNs row), FF-GCN [PAMF23]; topological methods: DMP [BCL21], FC-V [ORB21],
WWLS [FHSK23], MP-HSM [LSC+23] and EMP [CSA+23]; GNNs enhanced with data aug-
mentation methods: SubMix [YSK22], G-Mix [HJLH22], and EPIC [HLAK24]; GNNs enhanced
with contrastive learning methods: RGCL [LWZ+22], AutoGCL [YWH+22], TopoGCL [CFG24];
prototype-based methods: PGOT [QTLL24]; pooling methods: Top-k [GJ19], SAGPool [LLK19],
DiffPool [YYM+18], MinCutPool [BGA19] and structural encoder: GPSE [CLL+24].

Table 2 shows the accuracy results for the given models. We use the reported results in the cor-
responding references for each model. “−" entries in the table mean the reference did not report
any result for that dataset. In [EPBM20], the authors compare the six most common GNNs on the
graph classification task (see the GNNs row). The last column summarizes each model’s overall
performance. We report the average of the differences between each model’s performance and the
best performance in the column across all datasets. If a model’s performance is missing for a dataset,
it is excluded from the average computation for the model.

Out of eight datasets, TopER achieves the best results in two and ranks second in two other datasets.
For the remaining four datasets, TopER’s performance is within 4% of the SOTA results. For overall
performance, TopER outperforms all other models with an average deviation of 1.60% from the best
performances. The closest competitor is TopoGCL, which has an average deviation of 1.76%.

Table 3: AUC results for OGBG-
MOLHIV dataset.

Model AUC
GIN-VN [XHLJ19] 77.80±1.82

HGK-WL [TGL+19] 79.05±1.30

WWL [BGL+20] 75.58±1.40

PNA [CCB+20] 79.05±1.32

DGN [BPL+21] 79.70±0.97

GraphSNN [WW22] 79.72±1.83

GCN-GNorm [CLX+21] 78.83±1.00

Graphormer [YCL+21] 80.51±0.53
Cy2C-GCN [CPWC23] 78.02±0.60

GAWL [NV23] 78.34±0.39

LLM-GIN [ZZM24] 79.22±NA

GMoE-GIN [WJY+23] 76.90±0.90

TopER 80.21±0.15

OGBG-MOLHIV results. To evaluate our model’s per-
formance on large datasets, we compare it with recently
published models on the OGBG-MOLHIV dataset, as
shown in Table 3. The performances of these mod-
els are listed in chronological order based on their
publication dates, with baseline performances reported
from [CPWC23, YCL+21] or the respective model’s ref-
erences. In Appendix A.1, we give further details for
TopER performance and the contribution of each function
on this dataset. TopER achieves the second-best result
on the MOLHIV dataset, while the top-performing model
requires learning a significantly larger model with 119.5
million parameters.

TopER vs. PH. TopER consistently outperforms Persis-
tent Homology methods in both accuracy and computa-
tional efficiency. As shown in Table 4, we compare against
the best PH results reported in [Cai21], which evaluates
16 combinations of four filtration functions and four vectorization techniques per dataset. TopER
achieves higher accuracy on all six benchmarks. In terms of runtime, TopER is over 10 times faster
than PH on large graphs like Reddit-5K, while maintaining high performance (see Table 8 and
Appendix A.2).

Table 4: Accuracy results for TopER vs. Persistent Homology in graph classification tasks.
BZR COX2 PROTEINS IMDB-B IMDB-M RED-5K

PH 88.4±0.6 82.0±0.6 74.0±0.4 69.5±0.5 46.5±0.3 54.1±0.1

TopER 90.1±4.1 82.0±4.6 74.6±3.9 73.2±3.4 50.0±4.0 56.5±2.2

Ablation Studies. We have conducted three ablation studies. In the first one, we evaluated
the individual performance of each function as well as their combined effect on classification. As
shown in Table 5, the common filtration functions we employ from TDA exhibit strong individual
performance. Moreover, when combined, they synergistically enhance overall performance. This is
not surprising, as different filtration functions, such as atomic weight or Ricci curvature, generate
distinct hierarchies and node-edge distributions, resulting in diverse connectivity patterns throughout
the filtration sequence. This diversity is analogous to viewing an object from multiple angles. Hence,
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integrating these complementary perspectives improves performance by offering a richer and more
varied representation of the graph structure, allowing the model to capture more intricate features.
The other two ablation studies are provided in the Appendix A.4, which examines the effect of the
number of thresholds on TopER’s performance, while Appendix A.5 analyzes the impact of the
number of filtration functions used.

Table 5: Ablation Study. Individual and altogether performances of filtration functions with TopER.
Datasets Degree-cent. Popularity Closeness Degree F. Ricci O. Ricci Atom weight TopER

BZR 82.22±2.13 82.20±3.42 81.48±1.99 82.73±2.12 80.75±1.73 80.99±1.48 82.23±2.12 90.13±4.14
COX2 75.38±3.96 69.21±8.19 67.90±7.96 73.88±5.02 70.46±7.28 73.03±4.21 69.82±8.27 82.01±4.59
MUTAG 76.61±7.87 77.66±6.12 80.88±4.79 74.97±6.40 80.85±9.25 82.46±7.84 73.45±8.01 90.99±6.64
PROTEINS 67.66±3.16 70.71±4.41 69.01±4.24 69.01±3.48 72.96±3.47 71.25±2.66 73.59±3.33 74.58±3.92
IMDB-B 73.00±4.49 71.90±3.48 72.60±4.20 73.10±4.18 69.80±2.44 66.40±3.35 - 73.20±3.43
IMDB-M 48.47±3.90 47.87±3.07 48.33±3.49 47.93±2.88 48.13±4.11 43.60±3.17 - 50.00±4.02
REDDIT-B 76.70±3.69 79.35±3.46 78.10±3.23 79.55±2.20 72.35±2.91 68.20±2.28 - 92.70±2.38
REDDIT-5K 42.85±1.74 50.87±2.63 50.03±1.49 47.01±1.89 50.27±1.92 45.81±2.08 - 56.51±2.22

4.3 Graph Clustering Results

We employ cluster quality metrics to assess the embeddings of graphs sourced from all datasets in
Table 2. The embeddings are labeled with their respective dataset memberships, and we assume that
good embeddings will have graphs of the same dataset clustered together. We evaluate embeddings
based on three widely used clustering metrics: Silhouette (SILH), Calinski-Harabasz (CH), and
Davies-Bouldin (DB) [GBC21]. Table 6 compares the clustering performance of TopER and Spectral
Zoo [JZ20], which is, to our knowledge, the only model that allows low-dimensional graph embed-
dings. Detailed results are provided in Appendix A.3. The findings demonstrate that the embeddings
generated by TopER outperform those created by Spectral Zoo. This is evident from the superior
cluster quality metrics observed for five out of eight datasets in the case of Silhouette and CH, and
for all eight datasets in the case of DB.

Table 6: Clustering Performances. Comparison of Spectral Zoo vs. TopER. The detailed results are
given in Appendix A.3.

Metric Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K

Silh ↑ Spec. Zoo 0.050 0.049 0.344 0.050 0.097 -0.024 0.108 -0.121
TopER 0.249 0.414 0.258 0.086 0.064 -0.032 0.196 -0.067

CH ↑ Spec. Zoo 3.51 6.13 120.73 38.77 85.24 30.98 269.94 119.81
TopER 42.58 26.00 72.52 151.64 60.52 11.77 446.12 1209.95

DB ↓ Spec. Zoo 7.25 6.07 0.95 4.55 2.78 10.73 2.20 25.74
TopER 1.93 2.29 0.88 1.54 2.19 6.87 1.32 2.78

4.4 Graph Visualization

In the case of a single filtration function, TopER creates 2D graph embeddings (a, b) that
can be visualized with ease (see Figure 1). Traditional dimensionality reduction techniques
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Figure 4: TopER visualizations of the PROTEINS dataset with
O.Ricci edge filtration, and the BZR dataset with degree centrality
node filtration. Each point corresponds to an individual graph.

such as PCA can be used to visualize
point cloud data, but accurately depict-
ing graph data has historically been a
significant challenge [GBGA20]. To
our knowledge, until TopER, the only
model that allowed graph visualiza-
tion was the GraphZoo [JZ20].

TopER creates highly interpretable
graph visualizations. To recall, the
pair (a, b) represents the coefficients
of the best-fitting function L(x) = a+
bx, where a is the pivot (y-intercept)
and b is the growth (the slope). Specif-
ically, the pivot a reflects graph con-
nectivity, while b reflects the growth rate of edges/nodes for the filtration function. In particular,
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a higher value of a corresponds to a more interconnected graph. As we demonstrate in Appendix
Figure 7, graph connectivity and community structure can be analyzed using three types of pivot
behavior. In the following, we illustrate how these quantities can be employed to interpret our
two-dimensional representations of the graph datasets.

In Figure 1(b) of the MUTAG dataset, class B has a higher growth rate and smaller pivot than the red
class. This shows that the class is growing faster than class A with respect to the closeness function
in the MUTAG dataset, i.e., the graph has a low diameter. Similarly, in contrast, in the PROTEINS
dataset (Fig. 4(a)), the growth rates are similar for both classes (∼ 1.5− 1.7), but the pivot (initial
graph size) is smaller in class A. This implies that class A has fewer edges in relation to the number
of nodes. Such patterns, as described in Sec. B.4, can reveal key insights into graph topology. In a
similar vein, TopER visualizations can be used for anomaly detection. For example, in Fig. 1(a), an
outlier PROTEINS graph alone has a positive pivot and appears as the rightmost data point.

More importantly, TopER homogenizes graph representations, allowing us to compare graphs
across datasets, which may open new paths in training graph foundation models. To our knowl-
edge, TopER is unique in directly producing interpretable 2D embeddings for cross-dataset vi-
sualization without relying on learned high-dimensional encodings or opaque projections, unlike
GPSE [CLL+24] and GFSE [CZW+25], which rely on learned high-dimensional embeddings. For
example, Figure 1(a) visualizes graphs of three datasets on the same panel, where we see that Mutag
and COX2 differ in their pivot only. The similarity is not surprising; MUTAG and COX2 are datasets
of molecular graphs where nodes are atoms and edges are chemical bonds. As the molecules in both
datasets have similar types of atoms and bond configurations (e.g., ring structures), TopER captures
these similarities, leading to similar embeddings.

These examples highlight that, in many practical settings, TopER’s interpretability outweighs modest
performance differences compared to more expressive or data-driven models. As shown in Figure 4,
the pivot–growth representation captures fine-grained structural variations, such as changes in edge
density, community organization, and filtration behavior, through simple geometric patterns that
can be directly visualized and interpreted. This enables users to pinpoint the topological mecha-
nisms responsible for observed differences between classes or datasets. Beyond classification, such
interpretability makes TopER particularly well-suited for applications where structural understand-
ing is critical. Its training-free and computationally efficient design further allows deployment in
large-scale or data-scarce environments, as well as integration into hybrid pipelines where TopER
embeddings serve as interpretable anchors for downstream learning models. Thus, while deep or
spectral approaches may achieve marginally higher benchmark performance in some cases, TopER
offers a complementary framework that prioritizes clarity, scalability, and theoretical grounding in
topological structure.

Limitations. While our approach is designed to be efficient and broadly applicable, its performance
can vary depending on the choice of filtration function, which may require domain knowledge in
certain applications. In practice, we found the method to be robust across a variety of datasets, and
further refinements to filtration strategies could enhance adaptability to new domains.

5 Conclusion

We have introduced a novel graph embedding method, TopER, leveraging Persistent Homology from
Topological Data Analysis. TopER demonstrates strong performance in graph classification tasks,
rivaling SOTA models. Furthermore, it naturally generates effective 2D visualizations of graph
datasets, facilitating the identification of clusters and outliers. For future research, one promising
direction is to extend TopER to temporal graph learning tasks, enabling the capture of dynamic graph
trajectories that reflect evolving user behaviors over time. Another avenue is the integration of TopER
embeddings into graph foundation models, where the homogenization of graph structures could
enhance the learning of transferable representations across different domains.
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Appendix

A Further Experimental Details

A.1 OGBG-MOLHIV Results

Table 7: Results for OGBG-MOLHIV of each
TopER−i.

Method Added Function Valid. AUC Test AUC
TopER-1 degree-centrality 72.76±0.23 74.44±0.20

TopER-2 atomic weight 71.89±0.12 74.25±0.16

TopER-3 O. Ricci 70.11±0.28 76.79±0.24

TopER-4 F. Ricci 71.76±0.18 78.15±0.15

TopER-5 degree 71.79±0.35 79.26±0.14

TopER-6 popularity 72.27±0.29 79.88±0.24

TopER-7 closeness 71.30±0.18 80.21±0.15

For the OGBG-MOLHIV dataset, we fur-
ther evaluated the improvements of TopER
with the addition of new filtration func-
tions. Table 7 provides the performance
of each TopER−i, where i represents num-
ber of filtration functions used in the model,
i.e., TopER-i uses {(a1, b1, . . . , ai, bi)} as
graph embedding where (ai, bi) is the pivot
and growth for function fi. We used XG-
Boost to rank the importance of filtration
functions first, and the functions are added
iteratively with this ranking. We fixed max-
imum tree depth = 3, learning rates = 0.035, subsample ratios = 0.95, the number of estimators =
1000, and the regularization parameter lambda = 45, where the objective function is rank:pairwise,
with log loss as the evaluation metric. The seed is set to be 16.

A.2 Time Experiments for TopER vs. PH

To compare the time efficiency and performance of TopER and persistent homology (PH),

100 500 1000 5000 10000 50000 100000
Node Count

0

10

20

30

40

50

60

To
ta

l T
im

e 
(s

ec
on

ds
)

Figure 5: Scalability. TopER run time for
synthetic power law graphs [HK02] with node
degree filtration. The mean node degree is 30,
and 100 filtration steps are used.

We conducted experiments using the same filtration func-
tion, the sublevel degree filtration. For PH, we applied
Betti vectorization. Our results, summarized below,
show that TopER is significantly faster than PH. Al-
though both methods use the same filtration function, a
key distinction lies in their embeddings: TopER gener-
ates 2D embeddings, whereas PH produces a vector with
dimensionality equal to the number of thresholds in the
filtration. Despite the considerable difference in dimen-
sionality, TopER’s performance with 2D embeddings
remains comparable to that of PH.

Figure 5 shows that TopER scales efficiently with graph
size, maintaining low runtime even with 100 filtration
steps and high node degree. It processes graphs with up
to 100,000 nodes in just over a minute, demonstrating
its suitability for large-scale applications.

A.3 Clustering Performances

In Table 9, we showcase our clustering performance across eight benchmark graph classification
datasets using three widely adopted clustering metrics: Silhouette, Calinski-Harabasz, and Davies-
Bouldin. These metrics serve as evaluative measures for assessing the efficacy of clustering algorithms

Table 8: Comparison of TopER-1 (only one filtration function) and PH in terms of time and accuracy
across different datasets.

TopER-1 PH
Dataset Time Accuracy Time Accuracy # Thresholds
BZR 1.14 s 82.73 ± 2.12 5.99 s 83.70 ± 3.51 4
IMDB-B 3.27 s 73.10 ± 4.18 319.95 s 71.00 ± 4.07 65
REDDIT-B 107.65 s 79.55 ± 2.20 9173.37 s 84.50 ± 2.51 501
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Table 9: The clustering performances of Spectral Embeddings and TopER with different metrics. Best
performances are given in blue.

Silhouette Scores (↑)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K
Spec Zoo 0.050 0.049 0.344 0.050 0.097 -0.024 0.108 -0.121

degree -0.108 0.414 0.258 0.048 0.030 -0.032 0.049 -0.169
popularity 0.249 -0.015 0.134 -0.000 0.008 -0.159 0.196 -0.173
closeness 0.019 0.036 0.036 0.086 nan nan 0.087 -0.185
degree 0.084 0.030 0.017 0.065 0.056 -0.075 0.034 -0.067

Calinski-Harabasz scores (↑)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K
Spec Zoo 3.51 6.13 120.73 38.77 85.24 30.98 269.94 119.81

degree 0.42 1.06 11.29 130.07 60.52 3.92 97.85 1209.95
popularity 13.85 26.00 36.13 77.22 12.89 11.77 446.12 619.37
closeness 42.58 1.02 40.04 73.51 10.17 0.30 188.10 689.27
F.Ricci 4.92 0.48 11.82 151.64 11.68 1.03 92.14 454.34

Davies-Bouldin scores (↓)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K
Spec Zoo 7.25 6.07 0.95 4.55 2.78 10.73 2.20 25.74

degree 9.84 2.29 0.88 1.95 4.92 46.46 2.32 3.27
popularity 4.16 37.87 1.62 2.11 25.25 6.87 1.32 3.46
closeness 1.93 26.44 1.41 2.25 4.99 37.51 1.95 3.09
F.Ricci 4.19 7.20 1.27 1.54 2.19 10.35 1.83 5.41

in partitioning datasets into meaningful clusters. They gauge the degree of similarity or dissimilarity
within and between clusters, offering insights into the quality of clustering outcomes. For precise
definitions of Silhouette, Calinski-Harabasz, and Davies-Bouldin metrics, as well as additional details
on clustering measures, refer to [GBC21].

A.4 Number of Thresholds

In our experiments, we utilized a large number of thresholds to capture finer-grained information, as
the model is computationally efficient and the additional cost of increasing the number of thresholds
is minimal. Furthermore, in Table 10, we evaluated the model’s performance with fewer thresholds
and observed that it remains robust and highly effective even in such scenarios.

Table 10: The accuracy results of TopER with different numbers of thresholds.
# Thresholds PROTEINS REDDIT-B REDDIT-5K

10 72.78±4.04 90.55±1.96 55.99±1.97

20 74.31±3.23 91.20±1.66 55.91±2.14

50 74.76±4.55 92.05±1.96 55.39±2.10

100 73.85±3.67 92.85±1.18 55.51±2.61

200 75.47±3.06 93.15±2.10 56.51±2.04

500 74.58±3.92 92.70±2.38 56.51±3.22

A.5 Combining Filtration Functions

To assess the impact of embedding dimensions, we conducted new experiments evaluating the
performance of the TopER model by progressively adding each filtration function step by step. This
analysis provides insights into how the inclusion of additional filtration functions influences the
model’s performance. In Table 11, the TopER-n model represents the TopER utilizing n-filtration
functions (2n features).
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Table 11: Performance improvements achieved by integrating filtration functions into the TopER
model. Here, TopER-n denotes the TopER model with n filtration functions.

Dataset TopER-1 TopER-2 TopER-3 TopER-4

BZR 82.48±1.98 84.70±2.84 85.66±5.00 86.68±3.81
COX2 78.81±1.94 79.26±4.86 79.04±7.49 80.30±3.91
MUTAG 86.14±6.38 88.33±3.88 86.75±4.78 88.30±4.63
PROTEINS 74.03±2.71 74.67±2.73 75.21±3.39 75.65±3.87
IMDB-B 73.00±4.40 74.20±4.26 74.50±3.50 74.70±3.95
IMDB-M 48.73±4.33 49.80±2.94 49.73±4.18 49.87±4.00
REDDIT-B 81.95±2.74 90.45±2.55 91.05±2.62 91.50±2.01
REDDIT-5K 50.21±1.41 54.11±2.43 56.19±2.40 56.33±2.74

A.6 TopER filtrations runtimes and substitute

Filtration Timing Results. In Table 12, we report the computation times (in seconds) for the
TOPER filtration functions across various datasets. We also include the timings for the Heat Kernel
Signature (HKS) [SOG09], which can serve as an efficient substitute for the Ollivier–Ricci curvature
in certain scenarios due to its faster computation while preserving relevant structural information
about the graphs. The table below summarizes the observed computation times for each filtration
type across multiple benchmark datasets.

Table 12: Computation times (in seconds) of different filtration functions across datasets.
Filtration BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K
Degree Centrality 0.86 1.67 0.40 13.82 13.32 13.03 115.09 447.72
Popularity 0.73 1.36 0.58 5.81 13.21 15.60 111.11 414.04
Closeness 2.29 4.40 0.77 15.97 5.85 6.63 399.2 1274.00
Forman Ricci 0.80 1.56 0.58 4.63 8.29 7.38 258.32 693.18
Ollivier Ricci 130.04 121.42 48.98 313.21 277.66 428.32 1291.93 6640.95
Degree 1.14 1.16 0.61 2.62 3.27 4.22 107.65 363.32
Weight 2.25 2.80 0.90 12.89 – – – –
HKS 2.07 1.94 0.56 16.90 15.54 15.72 470.01 1007.50

We evaluate the performance of our TopER model against state-of-the-art (SOTA) methods on
benchmark graph classification datasets, including BZR, COX2, MUTAG, PROTEINS, IMDB-B,
IMDB-M, REDDIT-B, and REDDIT-5K. Table 13 reports classification accuracy (mean ± standard
deviation) across multiple runs. TopER generally achieves competitive results compared to SOTA.
Ablation studies show the impact of Ricci curvature and Heat Kernel Signatures (HKS) on model
performance. Notably, TopER without Ricci but with HKS recovers most of the performance lost
when Ricci is removed, suggesting that HKS can serve as a viable replacement for Ollivier-Ricci
curvature in capturing structural information.

Table 13: Graph classification accuracy (mean ± std) for different models across benchmark datasets.
Highest scores per dataset are bold blue, second-highest are underlined blue.

Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K
SOTA 89.00±5.00 85.53±1.60 92.63±2.58 77.30±0.89 75.08±0.31 52.81±0.31 91.03±0.22 56.75±0.18
TopER 90.13±4.14 82.01±4.59 90.99±6.64 74.58±3.92 73.20±3.43 50.00±4.02 92.70±2.38 56.51±2.22
TopER w/o O. R. 87.00±4.30 77.96±8.38 87.78±7.84 74.04±3.86 73.50±3.53 50.00±5.44 91.90±2.63 56.37±1.89
TopER w/o O. R.& w/ HKS 89.63±3.65 81.58±3.54 92.08±4.23 75.20±3.59 75.00±3.49 50.67±5.58 92.75±2.47 57.33±2.02

A.7 Hyperparameters

Our proposed MLP algorithm is constructed with a single hidden layer. The output layer’s activation
function is set to log softmax, and the loss function we used is Negative Log Likelihood Loss. The
learning rate is chosen between 0.01 and 0.001. Subsequently, we investigate the impact of the
number of neurons in the hidden layer, considering values from the set {16, 64, 128}. The optimizer
is set to be Adam, and the number of epochs is 500. To prevent large weights and overfitting, we
apply L2 regularization coefficients of 1e-3, 1e-4. The activation function for the hidden layer varies
between ReLU, GeLU, and ELU. Lastly, we consider the cases of adding or not a batch normalization
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Algorithm 1 TopER: Topological Evolution Rate

Input: Graph G, Filtration function f : V → R, Threshold set I = {ϵi}ni=0
Output: TopER vector Tf (G, I)
Initialize lists X = [], Y = []
for i = 1 to n do
Gi ← Induced subgraph of G where Vi ⊆ f−1([ϵ0, ϵi])
xi ← |Vi|
yi ← |Ei|
Append xi to X
Append yi to Y

end for
Fit a line L(x) = a+ bx to pairs (xi, yi) from X and Y using least squares
Extract coefficients a and b
Return (a, b) as the TopER vector Tf (G, I)

layer to the output of the hidden layer and setting dropout values to be 0.0 or 0.5. In Table 14, we
provide the details for each dataset. The last column shows the number of TopER features used for
each dataset after the feature selection step.

Table 14: Employed hyperparameters for each dataset.
Dataset Neurons Dropout Batch Norm. Decay Learning rate Activation TopER Dim.
BZR 64 0.5 True 1e-4 0.001 gelu 26
COX2 128 0 True 1e-4 0.01 relu 26
MUTAG 16 0.5 False 1e-3 0.01 gelu 20
PROTEINS 64 0.5 True 1e-3 0.01 elu 26
IMDB-B 128 0 False 1e-3 0.001 relu 20
IMDB-M 16 0 False 1e-3 0.01 elu 20
REDDIT-B 64 0.5 False 1e-3 0.01 relu 24
REDDIT-5K 128 0 False 1e-3 0.01 elu 14

B More on TopER

B.1 Refining the point set

While we have described the main steps of TopER in Section 3, due to the repetitions of the points
in A = {(xi, yi)} ⊂ R2, there are some choices to be made before defining the set A (i.e., X and
Y) to get the best fitting function L : X → Y . The main reason is that the set {(xi, yi)}Ni=1 can
contain repetitions of x-values (xi = xi+1), repetitions of y-values (yi = yi+1) or repetitions of both
((xi, yi) = (xi+1, yi+1)) depending on the filtration function, the threshold set I, and the graph G.

For the filtrations induced by node filtration functions, the number of edges can not change unless the
number of nodes changes, i.e., xi = xi+1 ⇒ yi = yi+1. Hence, with this elimination, we still allow
keeping y-values the same while x-values are increasing. This means there can be horizontal jumps
inAu. In this paper, to eliminate all horizontal jumps for filtrations with node functions, we eliminate
all repetitions of y-values from Au. In particular, we remove all the points with the same ŷ-value
and add a point with a mean of x-values. In other words, if yi = yi+1 = · · · = yi+k = ŷ, we define
x̂ = mean{xi, xi+1, . . . , xi+k}. Then, we replace (k+1) points {(xi, ŷ), (xi+1, ŷ), . . . , (xi+k, ŷ)}
with one point (x̂, ŷ) in Au. This process eliminates all repetitions and horizontal jumps in A, and
we define our best-fitting line on this refined set.

B.2 TopER with Alternative Quantities

While we use the most general quantities for a graph—the count of vertices and edges—in our
algorithm, depending on the problem, there might be other induced quantities (xi, yi) for a given
subgraph Gi which can give better vectors. To keep the line-fitting approach meaningful in our model,
as long as the sequences {xi} and {yi} are monotone like our node-edge counts above, for a given
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dataset in a domain (e.g., biochemistry, finance), one can use other domain-related quantities induced
by substructure Gi as a (xi, yi) pair to obtain a TopER vector.
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Figure 6: Linear Fit. TopER summarizes the growth behavior in the graph induced by filtration with a linear
fit.

B.3 Linear or Higher Order Fitting

In our experiments, we observe that linear fitting captures the growth information for node-edge
pair {(xi, yi)} well (See Figure 6), and quadratic fit and linear fit stay very close to each other.
However, if one decides to use other quantities as described above and loses the monotonicity of the
sequences {xi} and {yi}, trying higher order fits (e.g., y = ax2 + bx+ c) can be more meaningful.
In Table 15, we present the average of the coefficients of quadratic terms when we use quadratic fit
for the datasets, i.e., if we fit y = a+ bx+ cx2 polynomial, we observe that the quadratic term cx2

is mostly negligible, and tends to be a linear fit.

Table 15: Average of x2 coefficient across datasets for quadratic fitting.
Dataset BZR COX2 MUTAG REDDIT-5k

Average of x2 Coefficient 4.71× 10−5 6.61× 10−4 1.16× 10−2 1.78× 10−5

B.4 Interpreting TopER

Our approach involves accurately modeling the evolution of a graph throughout the filtration process.
One can easily identify clusters for each class and outliers in the other datasets given in Figure 1(a)
and make inferences about the different clusters and outliers. Furthermore, when the pivot af is
positive or negative, it can be interpreted as graph density behavior in the filtration sequence (See
Figure 7).

C Proofs of Stability Theorems

In this part, we prove the stability results for our TopER.

Lemma 3.6. [ST20] Let X be a compact metric space, and f, g : X → R be two filtration functions.
Then, for any p ≥ 1, we haveWp(PDk(X , f),PDk(X , g)) ≤ ∥f − g∥p
The next lemma is on the stability of Betti curves by [DG23] [Proposition 1].

Lemma 3.7. [DG23] Let βk(X ) is the kth Betti function obtained from the persistence module
PMk(X ).

∥βk(X )− βk(Y)∥1 ≤ 2W1(PDk(X ),PDk(Y))

Now, we are ready to prove our stability result.

Theorem 3.4 Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X )− TEg(X )∥1 ≤ C · W1(PDk(X , f),PDk(X , g))
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Figure 7: Pivot Behavior. A graph can exhibit three distinct pivot behaviors. Positive pivot graphs display a
cluster of vertices that are closely interconnected and appear early in the filtration process. On the other hand,
negative pivot graphs feature loosely connected nodes where the edges enter the filtration at a later stage. Graphs
with zero pivot are usually quasi-complete graphs.

Proof. We will utilize the stability theorems from topological data analysis given above.

First, we employ the stability of Betti curves by Lemma 3.7.

∥βk(X )− βk(Y)∥1 ≤ 2W1(PDk(X ),PDk(Y)) (1)

Hence to obtain TEf(X ) = (af ,bf), we fit least squares line y = af + bfx to the set of N points
in R2, i.e., Zf = {(βf

0 (ϵi), β
f
1 (ϵi))}Ni=1. Similarly, we obtain TEg(X ) = (ag,bg) by fitting least

squares line to Zg = {(βg
0 (ϵi), β

g
1 (ϵi))}Ni=1. By Equation (1), we have

DH(Zf ,Zg) ≤ 4W1(PDk(X ),PDk(Y)) (2)

where DH(Zf ,Zg) represent Hausdorff distance between the point clouds Zf and Zg in R2.

Now, by the stability of least squares fit with respect to Hausdorff distance ([CHM12] [Theorem
3.1]), we have

∥TEf(X )− TEg(X )∥1 ≤ C ·DH(Zf ,Zg) (3)

Hence, when we combine Equations (2) and (3), we have

∥TEf(X )− TEg(X )∥1 ≤ C · W1(PDk(X ),PDk(Y))

The proof follows.

By combining the above result with Lemma 3.6, we obtain the following corollary.

Corollary 3.5 Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X )− TEg(X )∥1 ≤ C · ∥f − g∥1

Proof. By Lemma 3.6, we have

W1(PDk(X , f),PDk(X , g)) ≤ ∥f − g∥1 (4)

By Theorem 3.4, we have

∥TEf(X )− TEg(X )∥1 ≤ C · W1(PDk(X , f),PDk(X , g)) (5)

By combining Equations (4) and (5), we conclude

∥TEf(X )− TEg(X )∥1 ≤ Ĉ · ∥f − g∥1
The proof follows.
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D Synthetic Experiments

This section describes experiments performed on the Erdos-Renyi synthetic graph. We conducted
two experiments by applying TopER on this graph and Principal Component Analysis (PCA). The
goal is to compare the performance, runtime, and interpretability of the two models. From the plots
shown in Figures 8, 9, and 10, we see that TopER is interpretable compared to when PCA is used.
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Figure 8: TopER plots showing pivot vs growth for each function—degree centrality, closeness, degree, and
popularity when threshold=50.
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Figure 9: Persistent Homology PCA plots embeddings (Betti 0 and Betti 1) showing component 1 vs component
2 for each function—closeness and degree when threshold=50 and the respective filtrations —sublevel and
superlevel.

E Broader Impact

This work advances the field of graph representation learning by introducing a topological approach
that is both interpretable and scalable. By leveraging the structural insights of persistent homology
without incurring its prohibitive computational costs, TopER enables more efficient and insightful
analysis of complex graph-structured data. This has the potential to benefit a range of scientific and
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Figure 10: Persistent Homology PCA plots embeddings (Betti 0 and Betti 1) showing component 1 vs
component 2 for each function—degree centrality and popularity when threshold=50 and the respective filtrations
—sublevel and superlevel.

industrial domains where graph data is prevalent, including bioinformatics, social network analysis,
and infrastructure monitoring. In particular, the ability to generate low-dimensional and interpretable
embeddings could assist researchers in visual analytics, pattern discovery, and model debugging. At
the same time, we acknowledge that the use of graph representations—especially in social networks
or biological datasets—may carry ethical concerns around data privacy, representational bias, or
unintended consequences of automated decision-making. While TopER itself is an unsupervised and
domain-agnostic method, its application must be governed by domain-specific ethical considerations.
To support responsible use, we emphasize interpretability and transparency in our design, and we
release our code and visualizations to promote reproducibility and community oversight.
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