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Abstract

Graph embeddings play a critical role in graph representation learning, allowing
machine learning models to explore and interpret graph-structured data. However,
existing methods often rely on opaque, high-dimensional embeddings, limiting
interpretability and practical visualization.

In this work, we introduce Topological Evolution Rate (TopER), a novel, low-
dimensional embedding approach grounded in topological data analysis. TopER
simplifies a key topological approach, Persistent Homology, by calculating the
evolution rate of graph substructures, resulting in intuitive and interpretable vi-
sualizations of graph data. This approach not only enhances the exploration of
graph datasets but also delivers competitive performance in graph clustering and
classification tasks. Our TopER-based models achieve or surpass state-of-the-art
results across molecular, biological, and social network datasets in tasks such as
classification, clustering, and visualization.

1 Introduction

Graphs are a fundamental data structure utilized extensively to model complex interactions within
various domains, such as social networks [LBKTO08], molecular structures [YLY 18], and trans-
portation systems [DCS*22]. Their inherent flexibility, however, introduces significant challenges
when applied to machine learning (ML) tasks, primarily due to their irregular and high-dimensional
nature. Graph data lacks inherent ordering and consistent dimensionality, making it challenging for
traditional ML methods designed for vector spaces.

Graph Neural Networks (GNNs) have emerged as the state-of-the-art models for tackling graph
machine learning tasks due to their ability to learn effectively from graph-structured data [KW17]. In
the predominant paradigm of message-passing GNNSs, the process begins by generating node embed-
dings [BHG21]. These embeddings can then be used in tasks such as node classification or link
prediction. However, for graph-related tasks, such as molecular property prediction, the embeddings
must be aggregated through a pooling layer to form graph-level representations [WKK*20]. This
method is computationally intensive, mainly because generating and managing node embeddings
as intermediate steps substantially increase the overall computational burden. Ideally, an approach
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Figure 1: TopER Visualizations. Each data point represents an individual graph. On the left, TopER is applied
to three benchmark compound datasets using closeness sublevel filtration. The middle panel zooms in on the
red point cloud from the left, demonstrating TopER’s effectiveness in distinguishing between classes within the
MUTAG dataset. On the right, a TopER visualization for the IMDB-B dataset is displayed.

would allow for the direct creation of graph embeddings, circumventing the need to generate node-
level representations first. Furthermore, these graph embeddings must be both low-dimensional and
interpretable to maximize their practical utility and efficiency in various applications.

Topological Data Analysis (TDA) is well-suited for directly constructing graph representations
without costly node embeddings. Topology studies the shape of data, and TDA primarily focuses
on the qualitative properties of space, such as continuity and connectivity [CA24]. A particularly
effective technique in TDA is Persistent Homology (PH), which tracks topological features, like
connected components and cycles, across various scales via a process known as filtration. Filtration
is adept at revealing both local and global structures within graphs. It proves exceptionally useful for
comparing graphs of different sizes that maintain the same inherent structure, which may suggest
similar properties in graph datasets. For instance, similar substructures in protein interaction networks
across different species may indicate comparable biological functions. By focusing on data shape,
PH proves invaluable in graph tasks that benefit from a graph-centric approach, offering insights
that might not be as apparent when focusing on individual node analysis. This shift from a node-
centric to a graph-centric perspective can dramatically improve the understanding and application
of graph data in fields like bioinformatics and network analysis. However, the utility of Persistent
Homology is limited by the high computational demands involved in extracting topological features
during the filtration process, mainly due to its cubic time complexity [OPTT17]. This constraint
reduces its practicality for large-scale graphs and has restricted the broader integration of PH in graph
representation learning.

With this work, we take a significant step forward in addressing the challenges of topological graph
representation learning and introduce Topological Evolution Rate (TopER). This novel approach
refines the Persistent Homology process to efficiently capture graph substructures, thereby mitigating
the significant computational demands of calculating complex topological features. As graph represen-
tation learning aligns naturally with Topological Data Analysis, TopER excels in graph clustering and
classification tasks, where it achieves the best rank in experiments. Furthermore, simplifying graph
data into a low-dimensional space, TopER creates intuitive visualizations that reveal clusters, outliers,
and other essential topological features, as demonstrated in Figure 1. As a result, TopER merges
interpretability with efficiency in graph representation learning, providing an ideal balance that can
scale to large graphs. To our knowledge, TopER is the first topology-based graph representation
method that can create low-dimensional, efficient, and scalable graph representations.

Our contributions can be summarized as follows:

* New Graph Representation: We introduce TopER, a principled and computationally feasible
graph representation designed to capture the structural evolution of a graph.

* Topology-Inspired Design: Rather than computing persistent diagrams or Betti numbers, TopER
directly leverages the filtration process to provide efficient, low-dimensional summaries rooted in
topological intuition.

* Competitive Performance: Experiments on benchmark graph classification and clustering tasks
demonstrate that 7opER achieves competitive results compared to more complex, state-of-the-art
models, while offering superior interpretability.



* Interpretable Visualizations: TopER produces low-dimensional outputs that support intuitive
visualization of clusters and structural outliers within and across graph datasets, enabling a form of
visual model comparison often lacking in traditional embeddings.

* Robustness Under Perturbations: We provide a stability analysis showing that TopER’s represen-
tations are consistent under small changes to the filtration function, reinforcing its suitability for
practical and comparative applications.

2 Background

2.1 Related Work

Graph-level Embedding Methods. Graph representation learning, including GNNs and Graph
Pooling techniques, is a dynamic subfield of machine learning, focusing on transforming graph
data into efficient, low-dimensional vector representations that encapsulate essential features of the
data [Ham20, GHT " 19]. These representations facilitate a deeper analytical understanding of graphs,
which is critical for various applications such as molecular graph property prediction [DTRF19].
GNNss have revolutionized the analysis of graph data, drawing parallels with the success of Con-
volutional Neural Networks in image processing [EPBM20]. GNNs utilize spectral and spatial
approaches to graph convolutions based on the graph Laplacian and direct graph convolutions,
respectively [BZSL14, DBV16, KW17]. Despite their success, GNNs often suffer from issues
like over-smoothing and a lack of transparency, making them less ideal for applications requiring
interpretability [Giin22].

Graph Pooling emerged as a key component in GNN architectures, drawing parallels to the role of
pooling in Convolutional Neural Networks [EPBM20]. Pooling aims to deduce into meaningful
graph embeddings through node aggregation (mean, max, and add pooling [XHLIJ19]) or hierar-
chical pooling (node selection: Top-k [GJ19] and SAGPool [LLK19]; node clustering: DiffPool
[YYM*18] and MinCutPool [BGA19]). Both pooling groups have their challenges. Node aggrega-
tion methods may lose the structural information by treating each node equally, while the hierarchical
pooling methods can be computationally heavy, and loss of information can occur if important nodes
are discarded.

Topology-inspired Representations. TDA provides a robust and computationally efficient frame-
work to address the interpretability and over-smoothing issues present in GNNs [AAF19]. Persistent
Homology, a key technique in TDA, has been applied successfully to graph data, demonstrating
potential to match or even exceed the performance of traditional methods in classification and clus-
tering tasks [HMR21, DCGT22, HIL*24, ISG23, CSAT23, LSC*23]. However, the computational
intensity of PH limits its scalability [HKN19, ZYCW20, AKGC22].

Visualization Techniques. Graph embedding techniques, including spectral methods, random walk-
based approaches, and deep learning-based models, transform graph data into vector representations
to support tasks like visualization and machine learning [CZC18, GF18, Xu21]. Approaches such
as Laplacian Eigenmaps and DeepWalk have been particularly effective in revealing clusters within
graphs [BNO1, PAS14]. However, these methods are predominantly applied to visualize a single
graph in node classification tasks, focusing on cluster identification [WCZ16, MK20, TPPM23].
Furthermore, they often overlook domain-specific information, which can limit their effectiveness in
more specialized applications [JZ20].

TopER addresses these challenges by combining the interpretative benefits of TDA with the analytical
strength of modern graph machine learning. Distinct from current approaches, TopER employs a
simplified filtration process to create embeddings that are both interpretable and computationally
efficient. By extending the filtration to multiple functions, TopER stands out as one of the first
methods to offer effective and interpretable visualizations of graph datasets, while also achieving
superior performance in clustering and classification tasks.

2.2 Persistent Homology for Graphs

Topological Data Analysis (TDA) offers a powerful framework for graph representation learn-
ing [AAF19], with persistent homology (PH) being especially effective at capturing multi-scale
topological features [CA24]. While PH typically involves filtrations, persistence diagrams, and



vectorization, our model focuses on the filtration step, reformulating the evolution of topological
features in a novel and efficient way.

In the crucial filtration step, PH decomposes a graph G into a nested sequence of subgraphs G; C

Gs C ... C G, = G. For each G;, an abstract simplicial complex @ is defined, forming a filtration of
simplicial complexes. Clique complexes are typical choices, where each (k + 1)-complete subgraph
in G corresponds to a k-simplex [AAF19].

Filtration. Utilizing relevant filtration functions is essential to obtain effective filtrations. For a
given graph G = (V, ), a common approach is to define a node filtration function f : V — R,
which establishes a hierarchy among the nodes. By selecting a monotone increasing set of thresholds
T = {e; 1, this method generates subgraphs G; = (V;,&;) where V; = {v € V | f(v) < ¢;} and
&; is the set of edges in £ with endpoints in V;. This is called a sublevel filtration induced by f (See
Figure 2). Also, superlevel filtrations can be constructed by defining V; = {v € V| f(v) > ¢;} for
decreasing thresholds [AAF19].

Similarly, one can use edge filtration functions g : £ — R to define such a filtration. We define
& ={ejr € €] g(ejr) <€}, and V; as all the endpoints of &; to create a nested sequence {G; }7- ;.
Especially for weighted graphs, this method is highly preferable as weights naturally define an edge
filtration function. The common node filtration functions are degree, betweenness, centrality, heat
kernel signatures [BK10], and node functions coming from the domain of the datasets (e.g., atomic
number for molecular graphs). Common edge filtration functions are Ollivier and Forman Ricci
curvatures [LLY 11] and edge weights (e.g., transaction amounts for financial networks).

In addition to existing approaches, we in- s G G, G
troduce a new filtration function, Popu-

larity, which extends the idea of degree- o e o e e o e e
based ranking [NewO3]. While the de- eeee

gree function measures the number of di-

rect neighbors a node has, Popularity cap- TP PR TP WP P
tures the average degree of those neighbors. o 0 9 Q 0 9 0 0 9
The underlying intuition is that, whereas 2 i QS i\ 2of 1
degree reflects how many connections a 9 Qee eeeﬂ
node has, Popularity emphasizes node influ- G & -
ence through association with high-degree
nodes.

Figure 2: Filtration. For G = G3 in both examples, the
top figure illustrates superlevel filtration with node degree

Formally, for each node v, we define popu- function for thresholds {1, 2, 3}. Similarly, the bottom figure
> en () deg(w) illustrates sublevel filtration for edge weights with thresholds

larity as: P(v) = deg(v) + =55 {1.5,1.8,2.1}.

where deg(v) is the node’s degree and

N (v) is its set of neighbors. This function incorporates 2-neighborhood information by weighting
high-degree neighbors more heavily, making it a refined version of the degree function.

3 TopER: Topological Evolution Rate

TopER is inspired by the foundational idea that topology can capture the shape of graph data, and that
this shape can be observed through the evolution of a graph during the filtration process. In this sense,
TopER is topology-inspired. However, TopER diverges from traditional PH in how it tracks the shape.
We first achieve a computationally efficient alternative to persistent homology by simplifying its
filtration-based perspective, and second, we develop a low-dimensional, interpretable representation
of graphs that enables both effective classification and intuitive visualization across graph datasets.

Our reformulation reduces the computational overhead typically required for topological feature ex-
traction. Unlike Persistent Homology, which extracts costly topological features, TopER summarizes
the filtration process through two key parameters derived via regression: filtration sequences and
evolution.

Filtration sequences. We first decompose a graph G into a nested sequence of subgraphs (filtration
graphs) G; C Gy ... C G, = G by using a filtration function, such as node degree or closeness.
Let G; C G, V; represent nodes in G; and &; represent the edges. Next, we compute x; = |V
as the count of nodes, and y; = |&;| as the count of edges. Then, for each filtration graph G;, we
obtain the pair (z;,y;) € R?, which creates two monotone sequences, r1 < 22 < .-+ <z, and



y1 < yo < --- < y,. Hence, TopER yields two ordered sets X', ) describing the evolution of
the filtration graphs G; C ... € G, = G, X = (z1,22,...,2,) and Y = (y1,¥2, ..., Yn). Here,
n corresponds to number of thresholds {¢;}?_; used in the filtration step. Consider the top row
of Figure 2 where we have three filtration graphs (i.e., n=3); we have X’ = (2, 3, 7) for node counts
and Y = (0,2, 6) for edge counts.

Filtration and line fitting

Evolution. In the next step, PH would G, G, Gs Descriptrs
typically compute topological features on

each filtration and create a persistence dia- 3)_8 (%) % al 6o &
gram to summarize the features. Not only ) . ) -»> ®

is it costly, but the approach would re- | V4 ‘al +byx | a, + byx | ¥ 4y + byx il
quire efforts to vectorize the persistence ¢ .
diagrams. We circumvent this computa-
tionally costly step and analyze how the
number of edges {y; } relates to the number Figure 3: TopER steps. The filtration process on three differ-
of nodes {xl} throughout the filtration se- ent graphs using node or edge filtration. The graphs undergo
quence. We use line fitting to characterize filtration, and for each graph, a best-fit line is determined
this relationship as follows. Simple linear through the filtration data. .The coefficients of these best-fit
regression, often applied through the least lines are then used as descriptors for the graphs.

squares method [JWH™ 23], is a standard approach in regression analysis for fitting a linear equation

to a set of data points {(x;,y;)} C R?. This method calculates the line L(z) = a + bx that best fits
the data by minimizing the loss function E = Zf\il [L(x;) — y;]%. The regression coefficients (a, b)
capture the graph’s structural evolution through filtration (see descriptor step in Figure 3). The full
TopER method is outlined in Algorithm 1 in the Appendix.

b

With evolution on filtration sequences, we define the topological evolution rate of a graph as follows:

Definition 3.1 (Topological Evolution Rate (TopER)). Let f : ¥V — R be a filtration function on
graph G and Z = {¢;} ; be the threshold set. Let G; = (V;,&;) be the induced filtration. Let
x; = |V;| and y; = |&;|. Let L(x) = a + bz be the best fitting line to {(z;,y;)}"_,. Then, we define
the TopER vector of G wrt. f as TE¢(G,Z) = (a,b). We call a the pivot and b the growth of G.

Remark 3.2 (Why a Linear Fit?). Although one could consider higher-order polynomials, our
experiments show that coefficients beyond the first degree are negligible (Table 15), revealing an
essentially linear relationship. Due to space constraints, we defer a more detailed comparison of
linear, polynomial, and higher-order fits to Appendix B, where we also provide visual examples of
evolution rates (Figure 6) and fundamental pattern types (Figure 7).

Remark 3.3 (On the Name TopER). Although TopER does not compute classical topological invariants
such as persistence diagrams or Betti numbers, its name is grounded in two topology-inspired
principles. First, it mirrors the TDA notion of a filtration, a nested sequence of subgraphs {G;} that
progressively unveils structural features across scales. Second, it is directly tied to the evolution of
the Euler characteristic x(G;) = |Vi| —|&| = Bo(G:i) — 1(G:), where 5; denotes the ith Betti
number. Equivalently, one could track {(z;,v; — 2;)} = {(|Vil, x(G:))}, but we use {(z;,y;)} for
notational simplicity. The resulting slope thus quantifies how topological complexity changes over
the filtration, justifying the term Topological Evolution Rate.

We emphasize that the term “topological” reflects the conceptual roots of TopER in topological data
analysis: the method uses a filtration to reveal structural patterns in the graph, analogous to the
filtration process in persistent homology. While we do not compute full persistence diagrams or
Betti numbers, the slope of the Euler characteristic across the filtration captures essential topological
information, justifying the terminology.

3.1 Computational Complexity

The primary computational steps in TopER include constructing filtration graphs and performing
regression on node and edge counts, which incur the following costs.

Analyzing each node and edge across n filtration thresholds typically requires O(n x (|V| + |£]))
operations, where V and £ denote the numbers of vertices and edges, respectively. The regression
step involves fitting a line to the pairs (z;, y;) using the least squares method. The complexity of
calculating the necessary sums for this regression is O(n), and solving for the regression coefficients
(slope and intercept) from these sums involves a constant amount of additional computation.



Thus, the overall complexity of TopER predominantly hinges on the graph filtration process, summing
up to O(n x (|V| + |€])) where [V| > n. As we will show in the next section, the runtime costs of
TopER are notably low, making it practical and efficient for large-scale applications.

3.2 Stability Results

This section states our theorems on the stability of TopER. In the following, W, (., .) represents p-
Wasserstein distance, and PDy (X', f) represents & persistence diagram of X’ with sublevel filtration
with respect to f. Similarly, ||.||, represents L”-norm and d,, (., .) represents [,,-distance in R"™. We
fix a threshold set Z = {¢; }_; for both functions to keep the exposition simple. Further, to keep the
setting general, we use the pairs {(3o(e;), B1(€;)) } in R? to fit the least squares line y = a + bx
defining TE(X) = (a,b).

Theorem 3.4. Let X be a compact metric space, and f, g : X — R be two filtration functions. Then,
for some C' > 0,

[ TE¢(X) — TE(X)[[1 < C- Wi (PDk(&X,f), PDk(X, g)).

By combining the above result with the stability result for sublevel filtrations, we obtain the stability
with respect to filtration functions as follows.

Corollary 3.5. Let X be a compact metric space, and f,g : X — R be two filtration functions. Then,
Sfor some C' > 0,
ITEs(X) = TEg(X)[L < C- [f — gllx

The following lemmas are essential for proving the theorem and corollary above.

Lemma 3.6. [ST20] Let X be a compact metric space, and f,g : X — R be two filtration functions.
Then, for any p > 1, we have W,,(PDy (X, f), PDy (X, g)) < |If — gllp

The next lemma is on the stability of Betti curves by [DG23] [Proposition 1].

Lemma 3.7. [DG23] Let 31,(X) is the k™" Betti function obtained from the persistence module
PMy (X).
18K (X) = Br(P)li < 2Wi(PDi(X), PDy(Y))

By adapting the above results to the graph setting, when two metric graphs Gy, G» are close in the

Gromov-Hausdorff sense, one can obtain a similar stability result for the filtrations of G; induced by
the same filtration function. Due to space limitations, details and the proofs are given in Appendix C.

4 Experiments

We evaluate the performance of TopER in classification, clustering and visualization. Our Python
implementation is available at https://github. com/AstritTola/TopER.

4.1 Experimental Setup

Datasets. We conduct experiments on nine benchmark datasets for graph classification. These
are (i) the molecule graphs of BZR, and ) .

COX2 [MVO09]; (ii) the biological graphs of MU- Tablﬁ 11‘ anretlp ter(llsttlcs tOf the benchmark
TAG and PROTEINS [KMI2]; and (iii) the so- S'aP1 C1asSHICANION CALASELS.

cial graphs of IMDB-Binary (IMDB-B), IMDB- asets #Graphs V| €] Classes
Multi (IMDB-M), REDDIT-Binary (REDDIT-B), & 205 3575 3836 2
and REDDIT-Multi-5K (REDDIT-5K) [YV15]. Fi- cox2 467 4122 4345 2
nally, the OGBG-MOLHIV is a large molecular prop- ~ Y/"S B e me
erty prediction dataset, part of the open graph bench-  vpB-B 1000 1977 9653 2
mark (OGB) datasets [HFZ120]. Data statistics are =~ IMDB-M 1500 13.00  65.94 3
. : REDDIT-B 2000  429.63 497.75 2
given in Table 1. REDDIT-5K 4999 50852 594.87 5
OGBG-MOLHIV 41127 2434  2266.1 2

Hardware. We ran experiments on a single machine
with 12th Generation Intel Core i7-1270P vPro Pro-
cessor (E-cores up to 3.50 GHz, P-cores up to 4.80 GHz), and 32GB of RAM (LPDDR5-6400MHz).
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Table 2: Graph Classification. Accuracy results on eight benchmark datasets. Best results are in bold blue,
second-best are underlined. The final column shows each model’s average deviation from the best per dataset.

Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K | Avg.|
DiffPool [YYM*18] 83.93+441 79.66+264 79.22+1.02  73.63+360 68.60+3.10 45.70+340 79.00+1.10 - 8.06
P-WL-C [RBB19] - - 90.51+134  75.27+038 - - - - 2.08
SAGPool [LLK19] 82.95+495 79.45+298 76.78+212 71.86+097 74.87+4.09 49.33+490 84.70+4.40 - 6.61
Top-k [GJ19] 79.40+120 80.30+4.21 67.61+336 69.60+350 73.17+484 48.80+3.19 79.40+7.40 9.70

1-GIN (GFL) [HGR*20] - - - 74.10+340  74.50+460 49.70+290 90.20+238 55.70+2.90 2.09
6 GNNs [EPBM20] - - 80.42+207 75.80+370 71.20+390 49.10+350 89.90+1.90 56.10+1.60 4.13
MinCutPool [BGA19] 82.64+505 80.07+385 79.17+164 76.62+258  70.77+489 49.00+283  87.20+5.00

- 5.82
DMP [BCL21] - - 84.00+860 75.30+330 73.80+450 50.90+250 86.20+6.80 51.90+2.10 4.20
FC-V [ORB21] 85.61+059 81.01+088 87.31+066 74.54+048 73.84+036 46.80+037 89.41+0.24 52.36+037 4.01
SubMix [YSK22] 86.34+200 84.68+370 80.99+060 67.80+200 70.30+140 46.47+250 - - 6.15
G-Mix [HILH22] 84.15+230 83.83+2.10 81.96+060 66.28+1.10 69.40+1.10 46.40+2.70 - - 6.91
RGCL [LWZ+122] 84.54+167 79.31+068 87.66+101 75.03+043 71.85+084 49.31+042 90.34+058 56.38-+0.40 3.56
AutoGCL [YWH22] 86.27+071 79.31+070 88.64+108 75.80+036 72.32+093 50.60+080 88.58+1.49 56.75+0.18 3.08
FF-GCN [PAMF23] 89.00+500 78.00+8.00 71.00+400 62.00+1.00 63.00+8.00 - - - 11.53
‘WWLS [FHSK23] 88.02+061 81.58+091 88.30+123 75.35+074 75.08+031 51.61+0.62 - - 2.26
EPIC [HLAK24] 88.78+230 85.53+1.60 82.44+070 69.06+1.00 71.70+1.00 47.93+130 4.67

EMP [CSA*23] - 88.79+063 72.78+054 74444045 48.01+042 91.03+022 54.41+032 2.97

MP-HSM [LSC*23] - 77.10+3.00 85.60+530 74.60+2.10 74.80+250 47.90+320 - - 4.67
TopoGCL [CFG24] 87.17+083 81.45+055 90.09+093 77.30+089 74.67+032 52.81+031 90.40+0.53 - 1.76
PGOT [QTLL24] 87.32+390 82.98+521 92.63+258 73.21+259 62.90+305 51.33+1.76 - - 3.85
RePHINE [ISG23] - - - 71.25+160  69.40+3.78 - - - 5.86
GPSE [CLL*24] 80.49+4.18 78.37+262 87.194866 72.154366 69.30+361 47.40+540 80.40+3.40 — 7.27
TopER 90.13+414 82.01+450 90.99:664 74.58+392 73204343 50.00+402 92.70+238  56.51+22 | 1.60

Runtime. TopER is highly scalable and can be applied to a 100K node graph in less than 2
minutes (see Figure 5). Our small network experiments took about two days in a shared resource
setting, whereas the OGBG-MOLHIV experiments took 7.85 hours. One of the most demanding
datasets, REDDIT-5K, requires 2.91 hours to calculate all node and edge functions. The runtime
of our methods is dominated by the computation of node functions such as closeness and Riccis
blue(see Appendix A.6). Using approximate values for centrality metrics instead could greatly
decrease computation time [BP07]. Since this is not our current focus, we leave it as future work.

Model Setup and Metrics. We employ a rigorous experimental setup to ensure a fair comparison
and the selection of the best graph classification model. We begin by applying BatchNormalization
to the input features to maintain consistent scaling. We employ a 90/10 train-test split, adopt the
StratifiedkFold strategy, and present the average accuracy from ten-fold cross-validation across all
our models. We employ accuracy as the evaluation metric, a widely utilized performance measure
within graph classification tasks [EPBM20].

Filtration functions. In TopER, we use both node and edge filtrations (Definition 3.1). Alongside
popularity, we apply degree, closeness, and degree centrality [EC22] as node filtration functions
and Forman- and Ollivier-Ricci functions [LLY11] as edge filtration functions. We also use atomic
weight as a node function for molecular and biological datasets (BZR, COX2, and MUTAG), and
node attributes (PROTEINS). We utilized the t-test to assess the statistical significance of each
function and applied the Lasso method for regularization. Functions were retained in the model
only if they achieved p-values less than 0.05 in the t-test and had non-zero coefficients in the Lasso
model [JWH™23]. This approach ensures that the selected filtration functions contribute statistically
significant and regularized features to the model. Incorporating additional filtration functions can
enhance TopER’s ability to analyze graphs from diverse perspectives. However, as we will next
illustrate in Table 5, TopER demonstrates strong performance even in its most basic form using the
simple and scalable node degree function. This balance of performance and simplicity suits our
scalability philosophy; we avoid complex and costly schemes for learning dataset-specific activation
functions and homogenize the filtration step in all datasets.

Classifier. We utilize a Multilayer Perceptron (MLP) in our graph classification task. The hyperpa-
rameters are detailed in Appendix A.7.

4.2 Graph Classification Results

Baselines. We compare our method with 22 state-of-the-art and recent models in graph classification,
including variants of graph neural networks: six GNNs including GCN, DGCNN, Diffpool, ECC,
GIN, GraphSAGE which are compared in [EPBM20] (best results of these six GNNs are given



in the 6 GNNs row), FF-GCN [PAMF23]; topological methods: DMP [BCL21], FC-V [ORB21],
WWLS [FHSK23], MP-HSM [LSC*23] and EMP [CSA'23]; GNNs enhanced with data aug-
mentation methods: SubMix [YSK22], G-Mix [HJLH22], and EPIC [HLAK24]; GNNs enhanced
with contrastive learning methods: RGCL [LWZ122], AutoGCL [YWH22], TopoGCL [CFG24];
prototype-based methods: PGOT [QTLL24]; pooling methods: Top-k [GJ19], SAGPool [LLK19],
DiffPool [YYM™18], MinCutPool [BGA19] and structural encoder: GPSE [CLL*24].

Table 2 shows the accuracy results for the given models. We use the reported results in the cor-
responding references for each model. “—" entries in the table mean the reference did not report
any result for that dataset. In [EPBM20], the authors compare the six most common GNNs on the
graph classification task (see the GNNs row). The last column summarizes each model’s overall
performance. We report the average of the differences between each model’s performance and the
best performance in the column across all datasets. If a model’s performance is missing for a dataset,
it is excluded from the average computation for the model.

Out of eight datasets, TopER achieves the best results in two and ranks second in two other datasets.
For the remaining four datasets, TopER’s performance is within 4% of the SOTA results. For overall
performance, TopER outperforms all other models with an average deviation of 1.60% from the best
performances. The closest competitor is TopoGCL, which has an average deviation of 1.76%.

OGBG-MOLHIV results. To evaluate our model’s per- Table 3: AUC results for OGBG-
formance on large datasets, we compare it with recently MOLHIV dataset.
published models on the OGBG-MOLHIV dataset, as

shown in Table 3. The performances of these mod- Model AUC

els are listed in chronological order based on their GIN-VN [XHLJ19] 77 80118
publication dates, with baseline performances reported HGK-WL [TGL*19] 79.05+130
from [CPWC23, YCLT21] or the respective model’s ref- WWL [BGL120] 75.58+1.40
erences. In Appendix A.1, we give further details for PNA [CCB*20] 79.05£1.32
TopER performance and the contribution of each function DGN [BPL*21] 79.70+097

GraphSNN [WW22] 79.72+1.83
GCN-GNorm [CLXT21]  78.83+1.00
Graphormer [YCLT21]  80.51+0.53

on this dataset. TopER achieves the second-best result
on the MOLHIV dataset, while the top-performing model

requires learning a significantly larger model with 119.5 Cy2C-GCN [CPWC23]  78.0240.60
million parameters. GAWL [NV23] 78.3440.39

] ) LLM-GIN [ZZM?24] 79.224NA
TopER vs. PH. TopER consistently outperforms Persis- GMOoE-GIN [WIY+23]  76.90+09
tent Homology methods in both accuracy and computa- TopER 8021201

tional efficiency. As shown in Table 4, we compare against
the best PH results reported in [Cai21], which evaluates
16 combinations of four filtration functions and four vectorization techniques per dataset. TopER
achieves higher accuracy on all six benchmarks. In terms of runtime, TopER is over 10 times faster
than PH on large graphs like Reddit-5K, while maintaining high performance (see Table 8 and
Appendix A.2).

Table 4: Accuracy results for TopER vs. Persistent Homology in graph classification tasks.
BZR COX2 PROTEINS IMDB-B IMDB-M RED-5K

PH 88.4+06  82.0+0.6 74.0+04 69.5+0.5 46.5+03 54.1+0.1
TopER  90.1+41 82.0+4s6 74.6+3.9 73.2+34  50.0+40  56.5+2:2

Ablation Studies. We have conducted three ablation studies. In the first one, we evaluated
the individual performance of each function as well as their combined effect on classification. As
shown in Table 5, the common filtration functions we employ from TDA exhibit strong individual
performance. Moreover, when combined, they synergistically enhance overall performance. This is
not surprising, as different filtration functions, such as atomic weight or Ricci curvature, generate
distinct hierarchies and node-edge distributions, resulting in diverse connectivity patterns throughout
the filtration sequence. This diversity is analogous to viewing an object from multiple angles. Hence,
integrating these complementary perspectives improves performance by offering a richer and more
varied representation of the graph structure, allowing the model to capture more intricate features.
The other two ablation studies are provided in the Appendix A.4, which examines the effect of the
number of thresholds on TopER’s performance, while Appendix A.5 analyzes the impact of the
number of filtration functions used.



Table 5: Ablation Study. Individual and altogether performances of filtration functions with TopER.
Datasets Degree-cent. Popularity Closeness  Degree F. Ricci  O.Ricci Atom weight \ TopER

BZR 82.224213  82.20+342 81.48+199 82.73+212 80.75+1.73 80.99+148  82.23+2.12 | 90.13+4.14
COX2 75384396 69.21+8.19 67.90+796 73.88+5.02 70.46+728 73.03+421 69.82+827 | 82.01+4.59
MUTAG 76.61+787  77.66+6.12 80.88+479 T4.97+640 80.85+925 82.46+784 73.45+801 | 90.99-+6.64
PROTEINS 67.66+3.16  70.71+441 69.01+424 69.01+348 72964347 71.25+266 73.59+333 | 74.58+3.92
IMDB-B 73.00+449  71.904348 72.60+420 73.10+4.18 69.80+244 66.40+3.35 - 73.20+3.43
IMDB-M 48474390 47.8743.07 48.334349 47.93+288 48.13+4.11 43.60+3.17 - 50.00+4.02
REDDIT-B 76.70+3.69  79.354346 78.1043.23 79.55+220 72.35+291 68.20+2.28 - 92.70+2.38
REDDIT-5K  42.85+174  50.87+263 50.03+149 47.01+189 50.27+1.92 45.81+2.08 - 56.51+2.22

4.3 Graph Clustering Results

We employ cluster quality metrics to assess the embeddings of graphs sourced from all datasets in
Table 2. The embeddings are labeled with their respective dataset memberships, and we assume that
good embeddings will have graphs of the same dataset clustered together. We evaluate embeddings
based on three widely used clustering metrics: Silhouette (SILH), Calinski-Harabasz (CH), and
Davies-Bouldin (DB) [GBC21]. Table 6 compares the clustering performance of TopER and Spectral
Zoo [JZ20], which is, to our knowledge, the only model that allows low-dimensional graph embed-
dings. Detailed results are provided in Appendix A.3. The findings demonstrate that the embeddings
generated by TopER outperform those created by Spectral Zoo. This is evident from the superior
cluster quality metrics observed for five out of eight datasets in the case of Silhouette and CH, and
for all eight datasets in the case of DB.

Table 6: Clustering Performances. Comparison of Spectral Zoo vs. TopER. The detailed results are

given in Appendix A.3.

Metric | Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K

Silh1 | Spec: Zoo 0050 0049 0.344 0050  0.097 0024 0.108 -0.121
TopER 0249 0414 0258  0.086 0064  -0.032  0.196 -0.067

CHp |SpecZoo 351 613 12073 3877 8524 3098 26994 11981
TopER 42.58 26.00 7252 151.64 60.52 11.77 446.12 1209.95

pB | |Spec.Zoo 725 607 095 455 278 10.73 2.20 25.74
TopER 193 229 088 154 219 6.87 1.32 2.78

4.4 Graph Visualization

In the case of a single filtration function, TopER creates 2D graph embeddings (a,b) that
can be visualized with ease (see Figure 1). Traditional dimensionality reduction techniques
such as PCA can be used to visualize

point cloud data, but accurately depict- 2o ol

ing graph data has historically been a 15 175

significant challenge [GBGA20]. To s, z150 M, L

our knowledge, until TopER, the only ~ %.. E ‘%ﬁ

model that allowed graph visualiza- °,, s ‘*f

tion was the GraphZoo [JZ20]. 10 © ClassA osof  ClassA .
A ClassB N 025 A ClassB .

TopER creates highly interpretable R o oo oo oo

graph visualizations. To recall, the (2) PROTEINS (b) BZR

pair (a, b) represents the coefficients

of the best-ﬁt.tlng fun'ctlon L (x ) =at Figure 4: TopER visualizations of the PROTEINS dataset with
b, Where a is the pivot (y-lntercept) O.Ricci edge filtration, and the BZR dataset with degree centrality
and b is the growth (the slope). Specif- node filtration. Each point corresponds to an individual graph.
ically, the pivot a reflects graph con-

nectivity, while b reflects the growth rate of edges/nodes for the filtration function. In particular,
a higher value of a corresponds to a more interconnected graph. As we demonstrate in Appendix
Figure 7, graph connectivity and community structure can be analyzed using three types of pivot
behavior. In the following, we illustrate how these quantities can be employed to interpret our
two-dimensional representations of the graph datasets.

In Figure 1(b) of the MUTAG dataset, class B has a higher growth rate and smaller pivot than the red
class. This shows that the class is growing faster than class A with respect to the closeness function



in the MUTAG dataset, i.e., the graph has a low diameter. Similarly, in contrast, in the PROTEINS
dataset (Fig. 4(a)), the growth rates are similar for both classes (~ 1.5 — 1.7), but the pivot (initial
graph size) is smaller in class A. This implies that class A has fewer edges in relation to the number
of nodes. Such patterns, as described in Sec. B.4, can reveal key insights into graph topology. In a
similar vein, TopER visualizations can be used for anomaly detection. For example, in Fig. 1(a), an
outlier PROTEINS graph alone has a positive pivot and appears as the rightmost data point.

More importantly, TopER homogenizes graph representations, allowing us to compare graphs
across datasets, which may open new paths in training graph foundation models. To our knowl-
edge, TopER is unique in directly producing interpretable 2D embeddings for cross-dataset vi-
sualization without relying on learned high-dimensional encodings or opaque projections, unlike
GPSE [CLL*24] and GFSE [CZW™25], which rely on learned high-dimensional embeddings. For
example, Figure 1(a) visualizes graphs of three datasets on the same panel, where we see that Mutag
and COX2 differ in their pivot only. The similarity is not surprising; MUTAG and COX2 are datasets
of molecular graphs where nodes are atoms and edges are chemical bonds. As the molecules in both
datasets have similar types of atoms and bond configurations (e.g., ring structures), TopER captures
these similarities, leading to similar embeddings.

These examples highlight that, in many practical settings, TopER’s interpretability outweighs modest
performance differences compared to more expressive or data-driven models. As shown in Figure 4,
the pivot—growth representation captures fine-grained structural variations, such as changes in edge
density, community organization, and filtration behavior, through simple geometric patterns that
can be directly visualized and interpreted. This enables users to pinpoint the topological mecha-
nisms responsible for observed differences between classes or datasets. Beyond classification, such
interpretability makes TopER particularly well-suited for applications where structural understand-
ing is critical. Its training-free and computationally efficient design further allows deployment in
large-scale or data-scarce environments, as well as integration into hybrid pipelines where TopER
embeddings serve as interpretable anchors for downstream learning models. Thus, while deep or
spectral approaches may achieve marginally higher benchmark performance in some cases, TopER
offers a complementary framework that prioritizes clarity, scalability, and theoretical grounding in
topological structure.

Limitations. While our approach is designed to be efficient and broadly applicable, its performance
can vary depending on the choice of filtration function, which may require domain knowledge in
certain applications. In practice, we found the method to be robust across a variety of datasets, and
further refinements to filtration strategies could enhance adaptability to new domains.

5 Conclusion

We have introduced a novel graph embedding method, TopER, leveraging Persistent Homology from
Topological Data Analysis. TopER demonstrates strong performance in graph classification tasks,
rivaling SOTA models. Furthermore, it naturally generates effective 2D visualizations of graph
datasets, facilitating the identification of clusters and outliers. For future research, one promising
direction is to extend TopER to temporal graph learning tasks, enabling the capture of dynamic graph
trajectories that reflect evolving user behaviors over time. Another avenue is the integration of TopER
embeddings into graph foundation models, where the homogenization of graph structures could
enhance the learning of transferable representations across different domains.
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dependence on the filtration function and computational scalability to very large graphs.

. Theory assumptions and proofs
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proofs are provided in the Appendix.
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thoroughly documented and made available via anonymous link.
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include the full text of instructions given to participants and screenshots, if applicable, as
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subjects.
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Appendix

A Further Experimental Details

A.1 OGBG-MOLHIV Results
For the OGBG-MOLHIV dataset, we fur-

ther evaluated the improvements of TopER Table 7:’ Results for OGBG-MOLHIV of each
with the addition of new filtration func- TopER —i.

tions. Table 7 provides the performance  “yyoy 4™ Aqded Function  Valid. AUC  Test AUC
of each TopER—1, where ¢ represents num-

ber of filtration functions used in the model, TopER-1 degree.-centfality 72.76+023  74.44+020
. TopER-t uses (a. b i) as  SPERD  aomicwight TLason 7o
graph embedding Whe.re (as, ;) is the pivot TOEER-4 F.. Ricci 71:76:{:0:18 78:1510:15
and growth for function f;. We used XG- TopER-5 degree 71.79+035  79.26+0.14
Boost to rank the importance of filtration TopER-6 popularity 72274029  79.88-+024
functions first, and the functions are added ~ TopER-7 closeness 71.30+018  80.21+0.15

iteratively with this ranking. We fixed max-
imum tree depth = 3, learning rates = 0.035, subsample

ratios = (.95, the number of estimators =

1000, and the regularization parameter lambda = 45, where the objective function is rank:pairwise,
with log loss as the evaluation metric. The seed is set to be 16.

A.2 Time Experiments for TopER vs. PH

To compare the time efficiency and performance of

We conducted experiments using the same filtration func-
tion, the sublevel degree filtration. For PH, we applied
Betti vectorization. Our results, summarized below,
show that TopER is significantly faster than PH. Al-
though both methods use the same filtration function, a
key distinction lies in their embeddings: TopER gener-
ates 2D embeddings, whereas PH produces a vector with
dimensionality equal to the number of thresholds in the
filtration. Despite the considerable difference in dimen-
sionality, TopER’s performance with 2D embeddings
remains comparable to that of PH.

Figure 5 shows that TopER scales efficiently with graph
size, maintaining low runtime even with 100 filtration
steps and high node degree. It processes graphs with up
to 100,000 nodes in just over a minute, demonstrating
its suitability for large-scale applications.

A.3 Clustering Performances

TopER and persistent homology (PH),
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o
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Figure 5: Scalability. TopER run time for
synthetic power law graphs [HK02] with node
degree filtration. The mean node degree is 30,
and 100 filtration steps are used.

In Table 9, we showcase our clustering performance across eight benchmark graph classification
datasets using three widely adopted clustering metrics: Silhouette, Calinski-Harabasz, and Davies-
Bouldin. These metrics serve as evaluative measures for assessing the efficacy of clustering algorithms

Table 8: Comparison of TopER-1 (only one filtration function) and PH in terms of time and accuracy

across different datasets.

TopER-1 PH
Dataset Time Accuracy Time Accuracy  # Thresholds
BZR 1.14s  82.73+2.12 5.99s 83.70 +3.51 4
IMDB-B 327s  73.10+£4.18 31995s 71.00+4.07 65
REDDIT-B  107.65s 79.55+2.20 9173.37s 84.50+2.51 501
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Table 9: The clustering performances of Spectral Embeddings and TopER with different metrics. Best

performances are given in blue.
Silhouette Scores (1)

Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K

Spec Zoo  0.050 0.049 0.344 0.050 0.097 -0.024 0.108 -0.121
degree -0.108 0.414  0.258 0.048 0.030 -0.032 0.049 -0.169
popularity 0.249 -0.015 0.134  -0.000  0.008 -0.159 0.196 -0.173
closeness 0.019 0.036 0.036 0.086 nan nan 0.087 -0.185
degree 0.084 0.030 0.017 0.065 0.056 -0.075 0.034 -0.067

Calinski-Harabasz scores (1)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K
Spec Zoo 3.51 6.13 120.73  38.77 85.24 30.98 269.94 119.81

degree 042  1.06 11.29  130.07 60.52 3.92 97.85 1209.95
popularity 13.85 26.00  36.13 77.22 12.89 11.77 446.12 619.37
closeness 42.58 1.02 40.04 73.51 10.17 0.30 188.10 689.27
F.Ricci 492 048 11.82 151.64 11.68 1.03 92.14 454.34

Davies-Bouldin scores (|)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K

Spec Zoo 7.25 6.07 0.95 4.55 2.78 10.73 2.20 25.74
degree 9.84 2.29 0.88 1.95 4.92 46.46 232 3.27
popularity 4.16  37.87 1.62 2.11 25.25 6.87 1.32 3.46
closeness 1.93 26.44 1.41 2.25 4.99 37.51 1.95 3.09
F.Ricci 419 7.20 1.27 1.54 2.19 10.35 1.83 541

in partitioning datasets into meaningful clusters. They gauge the degree of similarity or dissimilarity
within and between clusters, offering insights into the quality of clustering outcomes. For precise
definitions of Silhouette, Calinski-Harabasz, and Davies-Bouldin metrics, as well as additional details
on clustering measures, refer to [GBC21].

A.4 Number of Thresholds

In our experiments, we utilized a large number of thresholds to capture finer-grained information, as
the model is computationally efficient and the additional cost of increasing the number of thresholds
is minimal. Furthermore, in Table 10, we evaluated the model’s performance with fewer thresholds
and observed that it remains robust and highly effective even in such scenarios.

Table 10: The accuracy results of TopER with different numbers of thresholds.
# Thresholds PROTEINS REDDIT-B REDDIT-5K

10 72.78+4.04 90.55+1.96 55.99+1.97
20 74314323 91.20+1.66 55.91+2.14
50 74.76+455 92.05+1.96 55.39+2.10
100 73.85+3.67 92.85+1.18 55.51+2.61
200 75.4743.06 93.15+2.10 56.51+2.04
500 74.5843.92 92.70+2.38 56.51+3.22

A.5 Combining Filtration Functions

To assess the impact of embedding dimensions, we conducted new experiments evaluating the
performance of the TopER model by progressively adding each filtration function step by step. This
analysis provides insights into how the inclusion of additional filtration functions influences the
model’s performance. In Table 11, the TopER-n model represents the TopER utilizing n-filtration
functions (2n features).
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Table 11: Performance improvements achieved by integrating filtration functions into the TopER
model. Here, TopER-n denotes the TopER model with n filtration functions.

Dataset TopER-1 TopER-2 TopER-3 TopER-4
BZR 82.48+198 84.70+284 85.66+5.00 86.68+3.81
COX2 78.814+1.94 79.264+486 79.04+749  80.30+3.91
MUTAG 86.14+6.38 88.33+3.88 86.75+4.78 88.30+4.63
PROTEINS 74.03+271  74.67+2.73 75214339  75.65+3.87
IMDB-B 73.00+4.40 74.20+426 74.50+350 74.7043.95

IMDB-M 48.73+433  49.80+294 49.73+4.18 49.87+4.00
REDDIT-B 81.95+2.74 90.45+255 91.05+262 91.50+2.01
REDDIT-5K  50.21+4+1.41 54.114243 56.194240 56.33+2.74

A.6 TopER filtrations runtimes and substitute

Filtration Timing Results. In Table 12, we report the computation times (in seconds) for the
TOPER filtration functions across various datasets. We also include the timings for the Heat Kernel
Signature (HKS), which can serve as an efficient substitute for the Ollivier—Ricci curvature in certain
scenarios due to its faster computation while preserving relevant structural information about the
graphs. The table below summarizes the observed computation times for each filtration type across
multiple benchmark datasets.

Table 12: Computation times (in seconds) of different filtration functions across datasets.

Filtration BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K
Degree Centrality — 0.86 1.67 0.40 13.82 13.32 13.03 115.09 447.72
Popularity 0.73 1.36 0.58 5.81 13.21 15.60 111.11 414.04
Closeness 2.29 4.40 0.77 15.97 5.85 6.63 399.2 1274.00
Forman Ricci 0.80 1.56 0.58 4.63 8.29 7.38 258.32 693.18
Ollivier Ricci 130.04 121.42 48.98 313.21 277.66 428.32 1291.93 6640.95
Degree 1.14 1.16 0.61 2.62 3.27 422 107.65 363.32
Weight 2.25 2.80 0.90 12.89 - - - -

HKS 2.07 1.94 0.56 16.90 15.54 15.72 470.01 1007.50

We evaluate the performance of our TopER model against state-of-the-art (SOTA) methods on
benchmark graph classification datasets, including BZR, COX2, MUTAG, PROTEINS, IMDB-B,
IMDB-M, REDDIT-B, and REDDIT-5K. Table 13 reports classification accuracy (mean + standard
deviation) across multiple runs. TopER generally achieves competitive results compared to SOTA.
Ablation studies show the impact of Ricci curvature and Heat Kernel Signatures (HKS) on model
performance. Notably, TopER without Ricci but with HKS recovers most of the performance lost
when Ricci is removed, suggesting that HKS can serve as a viable replacement for Ollivier-Ricci
curvature in capturing structural information.

Table 13: Graph classification accuracy (mean =+ std) for different models across benchmark datasets.
Highest scores per dataset are bold blue, second-highest are underlined blue.

Model BZR COX2 MUTAG  PROTEINS IMDB-B IMDB-M  REDDIT-B REDDIT-5K
SOTA 89.00+5.00 85.53+1.60 92.63+2.58 77.30+0.89 75.08+£0.31 52.81+0.31 91.03x0.22  56.75+0.18
TopER 90.13x4.14  82.01+4.59 90.99+6.64 74.58+3.92 73.20+3.43 50.00+4.02 92.70+2.38  56.51+2.22
TopER w/o O. R. 87.00£4.30 77.96+8.38 87.78+7.84 74.04£3.86 73.50+£3.53 50.00+5.44 91.90+2.63  56.37+1.89

TopER w/o O.R.& w/HKS  89.63+£3.65 81.58+3.54 92.08+4.23 75.2043.59 75.00+3.49 50.67+5.58 92.75+2.47  57.33+2.02

A.7 Hyperparameters

Our proposed MLP algorithm is constructed with a single hidden layer. The output layer’s activation
function is set to log softmax, and the loss function we used is Negative Log Likelihood Loss. The
learning rate is chosen between 0.01 and 0.001. Subsequently, we investigate the impact of the
number of neurons in the hidden layer, considering values from the set {16, 64, 128}. The optimizer
is set to be Adam, and the number of epochs is 500. To prevent large weights and overfitting, we
apply L2 regularization coefficients of 1e-3, le-4. The activation function for the hidden layer varies
between ReLU, GeLU, and ELU. Lastly, we consider the cases of adding or not a batch normalization
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Algorithm 1 TopER: Topological Evolution Rate

Input: Graph G, Filtration function f : V — R, Threshold set Z = {¢; }7,
Output: TopER vector T7(G,7)
Initialize lists X =[], Y =[]
for i =1tondo
G; + Induced subgraph of G where V; C f~1([eo, €;])
Ti < |Vz|
yi &
Append z; to X
Append y; to Y
end for
Fita line £(x) = a + bx: to pairs (z;,y;) from X and ) using least squares
Extract coefficients a and b
Return (a, b) as the TopER vector T;(G,T)

layer to the output of the hidden layer and setting dropout values to be 0.0 or 0.5. In Table 14, we
provide the details for each dataset. The last column shows the number of TopER features used for
each dataset after the feature selection step.

Table 14: Employed hyperparameters for each dataset.

Dataset Neurons Dropout Batch Norm. Decay Learning rate Activation TopER Dim.
BZR 64 0.5 True le-4 0.001 gelu 26
Ccox2 128 0 True le-4 0.01 relu 26
MUTAG 16 0.5 False le-3 0.01 gelu 20
PROTEINS 64 0.5 True le-3 0.01 elu 26
IMDB-B 128 0 False le-3 0.001 relu 20
IMDB-M 16 0 False le-3 0.01 elu 20
REDDIT-B 64 0.5 False le-3 0.01 relu 24
REDDIT-5K 128 0 False le-3 0.01 elu 14

B More on TopER

B.1 Refining the point set

While we have described the main steps of TopER in Section 3, due to the repetitions of the points
in A = {(x;,y;)} C R?, there are some choices to be made before defining the set A (i.e., X and
) to get the best fitting function L : X — Y. The main reason is that the set {(x;,y;)}¥; can
contain repetitions of z-values (z; = z;41), repetitions of y-values (y; = y;+1) or repetitions of both
((x4,9:) = (®i41,Yi+1)) depending on the filtration function, the threshold set Z, and the graph G.

For the filtrations induced by node filtration functions, the number of edges can not change unless the
number of nodes changes, i.e., z; = ;41 = y; = ¥;+1. Hence, with this elimination, we still allow
keeping y-values the same while x-values are increasing. This means there can be horizontal jumps
in A,,. In this paper, to eliminate all horizontal jumps for filtrations with node functions, we eliminate
all repetitions of y-values from A,,. In particular, we remove all the points with the same y-value
and add a point with a mean of x-values. In other words, if y; = y;41 = - -+ = y;4r = ¥, we define
Z = mean{x;, T;y1,..., Tk }. Then, we replace (k+1) points {(x;,9), (zi+1,9),- .-, (Ti+k,¥)}
with one point (Z, %) in A,. This process eliminates all repetitions and horizontal jumps in .4, and
we define our best-fitting line on this refined set.

B.2 TopER with Alternative Quantities

While we use the most general quantities for a graph—the count of vertices and edges—in our
algorithm, depending on the problem, there might be other induced quantities (x;, y;) for a given
subgraph G; which can give better vectors. To keep the line-fitting approach meaningful in our model,
as long as the sequences {z;} and {y;} are monotone like our node-edge counts above, for a given

23



dataset in a domain (e.g., biochemistry, finance), one can use other domain-related quantities induced
by substructure G; as a (x;, y; ) pair to obtain a TopER vector.

BZR graph 34

REDDIT-BINARY graph 419 PROTEINS graph 245
1200 800
1000

800 2 4
P 4

number of edges
number of edges
number of edges

0 5 10 15 20 25 30 35 0 200 400 600 800 0 100 200 300 400 500
number of nodes number of nodes number of nodes

(a) (b) (0)

Figure 6: Linear Fit. TopER summarizes the growth behavior in the graph induced by filtration with a linear
fit.

B.3 Linear or Higher Order Fitting

In our experiments, we observe that linear fitting captures the growth information for node-edge
pair {(z;,v;)} well (See Figure 6), and quadratic fit and linear fit stay very close to each other.
However, if one decides to use other quantities as described above and loses the monotonicity of the
sequences {x;} and {y;}, trying higher order fits (e.g., y = ax? + bx + ¢) can be more meaningful.
In Table 15, we present the average of the coefficients of quadratic terms when we use quadratic fit
for the datasets, i.e., if we fity = a + bx + cx? polynomial, we observe that the quadratic term cr?
is mostly negligible, and tends to be a linear fit.

Table 15: Average of x2 coefficient across datasets for quadratic fitting.
Dataset BZR COox2 MUTAG REDDIT-5k

Average of 2 Coefficient 4.71 x 107° 6.61 x 107* 1.16 x 1072 1.78 x 107°

B.4 Interpreting TopER

Our approach involves accurately modeling the evolution of a graph throughout the filtration process.
One can easily identify clusters for each class and outliers in the other datasets given in Figure 1(a)
and make inferences about the different clusters and outliers. Furthermore, when the pivot a ¢ is
positive or negative, it can be interpreted as graph density behavior in the filtration sequence (See
Figure 7).

C Proofs of Stability Theorems

In this part, we prove the stability results for our TopER.

Lemma 3.6. [ST20] Let X be a compact metric space, and f, g : X — R be two filtration functions.
Then, for any p > 1, we have W, (PDy (X, f), PDy (X, g)) < [If — gllp

The next lemma is on the stability of Betti curves by [DG23] [Proposition 1].

Lemma 3.7. [DG23] Let 3;,(X) is the k' Betti function obtained from the persistence module
PM (X).
1B (X) = Be(P)[l1 < 2W1(PDy(X), PDy(Y))

Now, we are ready to prove our stability result.

Theorem 3.4 Let X' be a compact metric space, and f, g : X — R be two filtration functions. Then,
for some C > 0,

|TE¢(X) — TEg(X)[[1 < C- Wi (PDx(&X, 1), PD(X, g))
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Figure 7: Pivot Behavior. A graph can exhibit three distinct pivot behaviors. Positive pivot graphs display a
cluster of vertices that are closely interconnected and appear early in the filtration process. On the other hand,
negative pivot graphs feature loosely connected nodes where the edges enter the filtration at a later stage. Graphs
with zero pivot are usually quasi-complete graphs.

Proof. We will utilize the stability theorems from topological data analysis given above.

First, we employ the stability of Betti curves by Lemma 3.7.
186 (X) = (V)1 < 2W1(PDy(X), PDi(Y)) D
Hence to obtain TE¢(X') = (ar, b¢), we fit least squares line y = ay + bsx to the set of N points
€

(ar
inR? ie, Z; = {(ﬂg( i) 6{(62) }N . Similarly, we obtain TE4(X') = (ag, bg) by fitting least
squares line to Z, = {(53(e;), 87 (€;))}¥,. By Equation (1), we have

Dy (Zy, Z4) < 4Wi(PDy(X), PDi(Y)) 2
where Dy (Zy, Z,) represent Hausdorff distance between the point clouds Z¢ and Z, in R?.

Now, by the stability of least squares fit with respect to Hausdorff distance ((CHM12] [Theorem
3.1]), we have
[TE:(X) — TEg(X)[1 < C- Du(Z¢, Zg) ©)

Hence, when we combine Equations (2) and (3), we have
I TES(X) — TE,(X)]1 < C- Wy (PDy(X), PDi(Y))

The proof follows. O

By combining the above result with Lemma 3.6, we obtain the following corollary.

Corollary 3.5 Let X’ be a compact metric space, and f, g : X — R be two filtration functions. Then,
for some C > 0,
[TEs(X) — TEg(X)[1 < C-[If —gllx

Proof. By Lemma 3.6, we have
Wi (PDi (&, f), PDy (X, g)) < [If — gllx @)
By Theorem 3.4, we have
ITE(X) = TEg(X) 1 < C- Wi (PDy(X,f), PDi (X, g)) ®

By combining Equations (4) and (5), we conclude
ITE(X) = TEg(X)[1 < C- [[f — gllx
The proof follows. O
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D Synthetic Experiments

This section describes experiments performed on the Erdos-Renyi synthetic graph. We conducted
two experiments by applying TopER on this graph and Principal Component Analysis (PCA). The
goal is to compare the performance, runtime, and interpretability of the two models. From the plots
shown in Figures 8, 9, and 10, we see that TopER is interpretable compared to when PCA is used.
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Figure 8: TopER plots showing pivot vs growth for each function—degree centrality, closeness, degree, and
popularity when threshold=50.
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Figure 9: Persistent Homology PCA plots embeddings (Betti 0 and Betti 1) showing component 1 vs component
2 for each function—closeness and degree when threshold=50 and the respective filtrations —sublevel and
superlevel.

E Broader Impact

This work advances the field of graph representation learning by introducing a topological approach
that is both interpretable and scalable. By leveraging the structural insights of persistent homology
without incurring its prohibitive computational costs, TopER enables more efficient and insightful
analysis of complex graph-structured data. This has the potential to benefit a range of scientific and
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Figure 10: Persistent Homology PCA plots embeddings (Betti 0 and Betti 1) showing component 1 vs
component 2 for each function—degree centrality and popularity when threshold=50 and the respective filtrations
—sublevel and superlevel.

industrial domains where graph data is prevalent, including bioinformatics, social network analysis,
and infrastructure monitoring. In particular, the ability to generate low-dimensional and interpretable
embeddings could assist researchers in visual analytics, pattern discovery, and model debugging. At
the same time, we acknowledge that the use of graph representations—especially in social networks
or biological datasets—may carry ethical concerns around data privacy, representational bias, or
unintended consequences of automated decision-making. While TopER itself is an unsupervised and
domain-agnostic method, its application must be governed by domain-specific ethical considerations.
To support responsible use, we emphasize interpretability and transparency in our design, and we
release our code and visualizations to promote reproducibility and community oversight.
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